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Abstract: Let R be a (unital) commutative ring, andG be a finite group
with order invertible in R. We introduce new idempotents ϵGT,S in the
double Burnside algebra RB(G,G) of G over R, indexed by conjugacy
classes of minimal sections (T, S) of G (i.e. sections such that S ≤ Φ(T )).
These idempotents are orthogonal, and their sum is equal to the identity.
It follows that for any biset functor F over R, the evaluation F (G) splits
as a direct sum of specific R-modules indexed by minimal sections of G,
up to conjugation.
The restriction of these constructions to the biset category of p-groups,
where p is a prime number invertible in R, leads to a decomposition of
the category of p-biset functors over R as a direct product of categories
FL indexed by atoric p-groups L up to isomorphism.
We next introduce the notions of L-enriched biset and L-enriched biset
functor for an arbitrary finite group L, and show that for an atoric p-
group L, the category FL is equivalent to the category of L-enriched
biset functors defined over elementary abelian p-groups.
Finally, the notion of vertex of an indecomposable p-biset functor is in-
troduced (when p ∈ R×), and when R is a field of characteristic different
from p, the objects of the category FL are characterized in terms of ver-
tices of their composition factors.
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1. Introduction

Let R denote throughout a commutative ring (with identity element). For
a finite group G, we consider the double Burnside algebra RB(G,G) of a G
over R. In the case where the order of G is invertible in R, we introduce
idempotents ϵGT,S in RB(G,G), indexed by the setM(G) of minimal sections
of G, i.e. the set of pairs (T, S) of subgroups of G with S⊴T and S ≤ Φ(T ),
where Φ(T ) is the Frattini subgroup of G (such sections have been considered
in Section 5 of [9]). The idempotent ϵGT,S only depends of the conjugacy class
of (T, S) in G. Moreover, the idempotents ϵGT,S, where (T, S) runs through a
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set [M(G)] of representatives of orbits of G acting onM(G) by conjugation,
are orthogonal, and their sum is equal to the identity element of RB(G,G).

The idempotents ϵGG,1 plays a special role in our construction, and it is
denoted by φG

1 . In particular, when F is a biset functor over R (and the order
of G is invertible in R), we set δΦF (G) = φG

1F (G). We show that δΦF (G)
consists of those elements u ∈ F (G) such that ResGHu = 0 whenever H is a
proper subgroup of G, and DefGG/Nu = 0 whenever N is a non-trivial normal
subgroup of G contained in Φ(G). This yields moreover a decomposition

F (G) ∼=
(

⊕
(T,S)∈M(G)

δΦF (T/S)
)G ∼= ⊕

(T,S)∈[M(G)]
δΦF (T/S)NG(T,S)/T .

Restricting these constructions to the biset category RCp of p-groups with
coefficients inR, where p is a prime invertible inR, we get orthogonal idempo-
tents bL in the center of RCp, indexed by atoric p-groups, i.e. finite p-groups
which cannot be split as a direct product Cp × Q, for some p-group Q. We
show next that every finite p-group P admits a unique largest atoric quo-
tient P@, well defined up to isomorphism, and that there exists an elementary
abelian p-subgroup E of P (non unique in general) such that P ∼= E × P@.
For a given atoric p-group L, we introduce a category RC♯Lp , defined as a quo-
tient of the subcategory of RCp consisting of p-groups P such that P@ ∼= L.
This leads to a decomposition of the category Fp,R of p-biset functors over
R as a direct product

Fp,R
∼=

∏
L∈[Atp]

FunR
(
RC♯Lp , R-Mod

)
of categories of representations of RC♯Lp over R, where L runs through a
set [Atp] of isomorphism classes of atoric p-groups. Similar questions on
idempotents in double Burnside algebras and decomposition of biset functors
categories have been considered by L. Barker ([1]), R. Boltje and S. Danz
([2], [3]), R. Boltje and B. Külshammer ([4]), and P. Webb ([16]).

In particular, via the above decomposition, to any indecomposable p-
biset functor F is associated a unique atoric p-group, called the vertex of F .
We show that this vertex is isomorphic to Q@, for any p-group Q such that
F (Q) ̸= {0} but F vanishes on any proper subquotient of Q.

Going back to arbitrary finite groups, we next introduce the notions of
L-enriched biset and L-enriched biset functor, and show that when L is an
atoric p-group, the abelian category FunR

(
RC♯Lp , R-Mod

)
is equivalent to the

category of L-enriched biset functors from elementary abelian p-groups to
R-modules.

The paper is organized as follows: Section 2 is a review of definitions and
basic results on Burnside rings and biset functors. Section 3 is concerned
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with the algebra E(G) obtained by “cutting” the double Burnside algebra

RB(G,G) of a finite group G by the idempotent ẽGG corresponding to the
“top” idempotent eGG of the Burnside algebra RB(G). Orthogonal idem-
potents φG

N of E(G) are introduced, indexed by normal subgroups N of G
contained in Φ(G). It is shown moreover that if G is nilpotent, then φG

1 is
central in E(G). In Section 4, the idempotents ϵGT,S of RB(G,G) are intro-
duced, leading in Section 5 to the corresponding direct sum decomposition of
the evaluation at G of any biset functor over R. In Section 6, atoric p-groups
are introduced, and their main properties are stated. In Section 7, the biset
category of p-groups over R is considered, leading to a splitting of the cate-
gory Fp,R of p-biset functors over R as a direct product of abelian categories
FL = FunR

(
RC♯Lp , R-Mod

)
indexed by atoric p-groups L up to isomorphism.

In Section 8, for an arbitrary finite group L, the notions of L-enriched biset
and L-enriched biset functor are introduced, and it is shown that when L is
an atoric p-group, the category FL is equivalent to the category of L-enriched
biset functors on elementary abelian p-groups. Finally, in Section 9, for a
given atoric p-group L, and when p is invertible in R, the structure of the
category FL is considered, and the notion of vertex of an indecomposable
p-biset functor over R is introduced. In particular, when R is a field of char-
acteristic different from p, it is shown that the objects of FL are those p-biset
functors all composition factors of which have vertex L.
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2. Review of Burnside rings and biset functors

2.1. Let G be a finite group, let sG denote the set of subgroups of G, let sG
denote the set of conjugacy classes of subgroups of G, and let [sG] denote a
set of representatives of sG.

Let B(G) denote the Burnside ring of G, i.e. the Grothendieck ring of the
category of finite G-sets. It is a commutative ring, with an identity element,
equal to the class of a G-set of cardinality 1. The additive group B(G) is a
free abelian group on the set {[G/H] | H ∈ [sG]} of isomorphism classes of
transitive G-sets.

2.2. • When G and H are finite groups, and L is a subgroup of G×H, set

p1(L) = {g ∈ G | ∃h ∈ H, (g, h) ∈ L} ,

p2(L) = {h ∈ H | ∃g ∈ G, (g, h) ∈ L} ,

k1(L) = {g ∈ G | (g, 1) ∈ L} ,

k2(L) = {h ∈ H | (1, h) ∈ L} .

Recall that ki(L)⊴ pi(L), for i ∈ {1, 2}, that
(
k1(L) × k2(L)

)
⊴L, and that

there are canonical isomorphisms

p1(L)/k1(L) ∼= L/
(
k1(L)× k2(L)

) ∼= p2(L)/k2(L) .

Set moreover q(L) = L/
(
k1(L)× k2(L)

)
.

• When Z is a subgroup of G, set

∆(Z) = {(z, z) | z ∈ Z} ≤ (G×G) .

When N is a normal subgroup of G, set

∆N(G) = {(a, b) ∈ G×G | ab−1 ∈ N} .

It is a subgroup of G×G.

•When G, H, and K are groups, when L ≤ (G×H) and M ≤ (H×K), set

L ∗M = {(g, k) ∈ (G×K) | ∃h ∈ H, (g, h) ∈ L and (h, k) ∈ K} .

It is a subgroup of (G×K).

2.3. When G and H are finite groups, a (G,H)-biset U is a set endowed with
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a left action of G and a right action of H which commute. In other words U
is a G ×Hop-set, where Hop is the opposite group of H. The opposite biset
U op is the (H,G)-biset equal to U as a set, with actions defined for h ∈ H,
u ∈ U and g ∈ G by h · u · g (in U op) = g−1uh−1 (in U).

The Burnside group B(G,H) is the Grothendieck group of the category
of finite (G,H)-bisets. It is a free abelian group on the set of isomorphism
classes [(G × H)/L], for L ∈ [sG×H ], where the (G,H)-biset structure on
(G×H)/L is given by

∀a, g ∈ G, ∀b, h ∈ H, a · (g, h)L · b = (ag, b−1h)L .

When G, H, and K are finite groups, there is a unique bilinear product

×H : B(G,H)×B(H,K)→ B(G,K)

induced by the usual product (U, V ) 7→ U ×H V = (U × V )/H of bisets,
where the right action of H on U ×V is defined for u ∈ U , v ∈ V and h ∈ H
by (u, v) ·h = (uh, h−1v). This product will also be denoted as a composition
(α, β) 7→ α ◦ β or as a product (α, β) 7→ αβ.

This leads to the following definitions:

2.4. Definition: The biset category of finite groups C is defined as follows:

• The objects of C are the finite groups.

• When G and H are finite groups,

HomC(G,H) = B(H,G) .

• When G, H, and K are finite groups, the composition

◦ : HomC(H,K)× HomC(G,H)→ HomC(G,K)

is the product

×H : B(K,H)×B(H,G)→ B(K,G) .

• The identity morphism of the group G is the class of the set G, viewed
as a (G,G)-biset by left and right multiplication.

A biset functor is an additive functor from C to the category of abelian groups.
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When R is a commutative (unital) ring, the category RC is defined simi-
larly by extending coefficients to R, i.e. by setting

HomRC(G,H) = R⊗Z B(H,G) ,

which will be simply denoted by RB(H,G). A biset functor over R is an R-
linear functor from RC to the category R-Mod of R-modules. The category
of biset functors over R (where morphisms are natural transformations of
functors) is denoted by FR.

The correspondence sending a (G,H)-biset U to its opposite U op extends
to an isomorphism of R-modules RB(G,H) → RB(H,G). These isomor-
phisms give an equivalence of R-linear categories from RC to its opposite
category, which is the identity on objects.

2.5. Let G and H be finite groups, and F be a biset functor (with values
in R-Mod). For any finite (H,G)-biset U , the isomorphism class [U ] of U
belongs to B(H,G), and it yields an R-linear map F ([U ]) : F (G) → F (H),
simply denoted by F (U), or even f ∈ F (G) 7→ U(f) ∈ F (H). In particular:

• When H is a subgroup of G, denote by IndG
H the set G, viewed as

a (G,H)-biset for left and right multiplication, and by ResGH the same
set, viewed as an (H,G)-biset. This gives a map IndG

H : F (H)→ F (G),
called induction, and a map ResGH : F (G)→ F (H), called restriction.

• When N is a normal subgroup of G, let InfGG/N denote the set G/N ,
viewed as a (G,G/N)-biset for the left action of G, and right action of
G/N by multiplication. Also let DefGG/N denote the set G/N , viewed as

a (G/N,G)-biset. This gives a map InfGG/N : F (G/N) → F (G), called

inflation, and a map DefGG/N : F (G)→ F (G/N), called deflation.

• Finally, when f : G→ G′ is a group isomorphism, denote by Iso(f) the
set G′, viewed as a (G′, G)-biset for left multiplication in G′, and right
action of G given by multiplication by the image under f . This gives
a map Iso(f) : F (G)→ F (G′), called transport by isomorphism.

When G and H are finite groups, any (G,H)-biset is a disjoint union of
transitive ones. It follows that any element of B(G,H) is a linear combination
of morphisms of the form [(G×H)/L], where L ∈ sG×H . Moreover, any such
morphism factors as

(2.6) [(G×H)/L] = IndG
p1(L)
◦Infp1(L)p1(L)/k1(L)

◦Iso(f)◦Defp2(L)p2(L)/k2(L)
◦ResHp2(L) ,

where f : p2(L)/k2(L)→ p1(L)/k1(L) is the canonical group isomorphism.
In particular, for N ⊴G,

(2.7) [(G×G)/∆N(G)] = InfGG/N ◦DefGG/N .
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For finite groups G,H,K, for L ≤ (G×H) and M ≤ (H×K), one has that

(2.8) [(G×H)/L]×H [(H ×K)/M ] =
∑

h∈p2(L)\H/p1(M)

[(G×K)/(L ∗ (h,1)M)

in B(G,K).

2.9. When G is a finite group, the group B(G,G) is the ring of endomor-
phisms of G in the category C. This ring is called the double Burnside ring
of G. It is a non-commutative ring (if G is non trivial), with identity element
equal to the class of the set G, viewed as a (G,G)-biset for left and right
multiplication.

There is a unitary ring homomorphism α 7→ α̃ from B(G) to B(G,G),

induced by the functor X 7→ X̃ from G-sets to (G,G)-bisets, where X̃ =
G×X, with (G,G)-biset structure given by

∀a, b, g ∈ G, ∀x ∈ X, a(g, x)b = (agb, ax) .

This construction has in particular the following properties ([7], Corollary
2.5.12):

2.10. Lemma: Let G be a finite group.

1. If H is a subgroup of G, and X is a finite G-set, then there is an
isomorphism of (G,H)-bisets

X̃ ×G IndG
H
∼= IndG

H ×H R̃esGHX ,

and an isomorphism of (H,G)-bisets

ResGH ×G X̃ ∼= R̃esGHX ×H ResGH .

2. If H is a subgroup of G, and Y is a finite H-set, then there is an
isomorphism of (G,G)-bisets

IndG
H ×H Ỹ ×H ResGH

∼= ĨndG
HY .

3. If N is a normal subgroup of G, and X is a finite G/N-set, then there
is an isomorphism of (G/N,G)-bisets

X̃ ×G/N DefGG/N
∼= DefGG/N ×G

˜InfGG/NX .
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4. If N is a normal subgroup of G, and X is a finite G-set, then there is
an isomorphism of (G/N,G/N)-bisets

DefGG/N ×G X ×G InfGG/N
∼= ˜DefGG/NX .

