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Abstract: Let R be a (unital) commutative ring, and G be a finite group
with order invertible in R. We introduce new idempotents e% g in the
double Burnside algebra RB(G,G) of G over R, indexed by conjugacy
classes of minimal sections (T, S) of G (i.e. sections such that S < ®(T)).
These idempotents are orthogonal, and their sum is equal to the identity.
It follows that for any biset functor F' over R, the evaluation F'(G) splits
as a direct sum of specific R-modules indexed by minimal sections of G,
up to conjugation.

The restriction of these constructions to the biset category of p-groups,
where p is a prime number invertible in R, leads to a decomposition of
the category of p-biset functors over R as a direct product of categories
Fr, indexed by atoric p-groups L up to isomorphism.

We next introduce the notions of L-enriched biset and L-enriched biset
functor for an arbitrary finite group L, and show that for an atoric p-
group L, the category F is equivalent to the category of L-enriched
biset functors defined over elementary abelian p-groups.

Finally, the notion of vertex of an indecomposable p-biset functor is in-
troduced (when p € R*), and when R is a field of characteristic different
from p, the objects of the category F, are characterized in terms of ver-
tices of their composition factors.
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1. Introduction

Let R denote throughout a commutative ring (with identity element). For
a finite group G, we consider the double Burnside algebra RB(G,G) of a G
over R. In the case where the order of GG is invertible in R, we introduce
idempotents €7 ¢ in RB(G, G), indexed by the set M(G) of minimal sections
of G, i.e. the set of pairs (7, .5) of subgroups of G with S <7 and S < &(7T),
where ®(T') is the Frattini subgroup of G (such sections have been considered
in Section 5 of [9]). The idempotent €7 ¢ only depends of the conjugacy class
of (T,S) in G. Moreover, the idempotents €7 ¢, where (T',S) runs through a



set [M(G)] of representatives of orbits of G acting on M(G) by conjugation,
are orthogonal, and their sum is equal to the identity element of RB(G, G).
The idempotents 58,1 plays a special role in our construction, and it is
denoted by ¢§. In particular, when F is a biset functor over R (and the order
of G is invertible in R), we set g F(G) = ¢§ F(G). We show that 64 F(G)
consists of those elements u € F(G) such that Res&u = 0 whenever H is a
proper subgroup of G, and Defg /vt =0 whenever N is a non-trivial normal
subgroup of G contained in ®(G). This yields moreover a decomposition

F@)2( @ GF(T/S)N°2 @  6aF(T/S)NeTSIT

(T,S)eM(G) (T.8)eM(G)]
Restricting these constructions to the biset category RC, of p-groups with
coefficients in R, where p is a prime invertible in R, we get orthogonal idempo-
tents bz, in the center of RC,, indexed by atoric p-groups, i.e. finite p-groups
which cannot be split as a direct product C,, x @, for some p-group ). We
show next that every finite p-group P admits a unique largest atoric quo-
tient P®, well defined up to isomorphism, and that there exists an elementary
abelian p-subgroup E of P (non unique in general) such that P = F x P¢.
For a given atoric p-group L, we introduce a category RC;;L , defined as a quo-
tient of the subcategory of RC, consisting of p-groups P such that P® = L.
This leads to a decomposition of the category F, r of p-biset functors over
R as a direct product

Forn= [] Fung(RCY, R-Mod)
Le[Atp)

of categories of representations of RCI%L over R, where L runs through a
set [At,] of isomorphism classes of atoric p-groups. Similar questions on
idempotents in double Burnside algebras and decomposition of biset functors
categories have been considered by L. Barker ([1]), R. Boltje and S. Danz
(2], [3]), R. Boltje and B. Kiilshammer ([4]), and P. Webb ([16]).

In particular, via the above decomposition, to any indecomposable p-
biset functor F' is associated a unique atoric p-group, called the vertex of F'.
We show that this vertex is isomorphic to Q®, for any p-group @ such that
F(Q) # {0} but F vanishes on any proper subquotient of Q.

Going back to arbitrary finite groups, we next introduce the notions of
L-enriched biset and L-enriched biset functor, and show that when L is an
atoric p-group, the abelian category Fun R(RCIQL, R—Mod) is equivalent to the
category of L-enriched biset functors from elementary abelian p-groups to
R-modules.

The paper is organized as follows: Section 2 is a review of definitions and
basic results on Burnside rings and biset functors. Section 3 is concerned



with the algebra £(G) obtained by “cutting” the double Burnside algebra

RB(G,G) of a finite group G by the idempotent €& corresponding to the
“top” idempotent e& of the Burnside algebra RB(G). Orthogonal idem-
potents ©§ of £(G) are introduced, indexed by normal subgroups N of G
contained in ®(G). It is shown moreover that if G is nilpotent, then § is
central in £(G). In Section 4, the idempotents €7 ¢ of RB(G, G) are intro-
duced, leading in Section 5 to the corresponding direct sum decomposition of
the evaluation at G of any biset functor over R. In Section 6, atoric p-groups
are introduced, and their main properties are stated. In Section 7, the biset
category of p-groups over R is considered, leading to a splitting of the cate-
gory JF, r of p-biset functors over R as a direct product of abelian categories
Fr, = Fung (RCf)L , R—Mod) indexed by atoric p-groups L up to isomorphism.
In Section 8, for an arbitrary finite group L, the notions of L-enriched biset
and L-enriched biset functor are introduced, and it is shown that when L is
an atoric p-group, the category Fp, is equivalent to the category of L-enriched
biset functors on elementary abelian p-groups. Finally, in Section 9, for a
given atoric p-group L, and when p is invertible in R, the structure of the
category JFp is considered, and the notion of vertex of an indecomposable
p-biset functor over R is introduced. In particular, when R is a field of char-
acteristic different from p, it is shown that the objects of F}, are those p-biset
functors all composition factors of which have vertex L.
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2. Review of Burnside rings and biset functors

2.1. Let G be a finite group, let s denote the set of subgroups of G, let 55
denote the set of conjugacy classes of subgroups of G, and let [sg] denote a
set of representatives of 5g.

Let B(G) denote the Burnside ring of G, i.e. the Grothendieck ring of the
category of finite G-sets. It is a commutative ring, with an identity element,
equal to the class of a G-set of cardinality 1. The additive group B(G) is a
free abelian group on the set {[G/H] | H € [s¢]} of isomorphism classes of
transitive G-sets.

2.2. e When GG and H are finite groups, and L is a subgroup of G x H, set

(L) = {geG|3heH, (g,h) €L},
(L) = {heH|3geG. (g.h) €L},
k(L) = {ge€G|(g,1) €L},
(L) = {heH|(1,h)e L} .

Recall that k;(L) <p;(L), for i € {1,2}, that (ki(L) x ks(L)) <L, and that

there are canonical isomorphisms
pi(L)/ki(L) = L/ (ki (L) x k(L)) = pa(L)/ k(L) -

Set moreover q(L) = L/(ki(L) x ka(L)).
e When 7 is a subgroup of G, set

AZ)=A{(z,2)|z€ Z} < (G x Q) .
When N is a normal subgroup of G, set
ANn(G) ={(a,b) e Gx G |ab~' € N} .

It is a subgroup of G x G.
e When G, H, and K are groups, when L < (G x H) and M < (H x K), set

LxM={(g9,k) e (GxK)|3heH, (9,h) € Land (h,k) € K} .

It is a subgroup of (G x K).
2.3. When G and H are finite groups, a (G, H)-biset U is a set endowed with



a left action of G and a right action of H which commute. In other words U
is a G x H-set, where H is the opposite group of H. The opposite biset
U° is the (H, G)-biset equal to U as a set, with actions defined for h € H,
uweUand g€ Gby h-u-g (in UP) =g luh™! (in U).

The Burnside group B(G, H) is the Grothendieck group of the category
of finite (G, H)-bisets. It is a free abelian group on the set of isomorphism
classes [(G x H)/L], for L € [sgxu|, where the (G, H)-biset structure on
(G x H)/L is given by

Va,g € G,V¥b,h € H, a-(g,h)L-b= (ag,b"'h)L .
When G, H, and K are finite groups, there is a unique bilinear product
xg:B(G,H)x B(H,K) — B(G,K)

induced by the usual product (U,V) — U xg V = (U x V)/H of bisets,
where the right action of H on U x V is defined foru e U, v € Vand h € H
by (u,v)-h = (uh, h~'v). This product will also be denoted as a composition
(a, B) = avo B or as a product (a, 3) — af.

This leads to the following definitions:

2.4. Definition: The biset category of finite groups C is defined as follows:
e The objects of C are the finite groups.
e When G and H are finite groups,

Hom¢(G,H) = B(H,G) .

o When G, H, and K are finite groups, the composition
o: Hom¢(H, K) x Home (G, H) — Home (G, K)
18 the product

xy: B(K,H) x B(H,G) - B(K,G) .

e The identity morphism of the group G is the class of the set G, viewed
as a (G, G)-biset by left and right multiplication.

A biset functor is an additive functor from C to the category of abelian groups.




When R is a commutative (unital) ring, the category RC is defined simi-
larly by extending coefficients to R, i.e. by setting

Hompge(G,H) = R®; B(H,G) ,

which will be simply denoted by RB(H,G). A biset functor over R is an R-
linear functor from RC to the category R-Mod of R-modules. The category
of biset functors over R (where morphisms are natural transformations of
functors) is denoted by Fg.

The correspondence sending a (G, H)-biset U to its opposite U extends
to an isomorphism of R-modules RB(G,H) — RB(H,G). These isomor-
phisms give an equivalence of R-linear categories from RC to its opposite
category, which is the identity on objects.

2.5. Let G and H be finite groups, and F' be a biset functor (with values
in R-Mod). For any finite (H, G)-biset U, the isomorphism class [U] of U
belongs to B(H,G), and it yields an R-linear map F([U]) : F'(G) — F(H),
simply denoted by F(U), or even f € F(G) — U(f) € F(H). In particular:

e When H is a subgroup of G, denote by Indg the set G, viewed as
a (G, H)-biset for left and right multiplication, and by Res% the same
set, viewed as an (H, G)-biset. This gives a map Ind%, : F(H) — F(G),
called induction, and a map Res$, : F(G) — F(H), called restriction.

e When N is a normal subgroup of G, let Infg /v denote the set G /N,
viewed as a (G, G/N)-biset for the left action of GG, and right action of
G /N by multiplication. Also let Def& /v denote the set G/N, viewed as
a (G/N,G)-biset. This gives a map Infg/N : F(G/N) — F(G), called
inflation, and a map Defg/N : F(G) — F(G/N), called deflation.

e Finally, when f : G — G’ is a group isomorphism, denote by Iso(f) the
set 7, viewed as a (G', G)-biset for left multiplication in G’; and right
action of G given by multiplication by the image under f. This gives
a map Iso(f) : F(G) — F(G'), called transport by isomorphism.

When G and H are finite groups, any (G, H)-biset is a disjoint union of
transitive ones. It follows that any element of B(G, H) is a linear combination
of morphisms of the form [(G x H)/L|, where L € sgxy. Moreover, any such
morphism factors as

B () )
(2.6) [(Gx H)/L] = Indy, yonf) ), olso(f)oDefy ), oResyp)

where f: po(L)/kao(L) — p1(L)/ki(L) is the canonical group isomorphism.
In particular, for N <G,

(2.7) (G x G)/AN(G)] = Inf§ )\ o Defg .
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For finite groups G, H, K, for L < (G x H) and M < (H x K), one has that

(2.8) (Gx H)/L] xg[(Hx K)/M] = > (G x K)/(Lx"DM)
hep2(L)\H/p1(M)

in B(G, K).
2.9. When G is a finite group, the group B(G,G) is the ring of endomor-
phisms of GG in the category C. This ring is called the double Burnside ring
of G. It is a non-commutative ring (if G is non trivial), with identity element
equal to the class of the set G, viewed as a (G, G)-biset for left and right
multiplication.

There is a unitary ring homomorphism « — « from B(G) to B(G,G),
induced by the functor X — X from G-sets to (G, G)-bisets, where X =
G x X, with (G, G)-biset structure given by

Va,b,g € G, Vx € X, a(g,z)b = (agb,az) .

