Idempotents of double Burnside algebras, L-enriched bisets, and decomposition of p-biset functors

Serge Bouc

Abstract: Let R be a (unital) commutative ring, and G be a finite group with order invertible in R. We introduce new idempotents $\epsilon_{T,S}^G$ in the double Burnside algebra RB(G,G) of G over R, indexed by conjugacy classes of minimal sections (T,S) of G (i.e. sections such that $S \leq \Phi(T)$). These idempotents are orthogonal, and their sum is equal to the identity. It follows that for any biset functor F over R, the evaluation F(G) splits as a direct sum of specific R-modules indexed by minimal sections of G, up to conjugation.

The restriction of these constructions to the biset category of p-groups, where p is a prime number invertible in R, leads to a decomposition of the category of p-biset functors over R as a direct product of categories \mathcal{F}_L indexed by $atoric\ p$ -groups L up to isomorphism.

We next introduce the notions of L-enriched biset and L-enriched biset functor for an arbitrary finite group L, and show that for an atoric p-group L, the category \mathcal{F}_L is equivalent to the category of L-enriched biset functors defined over elementary abelian p-groups.

Finally, the notion of vertex of an indecomposable p-biset functor is introduced (when $p \in R^{\times}$), and when R is a field of characteristic different from p, the objects of the category \mathcal{F}_L are characterized in terms of vertices of their composition factors.

AMS subject classification: 18B99, 19A22, 20J15

Keywords: Minimal sections, idempotents, double Burnside algebra, enriched biset functor, atoric

1. Introduction

Let R denote throughout a commutative ring (with identity element). For a finite group G, we consider the double Burnside algebra RB(G,G) of a G over R. In the case where the order of G is invertible in R, we introduce idempotents $\epsilon_{T,S}^G$ in RB(G,G), indexed by the set $\mathcal{M}(G)$ of minimal sections of G, i.e. the set of pairs (T,S) of subgroups of G with $S \subseteq T$ and $S \subseteq \Phi(T)$, where $\Phi(T)$ is the Frattini subgroup of G (such sections have been considered in Section 5 of [9]). The idempotent $\epsilon_{T,S}^G$ only depends of the conjugacy class of (T,S) in G. Moreover, the idempotents $\epsilon_{T,S}^G$, where (T,S) runs through a

set $[\mathcal{M}(G)]$ of representatives of orbits of G acting on $\mathcal{M}(G)$ by conjugation, are orthogonal, and their sum is equal to the identity element of RB(G,G).

The idempotents $\epsilon_{G,\mathbf{1}}^G$ plays a special role in our construction, and it is denoted by $\varphi_{\mathbf{1}}^G$. In particular, when F is a biset functor over R (and the order of G is invertible in R), we set $\delta_{\Phi}F(G)=\varphi_{\mathbf{1}}^GF(G)$. We show that $\delta_{\Phi}F(G)$ consists of those elements $u\in F(G)$ such that $\mathrm{Res}_H^Gu=0$ whenever H is a proper subgroup of G, and $\mathrm{Def}_{G/N}^Gu=0$ whenever N is a non-trivial normal subgroup of G contained in $\Phi(G)$. This yields moreover a decomposition

$$F(G) \cong \left(\bigoplus_{(T,S) \in \mathcal{M}(G)} \delta_{\Phi} F(T/S) \right)^G \cong \bigoplus_{(T,S) \in [\mathcal{M}(G)]} \delta_{\Phi} F(T/S)^{N_G(T,S)/T} .$$

Restricting these constructions to the biset category RC_p of p-groups with coefficients in R, where p is a prime invertible in R, we get orthogonal idempotents b_L in the center of RC_p , indexed by atoric p-groups, i.e. finite p-groups which cannot be split as a direct product $C_p \times Q$, for some p-group Q. We show next that every finite p-group P admits a unique largest atoric quotient $P^@$, well defined up to isomorphism, and that there exists an elementary abelian p-subgroup E of P (non unique in general) such that $P \cong E \times P^@$. For a given atoric p-group E, we introduce a category $RC_p^{\sharp L}$, defined as a quotient of the subcategory of RC_p consisting of p-groups P such that $P^@\cong L$. This leads to a decomposition of the category $\mathcal{F}_{p,R}$ of p-biset functors over R as a direct product

$$\mathcal{F}_{p,R}\cong\prod_{L\in[\mathcal{A}t_p]}\operatorname{Fun}_Rig(R\mathcal{C}_p^{\sharp L},R\operatorname{\!-Mod}ig)$$

of categories of representations of $RC_p^{\sharp L}$ over R, where L runs through a set $[\mathcal{A}t_p]$ of isomorphism classes of atoric p-groups. Similar questions on idempotents in double Burnside algebras and decomposition of biset functors categories have been considered by L. Barker ([1]), R. Boltje and S. Danz ([2], [3]), R. Boltje and B. Külshammer ([4]), and P. Webb ([16]).

In particular, via the above decomposition, to any indecomposable p-biset functor F is associated a unique atoric p-group, called the *vertex* of F. We show that this vertex is isomorphic to $Q^{@}$, for any p-group Q such that $F(Q) \neq \{0\}$ but F vanishes on any proper subquotient of Q.

Going back to arbitrary finite groups, we next introduce the notions of L-enriched biset and L-enriched biset functor, and show that when L is an atoric p-group, the abelian category $\operatorname{Fun}_R(R\mathcal{C}_p^{\sharp L}, R\operatorname{\mathsf{-Mod}})$ is equivalent to the category of L-enriched biset functors from elementary abelian p-groups to R-modules.