2.11. Let RB(G) denote the R-algebra R⊗Z B(G). Assume moreover that
the order of G is invertible in R. Then for H ≤ G, let eGH ∈ RB(G) be
defined by

(2.12) eGH =
1

|NG(H)|
∑
K≤H

|K|µ(K,H) [G/K] ,

where µ is the Möbius function of the poset of subgroups of G. The elements
eGH , for H ∈ [sG], are orthogonal idempotents of RB(G), and their sum is

equal to the identity element of RB(G). It follows that the elements ẽGH ,
for H ∈ [sG], are orthogonal idempotents of the R-algebra RB(G,G) =
R ⊗Z B(G,G), and the sum of these idempotents is equal to the identity

element of RB(G,G). The idempotents ẽGG play a special role, due to the
following lemma:

2.13. Lemma: Let R be a commutative ring, and G be a finite group with
order invertible in R.

1. Let H be a proper subgroup of G. Then

ResGH ◦ ẽGG = 0 and ẽGG ◦ Ind
G
H = 0 .

2. When N ⊴G, let mG,N ∈ R be defined by

mG,N =
1

|G|
∑
X∈sG
XN=G

|X|µ(X,G) .

Then

DefGG/N ◦ ẽGG ◦ Inf
G
G/N = mG,N ẽ

G/N
G/N .

3. Let N ⊴G, and suppose that N is contained in the Frattini subgroup
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Φ(G) of G. Then

ẽ
G/N
G/N ◦Def

G
G/N = DefGG/N ◦ ẽGG and InfGG/N ◦ ẽ

G/N
G/N = ẽGG ◦ Inf

G
G/N .

Proof : Assertion 1 follows from Lemma 2.10 and Assertion 1 of Theo-
rem 5.2.4. of [7].

Assertion 2 follows from Lemma 2.10 and Assertion 4 of Theorem 5.2.4.
of [7].

Finally the first part of Assertion 3 follows from Lemma 2.10 and Asser-
tion 3 of Theorem 5.2.4. of [7]: indeed InfGG/Ne

G/N
G/N is equal to the sum of

the different idempotents eGX of RB(G) indexed by subgroups X such that
XN = G. If N ≤ Φ(G), then XN = G implies XΦ(G) = G, hence X = G.

The second part of Assertion 3 follows by taking opposite bisets, since ẽGG and

ẽ
G/N
G/N are equal to their opposite bisets, and since (DefGG/N)

op ∼= InfGG/N .

2.14. Remark: For the same reason, if N ≤ Φ(G), then mG,N = 1.

2.15. Remark: It follows from Assertion 1 and Remark 2.6 that if G and H

are finite groups and if L ≤ (G×H), then ẽGG[(G×H)/L] = 0 if p1(L) ̸= G,

and [(G×H)/L]ẽHH = 0 if p2(L) ̸= H.

3. Idempotents in E(G)

3.1. Notation: When G is a finite group with order invertible in R, denote
by E(G) the R-algebra defined by

E(G) = ẽGGRB(G,G)ẽGG .

Set
Σ(G,G) = {M ∈ sG×G | p1(L) = p2(L) = G} ,

and for L ∈ sG×G, set

YL = ẽGG [(G×G)/L] ẽGG ∈ E(G) .

The R-algebra E(G) has been considered in [5], Section 9, in the case R
is a field of characteristic 0. The extension of the results proved there to the
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case where R is a commutative ring in which the order of G is invertible is
straightforward. In particular:

3.2. Proposition: Let G be a finite group with order invertible in R.

1. If L ∈ sG×G − Σ(G,G), then YL = 0.

2. The elements YL, for L in a set of representatives of (G×G)-conjugacy
classes on Σ(G,G), form a R-basis of E(G).

3. For L,M ∈ Σ(G,G)

YLYM =
mG,k2(L)∩k1(M)

|G|
∑
Z≤G

Zk2(L)=Zk1(M)=G

Z≥k2(L)∩k1(M)

|Z|µ(Z,G) YL∗∆(Z)∗M

in E(G).

3.3. Corollary: Let L,M ∈ Σ(G,G). If one of the groups k2(L) or k1(M)
is contained in Φ(G), then

YLYM = YL∗M .

Proof : Indeed if k2(L) ≤ Φ(G), then Zk2(L) = G implies ZΦ(G) = G,
hence Z = G. Similarly, if k1(M) ≤ Φ(G), then Zk1(M) = G implies
Z = G. In each case, Proposition 3.2 then gives

YLYM = mG,k2(L)∩k1(M)YL∗M ,

and moreover mG,k2(L)∩k1(M) = 1 since k2(L) ∩ k1(M) ≤ Φ(G), by Re-
mark 2.14.

3.4. Notation: For a normal subgroup N of G such that N ≤ Φ(G), set

φG
N =

∑
M ⊴G

N≤M≤Φ(G)

µ⊴G(N,M)Y∆M (G) ,

where µ⊴G is the Möbius function of the poset of normal subgroups of G.
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3.5. Proposition: Let N ⊴G with N ≤ Φ(G). Then

φG
N = InfGG/Nφ

G/N
1 DefGG/N .

Proof : Indeed if N ≤ M ⊴G, then µ⊴G(N,M) = µ⊴G/N(1,M/N). Since
moreover N ≤ Φ(G), setting G = G/N and M = M/N , we have by
Lemma 2.13

InfGG/NY∆G(M)Def
G
G/N = InfGG/N ◦ ẽGG

(
(G×G)/∆G(M)

)
ẽG
G
◦DefGG/N

= ẽGG ◦ Inf
G
G/N

(
(G×G)/∆G(M)

)
DefGG/N ◦ ẽGG

= ẽGG
(
(G×G)/∆M(G)

)
ẽGG

= Y∆M (G) ,

since InfGG/N

(
(G×G))/∆G(M)

)
DefGG/N = (G×G)/∆M(G).

3.6. Proposition:

1. Let N ⊴G, with N ≤ Φ(G). Then

φG
N = ẽGG ×G

( ∑
M ⊴G

N≤M≤Φ(G)

µ⊴G(N,M)[(G×G)/∆M(G)]
)

=
( ∑

M ⊴G
N≤M≤Φ(G)

µ⊴G(N,M)[(G×G)/∆M(G)]
)
×G ẽGG .

2. In particular

φG
1 =

1

|G|
∑

X≤G,M ⊴G

M≤Φ(G)≤X≤G

|X|µ(X,G)µ⊴G(1,M) IndinfGX/M ◦DefresGX/M .

Proof : For Assertion 1, by definition

φG
N =

∑
M ⊴G

N≤M≤Φ(G)

µ⊴G(N,M)ẽGG[(G×G)/∆M(G)]×G

∑
X≤G

|X|
|G|µ(X,G)[(G×G)/∆(X)].

Moreover [(G×G)/∆M(G)]×G[(G×G)/∆(X)] = [(G×G)/
(
∆M(G)∗∆(X)

)
],

by (2.8), and ∆M(G) ∗ ∆(X) = {(xm, x) | x ∈ X,m ∈ M}. The first
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projection of this group is equal to XM , hence it is equal to G if and only
if X = G, since M ≤ Φ(G). The first equality of Assertion 1 follows, by

Remark 2.15. The second one follows by taking opposite bisets, since ẽGG and
[(G×G)/∆M(G)] are equal to their opposite.

Assertion 2 follows in the special case where N = 1, expanding ẽGG as

ẽGG =
1

|G|
∑
X≤G

|X|µ(X,G)[(G×G)/∆(X)] ,

observing that µ(X,G) = 0 unless X ≥ Φ(G), and that if X ≥ Φ(G) ≥ M ,
then

[(G×G)/∆(X)] ◦ [(G×G)/∆M(G)] = [(G×G)/∆M(X)] ,

which is equal to IndinfGX/M ◦DefresGX/M .

3.7. Corollary:

1. Let H < G. Then ResGHφ
G
N = 0 and φG

N Ind
G
H = 0.

2. Let M ⊴G. If M∩Φ(G) ≰ N , then DefGG/MφG
N = 0 and φG

N Inf
G
G/M = 0.

Proof : The first part of Assertion 1 follows from Lemma 2.13, since

ResGHφ
G
N = ResGH ẽ

G
Gφ

G
N = 0 .

The second part follows by taking opposite bisets.
For Assertion 2, let P = M ∩Φ(G). Since DefGG/M = Def

G/P
G/M ◦Def

G
G/P , it

suffices to consider the case M = P , i.e. the case where M ≤ Φ(G). Then,
since [(G × G)/∆M(G)] = InfGG/MDefGG/M for any M ⊴G, by 2.7, and since

DefGG/M InfGG/Q = Inf
G/M
G/MQDef

G/Q
G/MQ for any M,Q⊴G,

DefGG/MφG
N = DefGG/M

∑
Q⊴G

N≤Q≤Φ(G)

µ⊴G(N,Q)InfGG/QDef
G
G/Qẽ

G
G

=
∑
Q⊴G

N≤Q≤Φ(G)

µ⊴G(N,Q)InfGG/MQDef
G
G/MQẽ

G
G

=
∑
P ⊴G

N≤P≤Φ(G)

( ∑
Q⊴G

N≤Q≤Φ(G)

QM=P

µ⊴G(N,Q)
)
InfGG/PDef

G
G/P ẽ

G
G .
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Now for a given P ⊴G with P ⊆ Φ(G), the sum
∑

Q⊴G

N≤Q≤Φ(G)

QM=P

µ⊴G(N,Q) is

equal to zero unless NM = N , that is M ≤ N , by classical properties
of the Möbius function ([15] Corollary 3.9.3). This proves the first part of
Assertion 2, and the second part follows by taking opposite bisets.

3.8. Theorem: Let G be a finite group with order invertible in R.

1. The elements φG
N , for N ⊴G with N ≤ Φ(G), form a set of orthogonal

idempotents in the algebra E(G), and their sum is equal to the identity

element ẽGG of E(G).

2. Let N ⊴G with N ≤ Φ(G), and let H be a finite group.

(a) If L ≤ (G ×H), then φG
N ×G [(G ×H)/L] = 0 unless p1(L) = G

and k1(L) ∩ Φ(G) ≤ N .

(b) If L′ ≤ (H ×G), then [(H ×G)/L′]×G φG
N = 0 unless p2(L

′) = G
and k2(L

′) ∩ Φ(G) ≤ N .

Proof : For N ⊴G, set uG
N = Y∆N (G). Since ∆N(G) ∗∆M(G) = ∆NM(G) for

any normal subgroups N and M of G, it follows from Corollary 3.3 that if
either N or M is contained in Φ(G), then uG

Nu
G
M = uG

NM .
Now Assertion 1 follows from the following general procedure for building

orthogonal idempotents (see [13] Theorem 10.1 for details): we have a finite
lattice P (here P is the lattice of normal subgroups of G contained in Φ(G)),
and a set of elements gx of a ring A, for x ∈ P (here A = E(G) and gN = uG

N),
with the property that gxgy = gx∨y for any x, y ∈ P , and g0 = 1, where 0
is the smallest element of P (here this element is the trivial subgroup of G,

and uG
1 = Y∆1(G) = ẽGG). The the elements fx defined for x ∈ P by

fx =
∑
y∈P
x≤y

µ(x, y)gy ,

where µ is the Möbius function of P , are orthogonal idempotents of A, and
their sum is equal to the identity element of A. This is exactly Assertion 1
(since fx = φG

N here, for x = N ∈ P ).
Let L ≤ (G×H), then by 2.6

φG
N ×G [(G×H)/L] = φG

N ◦ IndG
p1(L)

◦ [(p1(L)×H)/L] = 0

unless p1(L) = G, by Corollary 3.7. And if p1(L) = G, then by 2.6

φG
N ×G [(G×H)/L] = φG

N ◦ InfGG/k1(L)
◦ [(G/k1(L)×H)/L1 ,
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for some subgroup L1 of (G/k1(L) × H). Again, by Corollary 3.7 this is
equal to 0 unless k1(L) ∩ Φ(G) ≤ N . The proof of Assertion (b) is similar.
Alternatively, one can take opposite bisets in (a).

3.9. Proposition: Let G be a finite group with order invertible in R.

1. Let L ∈ Σ(G,G). Then

φG
1 YL =

∑
N ⊴G

N≤Φ(G)

µ⊴G(1, N)Y(N×1)L .

This is non zero if and only if k1(L) ∩ Φ(G) = 1. Similarly

YLφ
G
1 =

∑
N ⊴G

N≤Φ(G)

µ⊴G(1, N)YL(1×N) ,

and YLφ
G
1 ̸= 0 if and only if k2(L) ∩ Φ(G) = 1.

2. The elements φG
1 YL (resp. YLφ

G
1 ), when L runs through a set of

representatives of conjugacy classes of elements of Σ(G,G) such that
k1(L) ∩ Φ(G) = 1 (resp k2(L) ∩ Φ(G) = 1), form an R-basis of the
right ideal φG

1 E(G) (resp. the left ideal E(G)φG
1 ) of E(G).

Proof : Let L ∈ Σ(G,G). By Proposition 3.8, we have

φG
1 YL = ẽGG ×G

( ∑
N ⊴G

N≤Φ(G)

µ⊴G(1, N)[(G×G)/∆N(G)]
)
×G [(G×G)/L]×G ẽGG

= ẽGG ×G

( ∑
N ⊴G

N≤Φ(G)

µ⊴G(1, N)[(G×G)/∆N(G) ∗ L]
)
×G ẽGG

= ẽGG ×G

( ∑
N ⊴G

N≤Φ(G)

µ⊴G(1, N)[(G×G)/(N × 1)L]
)
×G ẽGG .

=
∑
N ⊴G

N≤Φ(G)

µ⊴G(1, N)Y(N×1)L .

Set M = k1(L) ∩ Φ(G). Then M ⊴G, and (N × 1)L = (NM × 1)L for any

14



normal subgroup N of G contained in φ(G). Thus

(3.10) φG
1 YL =

∑
P ⊴G

M≤P≤Φ(G)

( ∑
N ⊴G
NM=P

µ⊴G(1, N)
)
Y(P×1)L .

IfM ̸= 1, then
( ∑

N ⊴G
NM=P

µ⊴G(1, N)
)
= 0 for any P ⊴G withM ≤ P ≤ Φ(G).

Hence φG
1 YL = 0 in this case. And if M = 1, Equation (3.10) reads

φG
1 YL =

∑
P ⊴G

P≤Φ(G)

µ⊴G(1, P )Y(P×1)L .

The element Y(P×1)L is equal to YL if and only if (P × 1)L is conjugate to L.
This implies that k1

(
(P × 1)L

)
is conjugate to (hence equal to) k1(L). Thus

P ≤ k1
(
(P × 1)L

)
≤ k1(L) ∩ Φ(G), hence P = 1. So the coefficient of YL in

φG
1 YL is equal to 1, hence φG

1 YL ̸= 0. The remaining statements of Assertion
1 follow by taking opposite bisets.

Assertion 2 follows from Proposition 3.2, and from the fact that the co-
efficient of YL in φG

1 YL is equal to 1 when k1(L) ∩ Φ(G) = 1.

3.11. Corollary: Let G be a finite group of order invertible in R. If every
minimal (non-trivial) normal subgroup of G is contained in Φ(G), then φG

1

is central in E(G), and the algebra φG
1 E(G) is isomorphic to ROut(G).