This construction has in particular the following properties ([7], Corollary
2.5.12):

2.10. Lemma: Let G be a finite group.

1. If H is a subgroup of G, and X 1is a finite G-set, then there is an
isomorphism of (G, H)-bisets

X x¢Ind$ = Ind$ x g Res$ X

and an isomorphism of (H,G)-bisets

Res% xo X = Res$ X x i Res% .

2. If H 1s a subgroup of G, and Y 1is a finite H-set, then there is an
isomorphism of (G, G)-bisets

—_——

Ind$ x5 Y x g Res® = Ind§Y .

3. If N is a normal subgroup of G, and X is a finite G/N-set, then there
is an isomorphism of (G/N,G)-bisets

X xgyn Def? )y 2 Def v x¢ Inf& v X .




4. If N is a normal subgroup of G, and X is a finite G-set, then there is
an isomorphism of (G/N,G/N)-bisets

Defd v xa X x¢ Infg = Defg v X .

2.11. Let RB(G) denote the R-algebra R ®z B(G). Assume moreover that
the order of G is invertible in R. Then for H < G, let ¢% € RB(G) be
defined by

(2.12) = S e H) G/

No(H)] 2=,

where p is the Mobius function of the poset of subgroups of G. The elements
S, for H € [sg], are orthogonal idempotents of RB(G), and their sum is
equal to the identity element of RB(G). It follows that the elements €%,
for H € [sg], are orthogonal idempotents of the R-algebra RB(G,G) =
R ®7 B(G,G), and the sum of these idempotents is equal to the identity
element of RB(G,G). The idempotents €& play a special role, due to the
following lemma:

2.13. Lemma: Let R be a commutative ring, and G be a finite group with
order invertible in R.

1. Let H be a proper subgroup of G. Then
Resgoggzo and eAgOIndg:O .

2. When N QG, let mgn € R be defined by

1
mG,N:@ Z [ X|u(X,G) .

Xesg
XN=G

Then

Defg/N oefo Infg/N = mG,Neg% :

3. Let N <G, and suppose that N is contained in the Frattini subgroup



®(G) of G. Then

e&/n 0 DefS ) = DefS 0 G and InfS)y o el/N = eG o InfGy .

Proof : Assertion 1 follows from Lemma 2.10 and Assertion 1 of Theo-
rem 5.2.4. of [7].

Assertion 2 follows from Lemma 2.10 and Assertion 4 of Theorem 5.2.4.
of [7].

Finally the first part of Assertion 3 follows from Lemma 2.10 and Asser-
tion 3 of Theorem 5.2.4. of [7]: indeed Inf& /Neg% is equal to the sum of
the different idempotents e§ of RB(G) indexed by subgroups X such that
XN =G. If N < P(G), then XN = G implies XP(G) = G, hence X = G.

The second part of Assertion 3 follows by taking opposite bisets, since €& and

eg% are equal to their opposite bisets, and since (Def& NP = Inf§ n- 0
2.14. Remark: For the same reason, if N < ®(G), then mg y = 1.

2.15. Remark: It follows from Assertion 1 ind Remark 2.6 that if G and H
are finite groups and if L < (G x H), then e§[(G x H)/L] = 0 if p;(L) # G,
and [(G x H)/Llef =0 if po(L) # H.

3. Idempotents in £(G)

3.1. Notation: When G is a finite group with order invertible in R, denote
by E(G) the R-algebra defined by

£(G) = eSRB(G, G)eS .

Set
Y(G,G) ={M € sgxa | p1(L) =po(L) = G},

and for L € sgxq, set

Y, =G [(G x G)/L] G € E(G)

The R-algebra £(G) has been considered in [5], Section 9, in the case R
is a field of characteristic 0. The extension of the results proved there to the
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case where R is a commutative ring in which the order of G is invertible is
straightforward. In particular:

3.2. Proposition: Let G be a finite group with order invertible in R.
1. If L € sgxg — Z(G, G), then Y, = 0.

2. The elements Yy, for L in a set of representatives of (G X G)-conjugacy
classes on (G, G), form a R-basis of E(G).

3. For L, M € ¥(G,Q)
m
YiYar = W Yo 1ZI(Z,G) Yiaweu
Z<G

Zko(L)=Zk1(M)=G
szQ(L)mkl (M)

in E(G).

3.3. Corollary: Let L, M € 3(G,G). If one of the groups ko(L) or ki (M)
is contained in ®(G), then

YLYM = YL*M .

Proof : Indeed if k(L) < ®(G), then Zkyo(L) = G implies Z®(G) = G,
hence Z = G. Similarly, if k(M) < ®(G), then Zki(M) = G implies
Z = G. In each case, Proposition 3.2 then gives

YiYy = mG,kg(L)ﬂkl(M)YL*M )

and moreover Mg i,k (v) = 1 since ky(L) N k(M) < ®(G), by Re-
mark 2.14. 0

3.4. Notation: For a normal subgroup N of G such that N < ®(G), set

90% = Z MEG(N7 M)YAIVI(G) )

M<G
N<M<®(G)

where pa s the Mobius function of the poset of normal subgroups of G.
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3.5. Proposition: Let N <G with N < ®(G). Then

G/N
90% = Infg/NS%/ Defg/N .

Proof : Indeed if N < M <G, then paq(N, M) = pagn(1, M/N). Since
moreover N < &(G), setting G = G/N and M = M/N, we have by
Lemma 2.13

InfGYagomDefyy = Gy o eG((G x G)/Ag(M))ef o Defgx
= eGoTnfl (G x G)/Ag(M))DefS )y o G

—~

= cG((G % G)/Dn(G))ed
= Yan@)
since Infg/N((G G))/As(M ))DefG/N = (G x G)/Au(G). u|

3.6. Proposition:
1. Let N <G, with N < ®(G). Then

o = egxa( D naalN MG x G)/Au(@))
NgMSg]g(G)

—~

_ ( > MgG(N,M)[(GxG)/AM(G)D N
MG
N<M<®(G)

2. In particular

1 .
¢ = €] Z | X (X, G puag(1, M) Indlnf)G(/M o Defresg’;/M :
X<GM<G
M<®(G)<X<G

Proof : For Assertion 1, by definition

#5 = 3 naclN. MGG C) /Dy (@] e Y (X, G)(GXC)/AX)]
MG X<G
N<M<D(G)

[(G G)/(Aum(G)*A(X))],

Moreover [(GXG)/Ap (G xg[(GXG)/A(X)] =
| x € X;m € M}. The first

by (2.8), and Ay (G) * A(X) = {(zm,z)

11



projection of this group is equal to X M, hence it is equal to G if and only
if X = G, since M < ®(G). The first equality of Assertion 1 follows, by

Remark 2.15. The second one follows by taking opposite bisets, since & and
(G x G)/AN(G)] are equal to their opposite.

Assertion 2 follows in the special case where N = 1, expanding €& as
1
= 30 XX, G)(G x G)/AX)]

¢C =
Gl &=

observing that u(X,G) = 0 unless X > ®(G), and that if X > &(G) > M,
then

(G x G)/A(X)] e [(G x G)/Au(G)] = [(G x G)/Au(X)]

which is equal to Indinf$ /M © Defres$§ M- O

3.7. Corollary:
1. Let H < G. Then Res%oS =0 and ¢$Ind$ = 0.
2. Let M QG. If MN®(G) £ N, then Def 0% = 0 and o§Infg,,, = 0.

Proof : The first part of Assertion 1 follows from Lemma 2.13, since
Res$ ol = Resflgg@?\] =0 .

The second part follows by taking opposite bisets.

For Assertion 2, let P = M N®(G). Since Defg/M = Defgﬁ[ oDefg/P7 it

suffices to consider the case M = P, i.e. the case where M < ®(G). Then,

since [(G x G)/Ap(G)] = Infg/MDefg/M for any M <G, by 2.7, and since
Defg/MInfg/Q = InfgfﬁQDefg;ﬁQ for any M,Q <G,

Defd no% = Defl Y pac(N, Q)Infg o Defl el
QLG
N<Q<®(G)

= Z pac(V, Q)Iﬂfg/MQDefg/MQ6g

Q<G
N<Q<®(G)

= > (> MﬂG(NaQ))Infg/PDefg/ng‘

PJLG QLG
N<P<O(G) N<Q<¥(G)
QM=P
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Now for a given P 4G with P C ®(G), the sum > pae(N,Q) is
Q<G
N<Q<2(G)
QM=P
equal to zero unless NM = N, that is M < N, by classical properties
of the Mobius function ([15] Corollary 3.9.3). This proves the first part of

Assertion 2, and the second part follows by taking opposite bisets. a

W3.8. Theorem: Let G be a finite group with order invertible in R.

1. The elements oS, for N QG with N < ®(G), form a set of orthogonal
idempoteg/ts in the algebra E(G), and their sum is equal to the identity
element €% of £(G).

2. Let N <G with N < ®(G), and let H be a finite group.

(a) If L < (G x H), then o xg [(G x H)/L] = 0 unless p;(L) = G
and k(L) N ®(G) < N.

(b) If ' < (H x Q), then [(H x G)/L'] xg ¢% = 0 unless po(L') = G
and ko(L') N®(G) < N.

Proof : For N 4G, set u§ = Ya (e Since Ay (G) * Ay (G) = Ayn(G) for
any normal subgroups N and M of G, it follows from Corollary 3.3 that if
either N or M is contained in ®(G), then u§u§; = u$,,.

Now Assertion 1 follows from the following general procedure for building
orthogonal idempotents (see [13] Theorem 10.1 for details): we have a finite
lattice P (here P is the lattice of normal subgroups of G' contained in ®(G)),
and a set of elements g, of aring A, for x € P (here A = £(G) and gy = u§)),
with the property that g,g, = g»v, for any z,y € P, and gy = 1, where 0
is the smallest element of P (here this element is the trivial subgroup of G,

and uf = Ya,(q) = eG) The the elements f, defined for z € P by

= ul=y)gy

yeP
z<y

where p is the Mobius function of P, are orthogonal idempotents of A, and
their sum is equal to the identity element of A. This is exactly Assertion 1
(since f, = ¢§ here, for v = N € P).
Let L < (G x H), then by 2.6
P% X6 [(G x H)/L] = ¢§ o Indy, 1) o [(p (L) x H)/L] =0
unless p (L) = G, by Corollary 3.7. And if p;(L) = G, then by 2.6

o5 % (G x H)/L] = ¢ o Infg 1) o [(G /R (L) x H)/Ly
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for some subgroup L; of (G/ki(L) x H). Again, by Corollary 3.7 this is
equal to 0 unless k1(L) N ®(G) < N. The proof of Assertion (b) is similar.
Alternatively, one can take opposite bisets in (a). a

3.9. Proposition: Let G be a finite group with order invertible in R.
1. Let L € (G, G). Then

e§Y = Z pac(l, N)Ynur -

N<G
N<®(Q)

This is non zero if and only if ky(L) N ®(G) = 1. Similarly

Vil = Y naa(1,N)Yoan)

and Y0¥ # 0 if and only if k(L) N ®(G) = 1.

2. The elements @Yy (resp. Ypo§), when L runs through a set of
representatives of conjugacy classes of elements of (G, G) such that
ki(L) N ®(G) = 1 (resp ko(L) N ®(G) = 1), form an R-basis of the
right ideal p{E(G) (resp. the left ideal £(G)S ) of E(G).

Proof : Let L € ¥(G, G). By Proposition 3.8, we have

WYL = e xa (D nac(l, NG x G)/Ax(@)]) xa (G x G)/L] xg e§

NG
N<®(G)
= gxa( X nac(, NG x G)/An(G)  L]) xq e
NG
N<®(G)
= & XG( 3 M§G(1,N)[(G><G)/(N><1)L]> g el .
NG
N<D(G)
= Z pac(1, N)Ynvx)L
NG
N<®(G)

Set M = k(L) N ®(G). Then M <G, and (N x 1)L = (NM x 1)L for any
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normal subgroup N of G contained in ¢(G). Thus

(3.10) oY= ( > ﬂﬂG(lvN)>Y(P><1)L :

P<G NdG
M<P<®(G) NM=P

If M # 1,then< Z /J,gG(].,N)) = (0 forany PG with M < P < ®(G).

NG
NM=P

Hence ©{'Y;, = 0 in this case. And if M = 1, Equation (3.10) reads

V= Y pac(l,P)Ypaar -

PG
P<®(Q)

The element Y{py1)y, is equal to Y7, if and only if (P x 1)L is conjugate to L.
This implies that ki ((P x 1)L) is conjugate to (hence equal to) ki(L). Thus
P <ki((Px1)L) < k(L) N®(G), hence P = 1. So the coefficient of Y7, in
0§V is equal to 1, hence p§Y7 # 0. The remaining statements of Assertion
1 follow by taking opposite bisets.