The paper is organized as follows: Section 2 is a review of definitions and basic results on Burnside rings and biset functors. Section 3 is concerned

with the algebra $\mathcal{E}(G)$ obtained by "cutting" the double Burnside algebra RB(G,G) of a finite group G by the idempotent e_G^G corresponding to the "top" idempotent e_G^G of the Burnside algebra RB(G). Orthogonal idempotents φ_N^G of $\mathcal{E}(G)$ are introduced, indexed by normal subgroups N of G contained in $\Phi(G)$. It is shown moreover that if G is nilpotent, then φ_1^G is central in $\mathcal{E}(G)$. In Section 4, the idempotents $\epsilon_{T,S}^G$ of RB(G,G) are introduced, leading in Section 5 to the corresponding direct sum decomposition of the evaluation at G of any biset functor over R. In Section 6, atoric p-groups are introduced, and their main properties are stated. In Section 7, the biset category of p-groups over R is considered, leading to a splitting of the category $\mathcal{F}_{p,R}$ of p-biset functors over R as a direct product of abelian categories $\mathcal{F}_L = \operatorname{\mathsf{Fun}}_R(R\mathcal{C}_p^{\sharp L}, R\operatorname{\mathsf{-Mod}})$ indexed by atoric *p*-groups *L* up to isomorphism. In Section 8, for an arbitrary finite group L, the notions of L-enriched biset and L-enriched biset functor are introduced, and it is shown that when L is an atoric p-group, the category \mathcal{F}_L is equivalent to the category of L-enriched biset functors on elementary abelian p-groups. Finally, in Section 9, for a given atoric p-group L, and when p is invertible in R, the structure of the category \mathcal{F}_L is considered, and the notion of vertex of an indecomposable p-biset functor over R is introduced. In particular, when R is a field of characteristic different from p, it is shown that the objects of \mathcal{F}_L are those p-biset functors all composition factors of which have vertex L.

Contents

T	Introduction	1
2	Review of Burnside rings and biset functors	4
3	Idempotents in $\mathcal{E}(G)$	9
4	Idempotents in $RB(G,G)$	17
5	Application to biset functors	21
6	Atoric p -groups	23
7	Splitting the biset category of p -groups, when $p \in R^{\times}$	29
8	L-enriched bisets	41
9	The category $\widehat{b}_L \mathcal{F}_{p,R}$, for an atoric p-group L $(p \in R^{\times})$	46

2. Review of Burnside rings and biset functors

2.1. Let G be a finite group, let s_G denote the set of subgroups of G, let $\overline{s_G}$ denote the set of conjugacy classes of subgroups of G, and let $[s_G]$ denote a set of representatives of $\overline{s_G}$.

Let B(G) denote the Burnside ring of G, i.e. the Grothendieck ring of the category of finite G-sets. It is a commutative ring, with an identity element, equal to the class of a G-set of cardinality 1. The additive group B(G) is a free abelian group on the set $\{[G/H] \mid H \in [s_G]\}$ of isomorphism classes of transitive G-sets.

2.2. • When G and H are finite groups, and L is a subgroup of $G \times H$, set

$$\begin{array}{lll} p_1(L) & = & \{g \in G \mid \exists h \in H, \; (g,h) \in L\} \;\;, \\ p_2(L) & = & \{h \in H \mid \exists g \in G, \; (g,h) \in L\} \;\;, \\ k_1(L) & = & \{g \in G \mid (g,1) \in L\} \;\;, \\ k_2(L) & = & \{h \in H \mid (1,h) \in L\} \;\;. \end{array}$$

Recall that $k_i(L) \leq p_i(L)$, for $i \in \{1, 2\}$, that $(k_1(L) \times k_2(L)) \leq L$, and that there are canonical isomorphisms

$$p_1(L)/k_1(L) \cong L/(k_1(L) \times k_2(L)) \cong p_2(L)/k_2(L)$$
.

Set moreover $q(L) = L/(k_1(L) \times k_2(L))$.

• When Z is a subgroup of G, set

$$\Delta(Z) = \{(z, z) \mid z \in Z\} \le (G \times G) .$$

When N is a normal subgroup of G, set

$$\Delta_N(G) = \{(a, b) \in G \times G \mid ab^{-1} \in N\}$$
.

It is a subgroup of $G \times G$.

• When G, H, and K are groups, when $L \leq (G \times H)$ and $M \leq (H \times K)$, set

$$L * M = \{(g, k) \in (G \times K) \mid \exists h \in H, (g, h) \in L \text{ and } (h, k) \in K\}$$
.

It is a subgroup of $(G \times K)$.

2.3. When G and H are finite groups, a (G, H)-biset U is a set endowed with

a left action of G and a right action of H which commute. In other words U is a $G \times H^{op}$ -set, where H^{op} is the opposite group of H. The opposite biset U^{op} is the (H,G)-biset equal to U as a set, with actions defined for $h \in H$, $u \in U$ and $g \in G$ by $h \cdot u \cdot g$ (in U^{op}) = $g^{-1}uh^{-1}$ (in U).

The Burnside group B(G, H) is the Grothendieck group of the category of finite (G, H)-bisets. It is a free abelian group on the set of isomorphism classes $[(G \times H)/L]$, for $L \in [s_{G \times H}]$, where the (G, H)-biset structure on $(G \times H)/L$ is given by

$$\forall a, q \in G, \forall b, h \in H, a \cdot (q, h)L \cdot b = (aq, b^{-1}h)L$$
.