Proof : Indeed if L ∈ Σ(L,L) and φG
1 YL ̸= 0, then k1(L) ∩ Φ(G) = 1. It

follows that k1(L) contains no minimal normal subgroup of G, and then
k1(L) = 1. Equivalently q(L) ∼= p1(L)/k1(L) ∼= G ∼= p2(L)/k2(L), i.e.
k2(L) = G also, or equivalently k2(L) ∩ Φ(G) = 1. Hence φG

1 YL ̸= 0 if
and only if YLφ

G
1 ̸= 0, and in this case, there exists an automorphism θ of G

such that
L = ∆θ(G) = {

(
θ(x), x

)
| x ∈ G} .

In this case for any normal subgroup N of G contained in Φ(G)

(N × 1)L = {(a, b) ∈ G×G | aθ(b)−1 ∈ N}
= {(a, b) ∈ G×G | a−1θ(b) ∈ N}
= L

(
1× θ−1(N)

)
.

Now N 7→ θ−1(N) is a permutation of the set of normal subgroups of G
contained in Φ(G). Moreover µ⊴G(1, N) = µ⊴G

(
1, θ−1(N)

)
.
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It follows that φG
1 YL = YLφ

G
1 , so φ

G
1 is central in E(G). Moreover the map

θ ∈ Aut(G) 7→ φG
1 Y∆θ(G) clearly induces an algebra isomorphism ROut(G)→

φG
1 E(G).

3.12. Theorem: Let G be a finite group with order invertible in R. If G
is nilpotent, then φG

1 is a central idempotent of E(G).

Proof : Let L ∈ Σ(G,G). Setting Q = q(L), there are two surjective group
homomorphisms s, t : G→ Q such that L = {(x, y) ∈ G×G | s(x) = t(y)}.
Then k1(L) = Ker s and k2(L) = Ker t. Now by Proposition 3.9

φG
1 YL =

∑
N ⊴G

N≤Φ(G)

µ⊴G(1, N)Y(N×1)L ,

and this is non zero if and only if Ker s ∩ Φ(G) = 1. Now s
(
Φ(G)

)
is equal

to Φ(Q) since G is nilpotent: indeed G =
∏

pGp (resp. Q =
∏

p Qp) is
the direct product of its p-Sylow subgroups Gp (resp. Qp), and s induces
a surjective group homomorphism Gp → Qp, for any prime p. Moreover
Φ(G) =

∏
p Φ(Gp) (resp. Φ(Q) =

∏
pΦ(Qp)). Finally Φ(Gp) is the subgroup

of Gp generated by commutators and p-powers of elements of Gp, hence it
maps by s onto the subgroup of Qp generated by commutators and p-powers
of elements of Qp, that is Φ(Qp). Similarly t

(
Φ(G)

)
= Φ(Q).

If Ker s∩Φ(G) = 1, it follows that s induces an isomorphism from Φ(G)
to Φ(Q). Then the surjective homomorphism Φ(G)→ Φ(Q) induced by t is
also an isomorphism, and in particular Ker t ∩ Φ(G) = 1.

Let D = L∩
(
Φ(G)×Φ(G)

)
. Then k1(D) ⊆ k1(L)∩Φ(G) = Ker s∩Φ(G),

hence k1(D) = 1. Similarly k2(L) ⊆ k2(L) ∩ Φ(G) = Ker t ∩ Φ(G) = 1,
hence k2(D) = 1. Since s

(
Φ(G)

)
= Φ(Q) = t

(
Φ(G)

)
, we have moreover

p1(D) = Φ(G) = p2(D). It follows that there is an automorphism α of Φ(G)
such that D = {

(
x, α(x)

)
| x ∈ Φ(G)}.

Moreover for any y ∈ G, there exists z ∈ G such that (y, z) ∈ L. It follows
that

(
xy, α(x)z

)
∈ D for any x ∈ Φ(G), that is α(xy) = α(x)z. In particular

if N is a normal subgroup of G contained in Φ(G), then so is α(N). Hence α
induces an automorphism of the poset of normal subgroups of G contained
in Φ(G). In particular µ⊴G(1, N) = µ⊴G

(
1, α(N)

)
.

Moreover for n ∈ N and (y, z) ∈ L, we have

(n, 1)(y, z) = (y, z)(ny, 1) = (y, z)
(
ny, α(ny)

)(
1, α(ny)−1

)
.

Since
(
ny, α(ny)

)
∈ D ≤ L, we have (N × 1)L = L

(
1 × α(N)

)
. It follows

16



that

φG
1 YL =

∑
N ⊴G

N≤Φ(G)

µ⊴G(1, N)Y(N×1)L =
∑
N ⊴G

N≤Φ(G)

µ⊴G(1, N)YL(1×α(N))

=
∑
N ⊴G

N≤Φ(G)

µ⊴G

(
1, α(N)

)
YL(1×α(N)) =

∑
N ⊴G

N≤Φ(G)

µ⊴G

(
1, N)YL(1×N)

= YLφ
G
1 ,

as was to be shown.

3.13. Remark: When G is not nilpotent, it is not true in general that
φG
1 is central in E(G). This is because t

(
Φ(G)

)
need not be equal to Φ(Q)

for a surjective group homomorphism t : G → Q. For example, there is a
surjection t from the group G = C4 × (C5 ⋊ C4) to Q = C4 with kernel
C4 × C5 containing Φ(G) = C2 × 1, and another surjection s : G → Q with
kernel 1 × (C5 ⋊ C4) intersecting trivially Φ(G). In this case, the group
L = {(x, y) ∈ G × G | s(x) = t(y)} is in Σ(G,G), and k1(L) ∩ Φ(G) = 1,
but k2(L) ∩ Φ(G) = Φ(G) ̸= 1. By Proposition 3.9, we have φG

1 YL ̸= 0 and
YLφ

G
1 = 0, so φG

1 is not central in E(G).

4. Idempotents in RB(G,G)

4.1. Definition: When G is a finite group, a section (T, S) of G is a pair
of subgroups of G such that S⊴T .

A section (T, S) is called minimal (cf. [9]) if S ≤ Φ(T ). Let M(G)
denote the set of minimal sections of G.

A group H is called a subquotient of G (notation H ⊑ G) if there exists
a section (T, S) of G such that T/S ∼= H.

A section (T, S) is minimal if and only if the only subgroup H of T such
that H/(H ∩ S) ∼= T/S is T itself.

4.2. Notation: Let G be a finite group, and let (T, S) be a section of G.

1. Let IndinfGT/S ∈ B(G, T/S) denote (the isomorphism class of) the

(G, T/S)-biset G/S, and let DefresGT/S ∈ B(T/S,G) denote (the iso-
morphism class of) the (T/S,G)-biset S\G.

2. Let R be a commutative ring in which the order of G is invertible. Let
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uG
T,S ∈ RB(G, T/S) be defined by

uG
T,S = IndinfGT/Sφ

T/S
1 ,

and let vGT,S ∈ RB(T/S,G) be defined by

vGT,S = φ
T/S
1 DefresGT/S .

4.3. Remark: Observe that vGT,S = (uG
T,S)

op: indeed (G/S)op ∼= S\G, and

(φ
T/S
1 )op = φ

T/S
1 .

4.4. Theorem: Let G be a finite group with order invertible in R.

1. If (T, S) and (T ′, S ′) are minimal sections of G, then

vGT ′,S′uG
T,S = 0

unless (T, S) and (T ′, S ′) are conjugate in G.

2. If (T, S) is a minimal section of G, then

vGT,Su
G
T,S = φ

T/S
1

( ∑
g∈NG(T,S)/T

Iso(cg)
)

,

where NG(T, S) = NG(T )∩NG(S), and cg is the automorphism of T/S
induced by conjugation by g.

Proof : Indeed (S ′\G)×G (G/S) ∼= S ′\G/S as a (T ′/S ′, T/S)-biset. Hence

vGT ′,S′uG
T,S = φ

T ′/S′

1

( ∑
g∈T ′\G/T

S ′\T ′gT/S
)
φ
T/S
1 .

For any g ∈ G, the (T ′/S ′, T/S)-biset S ′\T ′gT/S is transitive, isomorphic to(
(T ′/S ′)× (T/S)

)
/Lg, where

Lg = {(t′S ′, tS) ∈ (T ′/S ′)× (T/S) | t′gt−1 ∈ S ′gS} .

Then t′S ′ ∈ p1(Lg) if and only if t′ ∈ S ′ · gTg−1 ∩ T ′. Hence

p1(Lg) = (gT ∩ T ′)S ′/S′ .

Similarly p2(Lg) = (T ′g ∩ T )S/S. In particular p1(Lg) = T ′/S ′ if and only if
(gT ∩ T ′)S ′ = T ′, i.e. gT ∩ T ′ = T ′, since S ′ ≤ Φ(T ′). Thus p1(Lg) = T ′/S ′
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if and only if T ′ ≤ gT . Similarly p2(Lg) = T/S if and only if T ≤ T ′g. By

Theorem 3.8, it follows that φ
T ′/S′

1 (S ′\T ′gT/S)φ
T/S
1 = 0 unless T ′ = gT .

Assume now that T ′ = gT . Then t′S ′ ∈ k1(LG) if and only if t′ lies in
S ′ · gSg−1 ∩ T ′. Hence

k1(Lg) = (gS ∩ T ′)S ′/S ′ ,

and similarly k2(Lg) = (S ′g ∩ T )S/S. But since S ≤ Φ(T ) and S⊴T , it
follows that gS⊴ gT = T ′ and gS ≤ gΦ(T ) = Φ(T ′). Hence gS · S ′/S ′ is
contained in k1(Lg) ∩ Φ(T ′)/S ′. Moreover Φ(T ′)/S ′ = Φ(T ′/S ′), as

Φ(T ′/S ′) =
∩

S′≤M ′<T ′

(M ′/S ′) =
∩

M ′<T ′

(M ′/S ′) = (
∩

M ′<T ′

M ′)/S ′ = Φ(T ′)/S ′ ,

where M ′ runs through maximal subgroups of T ′, which all contain S ′ since
S ′ ≤ Φ(T ′).

It follows that if k1(Lg)∩Φ(T ′/S ′) = 1, then gS ·S ′ = S ′, that is gS ≤ S ′.
Similarly if k2(Lg) ∩ Φ(T/S) = 1, then S ′g ≤ S. By Theorem 3.8, it follows

that φ
T ′/S′

1 (S ′\T ′gT/S)φ
T/S
1 = 0 unless T ′ = gT and S ′ = gS. This proves

Assertion 1.

For Assertion 2, the same computation shows that

vGT,Su
G
T,S =

∑
g∈NG(T,S)/T

φ
T/S
1 (S\TgT/S)φT/S

1 .

But S\TgT/S = gT/S if g ∈ NG(T, S), and this (T/S, T/S)-biset is isomor-

phic to Iso(cg). Assertion 2 follows, since moreover φ
T/S
1 commutes with any

biset of the form Iso(θ), where θ is an automorphism of T/S.

4.5. Notation: For a minimal section (T, S) of the group G, set

ϵGT,S = 1
|NG(T,S):T |u

G
T,Sv

G
T,S = 1

|NG(T,S):T |Indinf
G
T/Sφ

G
1Defres

G
T/S ∈ RB(G,G) .

Note that ϵGT,S = ϵGgT,gS for any g ∈ G, and that ϵGG,N = φG
N when N ⊴G

and N ≤ Φ(G), by Proposition 3.5.

4.6. Proposition: Let (T, S) be a minimal section of G. Then

ϵGT,S=
1

|NG(T, S)|
∑

X≤T,M ⊴T

S≤M≤Φ(T )≤X≤T

|X|µ(X,T )µ⊴T (S,M) IndinfGX/M◦DefresGX/M .
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Proof : This is a straightforward consequence of the above definition of ϵGT,S,
and from Assertion 2 of Proposition 3.6.

4.7. Theorem: Let G be a finite group with order invertible in R, let
[M(G)] be a set of representatives of conjugacy classes of minimal sec-
tions of G. Then the elements ϵGT,S, for (T, S) ∈ [M(G)], are orthogonal
idempotents of RB(G,G), and their sum is equal to the identity element of
RB(G,G).

Proof : Let (T, S) and (T ′, S ′) be distinct elements of [M(G)]. Then

ϵGT ′,S′ϵGT,S = 1
|NG(T ′,S′):T ′|

1
|NG(T,S):T |u

G
T ′,S′vGT ′,S′uG

T,Sv
G
T,S = 0 ,

since vGT ′,S′uG
T,S = 0 by Theorem 4.4. Moreover:∑

(T,S)∈[M(G)]

ϵGT,S =
∑

(T,S)∈[M(G)]

1
|NG(T,S):T |u

G
T,Sv

G
T,S

=
∑

(T,S)∈M(G)

1
|G:T |u

G
T,Sv

G
T,S

=
∑

(T,S)∈M(G)

1
|G:T |Indinf

G
T/Sφ

T/S
1 DefresGT/S

Now φ
T/S
1 = ẽ

T/S
T/SfT/S by Proposition 3.6, where

fT/S =
∑

N/S⊴(T/S)
N/S≤Φ(T/S)

µ⊴G(1, N/S)[
(
(T/S)× (T/S)

)
/∆N/S(T/S)] .

Hence φ
T/S
1 = ẽ

T/S
T/SDef

T
T/SInf

T
T/SfT/S, and∑

(T,S)∈[M(G)]

ϵGT,S =
∑

(T,S)∈M(G)

1
|G:T |Ind

G
T Inf

T
T/S ẽ

T/S
T/SDef

T
T/SInf

T
T/SfT/SDef

T
T/SRes

G
T .

Now InfTT/S ẽ
T/S
T/SDef

T
T/S =

˜
InfTT/Se

T/S
T/S, and InfTT/Se

T/S
T/S is equal to the sum over

subgroups X or T such that XS = T , up to conjugation, of the idempo-
tents eTX . Since S ≤ Φ(T ), the only subgroup X of T such that XS = T is
T itself. Hence

InfTT/S ẽ
T/S
T/SDef

T
T/S = ẽTT .
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On the other hand

InfTT/S[
(
(T/S)× (T/S)

)
/∆N/S(T/S)]Def

T
T/S = [(T × T )/∆N(T )] .