Assertion 2 follows from Proposition 3.2, and from the fact that the co-
efficient of Y7, in p§Y7, is equal to 1 when k(L) N ®(G) = 1. 0

3.11. Corollary: Let G be a finite group of order invertible in R. If every
minimal (non-trivial) normal subgroup of G is contained in ®(Q), then ¢
is central in E(G), and the algebra $E(G) is isomorphic to ROut(G).

Proof : Indeed if L € X(L,L) and ¢§Y;, # 0, then k(L) N ®(G) = 1. It
follows that ki(L) contains no minimal normal subgroup of G, and then
k(L) = 1. Equivalently ¢(L) = pi(L)/ki(L) = G = po(L)/ko(L), ie.
ko(L) = G also, or equivalently ky(L) N ®(G) = 1. Hence ¢§Y;, # 0 if
and only if Y,¢§ # 0, and in this case, there exists an automorphism 6 of G
such that

L=27g(G)={(b(z),z) |z € G} .

In this case for any normal subgroup N of G contained in ®(G)

(Nx1L = {(a,b) € G xG|ab(b)"' € N}
= {(a,b) € G x G |a0(b) € N}
= L(1x6'(N)) .

Now N +— 07!(N) is a permutation of the set of normal subgroups of G
contained in ®(G). Moreover pqc(1,N) = pac(1,67(N)).
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It follows that §'Yy, = Y0¥, so p§ is central in £(G). Moreover the map
0 € Aut(G) — ¢{Ya,(q) clearly induces an algebra isomorphism ROut(G) —
PTE(G). 0

3.12. Theorem: Let G be a finite group with order invertible in R. If G
is nilpotent, then ¢ is a central idempotent of £(G).

f:1

Proof : Let L € ¥(G,G). Setting @ = ¢q(L), there are two surjective group
homomorphisms s,¢ : G — @ such that L = {(x,y) € G x G | s(z) = t(y)}.
Then k(L) = Ker s and ky(L) = Kert. Now by Proposition 3.9

7Yy = E pac(l, N)Ynvxor
N<G
N<®(G)

and this is non zero if and only if Ker s N ®(G) = 1. Now s(®(G)) is equal
to ®(Q) since G is nilpotent: indeed G = [[ G, (resp. @ = [],Q,) is
the direct product of its p-Sylow subgroups G, (resp. @,), and s induces
a surjective group homomorphism G, — @),, for any prime p. Moreover
®(G) = [, (Gy) (resp. 2(Q) =[[, ®(Q,)). Finally ®(G,) is the subgroup
of G}, generated by commutators and p-powers of elements of G, hence it
maps by s onto the subgroup of (), generated by commutators and p-powers
of elements of @, that is ®(Q,). Similarly t(®(G)) = ®(Q).

If Ker sN®(G) = 1, it follows that s induces an isomorphism from ®(G)
to ®(Q). Then the surjective homomorphism ®(G) — ®(Q) induced by ¢ is
also an isomorphism, and in particular Kert N ®(G) = 1.

Let D = LN (®(G) x B(G)). Then ky(D) C ki (L)NS(G) = Ker snd(G),
hence ki(D) = 1. Similarly ko(L) C ko(L) N ®(G) = Kert N ®(G) = 1,
hence k»(D) = 1. Since s(®(G)) = ®(Q) = t(®(G)), we have moreover
p1(D) = ©(G) = pa(D). It follows that there is an automorphism « of ®(G)
such that D = {(z,a(z)) | z € ®(G)}.

Moreover for any y € G, there exists z € G such that (y, z) € L. It follows
that (2¢,(z)?) € D for any = € ®(G), that is a(z¥) = a(z)?. In particular
if N is a normal subgroup of G contained in ®(G), then so is a(/N). Hence «
induces an automorphism of the poset of normal subgroups of G contained
in ®(G). In particular p4c(1, N) = pac(1, a(N)).

Moreover for n € N and (y, z) € L, we have

(n, 1)(y, 2) = (y,2)(n", 1) = (y,2) (n", a(n*)) (1, a(n?) ") .

Since (n¥,a(n¥)) € D < L, we have (N x 1)L = L(1 x a(N)). It follows
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that

oYL = D pac(L N = Y pac(l,N)Yiaxawy

NG NG
N<9(G) N<®(G)

= Z pac (1, a(N))Yiaxany = Z pac (1, N)Yoaxn
NaG NaG
N<®(G) N<B(G)

= YLSD%Y7

as was to be shown. d

3.13. Remark: When G is not nilpotent, it is not true in general that
¢§ is central in £(G). This is because t(®(G)) need not be equal to ®(Q)
for a surjective group homomorphism ¢ : G — ). For example, there is a
surjection t from the group G = Cy x (C5 x Cy) to Q = Cy with kernel
Cy x C5 containing ®(G) = Cy x 1, and another surjection s : G — @ with
kernel 1 x (C5 x Cy) intersecting trivially ®(G). In this case, the group
L ={(x,y) € Gx G| s(x)=t(y)} isin X(G,G), and k(L) N P(G) = 1,
but k(L) N ®(G) = ®(G) # 1. By Proposition 3.9, we have p{Y; # 0 and
Yip§ =0, so p§ is not central in £(G).

4. Idempotents in RB(G,G)

4.1. Definition: When G is a finite group, a section (T, S) of G is a pair
of subgroups of G such that S 1T
A section (T, S) is called minimal (¢f. [9]) if S < ®(T). Let M(G)
denote the set of minimal sections of G.
A group H is called a subquotient of G (notation H T G) if there exists
a section (T, S) of G such that T/S = H.

A section (T, .S) is minimal if and only if the only subgroup H of T" such
that H/(HNS)=T/S is T itself.

4.2. Notation: Let G be a finite group, and let (T,S) be a section of G.

1. Let Indinf%s € B(G,T/S) denote (the isomorphism class of) the
(G,T/S)-biset G/S, and let Defres%s € B(T/S,G) denote (the iso-
morphism class of ) the (T'/S, G)-biset S\G.

2. Let R be a commutative ring in which the order of G is invertible. Let
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uf.g € RB(G,T/S) be defined by

U%s = Indinfg/SW{/S )

and let vy € RB(T/S,G) be defined by

T/8
U%S = 901/ Defres%s .

4.3. Remark: Observe that vfig = (ufg)?: indeed (G/S)? = S\G, and
(01*)7 = .

4.4. Theorem: Let G be a finite group with order invertible in R.
1. If (T,S) and (T',S") are minimal sections of G, then

foJG'*/’S/ug7S — 0

unless (T, S) and (1", S") are conjugate in G.
2. If (T, S) is a minimal section of G, then

T/S
Gl = (T Toley) |
gENg(T,S)/T

where Ng(T,S) = Na(T)NNg(S), and ¢, is the automorphism of T/ S
induced by conjugation by g.

Proof : Indeed (S'\G) x¢ (G/S) = S'\G/S as a (T"/S",T/S)-biset. Hence
UQG“/,S/U%S = SO?/SI< Z S,\T/QT/S> 90{/5 )
geT\G/T

For any g € G, the (1"/S',T/S)-biset S'\T"gT/S is transitive, isomorphic to
((T"/8") x (T'/S)) /Ly, where

L,={{t'S",tS) e (I")S") x (T/S) | t'gt " € S'gS} .
Then t'S” € p1(L,) if and only if ¢ € S"- gTg~* NT". Hence
pi(Ly) = (9T NT")S')S" .
Similarly po(L,) = (177 NT)S/S. In particular p;(L,) =T"/S" if and only if
T NTNS' =T, ie. ITNT" =T, since S" < &(T"). Thus py(L,) =T1"/5"
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if and only if 77 < 97. Similarly pyo(L,) = T'/S if and only if ' < 7. By
Theorem 3.8, it follows that goT /s (S’\T’gT/S)gof/S = 0 unless 7" = 97.

Assume now that 7" = 97. Then 'S’ € ki(L¢g) if and only if ' lies in

S gSg~ ' NT'. Hence
ki(Ly) = (9SNT")S"/S"

and similarly ko(L,) = (S NT)S/S. But since S < ®(T') and ST, it
follows that 95 <997 = T" and 95 < 99(T) = ®(7"). Hence 95 - 5'/5" is
contained in ki (Ly) N ®(7")/S’". Moreover ®(T1")/S" = ®(1"/5"), as
I/ = () (M/S)= () (M) =(() M)/s'=&(T)/s",

SI<MI<T M/<T MI<T
where M’ runs through maximal subgroups of 7", which all contain S’ since
S < d(T).

It follows that if ki (L,) N®(17/S") =1, then 955" = S’ that is 95 < §".
Similarly if ky(L,) N ®(T/S) =1, then S < S. By Theorem 3.8, it follows
that goT /5 (S’\T’gT/S)gDFf/S = 0 unless 7" = 97 and S’ = 95. This proves
Assertion 1.

For Assertion 2, the same computation shows that
visufis = D> @ (S\TgT/S)ey" .
9ENG(T,S)/T
But S\T¢T/S = gT/S if g € Ng(T,S), and this (T'/S,T/S)-biset is isomor-

phic to Iso(c,). Assertion 2 follows, since moreover gof/ % commutes with any
biset of the form Iso(f), where 6 is an automorphism of 7'/S. 0

4.5. Notation: For a minimal section (T,S) of the group G, set

G%S = WU%S’U%S WIndme/Sgol DefresT/S € RB(G G) .

Note that €7 g = €57, for any g € G, and that €5 y = ¢ when N <G
and N < ®(G), by Proposition 3.5.

4.6. Proposition: Let (T,S) be a minimal section of G. Then

1 .
€ g= Na(T.5)] Z | X | (X, T (S, M) Indlnf)G(/MoDefresg’;/M :
X<T,M AT

SSM<P(T)<X<T
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Proof : This is a straightforward consequence of the above definition of e% S5
and from Assertion 2 of Proposition 3.6. O

4.7. Theorem: Let G be a finite group with order invertible in R, let
[M(G)] be a set of representatives of conjugacy classes of minimal sec-
tions of G. Then the elements €7.g, for (T,S) € [M(G)], are orthogonal
idempotents of RB(G,G), and their sum is equal to the identity element of

RB(G,G).

Proof : Let (7,5) and (77,5") be distinct elements of [M(G)]. Then

G G _ 1 1 ¢ .G .G .G _
61,8 €T,8 = NG (T',8)T] INa(1,5)T] 17,8' V17,5 U, sV, = 0,

since v%’ ¢u% g = 0 by Theorem 4.4. Moreover:

G — 1 G G
Z €rs = Z [Ng(T,S):T| U sVt
(T,8)eIM(G)] (T,S)eM(G)]
- Z _\G%T| UT VT
(T,8)eM(G)
= Z ‘G 7 IndlnfT/Sgol DefresT/S
(T,5)eM(G)
Now goT/ S = e%‘; fr/s by Proposition 3.6, where

fris= Y pac(L, N/SI((T/S) x (T/S))/Anss(T/S)] -

N/SS(T/S)
N/S<®(T/S)
Hence gpf/ = e:‘;gDefg/SInfg/SfT/S, and
/5
Yoo Gs= Y @ndfInffger)iDeff sInfT g fr/sDeft sRes .
(T,S)e[M(@)] (T,S)eM(G)

Now InfT/SeT/SDefT/S = Inf7. SeTfs, and InfT/Se%S is equal to the sum over
subgroups X or T such that XS = T, up to conjugation, of the idempo-

tents e%. Since S < ®(T), the only subgroup X of T such that XS =T is
T 1tself. Hence

Inf7. SeT/SDefT/S = e% .
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On the other hand

Wtk s[((T/S) x (T/S))/Ans(T/S)Detlys = (T x T)/Ax(T)] .