When G, H, and K are finite groups, there is a unique bilinear product

$$\times_H : B(G,H) \times B(H,K) \to B(G,K)$$

induced by the usual product $(U, V) \mapsto U \times_H V = (U \times V)/H$ of bisets, where the right action of H on $U \times V$ is defined for $u \in U$, $v \in V$ and $h \in H$ by $(u, v) \cdot h = (uh, h^{-1}v)$. This product will also be denoted as a composition $(\alpha, \beta) \mapsto \alpha \circ \beta$ or as a product $(\alpha, \beta) \mapsto \alpha\beta$.

This leads to the following definitions:

- **2.4. Definition:** The biset category of finite groups C is defined as follows:
 - The objects of C are the finite groups.
 - When G and H are finite groups,

$$\operatorname{Hom}_{\mathcal{C}}(G,H) = B(H,G)$$
.

• When G, H, and K are finite groups, the composition

$$\circ: \operatorname{Hom}_{\mathcal{C}}(H,K) \times \operatorname{Hom}_{\mathcal{C}}(G,H) \to \operatorname{Hom}_{\mathcal{C}}(G,K)$$

is the product

$$\times_H : B(K,H) \times B(H,G) \to B(K,G)$$
.

• The identity morphism of the group G is the class of the set G, viewed as a (G, G)-biset by left and right multiplication.

A biset functor is an additive functor from C to the category of abelian groups.

When R is a commutative (unital) ring, the category RC is defined similarly by extending coefficients to R, i.e. by setting

$$\operatorname{Hom}_{R\mathcal{C}}(G,H) = R \otimes_{\mathbb{Z}} B(H,G)$$
,

which will be simply denoted by RB(H,G). A biset functor over R is an R-linear functor from RC to the category R-Mod of R-modules. The category of biset functors over R (where morphisms are natural transformations of functors) is denoted by \mathcal{F}_R .

The correspondence sending a (G, H)-biset U to its opposite U^{op} extends to an isomorphism of R-modules $RB(G, H) \to RB(H, G)$. These isomorphisms give an equivalence of R-linear categories from $R\mathcal{C}$ to its opposite category, which is the identity on objects.

- **2.5.** Let G and H be finite groups, and F be a biset functor (with values in R-Mod). For any finite (H,G)-biset U, the isomorphism class [U] of U belongs to B(H,G), and it yields an R-linear map $F([U]):F(G)\to F(H)$, simply denoted by F(U), or even $f\in F(G)\mapsto U(f)\in F(H)$. In particular:
 - When H is a subgroup of G, denote by Ind_H^G the set G, viewed as a (G, H)-biset for left and right multiplication, and by Res_H^G the same set, viewed as an (H, G)-biset. This gives a map $\operatorname{Ind}_H^G : F(H) \to F(G)$, called induction, and a map $\operatorname{Res}_H^G : F(G) \to F(H)$, called restriction.
 - When N is a normal subgroup of G, let $\operatorname{Inf}_{G/N}^G$ denote the set G/N, viewed as a (G, G/N)-biset for the left action of G, and right action of G/N by multiplication. Also let $\operatorname{Def}_{G/N}^G$ denote the set G/N, viewed as a (G/N, G)-biset. This gives a map $\operatorname{Inf}_{G/N}^G : F(G/N) \to F(G)$, called inflation, and a map $\operatorname{Def}_{G/N}^G : F(G) \to F(G/N)$, called deflation.
 - Finally, when $f: G \to G'$ is a group isomorphism, denote by $\operatorname{Iso}(f)$ the set G', viewed as a (G', G)-biset for left multiplication in G', and right action of G given by multiplication by the image under f. This gives a map $\operatorname{Iso}(f): F(G) \to F(G')$, called transport by isomorphism.

When G and H are finite groups, any (G, H)-biset is a disjoint union of transitive ones. It follows that any element of B(G, H) is a linear combination of morphisms of the form $[(G \times H)/L]$, where $L \in s_{G \times H}$. Moreover, any such morphism factors as

$$(2.6) \ [(G \times H)/L] = \operatorname{Ind}_{p_1(L)}^G \circ \operatorname{Inf}_{p_1(L)/k_1(L)}^{p_1(L)} \circ \operatorname{Iso}(f) \circ \operatorname{Def}_{p_2(L)/k_2(L)}^{p_2(L)} \circ \operatorname{Res}_{p_2(L)}^H ,$$

where $f: p_2(L)/k_2(L) \to p_1(L)/k_1(L)$ is the canonical group isomorphism. In particular, for $N \subseteq G$,

$$(2.7) [(G \times G)/\Delta_N(G)] = \operatorname{Inf}_{G/N}^G \circ \operatorname{Def}_{G/N}^G.$$

For finite groups G, H, K, for $L \leq (G \times H)$ and $M \leq (H \times K)$, one has that

(2.8)
$$[(G \times H)/L] \times_H [(H \times K)/M] = \sum_{h \in p_2(L) \setminus H/p_1(M)} [(G \times K)/(L *^{(h,1)}M)]$$

in B(G, K).

2.9. When G is a finite group, the group B(G,G) is the ring of endomorphisms of G in the category C. This ring is called the double Burnside ring of G. It is a non-commutative ring (if G is non trivial), with identity element equal to the class of the set G, viewed as a (G,G)-biset for left and right multiplication.