It follows that the sum Σ =
∑

(T,S)∈[M(G)]

ϵGT,S is equal to

Σ =
∑

(T,S)∈M(G)

1
|G:T |Ind

G
T ẽ

T
T

∑
N ⊴T

S≤N≤Φ(T )

µ⊴T (S,N)[(T × T )/∆N(T )]Res
G
T

=
∑

(T,S)∈M(G)

1
|G:T |Ind

G
T ẽ

T
Tφ

T
SRes

G
T [by definition of φT

S ]

=
∑
T≤G

1
|G:T |Ind

G
T ẽ

T
T

∑
S⊴T

S≤Φ(T )

φT
SRes

G
T

=
∑
T≤G

1
|G:T |Ind

G
T ẽ

T
TRes

G
T [by Theorem 3.8]

=
∑
T≤G

1
|G:T |

˜IndG
T e

T
T [by Lemma 2.10]

=
∑
T≤G

1
|G:NG(T )| ẽ

G
T [by (2.12)]

=
∑

T∈[sG]

ẽGT = G̃/G = [(G×G)/∆(G)] .

So the sum Σ is equal to the identity of RB(G,G). Since ϵGT,Sϵ
G
T ′,S′ = 0 if

(T, S) and (T ′, S ′) are distinct elements of [M(G)], it follows that for any
(T, S) ∈ [M(G)]

ϵGT,S = ϵGT,SΣ = (ϵGT,S)
2 ,

which completes the proof of the theorem.

5. Application to biset functors

5.1. Notation: Let F be a biset functor over R. When G is a finite group
with order invertible in R, we set

δΦF (G) = φG
1F (G)
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5.2. Proposition: Let F be a biset functor over R. Then for any finite
group G with order invertible in R, the R-submodule δΦF (G) of F (G) is the
set of elements u ∈ F (G) such that{

ResGHu = 0 ∀H < G
DefGG/Nu = 0 ∀N ⊴G, N ∩ Φ(G) ̸= 1

.

Proof : If u ∈ δΦF (G) = φG
1F (G), then ResGHu = 0 for any proper subgroup

H of G, and DefGG/Nu = 0 for any N ⊴G such that N ∩ Φ(G) ̸= 1, by
Corollary 3.7.

Conversely, if u ∈ F (G) fulfills the two conditions of the proposition,

then ẽGGu = u, because ẽGG is equal to the identity element [(G×G)/∆(G)] of
RB(G,G), plus a linear combination of elements of the form [(G×G)/∆(H)] =
IndG

H ◦ResGH , for proper subgroups H of G. Similarly InfGG/NDef
G
G/Nu = 0 for

any non-trivial normal subgroup of G contained in Φ(G), thus φG
1 u = u.

5.3. Remark: Since DefGG/N = Def
G/M
G/N ◦ Def

G
G/M , where M = N ∩ Φ(G),

saying that DefGG/Nu = 0 for any N ⊴G with N ∩ Φ(G) ̸= 1 is equivalent

to saying that DefGG/Nu = 0 for any non trivial normal subgroup N of G
contained in Φ(G).

5.4. Theorem: Let F be a biset functor over R. Then for any finite group G
with order invertible in R, the maps

F (G) // ⊕
(T,S)∈[M(G)]

(
δΦF (T/S)

)NG(T,S)/Too

w � V // ⊕
(T,S)

1
|NG(T,S):T |v

G
T,Sw∑

(T,S)

uG
T,SwT,S ⊕

(T,S)
wT,S

�Uoo

are well defined isomorphisms of R-modules, inverse to one other.

Proof : We have first to check that if w ∈ F (G), then the element vGT,Sw of

φ
T/S
1 F (T/S) = δΦF (T/S) is invariant under the action of NG(T, S)/T . But

for any g ∈ NG(T/S)

Iso(cg)v
G
T,S = vGgT,gSIso(cg) = vGT,SIso(cg) ,

where Iso(cg) : F (G) → F (G) on the right hand side is conjugation by g,
that is an inner automorphism, hence the identity map, for g ∈ G.
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Now for w ∈ F (G)

UV (w) =
∑

(T,S)∈[M(G)]

1
|NG(T,S):T |u

G
T,Sv

G
T,Sw

=
∑

(T,S)∈[M(G)]

ϵGT,Sw = w ,

so UV is the identity map of F (G).

Conversely, if wT,S ∈
(
δΦF (T/S)

)NG(T,S)/T
, for (T, S) ∈ [M(G)], then

V U
(

⊕
(T,S)∈[M(G)]

wT,S

)
= ⊕

(T,S)∈[M(G)]

∑
(T ′,S′)∈[M(G)]

1
|NG(T,S):T |v

G
T,Su

G
T ′,S′wT ′,S′

= ⊕
(T,S)∈[M(G)]

1
|NG(T,S):T |v

G
T,Su

G
T,SwT,S

= ⊕
(T,S)∈[M(G)]

1
|NG(T,S):T |

∑
g∈NG(T,S)/T

Iso(cg)wT,S

= ⊕
(T,S)∈[M(G)]

wT,S ,

so V U is also equal to the identity map.

6. Atoric p-groups

For the remainder of the paper, we denote by p a (fixed) prime number.

6.1. Notation and Definition:

• If P is a finite p-group, let Ω1P denote the subgroup of P generated by
the elements of order p.

• A finite p-group P is called atoric if it does not admit any decomposition
P = E × Q, where E is a non-trivial elementary abelian p-group. Let
Atp denote the class of atoric p-groups, and let [Atp] denote a set of
representatives of isomorphism classes in Atp.

The terminology “atoric” is inspired by [14], where elementary abelian
p-groups are called p-tori. Atoric p-groups have been considered (without
naming them) in [6], Example 5.8.

6.2. Lemma: Let P be a finite p-group, and N be a normal subgroup of P .
The following conditions are equivalent:
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1. N ∩ Φ(P ) = 1

2. N is elementary abelian and central in P , and admits a complement
in P .

3. N is elementary abelian and there exists a subgroup Q of P such that
P = N ×Q.

Proof :

1⇒ 3 Let N ⊴P with N ∩ Φ(P ) = 1. Then N maps injectively in the
elementary abelian p-group P/Φ(P ), soN is elementary abelian. LetQ/Φ(P )
be a complement ofNΦ(P )/Φ(P ) in P/Φ(P ). ThenQ ≥ Φ(P ) ≥ [P, P ], soQ
is normal in P . Moreover Q·N = P and Q∩NΦ(P ) = (Q∩N)Φ(P ) = Φ(P ),
thus Q ∩ N ≤ Φ(P ) ∩ N = 1. Now N and Q are normal subgroups of P
which intersect trivially, hence they centralize each other. It follows that
P = N ×Q.

3⇒ 2 This is clear.

2⇒ 1 If P = N · Q for some subgroup Q of P , and if N is central in P ,
then P = N ×Q. Thus Φ(P ) = 1×Φ(Q), as N is elementary abelian. Then
N ∩ Φ(P ) ≤ N ∩Q = 1.

6.3. Lemma: Let P be a finite p-group. The following conditions are
equivalent:

1. P is atoric.

2. If N ⊴P and N ∩ Φ(P ) = 1, then N = 1.

3. Ω1Z(P ) ≤ Φ(P ).

Proof :

1⇒ 2 Suppose that P is atoric. Let N ⊴P with N ∩ Φ(P ) = 1. Then by
Lemma 6.2, the group N is elementary abelian and there exists a subgroup
Q of P such that P = N ×Q. Hence N = 1.

2⇒ 3 Suppose now that Assertion 2 holds. If x is a central element of
order p of P , then the subgroup N of P generated by x is normal in P , and
non trivial. Then N ∩Φ(P ) ̸= 1, hence N ≤ Φ(P ) since N has order p, thus
x ∈ Φ(P ).

3⇒ 1 Finally, if Assertion 3 holds, and if P = E × Q for some subgroups
E and Q of P with E elementary abelian, then Φ(P ) = 1×Φ(Q). Moreover
E ≤ Ω1Z(P ) ≤ Φ(P ) ≤ Q, so E = E ∩Q = 1, and P is atoric.
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6.4. Proposition: Let P be a finite p-group, and N be a maximal normal
subgroup of P such that N ∩ Φ(P ) = 1. Then:

1. The group N is elementary abelian and there exists a subgroup T of P
such that P = N × T .

2. The group P/N ∼= T is atoric.

3. If Q is an atoric p-group and s : P ↠ Q is a surjective group homo-
morphism, then s(T ) = Q. In particular Q is isomorphic to a quotient
of T .

Proof : (1) This follows from Lemma 6.2.

(2) By (1), there exists T ≤ P such that P = N×T . In particular P/N ∼= T .
Now if T = E × S, for some subgroups E and S of T with E elementary
abelian, then P ∼= P1 = (N×E)×S, and N×E is an elementary abelian nor-
mal subgroup of P1 which intersects trivially Φ(P1) = Φ(S). By maximality
of N , it follows that E = 1, so T ∼= P/N is atoric.

(3) Let s : P ↠ Q be a surjective group homomorphism, where Q is atoric.
By (1), the group N is elementary abelian, and there exists a subgroup T
of P such that P = N × T . Then T ∼= P@, and Φ(P ) = Φ(T ). Moreover
s
(
Φ(P )

)
= Φ(Q) as P is a p-group, and s

(
Z(P )

)
≤ Z(Q) as s is surjective. It

follows that s(N) is an elementary abelian central subgroup of Q, so s(N) ≤
Φ(Q) since Q is atoric, by Lemma 6.3. Now s(P ) = Q = s(N)s(T ), thus
Q = Φ(Q)s(T ), and s(T ) = Q, as was to be shown.

6.5. Notation: When P is a finite p-group, and N is a maximal normal
subgroup of P such that N ∩ Φ(P ) = 1, we set P@ = P/N .

By Proposition 6.4, the group P@ does not depend on the choice of N ,
up to isomorphism: it is the greatest atoric quotient of P , in the sense that
any atoric quotient of P is isomorphic to a quotient of P@. In particular P@

is trivial if and only if P is elementary abelian.

6.6. Proposition: Let s : P ↠ Q be a surjective group homomorphism.
Then P@ ∼= Q@ if and only if Ker(s) ∩ Φ(P ) = 1.

Proof : Let E be a maximal normal subgroup of P such that E ∩Φ(P ) = 1,
and T be a subgroup of P such that P = E × T . Then E is elementary
abelian, and Φ(P ) = Φ(T ). Let π : Q→ Q@ be the canonical projection. By
definition, we have T ∼= P@, and by Proposition 6.4, we have π ◦ s(T ) = Q@.
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Hence Q@ is a quotient of P@, and P@ ∼= Q@ if and only if the map π ◦ s
induces an isomorphism from T to Q@, that is if Ker(π ◦ s) ∩ T = 1. This
implies Ker(s) ∩ T = 1, hence Ker(s) ∩ Φ(P ) = 1.

Conversely, if Ker(s) ∩ Φ(P ) = 1, then Ker(s) ∩ Φ(T ) = 1. Now the
group M = Ker(s) ∩ T is a normal subgroup of T such that M ∩ Φ(T ) = 1.
Since T is atoric, it follows from Lemma 6.3 that M = 1, hence s(T ) ∼= T .
Now Q = s(E)s(T ), and s(E) is a central elementary abelian subgroup of Q,
since s is surjective. Let F be a complement of G = s(E) ∩ s(T ) in s(E).
Then Q = (F ·G)s(T ) = F · s(T ), thus Q = F × s(T ) since F is central in Q.
It follows that s(T ) is a quotient of Q. Since s(T ) ∼= T ∼= P@ is atoric, the
group P@ is isomorphic to a quotient of Q@, thus P@ ∼= Q@.

6.7. Proposition: Let P be a finite p-group, and Q be a subquotient of P .
Then Q@ is a subquotient of P@.

Proof : Let (V, U) be a section of P such that V/U ∼= Q. Then Q@ is
isomorphic to a quotient of V @, by Lemma 6.4. Hence it suffices to prove
that V @ is a subquotient of P@.

Let E be a maximal normal subgroup of P such that E ∩Φ(P ) = 1, and
T be a subgroup of P such that P = E×T . Then V ≤ E×T , so there exist
a subgroup F of E, a subgroup X of T , a group Y , and surjective group
homomorphisms α : F → Y and β : X → Y such that

V = {(f, x) ∈ F ×X | α(f) = β(x)} .

Now F ≤ E is elementary abelian. If (f, x), (f ′, x′) ∈ V , then [(f, x), (f ′, x′)] =
(1, [x, x′]), so [V, V ] ≤ 1 × [X,X]. Conversely if x, x′ ∈ X, then there exist
f, f ′ ∈ F such that α(f) = β(x) and α(f ′) = β(x′), i.e. (f, x), (f ′, x′) ∈ V .
Then [(f, x), (f ′, x′)] = (1, [x, x′]), and it follows that [V, V ] = 1 × [X,X].
Similarly, if (f, x) ∈ V , then (f, x)p = (1, xp). Conversely, if x ∈ X,
then there exists f ∈ F such that α(f) = β(x), i.e. (f, x) ∈ V , and
(1, xp) = (f, x)p. It follows that Φ(V ) = 1× Φ(X).

Now N = Ker(α) × 1 is a normal subgroup of V , and N ∩ Φ(V ) = 1.
By Proposition 6.6, it follows that V @ ∼= (V/N)@. Moreover the group
homomorphism (f, x) ∈ V 7→ x ∈ X is surjective with kernel N , hence
V/N ∼= X. It follows that V @ ∼= X@ is a isomorphic to a quotient of the
subgroup X of T ∼= P@. Hence V @ is a subquotient of P@, as was to be
shown.

6.8. Proposition: Let P be a finite p-group, let N be a normal subgroup of
P such that P/N ∼= P@, and let Q be a subgroup of P . The following are
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equivalent:

1. Q@ ∼= P@.

2. QN = P .

3. There exists a central elementary abelian subgroup E of P such that
P = EQ.

4. There exists an elementary abelian subgroup E of P such that P =
E ×Q.

Proof : 1⇒ 2 Suppose Q@ ∼= P@. We have N ∩ Φ(T ) = 1, by Proposi-
tion 6.6. Moreover Φ(Q) ≤ Φ(P ), as P is a p-group. Setting M = N ∩Q, we
have M ∩ Φ(Q) = 1, so (Q/M)@ ∼= Q@ ∼= P@. But Q = Q/M ∼= QN/N is
a subgroup of P/N ∼= P@, and moreover there exists an elementary abelian

subgroup E of Q such that Q ∼= E × Q
@ ∼= E × P@. Hence E = 1 and

Q ∼= QN/N ∼= P/N , so QN = P , as was to be shown.