It follows that the sum ¥ = > 6% g 1s equal to
(T,S)e[M(G)]
RS ‘GlTldeeT S war(S N)(T % T)/An(T)Res§

(rHEM© S<Zz\\[/§g(T)

- Z G: T|IndT€T905ReS¥ [by definition of ¥
(T,9)eM(G)

- Z |G1T|IndT€T Z ©LResS
T<G ST

S<®(T)

- Z |G1T|IndT€%ReST [by Theorem 3.8|
T<G

= |GT|IHdg6% [by Lemma 2.10]
T<G

- Z |GN )|€g [by (2.12)]
T<G

= ) £ =G/G=[(GxG)/AG)] .
T€[sc]

So the sum ¥ is equal to the identity of RB(G,G). Since €7 g% ¢ = 0 if
(T,S) and (7",S") are distinct elements of [M(G)], it follows that for any
(T, 5) € [M(G)]

a a G \2
€rs = ET,SZ = (ET,S) )
which completes the proof of the theorem. 0

5. Application to biset functors
5.1. Notation: Let F be a biset functor over R. When G is a finite group

with order tnvertible in R, we set

0a F'(G) = oy F(G)
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5.2. Proposition: Let F' be a biset functor over R. Then for any finite
group G with order invertible in R, the R-submodule ¢ F'(G) of F(G) is the
set of elements u € F(G) such that

ResGu=0 VH <G
Defgyu=0 YN<G, NN®(G) #1

Proof : If u € 66 F(G) = ¢§ F(G), then Res%u = 0 for any proper subgroup
H of G, and Defg yu = 0 for any N <G such that N N ®(G) # 1, by
Corollary 3.7.

Conversely, if v € F(G) fulfills the two conditions of the proposition,
then eGu = u, because €& is equal to the identity element [(G x G)/A(G)] of
RB(G, G), plus a linear combination of elements of the form [(GxG)/A(H)] =
Indg oRes%, for proper subgroups H of G. Similarly Infg /NDefg /vu =0 for
any non-trivial normal subgroup of G contained in ®(G), thus p§u =u. O

5.3. Remark: Since Defg/N = Defg%\\/;, o Defg/M, where M = N N ®(G),
saying that Defg/Nu = 0 for any N <G with N N ®(G) # 1 is equivalent
to saying that Defg /vt = 0 for any non trivial normal subgroup N of G

contained in ®(G).

5.4. Theorem: Let F be a biset functor over R. Then for any finite group G
with order invertible in R, the maps

F(G) EB (5¢F(T/S))NG(T7S)/T
(T,S)e[M(G)]
wt v L U%Sw

(i) NG ST

G U
> Up gWr,s <— O wrs
(T,S) (T.5)

are well defined isomorphisms of R-modules, inverse to one other.

Proof : We have first to check that if w € F(G), then the element vf qw of
@{/SF(T/S) = 0 F(T/S) is invariant under the action of Ng(7,5)/T. But
for any g € Ng(T/S)

Iso(cg)vgs = va,gSISO(cg) = vgslso(cg) :
where Iso(c,) : F(G) — F(G) on the right hand side is conjugation by g,

that is an inner automorphism, hence the identity map, for g € G.
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Now for w € F(G)

UViw) = > (oasairstist
(T,9)E[M(G)]
== Z €g7sw =w ,
(T,9)E[M(G)]

so UV is the identity map of F(G).
Conversely, if wr g € (5¢F(T/S))NG(T’S)/T, for (T, 5) € [M(G)], then

VU( @® wrs)= @ DL SRS s
’ ING(T,8):T| T, 1",8" 5T,
(T.5)EIM(G)] TSEMEN g sl

1 G .G
— U7 QU W
(T’S)SEM(G)NNG(T,S):N T,5%T,8%wT,S

_ N T E Iso(cy)wr.s
NG (T58)T] v
(T,9)eM(G)] e 9ENG(T,S)/T

= S¥ wrs ,
(T,8)e[M(G)]

so VU is also equal to the identity map. a

6. Atoric p-groups

For the remainder of the paper, we denote by p a (fixed) prime number.

6.1. Notation and Definition:

o [f P is a finite p-group, let Q21 P denote the subgroup of P generated by
the elements of order p.

e A finite p-group P is called atoric if it does not admit any decomposition
P = FE x Q, where E is a non-trivial elementary abelian p-group. Let
At, denote the class of atoric p-groups, and let [At,] denote a set of
representatives of isomorphism classes in At,.

The terminology “atoric” is inspired by [14], where elementary abelian
p-groups are called p-tori. Atoric p-groups have been considered (without
naming them) in [6], Example 5.8.

6.2. Lemma: Let P be a finite p-group, and N be a normal subgroup of P.
The following conditions are equivalent:
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1. NNd(P)=1

2. N 1is elementary abelian and central in P, and admits a complement
m P.

3. N s elementary abelian and there exists a subgroup ) of P such that
P=NxQ.

Proof :

Let NP with NN ®(P) = 1. Then N maps injectively in the
elementary abelian p-group P/®(P), so N is elementary abelian. Let Q) /®(P)
be a complement of N®(P)/®(P) in P/®(P). Then @ > ®(P) > [P, P], so Q
is normal in P. Moreover Q-N = P and QNN®(P) = (QNN)P(P) = ®(P),
thus QNN < ®(P)NN = 1. Now N and @ are normal subgroups of P
which intersect trivially, hence they centralize each other. It follows that
P=NxQ.

3 = 2| This is clear.

If P= N -(@ for some subgroup @) of P, and if N is central in P,
then P = N x Q. Thus ®(P) =1 x &(Q), as N is elementary abelian. Then
NN®P)<NNQ=1. 0

6.3. Lemma: Let P be a finite p-group. The following conditions are
equivalent:

1. P 1is atoric.
2. If NJP and NN®(P)=1, then N = 1.
3. W Z(P) < ®(P).

Proof :

Suppose that P is atoric. Let N < P with N N ®(P) = 1. Then by
Lemma 6.2, the group N is elementary abelian and there exists a subgroup
Q@ of P such that P = N x ). Hence N = 1.

Suppose now that Assertion 2 holds. If x is a central element of
order p of P, then the subgroup N of P generated by x is normal in P, and
non trivial. Then NN ®(P) # 1, hence N < &(P) since N has order p, thus
x € O(P).

Finally, if Assertion 3 holds, and if P = E x @) for some subgroups
E and Q of P with E elementary abelian, then ®(P) = 1 x ®(Q). Moreover
E<MZ(P)<®(P)<Q,s0 E=ENQE=1, and P is atoric. 0
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6.4. Proposition: Let P be a finite p-group, and N be a maximal normal
subgroup of P such that N N ®(P) = 1. Then:

1. The group N is elementary abelian and there exists a subgroup T of P
such that P =N x T.
2. The group P/N = T is atoric.

3. If Q s an atoric p-group and s : P — @ s a surjective group homo-
morphism, then s(T) = Q. In particular Q) is isomorphic to a quotient
of T.

Proof : (1) This follows from Lemma 6.2.

(2) By (1), there exists T' < P such that P = N xT. In particular P/N = T.
Now if T'= FE x S, for some subgroups F and S of T'" with E elementary
abelian, then P = P, = (N x E) xS, and N x F is an elementary abelian nor-
mal subgroup of P, which intersects trivially ®(P;) = ®(S). By maximality
of N, it follows that £ =1, so T'= P/N is atoric.

(3) Let s : P — @ be a surjective group homomorphism, where @ is atoric.
By (1), the group N is elementary abelian, and there exists a subgroup 7'
of P such that P = N x T. Then T = P®, and ®(P) = ®(T). Moreover
s(®(P)) = ®(Q) as Pis a p-group, and s(Z(P)) < Z(Q) as s is surjective. It
follows that s(N) is an elementary abelian central subgroup of @, so s(N) <
d(Q) since @ is atoric, by Lemma 6.3. Now s(P) = Q = s(N)s(T'), thus
Q =P(Q)s(T), and s(T) = @, as was to be shown. 0

6.5. Notation: When P is a finite p-group, and N is a mazximal normal
subgroup of P such that N N ®(P) =1, we set P* = P/N.

f:

By Proposition 6.4, the group P® does not depend on the choice of N,
up to isomorphism: it is the greatest atoric quotient of P, in the sense that
any atoric quotient of P is isomorphic to a quotient of P€. In particular P
is trivial if and only if P is elementary abelian.

6.6. Proposition: Let s: P — @ be a surjective group homomorphism.
Then P® = Q® if and only if Ker(s) N ®(P) = 1.

f:

Proof : Let E be a maximal normal subgroup of P such that EN®(P) = 1,
and T be a subgroup of P such that P = F x T. Then F is elementary
abelian, and ®(P) = ®(T). Let 7 : Q — Q® be the canonical projection. By
definition, we have T~ P and by Proposition 6.4, we have wo s(T) = Q.
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Hence Q® is a quotient of P®, and P® = Q© if and only if the map 7o s
induces an isomorphism from 7' to Q®, that is if Ker(w o s) N'T = 1. This
implies Ker(s) N T = 1, hence Ker(s) N ®(P) = 1.

Conversely, if Ker(s) N ®(P) = 1, then Ker(s) N ®(7") = 1. Now the
group M = Ker(s) N7 is a normal subgroup of 7" such that M N ®(T") = 1.
Since T is atoric, it follows from Lemma 6.3 that M = 1, hence s(T") = T.
Now @ = s(F)s(T), and s(E) is a central elementary abelian subgroup of @,
since s is surjective. Let F' be a complement of G = s(E) N s(T) in s(E).
Then Q = (F-G)s(T) = F-s(T), thus Q = F x s(T) since F is central in Q.
It follows that s(7) is a quotient of Q. Since s(T) & T = P is atoric, the
group P® is isomorphic to a quotient of Q®, thus P® = Q°. O

6.7. Proposition: Let P be a finite p-group, and @) be a subquotient of P.
Then Q© is a subquotient of P®.

Proof : Let (V,U) be a section of P such that V/U = @Q. Then Q¢ is
isomorphic to a quotient of V©, by Lemma 6.4. Hence it suffices to prove
that V@ is a subquotient of P®.

Let £ be a maximal normal subgroup of P such that EN®(P) = 1, and
T be a subgroup of P such that P = FE xT. Then V < E x T, so there exist
a subgroup F' of F, a subgroup X of T, a group Y, and surjective group
homomorphisms o : I — Y and §: X — Y such that

V={(f,x) e Fx X |a(f) =Bx)} .

Now F' < E'is elementary abelian. If (f, z), (f',2") € V, then [(f, ), (', 2")] =
(1, [x,2']), so [V, V] <1 x [X, X]. Conversely if z,2" € X, then there exist
f, [ € F such that o(f) = B(x) and a(f’") = B(2'), i.e. (f,x),(f,2") € V.
Then [(f,x),(f,2")] = (1,[z,2']), and it follows that [V,V] = 1 x [X, X].
Similarly, if (f,z) € V, then (f,z)? = (1,2P). Conversely, if x € X,
then there exists f € F such that o(f) = S(z), ie. (f,z) € V, and
(1,27) = (f,x)P. It follows that (V) =1 x ®(X).

Now N = Ker(a) x 1 is a normal subgroup of V, and N N ®(V) = 1.
By Proposition 6.6, it follows that V¢ = (V/N)®. Moreover the group
homomorphism (f,z) € V — z € X is surjective with kernel N, hence
V/N = X. Tt follows that V® = X is a isomorphic to a quotient of the
subgroup X of T'= P®. Hence V' is a subquotient of P®, as was to be
shown. O

6.8. Proposition: Let P be a finite p-group, let N be a normal subgroup of
P such that P/N = P®, and let Q be a subgroup of P. The following are
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equivalent:
1. Q° = P,
2. QN = P.

3. There exists a central elementary abelian subgroup E of P such that

P =EQ.

4. There exists an elementary abelian subgroup E of P such that P =
ExQ.

Proof : Suppose Q¢ = P®. We have N N ®(T) = 1, by Proposi-
tion 6.6. Moreover ®(Q)) < ®(P), as P is a p-group. Setting M = NNQ, we
have M N ®(Q) =1, so (Q/M)® = Q° = P®. But Q = Q/M = QN/N is
a subgroup of P/N = P® and moreover there exists an elementary abelian
subgroup E of @ such that Q = E x @@ ~ F x P® Hence E = 1 and
Q= QN/N = P/N, so QN = P, as was to be shown.

We have N N ®(P) = 1, by Proposition 6.6. Hence N is elementary
abelian, and central in P, and 2 implies 3.

Let E be an elementary abelian central subgroup of P such that
P = EQ. Let F be a complement of ENQ in E. Then F is elementary
abelian and central in P. Moreover QF = QF = P, and (Q N F = 1. Hence
P=FxQ.