There is a unitary ring homomorphism $\alpha \mapsto \widetilde{\alpha}$ from B(G) to B(G,G), induced by the functor $X \mapsto \widetilde{X}$ from G-sets to (G,G)-bisets, where $\widetilde{X} = G \times X$, with (G,G)-biset structure given by

$$\forall a, b, g \in G, \forall x \in X, \ a(g, x)b = (agb, ax)$$
.

This construction has in particular the following properties ([7], Corollary 2.5.12):

- **2.10. Lemma:** Let G be a finite group.
 - 1. If H is a subgroup of G, and X is a finite G-set, then there is an isomorphism of (G, H)-bisets

$$\widetilde{X} \times_G \operatorname{Ind}_H^G \cong \operatorname{Ind}_H^G \times_H \widetilde{\operatorname{Res}_H^G X}$$
,

and an isomorphism of (H, G)-bisets

$$\operatorname{Res}_H^G \times_G \widetilde{X} \cong \widetilde{\operatorname{Res}_H^G} X \times_H \operatorname{Res}_H^G$$
.

2. If H is a subgroup of G, and Y is a finite H-set, then there is an isomorphism of (G, G)-bisets

$$\operatorname{Ind}_H^G \times_H \widetilde{Y} \times_H \operatorname{Res}_H^G \cong \widetilde{\operatorname{Ind}_H^G Y}$$
.

3. If N is a normal subgroup of G, and X is a finite G/N-set, then there is an isomorphism of (G/N, G)-bisets

$$\widetilde{X} \times_{G/N} \operatorname{Def}_{G/N}^G \cong \operatorname{Def}_{G/N}^G \times_G \widetilde{\operatorname{Inf}_{G/N}^G} X$$
.

4. If N is a normal subgroup of G, and X is a finite G-set, then there is an isomorphism of (G/N, G/N)-bisets

$$\operatorname{Def}_{G/N}^G \times_G X \times_G \operatorname{Inf}_{G/N}^G \cong \widetilde{\operatorname{Def}_{G/N}^G} X$$
.

2.11. Let RB(G) denote the R-algebra $R \otimes_{\mathbb{Z}} B(G)$. Assume moreover that the order of G is invertible in R. Then for $H \leq G$, let $e_H^G \in RB(G)$ be defined by

(2.12)
$$e_H^G = \frac{1}{|N_G(H)|} \sum_{K < H} |K| \mu(K, H) [G/K] ,$$

where μ is the Möbius function of the poset of subgroups of G. The elements e_H^G , for $H \in [s_G]$, are orthogonal idempotents of RB(G), and their sum is equal to the identity element of RB(G). It follows that the elements $\widetilde{e_H^G}$, for $H \in [s_G]$, are orthogonal idempotents of the R-algebra $RB(G,G) = R \otimes_{\mathbb{Z}} B(G,G)$, and the sum of these idempotents is equal to the identity element of RB(G,G). The idempotents $\widetilde{e_G^G}$ play a special role, due to the following lemma:

- **2.13. Lemma:** Let R be a commutative ring, and G be a finite group with order invertible in R.
 - 1. Let H be a proper subgroup of G. Then

$$\operatorname{Res}_H^G \circ \widetilde{e_G^G} = 0$$
 and $\widetilde{e_G^G} \circ \operatorname{Ind}_H^G = 0$.

2. When $N \subseteq G$, let $m_{G,N} \in R$ be defined by

$$m_{G,N} = \frac{1}{|G|} \sum_{\substack{X \in s_G \\ XN = G}} |X| \mu(X,G) .$$

Then

$$\operatorname{Def}_{G/N}^G \circ \widetilde{e_G^G} \circ \operatorname{Inf}_{G/N}^G = m_{G,N} \widetilde{e_{G/N}^G}$$
.

3. Let $N \subseteq G$, and suppose that N is contained in the Frattini subgroup

 $\Phi(G)$ of G. Then

$$\widetilde{e_{G/N}^{G/N}} \circ \mathrm{Def}_{G/N}^G = \mathrm{Def}_{G/N}^G \circ \widetilde{e_G^G} \ \ and \ \ \mathrm{Inf}_{G/N}^G \circ \widetilde{e_{G/N}^{G/N}} = \widetilde{e_G^G} \circ \mathrm{Inf}_{G/N}^G \ .$$

Proof: Assertion 1 follows from Lemma 2.10 and Assertion 1 of Theorem 5.2.4. of [7].

Assertion 2 follows from Lemma 2.10 and Assertion 4 of Theorem 5.2.4. of [7].

Finally the first part of Assertion 3 follows from Lemma 2.10 and Assertion 3 of Theorem 5.2.4. of [7]: indeed $\operatorname{Inf}_{G/N}^G e_{G/N}^{G/N}$ is equal to the sum of the different idempotents e_X^G of RB(G) indexed by subgroups X such that XN=G. If $N\leq \Phi(G)$, then XN=G implies $X\Phi(G)=G$, hence X=G. The second part of Assertion 3 follows by taking opposite bisets, since $\widetilde{e_G^G}$ and $\widetilde{e_{G/N}^{G/N}}$ are equal to their opposite bisets, and since $(\operatorname{Def}_{G/N}^G)^{op}\cong\operatorname{Inf}_{G/N}^G$.