2⇒ 3 We have N ∩ Φ(P ) = 1, by Proposition 6.6. Hence N is elementary
abelian, and central in P , and 2 implies 3.

2⇒ 3 Let E be an elementary abelian central subgroup of P such that
P = EQ. Let F be a complement of E ∩ Q in E. Then F is elementary
abelian and central in P . Moreover QF = QE = P , and Q ∩ F = 1. Hence
P = F ×Q.

4⇒ 1 If P = E ×Q and E is elementary abelian, then Φ(P ) = 1× Φ(Q).
Thus E ∩ Φ(P ) = 1, so (P/E)@ ∼= P@ by Proposition 6.6, and Q@ ∼= P@.

6.9. Proposition:

1. Let L be an atoric p-group, let P = E × L and Q = F × L, where
E and F are elementary abelian p-groups, and let s : P → Q be a
group homomorphism. Then s is surjective if and only if there exist
a surjective group homomorphism a : E → F , group homomorphisms
b : L → F and c : E → Ω1Z(L), and an automorphism d of L such
that

∀(e, l) ∈ E × L, s(e, l) =
(
a(e)b(l), c(e)d(l)

)
.

Moreover in this case b ◦ c(e) = 1 for any e ∈ E, and s is an isomor-
phism if and only if a is an isomorphism.

2. Let P be a finite p-group. For a group homomorphism

λ : P → Ω1Z(P ) ∩ Φ(P ) ,
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let αλ : P → P be defined by α(x) = xλ(x), for x ∈ P . Then αλ is an
automorphism of P .

3. Let P be a finite p-group, and let P = E×Q, where Q is atoric and E is
elementary abelian. Then the correspondence λ 7→ αλ(E) is a bijection
from the set of group homomorphisms λ : P → Ω1Z(P ) ∩ Φ(P ) such
that Q ≤ Kerλ to the set of subgroups N of P such that P = N ×Q.

Proof : (1) If s is surjective, then s(E) is central in Q, so s(E) ≤ Ω1Z(Q) =
F × Ω1Z(L). Hence there exists group homomorphisms a : E → F and
c : E → Ω1Z(L) such that s(e, 1) =

(
a(e), c(e)

)
, for any e ∈ E. Let b : L→ F

and d : L→ L be the group homomorphisms defined by s(1, l) =
(
b(l), d(l)

)
,

for l ∈ L. Then s(e, l) = s(e, 1)s(1, l) =
(
a(e)b(l), c(e)d(l)

)
for all (e, l) ∈ P .

Moreover b ◦ c(e) = 1 for any e ∈ E, since c(E) ≤ Ω1Z(L) ≤ Φ(L), as L is
atoric, and Φ(L) ≤ Ker b, as F is elementary abelian.

Now the composition of s with the projection F × L → L is surjective,
hence s(1×L) = L by Proposition 6.4. In other words d is surjective, hence
it is an automorphism of L.

Since s is surjective, for any (f, y) ∈ Q, there exists (e, x) ∈ P such
that a(e)b(x) = f and c(e)d(x) = y. The latter gives x = d−1

(
c(e)−1y

)
.

Then b(x) = bd−1
(
c(e)−1)bd−1(y), and bd−1

(
c(e)−1

)
= 1 since d−1

(
c(e)−1) ∈

d−1Ω1Z(L) = Ω1Z(L), and Ω1Z(L) ≤ Φ(L) ≤ Ker b. Then b(x) = bd−1(y),
and f = a(e)bd−1(y). In particular, taking y = 1, we get that for any f ∈ L,
there exists e ∈ E such that f = a(e). In other words a is surjective.

Conversely, given a surjective group homomorphism a : E → F , a group
homomorphism b : L → F , a group homomorphism c : E → Ω1Z(L),
and an automorphism d of L, we can define s : P → Q by s(e, x) =(
a(e)b(x), c(e)d(x)

)
, for (e, x) ∈ P . This is clearly a group homomorphism,

as F is abelian, and the image of c is central in L. We have again Ω1Z(L) ≤
Φ(L) ≤ Ker b, since F is elementary abelian. If (f, y) ∈ Q, we can choose an
element e ∈ E such that f = a(e)bd−1(y), and then set x = d−1

(
c(e)−1y

)
,

i.e. c(e)d(x) = y. We also have b(x) = bd−1(y), since d−1
(
c(e)

)
∈ Ω1Z(L),

so f = a(e)b(x). Hence s(e, x) = (f, y), and s is surjective.
Finally if s is an isomorphism, then E ∼= F , and then the surjection a is

an isomorphism. Conversely, if a is an isomorphism, then E ∼= F , so P ∼= Q,
and the surjection s is an isomorphism.

(2) Clearly αλ is a group homomorphism, since λ(P ) ≤ Z(P ). Moreover if
x ∈ Kerαλ, then λ(x) = x, so x ∈ Ω1Z(P ) ∩ Φ(P ) ≤ Φ(P ) ≤ Kerλ, since
Ω1Z(P )∩Φ(P ) is elementary abelian. Thus x = 1, and αλ is injective. Hence
it is an automorphism.

(3) Since P = E×Q, we have Ω1Z(P ) = E×Ω1Z(Q), and Φ(P ) = 1×Φ(Q).
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So if λ is a group homomorphism from P to Ω1Z(P )∩Φ(P ) with Q ≤ Kerλ,
we have λ(e, l) =

(
1, β(e)

)
for some group homomorphism β : E → Ω1Z(Q).

Then the group N = αλ(E) = {
(
e, β(e)

)
| e ∈ E} is central in P . Moreover

N ∩ Q = 1, and NQ = P , so P = N × Q. Note that N determines the
homomorphism β, hence also the homomorphism λ, so the map λ 7→ αλ(E)
is injective.

It is moreover surjective: indeed, if N is a subgroup of P = E × Q such
that P = N × Q, then N ∼= P/Q ∼= E is elementary abelian, hence central
in P . Since NQ = P , for any e ∈ E, there exists (a, b) ∈ N and q ∈ Q
such that (e, 1) = (a, b)(1, q), that is e = a and q = b−1. In other words
p1(N) = E. Moreover N ∩ Q = 1, so k2(N) = 1. So for e ∈ E, there
exists a unique x ∈ Q such that (e, x) ∈ N . Setting x = β(e), we get a
group homomorphism β : E → Q, such that N =

{(
e, β(e)

)
| e ∈ E

}
.

Since N is central in P , the image of β is contained in Ω1Z(Q) ≤ Φ(Q).
Moreover Ω1Z(P ) = E × Ω1Z(Q), and Φ(P ) = 1 × Φ(Q), so

(
1 × β(E)

)
≤

Ω1Z(P ) ∩ Φ(P ). Setting λ(e, l) =
(
1, β(e)

)
, we get a group homomorphism

from P to Ω1Z(P ) ∩ Φ(P ), such that Q ≤ Kerλ, and N = αλ(E).

7. Splitting the biset category of p-groups, when p ∈ R×

7.1. Notation and Definition: Let RCp denote the full subcategory of the
biset category RC consisting of finite p-groups. A p-biset functor over R is
an R-linear functor from RCp to the category of R-modules. Let Fp,R denote
the full subcategory of FR consisting of p-biset functors over R.

In the statements below, we indicate by [ p ∈ R×] the assumption that
p is invertible in R.

7.2. Theorem: [ p ∈ R×] Let P and Q be finite p-groups, let (T, S) be a
minimal section of P , and (V, U) be a minimal section of Q. Then

ϵQV,U RB(Q,P ) ϵPT,S ̸= {0} =⇒ (V/U)@ ∼= (T/S)@ .

Proof : If ϵQV,URB(Q,P )ϵPT,S, there exists a ∈ RB(Q,P ) such that

ϵQV,U a ϵPT,S = IndinfQV/Uφ
V/U
1 DefresQV/U a IndinfPT/Sφ

T/S
1 DefresPT/S ̸= 0 ,

and in particular the element b = DefresQV/U a IndinfPT/S of RB(V/U, T/S)

is such that φ
V/U
1 b φ

T/S
1 ̸= 0. It follows that there is a subgroup L of the
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product (V/U)× (T/S) such that

φ
V/U
1

[(
(V/U)× (T/S)

)
/L

]
φ
T/S
1 ̸= 0 .

Then Theorem 3.8 implies that p1(L) = V/U , k1(L) ∩Φ(V/U) = 1, p2(L) =
T/S, and k2(L) ∩ Φ(T/S) = 1. By Proposition 6.6, it follows that

(V/U)@ ∼=
(
p1(L)/k1(L)

)@ ∼= (
p2(L)/k2(L)

)@ ∼= (T/S)@ ,

as was to be shown.

7.3. Notation: [ p ∈ R×] Let L be an atoric p-group. If P is a finite
p-group, we set

bPL =
∑

(T,S)∈[M(G)]

(T/S)@∼=L

ϵPT,S .

7.4. Theorem: [ p ∈ R×]

1. Let L be an atoric p-group, and P be a finite p-group. Then bPL ̸= 0 if
and only if L ⊑ P@.

2. Let L and M be atoric p-groups, and let P and Q be finite p-groups. If
bQMRB(Q,P )bPL ̸= {0}, then M ∼= L.

3. Let L be an atoric p-group, and let P and Q be finite p-groups. Then
for any a ∈ RB(Q,P )

bQL a = a bPL .

4. The family of elements bPL ∈ RB(P, P ), for finite p-groups P , is an
idempotent endomorphism bL of the identity functor of the category
RCp (i.e. an idempotent of the center of RCp). The idempotents bL,
for L ∈ [Atp], are orthogonal, and their sum is equal to the identity
element of the center of RCp.

5. For a given finite p-group P , the elements bPL , for L ∈ [Atp] such that
L ⊑ P@, are non zero orthogonal central idempotents of RB(P, P ), and
their sum is equal to the identity of RB(P, P ).

Proof : (1) The idempotent bPL is non zero if and only if there exists a minimal
section (T, S) of P such that (T/S)@ ∼= L. Then L ⊑ P@, by Proposition 6.7.
Conversely, if L ⊑ P@, then L ⊑ P , and there exists a minimal section (T, S)
of P such that T/S ∼= L. Then (T/S)@ ∼= L@ ∼= L, so ϵPT,S appears in the
sum defining bpL, thus b

P
L ̸= 0.
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(2) If bQMRB(Q,P )bPL ̸= {0}, then there exist a minimal section (V, U) of Q
with (V/U)@ ∼= M and a minimal section (T, S) of P with (T/S)@ ∼= L such
that ϵQV,URB(Q,P )ϵPT,S ̸= 0. Then (V/U)@ ∼= (T/S)@ by Theorem 7.2, that
is M ∼= L.

(3) The identity element of RB(P, P ) is equal to the sum of the idempo-
tents ϵPT,S, for (T, S) ∈ [M(P )]. Grouping those idempotents ϵPT,S for which
(T/S)@ is isomorphic to a given L ∈ [Atp] shows that the identity element
of RB(P, P ) is equal to the sum of the idempotents bPL , for L ∈ [Atp] (and
there are finitely many non zero bPL , by (1)). It follows that

bQM a = bQM a
∑

L∈[Atp]

bPL =
∑

L∈[Atp]

bQM a bPL

= bQM a bPM [by (2)]

=
∑

L∈[Atp]

bQL a bPM [by (2)]

= a bPM ,

since
∑

L∈[Atp]

bQL is the identity element of RB(Q,Q).

It follows that the family bPL , where P is a finite p-group, is an element
bL of the center of RCp. Clearly b2L = bL, and if L and M are non isomorphic
atoric p-groups, then bLbM = 0, by (2). Moreover the infinite sum

∑
L∈[Atp]

bL

is actually locally finite, i.e. for each finite p-group P , the sum
∑

L∈[Atp]

bPL has

only finitely many non zero terms. The sum
∑

L∈[Atp]

bL is clearly equal to the

identity endomorphism of the identity functor of RCp.
(4) This is a straightforward consequence of (1) and (3).

7.5. Corollary: [ p ∈ R×]

1. Let L be an atoric p-group. For a p-biset functor F , the family of maps
F (bPL) : F (P )→ F (P ), for finite p-groups P , is an endomorphism of F ,
denoted by F (bL).

2. If θ : F → G is a natural transformation of p-biset functors, the dia-
gram

F

θ
��

F (bL) // F

θ
��

G
G(bL)

// G
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is commutative. Hence the family of endomorphisms F (bL), for p-biset
functors F , is an idempotent of the center of the category Fp,R, denoted

by b̂L.

3. The idempotents b̂L, for L ∈ [Atp], are orthogonal idempotents of the
center of Fp,R, and their sum is the identity.

4. If F is a p-biset functor over R, let b̂LF denote the image of the endo-
morphism F (bL) of F . Then F = ⊕

L∈[Atp]
b̂LF .

5. Let b̂LFp,R denote the full subcategory of Fp,R consisting of functors F

such that F = b̂LF . Then b̂LFp,R is an abelian subcategory of Fp,R.
Moreover the functor

F ∈ Fp,R 7→ (̂bLF )L∈[Atp] ∈
∏

L∈[Atp]

b̂LFp,R

is an equivalence of categories.

Proof : All assertions are straightforward consequences of Theorem 7.4.

7.6. Notation: For an atoric p-group L, let RCLp denote the full subcategory
of RCp consisting of the class YL of finite p-groups P such that P@ ⊑ L.
When p ∈ R×, Let moreover

b+L =
∑

H∈[Atp]
H⊑L

bH

be the sum of the idempotents bH corresponding to atoric subquotients of L,
up to isomorphism.

The class YL is closed under taking subquotients, by Proposition 6.7. It
follows that we can apply the results of Section 6 (Appendix) of [12]: if F is
a p-biset functor over R, we can restrict F to an R-linear functor from RCLp
to R-Mod. This yields a forgetful functor OYL

: Fp,R → FunR
(
RCLp , R-Mod).

The right adjoint RYL
of this functor is described in full detail in Section 6

of [12], as follows: if G is an R-linear functor from RCLp to R-Mod, and P is
a finite p-group, set

(7.7) RYL
(G)(P ) = lim←−

(X,M)∈ΣL(P )

G(X/M)

the inverse limit of modules G(X/M) on the set ΣL(P ) of sections (X,M)
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of P such that (X/M)@ ⊑ L, i.e. the set of sequences (lX,M)(X,M)∈ΣL(P ) with
the following properties:

1. if (X,M) ∈ ΣL(P ), then lX,M ∈ G(X/M).