If P=FE x @ and E is elementary abelian, then ®(P) =1 x ®(Q).
Thus EN®(P) =1, so (P/E)® = P® by Proposition 6.6, and Q¢ = P®. 0

6.9. Proposition:

1. Let L be an atoric p-group, let P = E X L and Q = F x L, where
E and F are elementary abelian p-groups, and let s : P — @ be a
group homomorphism. Then s is surjective if and only if there exist
a surjective group homomorphism a : E — F, group homomorphisms
b: L — Fandc: E — OWZ(L), and an automorphism d of L such
that

V(e,l) € Ex L, s(el)= (a(e)b(l),c(e)d(l)) .

Moreover in this case bo c(e) =1 for any e € E, and s is an isomor-
phism if and only if a is an isomorphism.

2. Let P be a finite p-group. For a group homomorphism

AP OZ(P)Nd(P)
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let ay : P — P be defined by a(x) = xA(x), for x € P. Then ay is an
automorphism of P.

3. Let P be a finite p-group, and let P = ExQ, where Q) is atoric and E is
elementary abelian. Then the correspondence \ — «)(E) is a bijection
from the set of group homomorphisms X\ : P — Q1 Z(P) N ®(P) such
that Q < Ker X to the set of subgroups N of P such that P = N x ().

Proof : (1) If s is surjective, then s(E) is central in @, so s(E) < 1 Z(Q) =
F x Q1Z(L). Hence there exists group homomorphisms a : F — F and
¢: E— 0 Z(L)such that s(e, 1) = (a(e),c(e)), foranye € E. Letb: L — F
and d : L — L be the group homomorphisms defined by s(1,1) = (b(1),d(l)),
for I € L. Then s(e,l) = s(e,1)s(1,1) = (a(e)b(l), c(e)d(l)) for all (e,l) € P.
Moreover bo c(e) = 1 for any e € E, since ¢(E) < 0 Z(L) < ®(L), as L is
atoric, and ®(L) < Kerb, as F' is elementary abelian.

Now the composition of s with the projection F' x L — L is surjective,
hence s(1 x L) = L by Proposition 6.4. In other words d is surjective, hence
it is an automorphism of L.

Since s is surjective, for any (f,y) € @, there exists (e,z) € P such
that a(e)b(z) = f and c(e)d(z) = y. The latter gives z = d~*(c(e)'y).
Then b(z) = bd~" (c(e) ™ )bd~*(y), and bd~*(c(e)™!) = 1 since d~*(c(e)™!) €
dY0Z(L) = O Z(L), and 0, Z(L) < ®(L) < Kerb. Then b(z) = bd~(y),
and f = a(e)bd~'(y). In particular, taking y = 1, we get that for any f € L,
there exists e € E such that f = a(e). In other words a is surjective.

Conversely, given a surjective group homomorphism a : £ — F', a group
homomorphism b : L — F, a group homomorphism ¢ : E — QZ(L),
and an automorphism d of L, we can define s : P — @ by s(e,x) =
(a(e)b(z), c(e)d(x)), for (e,x) € P. This is clearly a group homomorphism,
as F' is abelian, and the image of ¢ is central in L. We have again ,Z(L) <
®(L) < Kerb, since F is elementary abelian. If (f,y) € @, we can choose an
element e € E such that f = a(e)bd™'(y), and then set z = d~*(c(e)'y),
ie. c(e)d(z) =y. We also have b(z) = bd~*(y), since d~*(c(e)) € L Z(L),
so f =a(e)b(x). Hence s(e,z) = (f,y), and s is surjective.

Finally if s is an isomorphism, then £ = F'| and then the surjection a is
an isomorphism. Conversely, if a is an isomorphism, then £ = F', so P = (@),
and the surjection s is an isomorphism.

(2) Clearly « is a group homomorphism, since A\(P) < Z(P). Moreover if
z € Keray, then A(z) =z, so x € 0 Z(P) N ®(P) < ®(P) < Ker ), since
N Z(P)N®(P) is elementary abelian. Thus x = 1, and «, is injective. Hence
it is an automorphism.

(3) Since P = ExQ, we have 0, Z(P) = Ex,Z(Q), and ®(P) = 1 x ®(Q).
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So if A is a group homomorphism from P to Q;Z(P)N®(P) with @ < Ker A,
we have (e, l) = (1, 6(6)) for some group homomorphism 5 : E — Q;7(Q).
Then the group N = a(E) = {(e,B(e)) | e € E} is central in P. Moreover
NN =1, and NQ = P, so P = N x ). Note that N determines the
homomorphism 3, hence also the homomorphism A, so the map A — a)(FE)
is injective.

It is moreover surjective: indeed, if N is a subgroup of P = E x () such
that P = N x @, then N = P/Q) = E is elementary abelian, hence central
in P. Since NQQ = P, for any e € F, there exists (a,b) € N and ¢ € Q
such that (e,1) = (a,b)(1,q), that is e = a and ¢ = b~'. In other words
p1(N) = E. Moreover NN Q = 1, so ka(N) = 1. So for e € E, there
exists a unique x € @ such that (e,x) € N. Setting x = f(e), we get a
group homomorphism 8 : E — @, such that N = {(e,8(e)) | e € E}.
Since N is central in P, the image of [ is contained in 2, 2(Q) < &(Q).
Moreover 1 Z(P) = E x 01Z(Q), and ®(P) =1 x ®(Q), so (1 x 8(E)) <
M Z(P)N®(P). Setting A(e,l) = (1,5(e)), we get a group homomorphism
from P to ,Z(P) N ®(P), such that @) < Ker A, and N = a,\(E). u|

7. Splitting the biset category of p-groups, when p € R~

7.1. Notation and Definition: Let RC, denote the full subcategory of the
biset category RC consisting of finite p-groups. A p-biset functor over R is
an R-linear functor from RC, to the category of R-modules. Let F, r denote
the full subcategory of Fr consisting of p-biset functors over R.

In the statements below, we indicate by [ p € R*] the assumption that
p is invertible in R.

7.2. Theorem: [p € R*] Let P and Q be finite p-groups, let (T, S) be a
minimal section of P, and (V,U) be a minimal section of Q). Then

vy RB(Q,P)ef s # {0} = (V/U)" =(T/9)" .

Proof : If egURB(Q, P)ef. s, there exists a € RB(Q, P) such that
e‘(%U a E;S = Indinfg/Ugo‘l//UDefres%U aIndinfg/Sgof/SDefresg/S #0

and in particular the element b = Defres%UaIndinfg/S of RB(V/U,T/S)

is such that gp‘l// Ubgpip/ s # 0. It follows that there is a subgroup L of the
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product (V/U) x (T'/S) such that

VU I((V/U) x (T)S)) /L]’ #0 .

Then Theorem 3.8 implies that py (L) = V/U, ki(L)N®(V/U) =1, po(L) =
T/S, and k(L) N ®(T/S) = 1. By Proposition 6.6, it follows that

(V/U)® 22 (py(L)/ka(L))® 2 (po(L)/Ra(L))" = (T/S)®

as was to be shown. O
7.3. Notation: [ p € R*] Let L be an atoric p-group. If P is a finite

p-group, we set
(T,S)eM(G)]
(T/8)®=L

7.4. Theorem: [p € R*|

1. Let L be an atoric p-group, and P be a finite p-group. Then bY # 0 if
and only if L T P©.

2. Let L and M be atoric p-groups, and let P and Q) be finite p-groups. If
bY RB(Q, P)bY # {0}, then M = L.
3. Let L be an atoric p-group, and let P and () be finite p-groups. Then

for any a € RB(Q, P)
b?a =abl .

4. The family of elements bY € RB(P, P), for finite p-groups P, is an
idempotent endomorphism by of the identity functor of the category
RC, (i.e. an idempotent of the center of RC,). The idempotents by,
for L € [At,], are orthogonal, and their sum is equal to the identity
element of the center of RC,.

5. For a given finite p-group P, the elements bY, for L € [At,] such that
L T P®, are non zero orthogonal central idempotents of RB(P, P), and
their sum is equal to the identity of RB(P, P).

Proof: (1) The idempotent b is non zero if and only if there exists a minimal
section (T, S) of P such that (7//S)® = L. Then L C P®, by Proposition 6.7.
Conversely, if L T P, then L C P, and there exists a minimal section (7', S)
of P such that T/S = L. Then (T/S5)® = L® = L, so ef. g appears in the
sum defining o7, thus bF # 0.
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(2) If 0% RB(Q, P)bY # {0}, then there exist a minimal section (V,U) of Q
with (V/U)® = M and a minimal section (T, S) of P with (T/S)® 2 L such
that e%URB(Q, P)ef g # 0. Then (V/U)® = (T/S)® by Theorem 7.2, that
is M = L.

(3) The identity element of RB(P, P) is equal to the sum of the idempo-
tents er g, for (T, S) € [M(P)]. Grouping those idempotents €f. ¢ for which
(T/S)® is isomorphic to a given L € [At,] shows that the identity element
of RB(P, P) is equal to the sum of the idempotents b7, for L € [At,] (and
there are finitely many non zero b%, by (1)). It follows that

bha = ba > bp= > bFaby
Le[Atp) Le[Atp)

= iaby [by (2)]

= ) bPaby [by (2)
Le[Atp]
= abl |
since Y b9 is the identity element of RB(Q, Q).
Le[Atp)
It follows that the family b7, where P is a finite p-group, is an element
by, of the center of RC,. Clearly b3 = by, and if L and M are non isomorphic

atoric p-groups, then brby = 0, by (2). Moreover the infinite sum Y bf
Le[Atp]

is actually locally finite, i.e. for each finite p-group P, the sum Y. bF has
Le[Atp]
only finitely many non zero terms. The sum Y by is clearly equal to the
Le[Atp)
identity endomorphism of the identity functor of RC,.

(4) This is a straightforward consequence of (1) and (3). 0

7.5. Corollary: [ p € R*]

1. Let L be an atoric p-group. For a p-biset functor F', the family of maps
F(bE) : F(P) — F(P), for finite p-groups P, is an endomorphism of F,
denoted by F(br).

2. If 0 : F — G is a natural transformation of p-biset functors, the dia-

gram
2 F(br) F
6

G G(br) G

>
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is commutative. Hence the family of endomorphisms F(by), for p-biset
functors F', is an idempotent of the center of the category F, r, denoted

by /BL.

3. The idempotents EL, for L € [At,], are orthogonal idempotents of the
center of Fp r, and their sum is the identity.

4. If F' 1s a p-biset functor over R, let /I;LF denote the image of the endo-

morphism F(br) of F. Then = & byF.
Le[Atp]

5. Let bprR denote the full subcategory of Fp.r consisting of functors F

such that F' = bLF Then bL]: R s an abelian subcategory of Fp r.
Moreover the functor

Fe Fp,R — (/b\LF)LE[Atp] € H /b\LFp,R

Le[Atp]

1 an equivalence of categories.

Proof : All assertions are straightforward consequences of Theorem 7.4. 0O

7.6. Notation: For an atoric p-group L, let RCIf denote the full subcategory
of RC, consisting of the class Yy, of finite p-groups P such that P® C L.
When p € R*, Let moreover

bi= Y bu

He[Atp]
HCL

be the sum of the idempotents by corresponding to atoric subquotients of L,
up to isomorphism.

The class )Yy, is closed under taking subquotients, by Proposition 6.7. It
follows that we can apply the results of Section 6 (Appendix) of [12]: if F is
a p-biset functor over R, we can restrict F' to an R-linear functor from RCIf
to R-Mod. This yields a forgetful functor Oy, : F, r — FunR(RCIf, R-Mod).
The right adjoint Ry, of this functor is described in full detail in Section 6
of [12], as follows: if G is an R-linear functor from RC} to R-Mod, and P is
a finite p-group, set
(7.7) Ry, (G)(P) = Jlim G(X/M)

<_
(X,M)ex(P)

the inverse limit of modules G(X/M) on the set X (P) of sections (X, M)
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of P such that (X/M)® C L, i.e. the set of sequences (Ix ) (x,myes, (p) With
the following properties:

1. if (X, M) € SL(P), then lx. € G(X/M).
2. if (X, M),(Y,N) € £,(P) and M < N <Y < X, then

Defres)y(//]]\\]/llX,M = ly7N .