- **2.14. Remark:** For the same reason, if $N \leq \Phi(G)$, then $m_{G,N} = 1$.
- **2.15. Remark:** It follows from Assertion 1 and Remark 2.6 that if G and H are finite groups and if $L \leq (G \times H)$, then $\widetilde{e_G^G}[(G \times H)/L] = 0$ if $p_1(L) \neq G$, and $[(G \times H)/L]\widetilde{e_H^H} = 0$ if $p_2(L) \neq H$.

3. Idempotents in $\mathcal{E}(G)$

3.1. Notation: When G is a finite group with order invertible in R, denote by $\mathcal{E}(G)$ the R-algebra defined by

$$\mathcal{E}(G) = \widetilde{e_G^G} RB(G, G) \widetilde{e_G^G} \ .$$

Set

$$\Sigma(G, G) = \{ M \in s_{G \times G} \mid p_1(L) = p_2(L) = G \}$$
,

and for $L \in s_{G \times G}$, set

$$Y_L = \widetilde{e_G^G} [(G \times G)/L] \widetilde{e_G^G} \in \mathcal{E}(G)$$
.

The R-algebra $\mathcal{E}(G)$ has been considered in [5], Section 9, in the case R is a field of characteristic 0. The extension of the results proved there to the

case where R is a commutative ring in which the order of G is invertible is straightforward. In particular:

- **3.2. Proposition:** Let G be a finite group with order invertible in R.
 - 1. If $L \in s_{G \times G} \Sigma(G, G)$, then $Y_L = 0$.
 - 2. The elements Y_L , for L in a set of representatives of $(G \times G)$ -conjugacy classes on $\Sigma(G, G)$, form a R-basis of $\mathcal{E}(G)$.
 - 3. For $L, M \in \Sigma(G, G)$

$$Y_{L}Y_{M} = \frac{m_{G,k_{2}(L)\cap k_{1}(M)}}{|G|} \sum_{\substack{Z \leq G \\ Zk_{2}(L) = Zk_{1}(M) = G \\ Z \geq k_{2}(L)\cap k_{1}(M)}} |Z|\mu(Z,G) Y_{L*\Delta(Z)*M}$$

in $\mathcal{E}(G)$.

3.3. Corollary: Let $L, M \in \Sigma(G, G)$. If one of the groups $k_2(L)$ or $k_1(M)$ is contained in $\Phi(G)$, then

$$Y_L Y_M = Y_{L*M} .$$

Proof: Indeed if $k_2(L) \leq \Phi(G)$, then $Zk_2(L) = G$ implies $Z\Phi(G) = G$, hence Z = G. Similarly, if $k_1(M) \leq \Phi(G)$, then $Zk_1(M) = G$ implies Z = G. In each case, Proposition 3.2 then gives

$$Y_L Y_M = m_{G,k_2(L) \cap k_1(M)} Y_{L*M}$$
,

and moreover $m_{G,k_2(L)\cap k_1(M)}=1$ since $k_2(L)\cap k_1(M)\leq \Phi(G),$ by Remark 2.14.

3.4. Notation: For a normal subgroup N of G such that $N \leq \Phi(G)$, set

$$\varphi_N^G = \sum_{\substack{M \leq G \\ N \leq M \leq \Phi(G)}} \mu_{\leq G}(N, M) Y_{\Delta_M(G)} ,$$

where $\mu_{\leq G}$ is the Möbius function of the poset of normal subgroups of G.

3.5. Proposition: Let $N \subseteq G$ with $N \subseteq \Phi(G)$. Then

$$\varphi_N^G = \operatorname{Inf}_{G/N}^G \varphi_1^{G/N} \operatorname{Def}_{G/N}^G$$
.

Proof: Indeed if $N \leq M \leq G$, then $\mu_{\leq G}(N, M) = \mu_{\leq G/N}(\mathbf{1}, M/N)$. Since moreover $N \leq \Phi(G)$, setting $\overline{G} = G/N$ and $\overline{M} = M/N$, we have by Lemma 2.13

$$\begin{split} \mathrm{Inf}_{G/N}^G Y_{\Delta_{\overline{G}}(\overline{M})} \mathrm{Def}_{G/N}^G &= \mathrm{Inf}_{G/N}^G \circ \widetilde{e_{\overline{G}}^G} \big((\overline{G} \times \overline{G}) / \Delta_{\overline{G}}(\overline{M}) \big) \widetilde{e_{\overline{G}}^G} \circ \mathrm{Def}_{G/N}^G \\ &= \widetilde{e_G^G} \circ \mathrm{Inf}_{G/N}^G \big((\overline{G} \times \overline{G}) / \Delta_{\overline{G}}(\overline{M}) \big) \mathrm{Def}_{G/N}^G \circ \widetilde{e_G^G} \\ &= \widetilde{e_G^G} \big((G \times G) / \Delta_M(G) \big) \widetilde{e_G^G} \\ &= Y_{\Delta_M(G)} \ , \end{split}$$

since $\operatorname{Inf}_{G/N}^G((\overline{G} \times \overline{G}))/\Delta_{\overline{G}}(\overline{M}))\operatorname{Def}_{G/N}^G = (G \times G)/\Delta_M(G).$

3.6. Proposition:

1. Let $N \subseteq G$, with $N \subseteq \Phi(G)$. Then

$$\varphi_N^G = \widetilde{e_G^G} \times_G \left(\sum_{\substack{M \leq G \\ N \leq M \leq \Phi(G)}} \mu_{\leq G}(N, M)[(G \times G)/\Delta_M(G)] \right)$$

$$= \left(\sum_{\substack{M \leq G \\ N \leq M \leq \Phi(G)}} \mu_{\leq G}(N, M)[(G \times G)/\Delta_M(G)] \right) \times_G \widetilde{e_G^G}.$$