2. if (X,M), (Y,N) ∈ ΣL(P ) and M ≤ N ≤ Y ≤ X, then

Defres
X/M
Y/N lX,M = lY,N .

3. if x ∈ P and (X,M) ∈ ΣL(P ), then xlX,M = lxX,xM .

Recall now that for finite groups P and Q, and for a finite (Q,P )-biset U , for
a subgroup T of Q and an element u of U , the subgroup T u of P is defined
by T u = {x ∈ P | ∃t ∈ T tu = ux}. By Lemma 6.4 of [12], if (T, S) is a
section of Q, then (T u, Su) is a section of P , and T u/Su is a subquotient of
T/S.

With this notation, when P and Q are finite p-groups, when U is a fi-
nite (Q,P )-biset, and l = (lX,M)(X,M)∈ΣL(P ) is an element of RYL

(G)(P ), we
denote by Ul the sequence indexed by ΣL(Q) defined by

(Ul)Y,N =
∑

u∈[Y \U/P ]L

(N\Y u)(lY u,Nu)

where [Y \U/P ] is a set of representatives of (Y × P )-orbits on U , and
N\Y u is viewed as a (Y/N, Y u/Nu)-biset. It shown in Section 6 of [12]
that Ul ∈ RYL

(G)(Q), and that RYL
(G) becomes a p-biset functor in this

way. Moreover1:

7.8. Theorem: [[12] Theorem 6.15] The assignment G 7→ RYL
(G) is an R-

linear functor RYL
from FunR

(
RCLp , R-Mod

)
to Fp,R, which is right adjoint to

the forgetful functor OYL
. Moreover the composition OYL

◦RYL
is isomorphic

to the identity functor of FunR
(
RCLp , R-Mod

)
.

7.9. Theorem: [ p ∈ R×] For an atoric p-group L, let b̂+LFp,R be the

full subcategory of Fp,R consisting of functors F such that b̂+LF = F . Then
the forgetful functor OYL

and its right adjoint RYL
restrict to quasi-inverse

equivalences of categories

b̂+LFp,R

OYL // FunR
(
RCLp , R-Mod

)
.

RYL

oo

1In Theorem 6.15 of [12], only the case R = Z is considered, but the proofs extend
trivially to the case of an arbitrary commutative ring R
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Proof : First step: The first thing to check is that the image of the functor

RYL
is contained in b̂+LFp,R. We first prove that if H is an atoric p-group,

if F ∈ Fp,R, and if OYL
(̂bHF ) ̸= 0, then H ⊑ L: indeed in that case, there

exists P ∈ YL such that bPHF (P ) ̸= 0. In particular bPH ̸= 0 by Theorem 7.4,
hence H ⊑ P@. Since P@ ⊑ L as P ∈ YL, it follows that H ⊑ L, as claimed.

In particular

OYL
(F ) = OYL

( ∑
H∈[Atp]
H⊑L

b̂HF
)
= OYL

(̂
b+LF

)
.

Set GLp = FunR
(
RCLp , R-Mod

)
, and let G ∈ GLp . Let H be an atoric p-group

such that H ̸⊑ L. If F ∈ Fp,R, then

HomFp,R

(
F, b̂HRYL

(G)
)

= HomFp,R

(̂
bHF, b̂HRYL

(G)
)

= HomFp,R

(̂
bHF,RYL

(G)
)

∼= HomGL
p

(
OCYL

(̂
bHF

)
, G

)
= {0} .

So the functor F 7→ HomFp,R

(
F, b̂HRYL

(G)
)
is the zero functor, and it fol-

lows from Yoneda’s lemma that b̂HRYL
(G) = 0 if H ̸⊑ L. In other words

RYL
(G) = b̂+LRYL

(G), as was to be shown.

Second step: The first step shows that we have adjoint functors

b̂+LFp,R

OYL // FunR
(
RCLp , R-Mod

)
= GLp .

RYL

oo

Moreover, the composition OYL
◦ RYL

is isomorphic to the identity functor,
by Theorem 7.8. All we have to show is that the unit of the adjunction is
also an isomorphism, in other words, that for any F ∈ b̂+LFp,R and any finite
p-group P , the natural map

(7.10) ηP : F (P )→RYL
OYL

(F )(P ) = lim←−
(X,M)∈ΣL(P )

F (X/M)

sending u ∈ F (P ) to the sequence
(
DefresPX/Mu

)
(X,M)∈ΣL(P )

, is an isomor-

phism.
The map ηP is injective: indeed, if u ∈ F (P ), then u =

∑
H∈[Atp]
H⊆L

bPHu, as

F = b̂+LF . If DefresPX/Mu = 0 for any section (X,M) of P with (X/M)@ ⊑ L,
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then F (ϵPT,S)(u) = 0 for any section (T, S) of P such that (T/S)@ ⊑ L, by
Proposition 4.6 and Proposition 6.7. In particular bPHu = 0 for any atoric
subquotient H of L, hence u = 0.

To prove that ηP is also surjective, we generalize the construction of
Theorem A.2 of [11] (which is the case L = 1), and we define, for an element
v = (vX,M)(X,M)∈ΣL(P ) in RYL

OYL
(F )(P ), an element u = ιP (v) of F (P ) by

u =
1

|P |
∑

(T,S)∈M(P )

(T/S)@⊑L

∑
X≤T,M ⊴T

S≤M≤Φ(T )≤X≤T

|X|µ(X,T )µ⊴T (S,M)IndinfPX/MvX,M .

This yields an R-linear map ιP : RYL
OYL

(F )(P )→ F (P ).
For (Y,N) ∈ ΣL(P ), set uY,N = DefresPY/Nu. Then:

uY,N =
∑

(T,S)∈M(P )

(T/S)@⊑L

∑
X≤T,M ⊴T

S≤M≤Φ(T )≤X≤T

|X|
|P |

µ(X,T )µ⊴T (S,M)DefresPY/N Indinf
P
X/MvX,M .

Moreover

DefresPY/N Indinf
P
X/MvX,M =

∑
g∈[Y \P/X]

Indinf
Y/N
Jg/J ′

g
Iso(ϕg)Defres

gX/gM
Ig/I′g

gvX,N ,

where Jg = N(Y ∩gX), J ′
g = N(Y ∩gM), Ig =

gM(Y ∩gX), I ′g =
gM(N∩gX),

and ϕg is the isomorphism Ig/I
′
g → Jg/J

′
g sending xI ′g to xJ ′

g, for x ∈ Y ∩ gX.
Hence

DefresPY/N Indinf
P
X/MvX,M =

∑
g∈[Y \P/X]

Indinf
Y/N
Jg/J ′

g
Iso(ϕg)vIg ,I′g

=
|Y ∩ gX|
|Y ||X|

∑
g∈P

Indinf
Y/N
Jg/J ′

g
Iso(ϕg)vIg ,I′g .

Thus

uY,N =
∑

(T,S)∈M(P )

(T/S)@⊑L
X≤T,M ⊴T

S≤M≤Φ(T )≤X≤T
g∈P

|Y ∩ gX|
|P ||Y |

µ(X,T )µ⊴T (S,M)Indinf
Y/N
Jg/J ′

g
Iso(ϕg)vIg ,I′g .

Now µ(X,T ) = µ(gX, gT ) and µ⊴T (S,M) = µ⊴ gT (
gS, gM), so summing over

(gT , gS, gX, gM) instead of (T, S,X,M) we get

uY,N =
∑

(T,S)∈M(P )

(T/S)@⊑L
X≤T,M ⊴T

S≤M≤Φ(T )≤X≤T

|Y ∩X|
|Y |

µ(X,T )µ⊴T (S,M)Indinf
Y/N

J1/J ′
1
Iso(ϕ1)vI1,I′1 .
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Setting W = Y ∩ X, we have J1 = NW , J ′
1 = N(W ∩ M), I1 = MW ,

I ′1 = M(N ∩W ), and these four groups only depend on W , once M and N
are given. Hence, for given T, S and M , we can group together the terms of
the above summation for which Y ∩X is a given subgroup W of Y ∩T . This
gives

uY,N =
∑

(T,S)∈M(P )

(T/S)@⊑L
M ⊴T

S≤M≤Φ(T )
W≤Y ∩T

( ∑
Φ(T )≤X≤T
X∩Y=W

µ(X,T )
) |W |
|Y |

µ⊴T (S,M)Indinf
Y/N

J1/J ′
1
Iso(ϕ1)vI1,I′1 .

Moreover
∑

Φ(T )≤X≤T
X∩Y=W

µ(X,T ) =
∑
X≤T

X∩(Y ∩T )=W

µ(X,T ), since µ(X,T ) = 0 unless

X ≥ Φ(T ), and the latter summation vanishes unless Y ∩T = T , by classical
combinatorial lemmas ([15] Corollary 3.9.3). This gives:

uY,N =
∑

(T,S)∈M(P )

(T/S)@⊑L
M ⊴T

S≤M≤Φ(T )≤W≤T≤Y

|W |
|Y |

µ(W,T )µ⊴T (S,M)Indinf
Y/N

J1/J ′
1
Iso(ϕ1)vI1,I′1 .

Moreover in this summation J1 = NW , J ′
1 = N(W ∩ M) = NM , I1 =

MW = W , I ′1 = M(N ∩W ) = MN ∩W . All these groups remain unchanged
if we replace M by M

(
N ∩ Φ(T )

)
, so for given T, S and W , we can group

together those terms for which M
(
N ∩Φ(T )

)
is a given normal subgroup U

of T with U ≤ Φ(T ). The sum
∑

S≤M ⊴T

M
(
N∩Φ(T )

)
=U

µ⊴T (S,M) is equal to 0 (by the

same above-mentioned classical combinatorial lemmas) unless N∩Φ(T ) ≤ S.
Hence

uY,N =
∑

(T,S)∈M(P )

(T/S)@⊑L
U ⊴T

N∩Φ(T )≤S≤U≤Φ(T )≤W≤T≤Y

|W |
|Y |

µ(W,T )µ⊴T (S, U)Indinf
Y/N

J1/J ′
1
Iso(ϕ1)vI1,I′1 ,

where J1 = NW , J ′
1 = NU , I1 = W , I ′1 = UN ∩W .

Now if N ∩ Φ(T ) ≤ S ≤ Φ(T ) ≤ T ≤ Y , then (TN/N)@ ⊑ (Y/N)@.
Moreover the normal subgroup (N ∩ T )/

(
N ∩Φ(T )

)
of T/

(
N ∩Φ(T )

)
inter-

sects trivially the Frattini subgroup

Φ
(
T/

(
N ∩ Φ(T )

))
= Φ(T )

(
N ∩ Φ(T )

)
/
(
N ∩ Φ(T )

)
,
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so
(
T/

(
N ∩Φ(T )

))@ ∼= (T/(T ∩N)@ ∼= (TN/N)@ by Proposition 6.6. Then

(T/S)@ ⊑
(
T/

(
N ∩ Φ(T )

))@

⊑ (TN/N)@ ⊑ (Y/N)@. As (Y/N)@ ⊑ L by

assumption, it follows that

uY,N =
∑

S ⊴T≤Y
U ⊴T

N∩Φ(T )≤S≤U≤Φ(T )≤W≤T≤Y

|W |
|Y |

µ(W,T )µ⊴T (S, U)Indinf
Y/N

J1/J ′
1
Iso(ϕ1)vI1,I′1 .

Now the sum
∑

S ⊴T
N∩Φ(T )≤S≤U

µ⊴T (S, U) is equal to zero unless U = N ∩ Φ(T ).

Hence

uY,N =
∑

Φ(T )≤W≤T≤Y

|W |
|Y |

µ(W,T )Indinf
Y/N

J1/J ′
1
Iso(ϕ1)vI1,I′1 .

For a given subgroup W of Y , the sum
∑

Φ(T )≤W≤T≤Y

µ(W,T ) is equal to∑
W≤T≤Y

µ(W,T ) since µ(W,T ) = 0 unless W ≥ Φ(T ), and the latter is equal

to zero if W ̸= Y , and to 1 if W = Y . Thus

uY,N =
|Y |
|Y |

Indinf
Y/N

J1/J ′
1
Iso(ϕ1)vI1,I′1 ,

where J1 = NY = Y , J ′
1 = N(Y ∩ U) = N , I1 = Y =, I ′1 = UN ∩ Y = N .

Hence I1 = J1 = Y and I ′1 = J ′
1 = N , so ϕ1 is equal to the identity. It follows

that uY,N = vY,N for any (Y,N) ∈ ΣL(P ), so ηP (u) = v. This proves that the
map ηP is surjective, hence an isomorphism, with inverse ιP . This completes
the proof of Theorem 7.9.

7.11. Definition: Let RC♯Lp be the following category:

• The objects of RC♯Lp are the finite p-groups P such that P@ ∼= L.

• If P and Q are finite p-groups such that P@ ∼= Q@ ∼= L, then

HomRC♯L
p
(P,Q) = RB(Q,P )/

∑
L ̸⊑S

RB(Q,S)B(S, P )

is the quotient of RB(Q,P ) by the R-submodule generated by all mor-
phisms from P to Q in RCp which factor through a p-group S which do
not admit L as a subquotient.

• The composition of morphisms in RC♯Lp is induced by the composition
of morphisms in RCp.
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7.12. Remark: Morphisms in RCp which factor through a p-group S such
that L ̸⊑ S clearly generate a two-sided ideal, so the composition in RC♯Lp is

well defined. Moreover the categoryRC♯Lp isR-linear. Let FunR
(
RC♯Lp , R-Mod

)
denote the category of R-linear functors from RC♯Lp to the category R-Mod
of R-modules.

7.13. Lemma: Let p be a prime, and L be an atoric p-group. Let P and Q
be finite p-groups.

1. If P@ ∼= L or Q@ ∼= L, and if M ≤ (Q × P ), then q(M)@ ⊑ L.
Moreover q(M)@ ∼= L if and only if L ⊑ q(M).

2. If P@ ∼= Q@ ∼= L, then

HomRC♯L
p
(P,Q) = RB(Q,P )/

∑
S@⊏L

RB(Q,S)B(S, P )

is also the quotient of RB(Q,P ) by the R-submodule generated by all
morphisms from P to Q in RCp which factor through a p-group S such
that S@ is a proper subquotient of L.