3. ifz € Pand (X,M) € £,(P), then “lx p = l=x =

Recall now that for finite groups P and @, and for a finite (Q), P)-biset U, for
a subgroup 71" of ) and an element u of U, the subgroup T" of P is defined
by T" = {x € P |3t € T tu = ux}. By Lemma 6.4 of [12], if (T,S) is a
section of @, then (7%, S") is a section of P, and T"/S* is a subquotient of
T/S.

With this notation, when P and @) are finite p-groups, when U is a fi-
nite (@, P)-biset, and | = (Ix,a)(x,m)ex, (p) is an element of Ry, (G)(P), we
denote by Ul the sequence indexed by ¥, (Q) defined by

Ulyn= >  (N\Yu)(lysy)
ue[Y\U/P]L
where [Y\U/P| is a set of representatives of (Y x P)-orbits on U, and
N\Yu is viewed as a (Y/N,Y"/N")-biset. It shown in Section 6 of [12]
that Ul € Ry, (G)(Q), and that Ry, (G) becomes a p-biset functor in this

way. Moreover!:

7.8. Theorem: [[12] Theorem 6.15] The assignment G — Ry, (G) is an R-
linear functor Ry, from FunR(RCPL, R—Mod) to Fp.r, which is right adjoint to

the forgetful functor Oy, . Moreover the composition Oy, oRy, is isomorphic
to the identity functor of FunR(RCIf, R—l\/lod).

7.9. Theorem: [ p € R*| For an atoric p-group L, let EJLF}},,R be the

full subcategory of F,r consisting of functors F such that bf F = F. Then
the forgetful functor Oy, and its right adjoint Ry, restrict to quasi-inverse
equivalences of categories

o

o~ N
bi For % Fung (RCE, R-Mod) .
L

In Theorem 6.15 of [12], only the case R = Z is considered, but the proofs extend
trivially to the case of an arbitrary commutative ring R
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Proof : First step: The first thing to check is that the image of the functor

Ry, is contained in /b\JL“fn r- We first prove that if H is an atoric p-group,

it I € Fpr, and if Oy, (EHF) # 0, then H C L: indeed in that case, there

exists P € Y, such that b5 F(P) # 0. In particular bf; # 0 by Theorem 7.4,

hence H C P®. Since P® C L as P € Y, it follows that H C L, as claimed.
In particular

Oy, (F) = Oy, (Y buF) =0y, (b;F)
HE[A)
HCL

Set gpL = FunR(R(sz,R—Mod), and let G € gﬁ. Let H be an atoric p-group
such that H Z L. If F € F, g, then
HOIII}-pYR (F,/I;HR;);L<G)) = HOHl]:p‘R @HF BHRyL (G))
= HOIn]: (HF RyL G))
HOngL Ocy (HF ,G)

2

So the functor F' — Hompg, , (F,/b\HRyL(G)) is the zero functor, and it fol-
lows from Yoneda’s lemma that /Z)\HR:))L(G) = 0if H Z L. In other words
Ry, (G) = bRy, (G), as was to be shown.

Second step: The first step shows that we have adjoint functors

—~ Oy
bt Fon % Fung(RCE, R-Mod) = G~ .
L

Moreover, the composition Oy, o Ry, is isomorphic to the identity functor,
by Theorem 7.8. All we have to show is that the unit of the adjunction is
also an isomorphism, in other words, that for any F' € bt 1 Fp.r and any finite
p-group P, the natural map

(7.10) np : F(P) = Ry, Oy, (F)(P) = Jim F(X/M)

%
(X,M)ex(P)

1S an isomor-

sending u € F(P) to the sequence (Defresi/Mu) (X, M)eS, (P)’

phism.
The map 7p is injective: indeed, if u € F(P), then u = > bhu, as

HelAty]
HCL

F = /b\JLrF If Defresf}/Mu = 0 for any section (X, M) of P with (X/M)® C L,
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then F(efg)(u) = 0 for any section (7', 5) of P such that (T/S)® C L, by
Proposition 4.6 and Proposition 6.7. In particular b5u = 0 for any atoric
subquotient H of L, hence u = 0.

To prove that np is also surjective, we generalize the construction of
Theorem A.2 of [11] (which is the case L = 1), and we define, for an element
v = (vx,m)(x,m)ex, () N Ry, Oy, (F)(P), an element u = tp(v) of F(P) by

1 .
= m Z Z |X|/’L(Xa T)MﬁT(‘Sa M)Indlnfi/vayM .
(T,8)eM(P) X<T,M<QT
(T/8)°CL  SSM<®(T)<X<T

This yields an R-linear map tp : Ry, Oy, (F)(P) — F(P).
For (Y,N) € X.(P), set uyy = Defres{i/Nu. Then:

X .
Uy N = Z Z |—P’[L(X, T)par(S, M)Defresg/NIndlnf}i/MvaM.

(T,8)eM(P) X<T,M<QT ’ ’
(T/S)CCL SSMZP(T)SX<T

Moreover
Defresg/NIndinfi/MvXVM = Z Indlan//J/ Iso(gbg)Defresjg)j/IzM%X,N ,
ge[Y\P/X]

where J, = N(YN9X), J, = N(YNYM), I, = M (Y9 X), I = IM(N9X),
and ¢y is the isomorphism I,/I} — J,/J; sending 2 I} to x.J,, for x € Y N9 .X.
Hence

Defres{i/NIndinfﬁ/va,M = Z Indian%éISO(qzﬁg)v]g,fé
9EY\P/X]
Y noX|
= Indinf*/ N Iso(gg)vr, 1 -
’YHX| g;) Jq/ T 9/ igdy
Thus
YNixX
uy,N = Z Y oox] TP | w(X, T par(S, M)Indlnfj//J,Iso(gbg)vlg%.
(T,S)eM(P)
(T/S)°CL
X<T,M AT
S<M<®(T)<X<T
geP

Now u(X,T) = p(9X,9T) and par(S, M) = paer(95,9M), so summing over
(97,95,9X 9M) instead of (T, S, X, M) we get

YNnX .
y = Z | v |M(Xa T)par(S, M)Indmf}/l/%{Iso(gbl)vh,]{.
(T,5)eM(P)
(T/S)°CL
X<T,M<T

S<M<®(T)<X<T
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Setting W = Y N X, we have J; = NW, J = NWNM), , = MW,
Il = M(N NW), and these four groups only depend on W, once M and N
are given. Hence, for given T',.S and M, we can group together the terms of
the above summation for which Y N X is a given subgroup W of Y NT. This
gives

14 .
wr= Y (Y u@xzvﬂﬁ%unaiAﬁhmuﬁﬁﬂgax¢gvhﬂ.
(T, S)eM(P) ®(T)<XLT
(T/S)@EL Xny=w

MAT
S<M<®(T)
W<YNT
Moreover oo WX, T) = > w(X,T), since pu(X,T) = 0 unless
(T)<X<T X<T
XAY =W XN(YAT)=W

X > ®(T), and the latter summation vanishes unless Y N7 = T, by classical
combinatorial lemmas ([15] Corollary 3.9.3). This gives:

W]

. Y/N
Uy N = Z m,u(W, T)par(S, M)Indlnfjl/J{Iso(gbl)vh’[i.
(T,5)eM(P)
(T/S)°CL
MaT

S<M<P(T)SWLTLY

Moreover in this summation J; = NW, J = NW N M) = NM, I, =
MW =W, I} = M(NNW) = MNNW. All these groups remain unchanged
if we replace M by M(N N CI>(T)), so for given T',S and W, we can group
together those terms for which M (N NO(T )) is a given normal subgroup U
of T with U < ®(T'). The sum > par(S, M) is equal to 0 (by the

S<M AT
M (Nne(T))=U
same above-mentioned classical combinatorial lemmas) unless NN®(7T") < S.
Hence

W]

. Y/N
Uy N = E WM(VV’ T)p<r(S, U)Indmfjl/J{Iso(d)l)vlhq,
(T,8)eM(P)
(T/S)°CL
UaT

NN®(T)<S<UL®(T)<W<T<Y

where J; = NW, J=NU, I, =W, [ =UNNW.

Now if NN®(T) < S < &) <T <Y, then (TN/N)® C (Y/N)C.
Moreover the normal subgroup (NNT)/(NN®(T)) of T/(NN®(T)) inter-
sects trivially the Frattini subgroup

@@ﬂNm@aw):@@meQG»MNm¢@n,
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SO (T/ (NO(I)(T)))@ >~ (T/(TNN)® = (TN/N)® by Proposition 6.6. Then

(T/S)® C (T/(Nm <I>(T))>@ C (TN/N)® C (Y/N)®. As (Y/N)® C L by
assumption, it follows that

W :
Uy, N = Z %u(ﬂf, T)puar(S, U)Indlnf?;l/%iIso(qﬁl)v[l,[{.
irer

NN®(T)<S<ULD(T)<W <T<Y

Now the sum > puar(S,U) is equal to zero unless U = N N ®(7T).

saT
NN®(T)<S<U

Hence

%4 .
= Z |y—|,u(W, T)Indmf?]/l/;\f]i Iso(1)vr, 17

<I>(T)§W§T§Y‘ |
For a given subgroup W of Y, the sum > w(W,T) is equal to
O(T)<W<T<Y

> u(W,T) since u(W, T) = 0 unless W > &(T), and the latter is equal
WLT<y

to zero if W #Y ., and to 1 if W =Y. Thus

Yoo
Uy, N = %Indmfi/%ilso(%)vml{a

where J = NY =Y, J=NYNU)=N,, =Y =1]=UNNY = N.
Hence Iy = J; = Y and I{ = J; = N, so ¢y is equal to the identity. It follows
that uy,y = vy for any (Y, N) € X1(P), so np(u) = v. This proves that the
map 7p is surjective, hence an isomorphism, with inverse ¢p. This completes
the proof of Theorem 7.9. O

7.11. Definition: Let RC};L be the following category:
o The objects of RCIEL are the finite p-groups P such that P® = L.
o If P and Q are finite p-groups such that P® = Q° = L, then

Homyee (P, Q) = RB(Q, P)/ Y RB(Q,S)B(S, P)
LZS

is the quotient of RB(Q, P) by the R-submodule generated by all mor-
phisms from P to Q) in RC, which factor through a p-group S which do
not admit L as a subquotient.

o The composition of morphisms in RCf)L 15 induced by the composition
of morphisms in RC,.
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7.12. Remark: Morphisms in RC, which factor through a p-group S such
that L [Z S clearly generate a two-sided ideal, so the composition in RCZEL is
well defined. Moreover the category RC]ﬁL is R-linear. Let Fung (RCIQL , R—Mod)
denote the category of R-linear functors from RCﬂL to the category R-Mod
of R-modules.

7.13. Lemma: Let p be a prime, and L be an atoric p-group. Let P and Q)
be finite p-groups.
1 IfP® 2 L orQ® =L, and if M < (Q x P), then q(M)® C L.
Moreover q(M)® = L if and only if L C q(M).
2. If P = Q%= L, then

Hom i (P,Q) = RB(Q, P)/ Y RB(Q,S)B(S, P)

SecL

is also the quotient of RB(Q, P) by the R-submodule generated by all
morphisms from P to Q) in RC, which factor through a p-group S such
that S© is a proper subquotient of L.

3. If P¢ =~ Q° = L, then Hochzn)L(P, Q) has an R-basis consisting of

the (images of the) transitive (Q, P)-bisets (Q x P)/M, where M is a
subgroup of (Q x P) such that ¢(M)® = L (up to conjugation).

Proof: (1) Indeed g(M) is a subquotient of P, and a subquotient of (). Hence
q(M)® is a subquotient of P® and a subquotient of Q©, thus ¢(M) C L® = L.
Now suppose that ¢(M)® =2 L. Then L is a quotient of ¢(M), so L C q(M).
Conversely, if L C q(M), then L = L® is a subquotient of ¢(M)®, which is a
subquotient of L. So ¢(M)® = L.

(2) Let S be a finite p-group such that L Z S, or equivalently L Z S®. Any
element of RB(Q, S)B(S, P) is a linear combination of (Q, P)-bisets of the
form (@ x P)/(M % N), for M < (@ x S) and N < (S x P). This biset
(Q x P)/(M % N) also factors though T' = ¢(M % N ), by 2.6. Moreover T is a
subquotient of ¢(M) and ¢(N), hence a subquotient of @, S, and P. Hence
T°C QR L,and T® 2 L, since L Z S®. Hence T C L.