2. In particular

$$\varphi_{\mathbf{1}}^G = \frac{1}{|G|} \sum_{\substack{X \leq G, M \leq G \\ M \leq \Phi(G) \leq X \leq G}} |X| \mu(X, G) \mu_{\leq G}(\mathbf{1}, M) \operatorname{Indinf}_{X/M}^G \circ \operatorname{Defres}_{X/M}^G.$$

Proof: For Assertion 1, by definition

$$\varphi_N^G = \sum_{\substack{M \leq G \\ N \leq M \leq \Phi(G)}} \mu_{\leq G}(N, M) \widetilde{e_G^G}[(G \times G)/\Delta_M(G)] \times_G \sum_{X \leq G} \frac{|X|}{|G|} \mu(X, G)[(G \times G)/\Delta(X)].$$

Moreover $[(G \times G)/\Delta_M(G)] \times_G [(G \times G)/\Delta(X)] = [(G \times G)/(\Delta_M(G) * \Delta(X))],$ by (2.8), and $\Delta_M(G) * \Delta(X) = \{(xm, x) \mid x \in X, m \in M\}.$ The first projection of this group is equal to XM, hence it is equal to G if and only if X = G, since $M \leq \Phi(G)$. The first equality of Assertion 1 follows, by Remark 2.15. The second one follows by taking opposite bisets, since $e_G^{\bar{G}}$ and $[(G \times G)/\Delta_M(G)]$ are equal to their opposite.

Assertion 2 follows in the special case where N=1, expanding $\widetilde{e_G^G}$ as

$$\widetilde{e_G^G} = \frac{1}{|G|} \sum_{X < G} |X| \mu(X,G) [(G \times G)/\Delta(X)] \ ,$$

observing that $\mu(X,G) = 0$ unless $X \geq \Phi(G)$, and that if $X \geq \Phi(G) \geq M$, then

$$[(G \times G)/\Delta(X)] \circ [(G \times G)/\Delta_M(G)] = [(G \times G)/\Delta_M(X)],$$

which is equal to $\operatorname{Indinf}_{X/M}^G \circ \operatorname{Defres}_{X/M}^G$.

- 3.7. Corollary:

 1. Let H < G. Then $\operatorname{Res}_H^G \varphi_N^G = 0$ and $\varphi_N^G \operatorname{Ind}_H^G = 0$.

 2. Let $M \leq G$. If $M \cap \Phi(G) \nleq N$, then $\operatorname{Def}_{G/M}^G \varphi_N^G = 0$ and $\varphi_N^G \operatorname{Inf}_{G/M}^G = 0$.

Proof: The first part of Assertion 1 follows from Lemma 2.13, since

$$\operatorname{Res}_H^G \varphi_N^G = \operatorname{Res}_H^G \widetilde{e_G^G} \varphi_N^G = 0$$
.

The second part follows by taking opposite bisets.

For Assertion 2, let $P = M \cap \Phi(G)$. Since $\operatorname{Def}_{G/M}^G = \operatorname{Def}_{G/M}^{G/P} \circ \operatorname{Def}_{G/P}^G$, it suffices to consider the case M = P, i.e. the case where $M \leq \Phi(G)$. Then, since $[(G \times G)/\Delta_M(G)] = \operatorname{Inf}_{G/M}^G \operatorname{Def}_{G/M}^G$ for any $M \leq G$, by 2.7, and since $\operatorname{Def}_{G/M}^G \operatorname{Inf}_{G/Q}^G = \operatorname{Inf}_{G/MQ}^{G/M} \operatorname{Def}_{G/MQ}^{G/Q}$ for any $M, Q \leq G$,

$$\operatorname{Def}_{G/M}^{G} \varphi_{N}^{G} = \operatorname{Def}_{G/M}^{G} \sum_{\substack{Q \leq G \\ N \leq Q \leq \Phi(G)}} \mu_{\leq G}(N, Q) \operatorname{Inf}_{G/Q}^{G} \operatorname{Def}_{G/Q}^{G} \widetilde{e_{G}^{G}}$$

$$= \sum_{\substack{Q \leq G \\ N \leq Q \leq \Phi(G)}} \mu_{\leq G}(N, Q) \operatorname{Inf}_{G/MQ}^{G} \operatorname{Def}_{G/MQ}^{G} \widetilde{e_{G}^{G}}$$

$$= \sum_{\substack{P \leq G \\ N \leq P \leq \Phi(G)}} \left(\sum_{\substack{Q \leq G \\ N \leq Q \leq \Phi(G) \\ QM = P}} \mu_{\leq G}(N, Q) \right) \operatorname{Inf}_{G/P}^{G} \operatorname{Def}_{G/P}^{G} \widetilde{e_{G}^{G}}.$$

Now for a given $P \subseteq G$ with $P \subseteq \Phi(G)$, the sum $\sum_{\substack{Q \subseteq G \\ N \leq Q \leq \Phi(G) \\ QM = P}} \mu_{\subseteq G}(N,Q)$ is

equal to zero unless NM = N, that is $M \leq N$, by classical properties of the Möbius function ([15] Corollary 3.9.3). This proves the first part of Assertion 2, and the second part follows by taking opposite bisets.