3. If P@ ∼= Q@ ∼= L, then HomRC♯L
p
(P,Q) has an R-basis consisting of

the (images of the) transitive (Q,P )-bisets (Q× P )/M , where M is a
subgroup of (Q× P ) such that q(M)@ ∼= L (up to conjugation).

Proof : (1) Indeed q(M) is a subquotient of P , and a subquotient ofQ. Hence
q(M)@ is a subquotient of P@ and a subquotient ofQ@, thus q(M) ⊑ L@ ∼= L.
Now suppose that q(M)@ ∼= L. Then L is a quotient of q(M), so L ⊑ q(M).
Conversely, if L ⊑ q(M), then L ∼= L@ is a subquotient of q(M)@, which is a
subquotient of L. So q(M)@ ∼= L.

(2) Let S be a finite p-group such that L ̸⊑ S, or equivalently L ̸⊑ S@. Any
element of RB(Q,S)B(S, P ) is a linear combination of (Q,P )-bisets of the
form (Q × P )/(M ∗ N), for M ≤ (Q × S) and N ≤ (S × P ). This biset
(Q×P )/(M ∗N) also factors though T = q(M ∗N), by 2.6. Moreover T is a
subquotient of q(M) and q(N), hence a subquotient of Q, S, and P . Hence
T@ ⊑ Q@ ∼= L, and T@ ≇ L, since L ̸⊑ S@. Hence T ⊏ L.

(3) The (images of the) elements (Q × P )/M , where M is a subgroup
of (Q × P ) such that q(M)@ ∼= L (up to conjugation), clearly generate
HomRC♯L

p
(P,Q). Moreover, the proof of (2) shows that they are linearly

independent, since any transitive (Q,P )-biset (Q × P )/N appearing in an
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element of the sum
∑

S@⊏L

RB(Q,S)B(S, P ) is such that q(N)@ ⊏ L. .

7.14. Remark: If G is an R-linear functor from RC♯Lp to the category R-Mod
of R-modules, we can extend G to an R-linear functor from RCLp to R-Mod
by setting G(P ) = {0} if P is a finite p-group such that P@ is a proper
subquotient of L. Conversely, an R-linear functor from RCLp to R-Mod which
vanishes on p-groups P such that P@ ≇ L can be viewed as an R-linear
functor from RC♯Lp to R-Mod. In the sequel, we will freely identify those two

types of functors, and consider FunR
(
RC♯Lp , R-Mod

)
as the full subcategory of

FunR
(
RCLp , R-Mod

)
consisting of functors which vanish on p-groups P such

that P@ ≇ L.

7.15. Theorem: [ p ∈ R×] Let L be an atoric p-group.

1. If F is a p-biset functor over R such that F = b̂LF , and P is a finite
p-group such that L ̸⊑ P , then F (P ) = {0}.

2. If G is an R-linear functor from RC♯Lp to R-Mod, then b̂LRYL
(G) =

RYL
(G).

3. The forgetful functor OYL
and its right adjoint RYL

restrict to quasi-
inverse equivalences of categories

b̂LFp,R

OYL // FunR
(
RC♯Lp , R-Mod

)
.

RYL

oo

Proof : (1) Since b̂LF = F , then in particular F (bPL)F (P ) = F (P ). If L ̸⊑ P ,
then there is no minimal section (T, S) of P with (T/S)@ ∼= L, thus bPL = 0,
and F (P ) = {0}.

(2) Let G be an R-linear functor from RC♯Lp to R-Mod, in other words an R-
linear functor from FCLp to R-Mod which vanishes on p-groups P such that

P@ is a proper subquotient of L. By Theorem 7.9, we have b̂+LRYL
(G) =

RYL
(G). If H is an atoric p-group which is a proper subquotient of L, then

G vanishes over any subquotient Q of H, since Q@ ⊑ H ⊏ L if Q ⊑ H.
In particular bPH acts by 0 on RYL

(G)(P ), for any finite p-group P : indeed
bPH is a linear combination of terms of the form IndinfPX/MDefresPX/M , where
(X,M) is a section of P such that S ≤ M ≤ Φ(T ) ≤ X ≤ T , for some
section (T, S) of P with (T/S)@ ∼= H. For such a section (X,M) of P , we
have (X/M)@ ⊑ (T/S)@ ⊑ H, thus G vanishes on any subquotient of X/M ,
so RYL

(G)(X/M) = {0}, hence bPH = 0 on RYL
(G)(P ), as claimed. It follows
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that b̂HRYL
(G) = 0, hence b̂+LRYL

(G) = RYL
(G) = b̂LRYL

(G).

(3) This is a straightforward consequence of (1) and (2), by Theorem 7.9.

The following proposition gives some detail on the structure of the cate-
gory RC♯Lp :

7.16. Proposition: Let p be a prime, and L be an atoric p-group.

1. Let P be a finite p-group. Then P@ ∼= L if and only if there exists an
elementary abelian p-group E such that P ∼= E × L.

2. Let P = E×L and Q = F ×L, where E and F are elementary abelian
p-groups. If M ≤ (Q× P ), then q(M)@ ∼= L if and only if

p1,2(M) = p2,2(M) = L and k1,2(M) = k2,2(M) = 1 ,

where p1,2 and p2,2 are the morphisms from
(
(H × L)× (G× L)

)
to L

defined by p1,2
(
(h, x), (g, y)

)
= x and p2,2

(
(h, x), (g, y)

)
= y, and

k1,2(M) = {x ∈ L |
(
(1, x), (1, 1)

)
∈M} ,

k2,2(M) = {x ∈ L |
(
(1, 1), (1, x)

)
∈M} .

Proof : (1) This follows from Proposition 6.8.

(2) By Lemma 7.13, the R-module RB(Q,P ) has a basis consisting of the
isomorphism classes of (Q,P )-bisets of the form (Q × P )/M , where M is a
subgroup of (Q×P ), up to conjugation, and q(M)@ ∼= L. If M is such a sub-

group, then L ∼=
(
p1(M)/k1(M)

)@ ⊑ (
p1(M)

)@ ⊑ Q@ ∼= L, so p1(M)@ ∼= L,
and similarly p2(M)@ ∼= L. By Proposition 6.8 p1(M)@ ∼= L if and only
if Ep1(M) = P , which in turn is equivalent to p1,2(M) = L. Similarly
p2(M)@ ∼= L if and only if p2,2(M) = L.

Then
(
p1(M)/k1(M)

)@ ∼= L if and only if k1(M) ∩ Φ
(
p1(M)

)
= 1, by

Proposition 6.6. Moreover Φ
(
p1(M)

)
= Φ(P ), as there exists an elementary

abelian subgroup E ′ of P such that P = E ′ × p1(M), by Proposition 6.8
again. Since Φ(P ) = 1×Φ(L), it follows that k1(M)∩

(
1×Φ(L)

)
= 1. Now

N = k1(L)∩(1×L) is a normal subgroup of (1×L) (since p1,2(M) = L), which
intersect trivially

(
1 × Φ(L)

)
. Since L is atoric, by Lemma 6.3, any central

element of order p of (1×L) is contained in
(
1×Φ(L)

)
, so N contains no non

trivial central element of (1× L), hence N = 1. Thus k1(L) ∩ (1× L) = 1,
or equivalently k1,2(M) = 1. Similarly k2,2(M) = 1. Hence q(M)@ ∼= L if
and only if p1,2(M) = p2,2(M) = L and k1,2(M) = k2,2(M) = 1.
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8. L-enriched bisets

8.1. Notation: Let G and H be finite groups. If U is an (H,G)-biset, and
u ∈ U , let (H,G)u denote the stabilizer of u in (H ×G), i.e.

(H,G)u = {(h, g) ∈ (H ×G) | hu = ug} .

Let Hu = k1
(
(H,G)u

)
denote the stabilizer of u in H, and uG = k2

(
(H,G)u

)
denote the stabilizer of u in G. Set moreover

q(u) = q
(
(H,G)u

)
= (H,G)u/(Hu × uG) .

8.2. Definition: Let L be a finite group. For two finite groups G and H,
an L-enriched (H,G)-biset is a (H × L,G× L)-biset U such that L ⊑ q(u),
for any u ∈ U . A morphism of L-enriched (H,G)-bisets is a morphism of
(H × L,G× L)-bisets.

The disjoint union of two L-enriched (H,G)-bisets is again an L-
enriched (H,G)-biset. Let B[L](H,G) denote the Grothendieck group of fi-
nite L-enriched (H,G)-bisets for relations given by disjoint union decompo-
sitions. The group B[L](H,G) is called the Burnside group of L-enriched
(H,G)-bisets.

8.3. Lemma: Let G,H,L be finite groups, and U be an (H × L,G × L)-
biset. Let U ♯L denote the set of elements u ∈ U such that L ⊑ q(u). Then
U ♯L is the largest sub-L-enriched (H,G)-biset of U .

Proof : It suffices to show that U ♯L is a sub-(H × L,G × L)-biset of U ,
for then it is clearly the largest sub-L-enriched (H,G)-biset of U . And this
is straightforward, since for any (u, g, h, x, y) ∈ (U × G × H × L × L), if
v = (h, y)u(g, x)−1, then

(H × L,G× L)v =
((h,y),(g,x))(H × L,G× L)u ,

and this conjugation induces a group isomorphism q(v) ∼= q(u).

8.4. Lemma: Let G,H,L be finite groups.

1. Let U be an L-enriched (H,G)-biset. If V is a sub-(H×L,G×L)-biset
of U , then V is an L-enriched (H,G)-biset.
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2. The group B[L](H,G) has a Z-basis consisting of the transitive bisets(
(H×L)× (G×L)

)
/M , where M is a subgroup of

(
(H×L)× (G×L)

)
(up to conjugation) such that L ⊑ q(M).

Proof : (1) This is straightforward.

(2) It follows from (1) that B[L](H,G) has a basis consisting of the isomor-
phism classes of L-enriched (H,G)-bisets which are transitive (H×L,G×L)-
bisets. These are of the form U =

(
(H×L)×(G×L)

)
/M , for some subgroup

M of
(
(H × L) × (G × L)

)
. Now if u is the element

(
(1, 1), (1, 1)

)
M of U ,

the group (H × L,G× L)u is equal to M , hence q(u) ∼= q(M).

8.5. Lemma: Let G,H,K,L be finite groups.

1. For an (H,G)-biset U , endow U × L with the (H × L,G × L)-biset
structure defined by

∀h ∈ H, ∀g ∈ G, ∀x, y, z ∈ L, ∀u ∈ U, (h, x)(u, y)(g, z) = (hug, xyz) .

Then U × L is an L-enriched (H,G)-biset.

2. In particular, for any finite group G, the identity biset of G× L is an
L-enriched (G,G)-biset.

3. If U is an (H,G)-biset and V is a (K,H)-biset, then there is an iso-
morphism

(V × L)×(H×L) (U × L) ∼= (V ×H U)× L

of L-enriched (H,G)-bisets.

Proof : (1) For u ∈ U and l ∈ L,

(H × L,G× L)(u,l) = {
(
(h, lx), (g, x)

)
| hug = u, l ∈ L} ∼= (H,G)u × L .

In particular (H×L)(u,l) = Hu×1 and (u,l)(G×L) = uG×1, and q
(
(u, l)

) ∼=
q(u)× L has a (sub)quotient isomorphic to L.

(2) In particular, if H = G and U is the identity (G,G)-biset, then U × L is
the identity biset of (G× L).

(3) It is straightforward to check that the maps

[(v, x), (u, y)] ∈ (V × L)×(H×L) (U × L) � // ([v, u], xy) ∈ (V ×H U)× L

[(v, 1), (u, l)] ∈ (V × L)×(H×L) (U × L) ([v, u], l) ∈ (V ×H U)× L�oo
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are well defined isomorphisms of (K × L,G × L)-bisets, inverse to one an-
other.

8.6. Notation: Let G,H,K,L be finite groups. If U is an L-enriched

(H,G)-biset and V is an L-enriched (K,H)-biset, let V
L

×HU denote the L-
enriched (K,G)-biset defined by

V
L

×HU =
(
V ×(H×L) U

)♯L
.

8.7. Lemma: Let G,H, J,K, L be finite groups.

1. If V is a (K ×L,H ×L)-biset and U is an (H ×L,G×L)-biset, then

(V ×(H×L) U)♯L = V ♯L L

×HU
♯L .

In particular, if V and U are L-enriched bisets, so is V
L

×HU .

2. If U and U ′ are L-enriched (H,G)-bisets, if V, V ′ are L-enriched
(K,H)-bisets, then there are isomorphisms

V
L

×H(U ⊔ U ′) ∼= (V
L

×HU) ⊔ (V
L

×HU
′)

(V ⊔ V ′)
L

×HU ∼= (V
L

×HU) ⊔ (V ′ L×HU)

of L-enriched (K,G)-bisets.

3. If moreover W is an L-enriched (J,K)-biset, then there is a canonical
isomorphism

(W
L

×KV )
L

×HU ∼= W
L

×K(V
L

×HU)

of L-enriched (J,G)-bisets.

Proof : (1) Denote by [v, u] the image in V×(H×L)U of a pair (v, u) ∈ (V×U).
By Lemma 2.3.20 of [7],

(K × L,G× L)[v,u] = (K × L,H × L)v ∗ (H × L,G× L)u ,

so by Lemma 2.3.22 of [7], the group q
(
[v, u]

)
is a subquotient of q(v) and

q(u). So if [v, u] ∈ (V ×(H×L)U)♯L, then L is a subquotient of q
(
[v, u]

)
, hence

it is a subquotient of q(v) and q(u), that is v ∈ V ♯L and u ∈ U ♯L. Hence

(V ×(H×L) U)♯L ⊆ (V ♯L ×(H×L) U
♯L)♯L = V ♯L L

×HU
♯L ,
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and the reverse inclusion (V ♯L ×(H×L) U
♯L)♯L ⊆ (V ×(H×L) U)♯L is obvious.

Hence (V ×(H×L) U)♯L = V ♯L L

×HU
♯L. If V and U are L-enriched bisets, i.e.

if V = V ♯L and U = U ♯L, this gives (V ×(H×L) U)♯L = V
L

×HU , so V
L

×HU is
an L-enriched biset.

(2) This is straightforward.