(3) The (images of the) elements (Q x P)/M, where M is a subgroup
of (Q x P) such that ¢(M)® = L (up to conjugation), clearly generate
Hom o (P,Q). Moreover, the proof of (2) shows that they are linearly

independent, since any transitive (Q, P)-biset (QQ x P)/N appearing in an
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element of the sum > RB(Q,S)B(S, P) is such that ¢(N)® C L. . 0
secrL
7.14. Remark: If GG is an R-linear functor from RCIEL to the category R-Mod
of R-modules, we can extend GG to an R-linear functor from RCpL to R-Mod
by setting G(P) = {0} if P is a finite p-group such that P® is a proper
subquotient of L. Conversely, an R-linear functor from RCI’): to R-Mod which
vanishes on p-groups P such that P® 2 L can be viewed as an R-linear
functor from RCf,L to R-Mod. In the sequel, we will freely identify those two
types of functors, and consider Fung (RCIEL, R-I\/lod) as the full subcategory of

Fun R(RC; , R—Mod) consisting of functors which vanish on p-groups P such
that P® 2 L.

7.15. Theorem: [ p € R*| Let L be an atoric p-group.

1. If F is a p-biset functor over R such that F = BLF, and P is a finite
p-group such that L L P, then F(P) = {0}.

2. If G is an R-linear functor from RCZEL to R-Mod, then /b\LR:)}L(G> =
Ry, (G).

3. The forgetful functor Oy, and its right adjoint Ry, restrict to quasi-
inverse equivalences of categories

O
by F, r == Funp(RCEF, R-Mod) |

Proof: (1) Since b, F = F, then in particular FOW)F(P)=F(P). fLZ P,
then there is no minimal section (7', S) of P with (T/S)® = L, thus b¥ =0,
and F(P) = {0}.

(2) Let G be an R-linear functor from RCf)L to R-Mod, in other words an R-
linear functor from prL to R-Mod which vanishes on p-groups P such that

P® is a proper subquotient of L. By Theorem 7.9, we have /EzRyL(G) =
Ry, (G). If H is an atoric p-group which is a proper subquotient of L, then
G vanishes over any subquotient @) of H, since Q® C H C Lif Q C H.
In particular b% acts by 0 on Ry, (G)(P), for any finite p-group P: indeed
b is a linear combination of terms of the form Indinf% /MDefresl; /m» Where
(X, M) is a section of P such that S < M < &(T) < X < T, for some
section (T, S) of P with (T//S)® = H. For such a section (X, M) of P, we
have (X/M)® C (T/S)® C H, thus G vanishes on any subquotient of X /M,
so Ry, (G)(X/M) = {0}, hence bl; = 0 on Ry, (G)(P), as claimed. It follows
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that by Ry, (G) = 0, hence b Ry, (G) = Ry, (G) = bRy, (G).
(3) This is a straightforward consequence of (1) and (2), by Theorem 7.9. O

The following proposition gives some detail on the structure of the cate-
gory RCf,L:

7.16. Proposition: Let p be a prime, and L be an atoric p-group.

1. Let P be a finite p-group. Then P® = L if and only if there exists an
elementary abelian p-group E such that P = E x L.

2. Let P=FEXxL and QQ = F x L, where & and F' are elementary abelian
p-groups. If M < (Q x P), then q(M)® = L if and only if

p172(M) = pgz(M) =L and kLQ(M) = k‘zg(M) =1 y

where p1 2 and pa o are the morphisms from ((H x L) x (G x L)) to L
defined by pr2((h,z),(9,y)) = x and p22((h,2),(9,y)) =y, and
kio(M) = {zeL]|((1,2),(1,1) € M} ,
koo(M) = {xeL]|((1,1),(1,z) €M} .

Proof : (1) This follows from Proposition 6.8.

(2) By Lemma 7.13, the R-module RB(Q, P) has a basis consisting of the
isomorphism classes of (@), P)-bisets of the form (Q x P)/M, where M is a
subgroup of (Q x P), up to conjugation, and ¢(M)® = L. If M is such a sub-
group, then L = (pi(M)/ki(M))* € (p(M))" € Q® = L, s0 pi(M)® = L,
and similarly po(M)® = L. By Proposition 6.8 py(M)® = L if and only
if Epi(M) = P, which in turn is equivalent to p;2(M) = L. Similarly
p2(M)® 2 L if and only if pyo(M) = L.

Then (pl(M)/kl(M))@ >~ L if and only if k(M) N ®(pi(M)) = 1, by
Proposition 6.6. Moreover ®(p;(M)) = ®(P), as there exists an elementary
abelian subgroup E’ of P such that P = E’ x p;(M), by Proposition 6.8
again. Since ®(P) =1 x ®(L), it follows that k(M) N (1 x ®(L)) = 1. Now
N = k1 (L)N(1x L) is a normal subgroup of (1x L) (since p; o(M) = L), which
intersect trivially (1 X @(L)). Since L is atoric, by Lemma 6.3, any central
element of order p of (1 x L) is contained in (1 x ®(L)), so N contains no non
trivial central element of (1 x L), hence N = 1. Thus k(L) N (1 x L) =1,
or equivalently kjo(M) = 1. Similarly kyo(M) = 1. Hence q(M)® = L if
and OIlly if pLQ(M) = p272(M> = L and ]{?1’2<M) = k’g’g(M) =1. 0
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8. L-enriched bisets
8.1. Notation: Let G and H be finite groups. If U is an (H,G)-biset, and
u €U, let (H,G), denote the stabilizer of u in (H x G), i.e.
(H,G)u ={(h,9) € (H X G) | hu=ug} .

Let H, = k; ((H, G)u) denote the stabilizer of u in H, and ,G = kg((H, G)u)

denote the stabilizer of uw in G. Set moreover

q(u) = q((H,G).) = (H,G)u/(Hy x uG)

8.2. Definition: Let L be a finite group. For two finite groups G and H,
an L-enriched (H,G)-biset is a (H x L,G x L)-biset U such that L T q(u),
for any w € U. A morphism of L-enriched (H,G)-bisets is a morphism of
(H x L,G x L)-bisets.

The disjoint union of two L-enriched (H,G)-bisets is again an L-
enriched (H,G)-biset. Let B[L|(H,G) denote the Grothendieck group of fi-
nite L-enriched (H,G)-bisets for relations given by disjoint union decompo-
sitions. The group B[L|(H,G) is called the Burnside group of L-enriched
(H, G)-Dbisets.

8.3. Lemma: Let G, H, L be finite groups, and U be an (H x L,G x L)-
biset. Let UL denote the set of elements u € U such that L T q(u). Then
UL is the largest sub-L-enriched (H,G)-biset of U.

Proof : It suffices to show that U* is a sub-(H x L,G x L)-biset of U,
for then it is clearly the largest sub-L-enriched (H, G)-biset of U. And this
is straightforward, since for any (u,g,h,z,y) € (U x G x H x L x L), if
v = (h,y)u(g,z)~!, then

(HxL,Gx L), ="962)(HxL GxL), ,
and this conjugation induces a group isomorphism ¢(v) = g(u). 0

8.4. Lemma: Let G, H, L be finite groups.

1. Let U be an L-enriched (H,G)-biset. If V is a sub-(H x L, G x L)-biset
of U, then V is an L-enriched (H,G)-biset.
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2. The group B[L|(H,G) has a Z-basis consisting of the transitive bisets
((Hx L)x (GxL))/M, where M is a subgroup of ((H x L) x (G x L))
(up to conjugation) such that L T q(M).

Proof : (1) This is straightforward.

(2) It follows from (1) that B[L](H,G) has a basis consisting of the isomor-
phism classes of L-enriched (H, G)-bisets which are transitive (H x L, G x L)-
bisets. These are of the form U = ((H x L) x (G x L)) /M, for some subgroup
M of ((H x L) x (G x L)). Now if u is the element ((1,1),(1,1))M of U,
the group (H x L,G x L), is equal to M, hence q(u) = q(M). 0

8.5. Lemma: Let G, H, K, L be finite groups.
1. For an (H,G)-biset U, endow U x L with the (H x L,G x L)-biset
structure defined by
Vh € H,Vg € G,Vx,y,z € L,Yu e U, (h,z)(u,y)(g,z) = (hug,xyz) .

Then U x L is an L-enriched (H,G)-biset.

2. In particular, for any finite group G, the identity biset of G X L is an
L-enriched (G, G)-biset.

3. If U is an (H,G)-biset and V is a (K, H)-biset, then there is an iso-
morphism

(VX L) Xuxr)y (UxL)=(VxgU)xL

of L-enriched (H, Q)-bisets.

Proof : (1) Foru e U and [ € L,
(H X LaG X L)(u,l) = {((h,ll'), (g,ZE)) | hug =u, le L} = (Hv G)u XL .

In particular (H X L)) = H, x 1 and (5 (G x L) = ,G x 1, and ¢((u,1)) =
q(u) x L has a (sub)quotient isomorphic to L.

(2) In particular, if H = G and U is the identity (G, G)-biset, then U x L is
the identity biset of (G x L).

(3) It is straightforward to check that the maps
[(v,2), (u,y)] € (V x L) X(axr) (U x L)—([v,u],zy) € (V xzg U) x L
(v, 1), (u,1)] € (VX L) X(axry (U x L) <—([v,u],l) € (V xzg U) x L
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are well defined isomorphisms of (K x L,G x L)-bisets, inverse to one an-
other. O

8.6. Notation: Let G, H,K,L be finite groups. If U is an L-enriched

(H,G)-biset and V' is an L-enriched (K, H)-biset, let V>L<HU denote the L-
enriched (K, G)-biset defined by

V>L<HU = (V X(HxL) U)ﬁL .

8.7. Lemma: Let G, H,J K, L be finite groups.
1. If Vis a (K x L, H x L)-biset and U is an (H x L,G x L)-biset, then

(V X (uxry UYFF = VEEX zUPE

In particular, if V and U are L-enriched bisets, so is V>L<HU.
2. If U and U’ are L-enriched (H,G)-bisets, if V.V’ are L-enriched
(K, H)-bisets, then there are isomorphisms
Vxg(UUU) = (VxgU)u(VxyU')
L L L
(VUV’)XHU (VXHU)U(V/XHU)

I

of L-enriched (K, G)-bisets.

3. If moreover W is an L-enriched (J, K)-biset, then there is a canonical
1somorphism

(WX V)X U 2 Wk (VX gU)
of L-enriched (J, G)-bisets.

Proof : (1) Denote by [v, u] the image in V' X (g 1)U of a pair (v, u) € (VxU).
By Lemma 2.3.20 of [7],

(K xL,Gx L)y =(KxL,HxL),*(HxL,GxL), ,
so by Lemma 2.3.22 of [7], the group ¢([v,u]) is a subquotient of ¢(v) and

q(u). Soif [v,u] € (V X (mxry U)**, then L is a subquotient of ¢([v,u]), hence
it is a subquotient of g(v) and g(u), that is v € V* and u € U**. Hence

(V X(xry U C (VI X gy UPYHE = VLS LU
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and the reverse inclusion (V# X () U C (V X (gxp) U)* is obvious.
Hence (V' X (mxr) UL = V“L>L<HUﬁL. If V and U are L-enriched bisets, i.e.

if V=V and U = U, this gives (V X (gxp) U~ = VX uU, so VxgU is
an L-enriched biset.

(2) This is straightforward.

(3) With the above notation, there is a canonical isomorphism
(07 (W X(KxL) V) X(HxL) U—-WwW X(KxL) (V X(HxL) U)

sending [[w, v],u] to [w, [v,u]]. Hence

(W>L<KV)>L<HU = (WXKV X(HXL) U)ﬁL
= (W x@wxp) V)™ X mxp) )
= ( (W X(KxL) V) X(HxL) U) H [by (1)]
Similarly

Wxx(VXglU) = (W xunry (Vxgl))™
= (W x(xxr) (V X@xr) U)F)
— (W X(KXL) (V X(HXL) U))ﬁL [by (1)] .