- **3.8. Theorem:** Let G be a finite group with order invertible in R.
 - 1. The elements φ_N^G , for $N \subseteq G$ with $N \subseteq \Phi(G)$, form a set of orthogonal idempotents in the algebra $\mathcal{E}(G)$, and their sum is equal to the identity element $\widetilde{e_G^G}$ of $\mathcal{E}(G)$.
 - 2. Let $N \subseteq G$ with $N \subseteq \Phi(G)$, and let H be a finite group.
 - (a) If $L \leq (G \times H)$, then $\varphi_N^G \times_G [(G \times H)/L] = 0$ unless $p_1(L) = G$ and $k_1(L) \cap \Phi(G) \leq N$.
 - (b) If $L' \leq (H \times G)$, then $[(H \times G)/L'] \times_G \varphi_N^G = 0$ unless $p_2(L') = G$ and $k_2(L') \cap \Phi(G) \leq N$.

Proof : For $N \subseteq G$, set $u_N^G = Y_{\Delta_N(G)}$. Since $\Delta_N(G) * \Delta_M(G) = \Delta_{NM}(G)$ for any normal subgroups N and M of G, it follows from Corollary 3.3 that if either N or M is contained in $\Phi(G)$, then $u_N^G u_M^G = u_{NM}^G$.

Now Assertion 1 follows from the following general procedure for building orthogonal idempotents (see [13] Theorem 10.1 for details): we have a finite lattice P (here P is the lattice of normal subgroups of G contained in $\Phi(G)$), and a set of elements g_x of a ring A, for $x \in P$ (here $A = \mathcal{E}(G)$ and $g_N = u_N^G$), with the property that $g_x g_y = g_{x \vee y}$ for any $x, y \in P$, and $g_0 = 1$, where 0 is the smallest element of P (here this element is the trivial subgroup of G, and $u_1^G = Y_{\Delta_1(G)} = \widetilde{e_G^G}$). The the elements f_x defined for $x \in P$ by

$$f_x = \sum_{\substack{y \in P \\ x \le y}} \mu(x, y) g_y ,$$

where μ is the Möbius function of P, are orthogonal idempotents of A, and their sum is equal to the identity element of A. This is exactly Assertion 1 (since $f_x = \varphi_N^G$ here, for $x = N \in P$).

Let $L \leq (G \times H)$, then by 2.6

$$\varphi_N^G \times_G [(G \times H)/L] = \varphi_N^G \circ \operatorname{Ind}_{p_1(L)}^G \circ [(p_1(L) \times H)/L] = 0$$

unless $p_1(L) = G$, by Corollary 3.7. And if $p_1(L) = G$, then by 2.6

$$\varphi_N^G \times_G [(G \times H)/L] = \varphi_N^G \circ \operatorname{Inf}_{G/k_1(L)}^G \circ [(G/k_1(L) \times H)/L_1 \ ,$$

for some subgroup L_1 of $(G/k_1(L) \times H)$. Again, by Corollary 3.7 this is equal to 0 unless $k_1(L) \cap \Phi(G) \leq N$. The proof of Assertion (b) is similar. Alternatively, one can take opposite bisets in (a).

- **3.9. Proposition:** Let G be a finite group with order invertible in R.
 - 1. Let $L \in \Sigma(G, G)$. Then

$$\varphi_{\mathbf{1}}^{G} Y_{L} = \sum_{\substack{N \leq G \\ N \leq \Phi(G)}} \mu_{\leq G}(\mathbf{1}, N) Y_{(N \times \mathbf{1})L} .$$

This is non zero if and only if $k_1(L) \cap \Phi(G) = 1$. Similarly

$$Y_L \varphi_{\mathbf{1}}^G = \sum_{\substack{N \leq G \\ N \leq \Phi(G)}} \mu_{\leq G}(\mathbf{1}, N) Y_{L(\mathbf{1} \times N)} ,$$

and $Y_L \varphi_1^G \neq 0$ if and only if $k_2(L) \cap \Phi(G) = 1$.

2. The elements $\varphi_1^G Y_L$ (resp. $Y_L \varphi_1^G$), when L runs through a set of representatives of conjugacy classes of elements of $\Sigma(G, G)$ such that $k_1(L) \cap \Phi(G) = \mathbf{1}$ (resp $k_2(L) \cap \Phi(G) = \mathbf{1}$), form an R-basis of the right ideal $\varphi_1^G \mathcal{E}(G)$ (resp. the left ideal $\mathcal{E}(G)\varphi_1^G$) of $\mathcal{E}(G)$.

Proof: Let $L \in \Sigma(G, G)$. By Proposition 3.8, we have

$$\begin{split} \varphi_{\mathbf{1}}^G Y_L &= \widetilde{e_G^G} \times_G \bigg(\sum_{\substack{N \, \trianglelefteq \, G \\ N \leq \widetilde{\Phi}(G)}} \mu_{\trianglelefteq G}(\mathbf{1}, N) [(G \times G)/\Delta_N(G)] \bigg) \times_G [(G \times G)/L] \times_G \widetilde{e_G^G} \\ &= \widetilde{e_G^G} \times_G \bigg(\sum_{\substack{N \, \trianglelefteq \, G \\ N \leq \widetilde{\Phi}(G)}} \mu_{\trianglelefteq G}(\mathbf{1}, N) [(G \times G)/\Delta_N(G) * L] \bigg) \times_G \widetilde{e_G^G} \\ &= \widetilde{e_G^G} \times_G \bigg(\sum_{\substack{N \, \trianglelefteq \, G \\ N \leq \widetilde{\Phi}(G)}} \mu_{\trianglelefteq G}(\mathbf{1}, N) [(G \times G)/(N \times \mathbf{1}) L] \bigg) \times_G \widetilde{e_G^G} \ . \end{split}$$

$$&= \sum_{\substack{N \, \trianglelefteq \, G \\ N \leq \widetilde{\Phi}(G)}} \mu_{\trianglelefteq G}(\mathbf{1}, N) Y_{(N \times \mathbf{1}) L} \ . \end{split}$$