(3) With the above notation, there is a canonical isomorphism

α : (W ×(K×L) V )×(H×L) U →W ×(K×L) (V ×(H×L) U)

sending
[
[w, v], u

]
to

[
w, [v, u]

]
. Hence

(W
L

×KV )
L

×HU =
(
(W

L

×KV )×(H×L) U
)♯L

=
(
(W ×(K×L) V )♯L ×(H×L) U

)♯L
=

(
(W ×(K×L) V )×(H×L) U

)♯L
[by (1)]

Similarly

W
L

×K(V
L

×HU) =
(
W ×(K×L) (V

L

×HU)
)♯L

=
(
W ×(K×L) (V ×(H×L) U)♯L

)♯L
=

(
W ×(K×L) (V ×(H×L) U)

)♯L
[by (1)] .

Hence α induces an isomorphism (W
L

×KV )
L

×HU ∼= W
L

×K(V
L

×HU).

8.8. Definition: Let L be a finite group, and R be a commutative ring.
The L-enriched biset category RC[L] of finite groups over R is defined as
follows:

• The objects of RC[L] are the finite groups.

• For finite groups G and H,

HomRC[L](G,H) = R⊗Z B[L](H,G) = RB[L](H,G)

is the R-linear extension of the Burnside group of L-enriched (H,G)-
bisets.

• The composition in RC[L] is the R-linear extension of the product

(V, U) 7→ V
L

×HU defined in 8.6.
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• The identity morphism of the group G is (image in RB[L](G,G) of)
the identity biset of G× L, viewed as an L-enriched (G,G)-biset.

The category RC[L] is R-linear. An L-enriched biset functor over R is an
R-linear functor from RC[L] to R-Mod. The category of L-enriched biset
functors over R is denoted by FR[L]. It is an abelian R-linear category.

8.9. Theorem: Let p be a prime number, and R be a commutative ring.

1. If L is an atoric p-group, the category RC♯Lp of Definition 7.11 is equiv-
alent to the full subcategory RE lp[L] of RC[L] consisting of elementary
abelian p-groups.

2. If p ∈ F×, the category Fp,R of p-biset functors over R is equivalent to
the direct product of the categories FunR

(
RE lp[L], R-Mod

)
of R-linear

functors from RE lp[L] to R-Mod, for L ∈ [Atp].

Proof : (1) Let E be an elementary abelian p-group. Then (E × L)@ ∼= L,
so E×L is an object of RC♯Lp . Set I(E) = E×L. If E and F are elementary
abelian p-groups, and if U is a finite L-enriched (F,E)-biset, then U is in
particular an (F ×L,E ×L)-biset, an we can consider its image I(U) in the
quotient HomRC♯L

p
(E ×L, F ×L) of RB(F ×L,E ×L). This yields a unique

R-linear map RB[L](F,E)→ HomRC♯L
p
(E × L, F × L), still denoted by I.

We claim that these assignments define a functor I from RE lp[L] to RC♯Lp :
indeed, the identity (E × L,E × L)-biset is clearly mapped to the identity
morphism of I(E). Moreover, if G is an elementary abelian p-group, if V
is an L-enriched (G,F )-biset and U is an L-enriched (F,E)-biset, it is clear
that

I
(
V

L

×FU) = I(V ) ◦ I(U) ,

where the right hand side composition is in the category RC♯Lp : indeed,
the transitive bisets (Q × P )/M with q(M)@ ⊏ L appearing in the prod-
uct V ×(F×L) U are exactly those vanishing in HomRC♯L

p

(
I(E), I(F )

)
, by

Lemma 7.13. Hence I is an isomorphism

I : RB[L](F,E)→ HomRC♯L
p

(
I(E), I(F )

)
.

In other words I is a fully faithful functor from RE lp[L] to RC♯Lp . Moreover,
by Proposition 6.8, if P is a finite p-group with P@ ∼= L, there exists an
elementary abelian p-group E such that P is isomorphic to E × L, hence P
is isomorphic to E × L in the category RC♯Lp .

It follows that the functor I is fully faithful and essentially surjective, so
it is an equivalence of categories.
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(2) This is a straightforward consequence of (1), Assertion 5 of Corollary 7.5,
and Assertion 3 of Theorem 7.15.

9. The category b̂LFp,R, for an atoric p-group L (p ∈ R×)

Let L be a fixed atoric p-group. In this section, we give some detail on the
structure of the category b̂LFp,R of p-biset functors invariant by the idempo-

tent b̂L.
We start by straightforward consequences of Theorem 7.15. For a finite

p-group P , we denote by Σ♯L(P ) the subset of ΣL(P ) consisting of sections
(X,M) of P such that (X/M)@ ∼= L. When G is an R-linear functor from
RC♯Lp to R-Mod, we can compute RYL

(G) at P by restricting the inverse limit
of 7.7 to the subset Σ♯L(P ), i.e. by

RYL
(G)(P ) = lim←−

(X,M)∈Σ♯L(P )

G(X/M) .

9.1. Proposition: [ p ∈ R×] Let L be an atoric p-group. If F is a p-biset

functor in b̂LFp,R, and P is a finite p-group, then

F (P ) ∼= lim←−
(X,M)∈Σ♯L(P )

F (X/M) ,

∼= ⊕
(T,S)∈[M(P )]

(T/S)@∼=L

δΦF (T/S)NP (T,S)/T .

Proof : The isomorphism F (P ) ∼= lim←−
(X,M)∈Σ♯L(P )

F (X/M) is Assertion 3 of

Theorem 7.15. The second isomorphism follows from Theorem 5.4, which
implies that for (T, S) ∈M(P )

δΦF (T/S)NP (T,S)/T ∼= F (ϵPT,S)
(
F (P )

)
.

Moreover F (bPL)F (P ) = F (P ) since F ∈ b̂LFp,R, and

F (ϵPT,S)F (bPL) = F (ϵPT,Sb
P
L) = 0

unless (T/S)@ ∼= L. Thus δΦF (T/S)NP (T,S)/T = {0} unless (T/S)@ ∼= L,
which completes the proof.
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The decomposition of the category Fp,R of p-biset functors stated in Corol-
lary 7.5 leads to the following natural definition:

9.2. Definition: [ p ∈ R×] Let F be an indecomposable p-biset functor
over R. There exists a unique atoric p-group L (up to isomorphism) such

that F = b̂LF . The group L is called the vertex of F .

9.3. Remark: It follows in particular from this definition that if F and F ′

are indecomposable p-biset functors over R with non-isomorphic vertices,
then Ext∗Fp,R

(F, F ′) = {0}.

9.4. Theorem: [ p ∈ R×] Let F be an indecomposable p-biset functor over R
and let L be a vertex of F . If Q is a finite p-group such that F (Q) ̸= {0},
but F vanishes on any proper subquotient of Q, then L ∼= Q@.

Proof : Let Q be a finite p-group such that F (Q) ̸= {0} and F (Q′) = {0} for
any proper subquotient Q′ of Q. By Proposition 4.6, if (T, S) is a minimal
section of Q, then

ϵQT,S=
1

|NQ(T, S)|
∑

X≤T,M ⊴T

S≤M≤Φ(T )≤X≤T

|X|µ(X,T )µ⊴T (S,M) IndinfQX/M◦Defres
Q
X/M .

Now if X/M is a proper subquotient of Q, i.e. if X ̸= Q or M ̸= 1, then
F (X/M) = {0}, and F (IndinfQX/M ◦ Defres

Q
X/M) = 0. Hence F (ϵQT,S) = 0

unless T = Q and S = 1, and moreover

F (ϵQQ,1) =
1

|Q|
|Q|µ(Q,Q)µ⊴Q(1, Q)F (IndinfQQ/1Defres

Q
Q/1) = IdF (Q) .

If b̂LF = F , then in particular F (bQL ) is equal to the identity map of F (Q).
This can only occur if the idempotent ϵQQ,1 appears in the sum defining bQL ,

in other words if (Q/1)@ ∼= L, i.e. Q@ ∼= L. Conversely, if Q@ ∼= L, then

F (bQL ) = F (ϵQQ,1) = IdF (Q) ̸= 0. It follows that b̂LF ̸= 0, hence b̂LF = F ,

since F is indecomposable. Hence Q@ is (isomorphic to) the vertex of F , as
was to be shown.

We assume from now on that R = k is a field. Recall ([7] Chapter 4) that
the simple p-biset functors over k are indexed by pairs (Q, V ) consisting of
a p-group Q and a simple kOut(Q)-module V .
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9.5. Corollary: Let k be a field of characteristic different from p.

1. If Q is a finite p-group, and V is a simple kOut(Q)-module, then the
vertex of the simple p-biset functor SQ,V is isomorphic to Q@.

2. Let Q (resp. Q′) be a finite p-group, and V (resp. V ′) be a simple
kOut(Q)-module (resp. a simple kOut(Q′)-module). If Q@ ≇ Q′@,
then Ext∗Fp,k

(SQ,V , SQ′,V ′) = {0}.

Proof : (1) Indeed Q is a minimal group for SQ,V , so SQ,V (Q) ̸= {0}, but
SQ,V vanishes on any proper subquotient of Q.

(2) Follows from (1) and Remark 9.3.

9.6. Definition: Let F be a p-biset functor. A functor S is a subquotient
of F (notation S ⊑ F ) if there exist subfunctors F2 < F1 ≤ F such that
F1/F2

∼= S. A composition factor of F is a simple subquotient of F .

9.7. Lemma: Let k be a field, and F be a p-biset functor over k.

1. If F is a non zero, then F admits a composition factor.

2. If S is a family of simple p-biset functors over k, there exists a greatest
subfunctor of F all composition factors of which belong to S.

Proof : (1) Let P be a finite p-group such that F (P ) ̸= {0}. Then F (P ) is
a kB(P, P )-module. Choose m ∈ F (P ) − {0}, and consider the kB(P, P )-
submodule M of F (P ) generated by m. Since kB(P, P ) is finite dimensional
over k, the module M is also finite dimensional over k, hence it contains
a simple submodule V . By Proposition 3.1 of [8], there exists a simple p-
biset functor S such that S(P ) ∼= V as kB(P, P )-module. Then S(P ) is a
subquotient of F (P ), so by Proposition 3.5 of [8], there exists a subquotient
of F isomorphic to S.

(2) Observe first that if M,N are subfunctors of F , then any composition
factor of M +N is a composition factor of M or a composition factor of N :
indeed, if S is a composition factor of M + N , let F2 < F1 ≤ M + N with
S ∼= F2/F1, and consider the images F ′

1 and F ′
2 of F1 and F2, respectively, in

the quotient (M + N)/N ∼= M/(M ∩ N). If F ′
1 ̸= F ′

2, that is if F1 + N ̸=
F2 + N , then F ′

1/F
′
2
∼= (F1 + N)/(F2 + N) ∼= F1/F2

∼= S is a subquotient
of (M + N)/N ∼= M/(M ∩ N), hence S is a subquotient of M . Otherwise
F1+N = F2+N , so F1 = F2+(F1∩N), hence S ∼= F1/F2

∼= (F1∩N)/(F2∩N)
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is a subquotient of N . It follows by induction that any subquotient S of a
finite sum

∑
M∈I

M of subfunctors of F is a subquotient of some M ∈ I.

The latter also holds when I is infinite: let Σ =
∑
M∈I

M be an arbitrary

sum of subfunctors of F , and S be a composition factor of Σ. Let F2 < F1 be
subfunctors of Σ such that S ∼= F1/F2. If P is a p-group such that S(P ) ∼=
F1(P )/F2(P ) ̸= 0, let U be a finite subset of F1(P ) such that F1(P )/F2(P )
is generated as a kB(P, P )-module by the images of the elements of U (such
a set exists because S(P ) is finite dimensional over k, for any P ). If V is the
kB(P, P )-submodule of F1(P ) generated by U , then V maps surjectively on
the module F1(P )/F2(P ), so there is a kB(P, P )-submoduleW of V such that
V/W ∼= S(P ). Now since U is finite, there exists a finite subset J of I such
that U ⊆

∑
M∈J

M(P ). Setting Σ1 =
∑

M∈J
M , it follows that V/W ∼= S(P ) is a

subquotient of Σ1(P ), so by Proposition 3.5 of [8], there exists a subquotient
of Σ1 isomorphic to S. By the observation above S is a subquotient of some
M ∈ J ⊆ I.

Now let I the set of subfunctors M of F such that all the composition
factors of M belong to S, and N =

∑
M∈I

M . The above discussion shows that

N ∈ I, so N is the greatest element of I.

9.8. Theorem: Let k be a field of characteristic different from p, and L
be an atoric p-group. Let Fp,k[L] the full subcategory of Fp,k consisting of
functors whose composition factors all have vertex L, i.e. are all isomorphic
to SP,V , for some p-group P such that P@ ∼= L, and some simple kOut(P )-
module V .

1. If F is a p-biset functor, then b̂LFp,k is the greatest subfunctor of F
which belongs to Fp,k[L].

2. In particular b̂LFp,k = Fp,k[L].

Proof : (1) Let F be a p-biset functor over k, and let F1 = b̂LF . If S

is a composition factor of F1, then S = b̂LS, as S is a subquotient of F1.
Hence S has vertex L, by Definition 9.2. It follows that F1 is contained in
the greatest subfunctor F2 of F which belongs to Fp,k[L] (such a subfunctor
exists by Lemma 9.7).

Conversely, we know that F2 = ⊕
Q∈[Atp]

b̂QF2. For Q ∈ [Atp], any composi-

tion factor S of b̂QF2 has vertex Q, by Definition 9.2. But S is also a direct

summand of F2, so Q ∼= L. It follows that if Q ≇ L, then b̂QF2 has no com-
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position factor, so b̂QF2 = {0}, by Lemma 9.7. In other words F2 = b̂LF2,
hence F2 ≤ F1, and F2 = F1, as was to be shown.

(2) Let F be a p-biset functor. Then F ∈ b̂LFp,k if and only if F = b̂LF , i.e.
by (1) if and only if all the composition factors of F have vertex L.

9.9. Example: the Burnside functor. Let k be a field of characteristic
q ̸= p (q ≥ 0). It was shown in [10] Theorem 8.2 (see also [7] 5.6.9) that
the Burnside functor kB is uniserial, hence indecomposable. As kB(1) ̸= 0,
the vertex of kB is the trivial group, by Theorem 9.4, thus kB is an object
of b̂1Fp,k = Fp,k[1]. It means that all the composition factors of kB have to
be of form SQ,V , where Q@ = 1, i.e. Q is elementary abelian. And indeed
by [10] Theorem 8.2, the composition factors of kB are all of the form SQ,k,
where Q runs through a specific set of elementary abelian p-groups which
depends on the order of p modulo q (suitably interpreted when q = 0).
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[9] S. Bouc, R. Stancu, and J. Thévenaz. Vanishing evaluations of simple
functors. J.P.A.A., 218:218–227, 2014.

50
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