8L

Hence « induces an isomorphism (W>L<KV)>L<HU & W>L<K(V>L<HU). 0

8.8. Definition: Let L be a finite group, and R be a commutative ring.
The L-enriched biset category RC[L] of finite groups over R is defined as
follows:

e The objects of RC[L] are the finite groups.
e For finite groups G and H,

Hompeyy (G, H) = R @z B[L)(H,G) = RB[L|(H, G)

is the R-linear extension of the Burnside group of L-enriched (H,G)-
bisets.

e The composition in RC[L| is the R-linear extension of the product
(V,U) — V>L<HU defined in 8.6.
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o The identity morphism of the group G is (image in RB[L|(G,G) of)
the identity biset of G X L, viewed as an L-enriched (G, G)-biset.
The category RC[L] is R-linear. An L-enriched biset functor over R is an

R-linear functor from RC[L] to R-Mod. The category of L-enriched biset
functors over R is denoted by Fg[L]. It is an abelian R-linear category.

8.9. Theorem: Let p be a prime number, and R be a commutative ring.
1. If L is an atoric p-group, the category RC}EL of Definition 7.11 is equiv-
alent to the full subcategory REL,[L] of RC[L] consisting of elementary
abelian p-groups.
2. If p € F*, the category F, r of p-biset functors over R is equivalent to

the direct product of the categories Funp(REL,[L], R-Mod) of R-linear
functors from REL,[L] to R-Mod, for L € [At,].

Proof : (1) Let E be an elementary abelian p-group. Then (E x L)® & L,
so B x L is an object of RCf,L. Set Z(E) = E x L. If E and F are elementary
abelian p-groups, and if U is a finite L-enriched (F|, E')-biset, then U is in
particular an (F' x L, E x L)-biset, an we can consider its image Z(U) in the
quotient HochgL(E X L,F' x L) of RB(F x L, E'x L). This yields a unique
R-linear map RB[L|(F,E) — HochgL(E x L, F x L), still denoted by Z.

We claim that these assignments define a functor Z from REI,[L] to RCE":
indeed, the identity (E x L, E x L)-biset is clearly mapped to the identity
morphism of Z(E). Moreover, if G is an elementary abelian p-group, if V
is an L-enriched (G, F')-biset and U is an L-enriched (F, E)-biset, it is clear
that

T(VxpU) =Z(V) o Z(U) ,

where the right hand side composition is in the category RC};L: indeed,
the transitive bisets (Q x P)/M with ¢(M)® C L appearing in the prod-
uct V' X (pxp) U are exactly those vanishing in Hom s (Z(E),Z(F)), by
Lemma 7.13. Hence Z is an isomorphism

T : RB[L|(F, E) — Hom i (Z(E), Z(F)) .

RCiF
In other words 7 is a fully faithful functor from REL,[L] to RCE. Moreover,
by Proposition 6.8, if P is a finite p-group with P® = L. there exists an
elementary abelian p-group E such that P is isomorphic to £ x L, hence P
is isomorphic to £ x L in the category RCf)L.

It follows that the functor Z is fully faithful and essentially surjective, so
it is an equivalence of categories.
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(2) This is a straightforward consequence of (1), Assertion 5 of Corollary 7.5,
and Assertion 3 of Theorem 7.15. O

9. The category ZL.FP’R, for an atoric p-group L (p € R*)

Let L be a fixed atoric p-group. In this section, we give some detail on the
structure of the category by, r of p-biset functors invariant by the idempo-
tent /b\L.

We start by straightforward consequences of Theorem 7.15. For a finite
p-group P, we denote by Yy (P) the subset of 3 (P) consisting of sections
(X, M) of P such that (X/M)® = L. When G is an R-linear functor from
RCEE to R-Mod, we can compute Ry, (G) at P by restricting the inverse limit
of 7.7 to the subset ¥, (P), i.e. by

Ry, (G)(P) = Jlim G(X/M) .

%
(X,M)EEuL(P)

9.1. Proposition: [ p € R*| Let L be an atoric p-group. If F' is a p-biset
functor in by F, g, and P is a finite p-group, then

F(P) = Jim  F(X/M)
(X,M)EEM(P)

= ©  SeF(T)S)NPTSH/T
(T,S)e[M(P)]
(T/S)°=L

Proof : The isomorphism F(P) = F(X/M) is Assertion 3 of

15

(X,M)€Xy(P)
Theorem 7.15. The second isomorphism follows from Theorem 5.4, which
implies that for (7, S) € M(P)

~

5 F(T/SYN /T = F(ek ) (F(P)) |
Moreover F(bY)F(P) = F(P) since F € EL}"p’R, and
F(Egs)F(bf) = F(eisbf) =0
unless (T/S)® = L. Thus d F(T/S)NP(TS/T = {0} unless (T/S)® = L

which completes the proof. a

46



The decomposition of the category F, g of p-biset functors stated in Corol-
lary 7.5 leads to the following natural definition:

9.2. Definition: [ p € R*| Let F be an indecomposable p-biset functor
over R. There exists a unique atoric p-group L (up to isomorphism) such
that F = b F. The group L is called the vertex of F.

9.3. Remark: It follows in particular from this definition that if F' and F”
are indecomposable p-biset functors over R with non-isomorphic vertices,
then Exty  (F,F") = {0}.

9.4. Theorem: [p € R*| Let F be an indecomposable p-biset functor over R
and let L be a vertex of F. If Q is a finite p-group such that F(Q) # {0},
but F vanishes on any proper subquotient of Q, then L = Q®.

Proof : Let () be a finite p-group such that F(Q) # {0} and F(Q') = {0} for
any proper subquotient " of ). By Proposition 4.6, if (7,.5) is a minimal
section of @), then

1
Q _ e Q

€rg= No(T.9) E |X|,u(X,Z),uﬂT(S,M)Indlan/Mol)efresX/M :
X<T,M AT

S<M<P(T)<X<T

Now if X/M is a proper subquotient of @, i.e. if X # @ or M # 1, then
F(X/M) = {0}, and F(Indinf%M o Defres?(/M) = 0. Hence F(e%s) =0
unless "= @) and S = 1, and moreover

F(2 ) =

0.1 1QI(Q, Q)pag(1,Q)F (Indmfg/lDefresQ/l) Idp()

IQ!
b, F = F. then in particular F(bg) is equal to the identity map of F(Q)
This can only occur if the idempotent 68 ;1 appears in the sum defining b

in other words if (Q/1)¢ = L, ie. Q¢ = L. Conversely, if Q¢ = L, then
F(b9) = F(te) Idpg) # 0. It follows that b F # 0, hence b F = F,
since [ is mdecomposable. Hence Q® is (isomorphic to) the vertex of F, as
was to be shown. O

We assume from now on that R = k is a field. Recall ([7] Chapter 4) that
the simple p-biset functors over k are indexed by pairs (@, V') consisting of
a p-group @ and a simple £Out(Q)-module V.
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9.5. Corollary: Let k be a field of characteristic different from p.

1. If Q is a finite p-group, and V is a simple kOut(Q)-module, then the
vertex of the simple p-biset functor Sq.y is isomorphic to Q®.

2. Let Q (resp. Q') be a finite p-group, and V' (resp. V') be a simple
kOut(Q)-module (resp. a simple kOut(Q')-module). If Q¢ 2 Q'¢,
then EXt?;.—WC (SQ,\/, SQ/,V/) = {0}

Proof : (1) Indeed @ is a minimal group for Sg v, so Sov(Q) # {0}, but
Sg,v vanishes on any proper subquotient of ().

(2) Follows from (1) and Remark 9.3. 0

9.6. Definition: Let F' be a p-biset functor. A functor S is a subquotient
of F (notation S T F') if there exist subfunctors Fy < Fy < F such that
Fi/F, = S. A composition factor of F' is a simple subquotient of F'.

9.7. Lemma: Let k be a field, and F be a p-biset functor over k.
1. If F' is a non zero, then F' admits a composition factor.

2. If § is a family of simple p-biset functors over k, there exists a greatest
subfunctor of F' all composition factors of which belong to S.

Proof : (1) Let P be a finite p-group such that F'(P) # {0}. Then F(P) is
a kB(P, P)-module. Choose m € F(P) — {0}, and consider the kB(P, P)-
submodule M of F(P) generated by m. Since kB(P, P) is finite dimensional
over k, the module M is also finite dimensional over k, hence it contains
a simple submodule V. By Proposition 3.1 of [8], there exists a simple p-
biset functor S such that S(P) = V as kB(P, P)-module. Then S(P) is a
subquotient of F(P), so by Proposition 3.5 of [8], there exists a subquotient
of F' isomorphic to S.

(2) Observe first that if M, N are subfunctors of F', then any composition
factor of M + N is a composition factor of M or a composition factor of V:
indeed, if S is a composition factor of M + N, let Iy, < F} < M + N with
S = F,/F, and consider the images F] and Fj of F} and Fy, respectively, in
the quotient (M + N)/N = M/(M N N). If F| # Fj, that is if [} + N #
Fy + N, then F|/F} = (Fy + N)/(Fo + N) = F|/F, = S is a subquotient
of (M +N)/N = M/(M N N), hence S is a subquotient of M. Otherwise
Fi+N = F,+N,s0 Fy = Fo+(F1NN), hence S = Fy/F, = (FiNN)/(FoNN)

48



is a subquotient of N. It follows by induction that any subquotient S of a

finite sum Y M of subfunctors of F'is a subquotient of some M € 7.
MezT
The latter also holds when Z is infinite: let ¥ = > M be an arbitrary
MezZ
sum of subfunctors of F', and S be a composition factor of . Let Fy, < Fj be

subfunctors of 3 such that S = Fy/F,. If P is a p-group such that S(P) =
Fi(P)/Fy(P) # 0, let U be a finite subset of F;(P) such that F;(P)/Fy(P)
is generated as a kB(P, P)-module by the images of the elements of U (such
a set exists because S(P) is finite dimensional over k, for any P). If V' is the
kB(P, P)-submodule of F;(P) generated by U, then V' maps surjectively on
the module F (P)/F»(P), so there is a kB(P, P)-submodule W of V such that
V/W = S(P). Now since U is finite, there exists a finite subset J of Z such

that U C Y M(P). Setting X1 = > M, it follows that V/W = S(P) is a
Meg MeJg
subquotient of ¥;(P), so by Proposition 3.5 of [8], there exists a subquotient

of ¥ isomorphic to S. By the observation above S is a subquotient of some
MeJgCI.
Now let Z the set of subfunctors M of F' such that all the composition

factors of M belong to S, and N = > M. The above discussion shows that
MeT
N €7, so N is the greatest element of Z. O

9.8. Theorem: Let k be a field of characteristic different from p, and L
be an atoric p-group. Let F,x[L] the full subcategory of F, ) consisting of
functors whose composition factors all have vertex L, i.e. are all isomorphic

to Spy, for some p-group P such that P® = L, and some simple kOut(P)-
module V.

1. If F' is a p-biset functor, then /b\L]:p,k 1s the greatest subfunctor of F
which belongs to F,i[L].

2. In particular /b\LFp,k = FpilL].

Proof : (1) Let F be a p-biset functor over k, and let F, = b F. If S
is a composition factor of Fj, then S = ZLS, as S is a subquotient of Fj.
Hence S has vertex L, by Definition 9.2. It follows that F} is contained in
the greatest subfunctor F, of F which belongs to F, x[L] (such a subfunctor
exists by Lemma 9.7).

Conversely, we know that Fh = @ ZQFQ. For @ € [At,], any composi-
Qe[Atp]

tion factor S of /b\QFg has vertex @), by Definition 9.2. But S is also a direct
summand of F, so @) = L. It follows that if @) 2 L, then bgF% has no com-
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position factor, so ZQFZ = {0}, by Lemma 9.7. In other words F» = ZLFQ,
hence Fy < Fi, and F, = F}, as was to be shown.

(2) Let F be a p-biset functor. Then F € ZL}"M if and only if F :/Z;LF, ie.
by (1) if and only if all the composition factors of F' have vertex L. 0

9.9. Example: the Burnside functor. Let k be a field of characteristic
q #p (¢ >0). It was shown in [10] Theorem 8.2 (see also [7] 5.6.9) that
the Burnside functor kB is uniserial, hence indecomposable. As kB(1) # 0,
the vertex of kB is the trivial group, by Theorem 9.4, thus kB is an object
of b1 F,r = Fpx[1]. It means that all the composition factors of kB have to
be of form Sy, where Q® = 1, i.e. @ is elementary abelian. And indeed
by [10] Theorem 8.2, the composition factors of kB are all of the form Sgy,
where () runs through a specific set of elementary abelian p-groups which
depends on the order of p modulo ¢ (suitably interpreted when ¢ = 0).
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