Set $M = k_1(L) \cap \Phi(G)$. Then $M \subseteq G$, and $(N \times 1)L = (NM \times 1)L$ for any

normal subgroup N of G contained in $\varphi(G)$. Thus

(3.10)
$$\varphi_{\mathbf{1}}^{G}Y_{L} = \sum_{\substack{P \leq G \\ M < P \leq \Phi(G)}} \left(\sum_{\substack{N \leq G \\ NM = P}} \mu_{\leq G}(\mathbf{1}, N) \right) Y_{(P \times \mathbf{1})L} .$$

If
$$M \neq \mathbf{1}$$
, then $\left(\sum_{\substack{N \leq G \\ NM = P}} \mu_{\leq G}(\mathbf{1}, N)\right) = 0$ for any $P \subseteq G$ with $M \leq P \leq \Phi(G)$.

Hence $\varphi_1^G Y_L = 0$ in this case. And if M = 1, Equation (3.10) reads

$$\varphi_{\mathbf{1}}^{G} Y_{L} = \sum_{\substack{P \leq G \\ P \leq \overline{\Phi}(G)}} \mu_{\leq G}(\mathbf{1}, P) Y_{(P \times \mathbf{1})L} .$$

The element $Y_{(P\times 1)L}$ is equal to Y_L if and only if $(P\times 1)L$ is conjugate to L. This implies that $k_1((P\times 1)L)$ is conjugate to (hence equal to) $k_1(L)$. Thus $P \leq k_1((P\times 1)L) \leq k_1(L) \cap \Phi(G)$, hence P = 1. So the coefficient of Y_L in $\varphi_1^G Y_L$ is equal to 1, hence $\varphi_1^G Y_L \neq 0$. The remaining statements of Assertion 1 follow by taking opposite bisets.

Assertion 2 follows from Proposition 3.2, and from the fact that the coefficient of Y_L in $\varphi_1^G Y_L$ is equal to 1 when $k_1(L) \cap \Phi(G) = \mathbf{1}$.

3.11. Corollary: Let G be a finite group of order invertible in R. If every minimal (non-trivial) normal subgroup of G is contained in $\Phi(G)$, then φ_1^G is central in $\mathcal{E}(G)$, and the algebra $\varphi_1^G \mathcal{E}(G)$ is isomorphic to ROut(G).

Proof: Indeed if $L \in \Sigma(L, L)$ and $\varphi_1^G Y_L \neq 0$, then $k_1(L) \cap \Phi(G) = \mathbf{1}$. It follows that $k_1(L)$ contains no minimal normal subgroup of G, and then $k_1(L) = \mathbf{1}$. Equivalently $q(L) \cong p_1(L)/k_1(L) \cong G \cong p_2(L)/k_2(L)$, i.e. $k_2(L) = G$ also, or equivalently $k_2(L) \cap \Phi(G) = \mathbf{1}$. Hence $\varphi_1^G Y_L \neq 0$ if and only if $Y_L \varphi_1^G \neq 0$, and in this case, there exists an automorphism θ of G such that

$$L = \Delta_{\theta}(G) = \{ (\theta(x), x) \mid x \in G \} .$$

In this case for any normal subgroup N of G contained in $\Phi(G)$

$$(N \times \mathbf{1})L = \{(a,b) \in G \times G \mid a\theta(b)^{-1} \in N\}$$
$$= \{(a,b) \in G \times G \mid a^{-1}\theta(b) \in N\}$$
$$= L(\mathbf{1} \times \theta^{-1}(N)).$$

Now $N \mapsto \theta^{-1}(N)$ is a permutation of the set of normal subgroups of G contained in $\Phi(G)$. Moreover $\mu_{\triangleleft G}(\mathbf{1}, N) = \mu_{\triangleleft G}(\mathbf{1}, \theta^{-1}(N))$.

It follows that $\varphi_1^G Y_L = Y_L \varphi_1^G$, so φ_1^G is central in $\mathcal{E}(G)$. Moreover the map $\theta \in \operatorname{Aut}(G) \mapsto \varphi_1^G Y_{\Delta_{\theta}(G)}$ clearly induces an algebra isomorphism $R\operatorname{Out}(G) \to \varphi_1^G \mathcal{E}(G)$.

3.12. Theorem: Let G be a finite group with order invertible in R. If G is nilpotent, then φ_1^G is a central idempotent of $\mathcal{E}(G)$.

Proof : Let $L \in \Sigma(G, G)$. Setting Q = q(L), there are two surjective group homomorphisms $s, t : G \to Q$ such that $L = \{(x, y) \in G \times G \mid s(x) = t(y)\}$. Then $k_1(L) = \text{Ker } s$ and $k_2(L) = \text{Ker } t$. Now by Proposition 3.9

$$\varphi_{\mathbf{1}}^{G} Y_{L} = \sum_{\substack{N \leq G \\ N < \Phi(G)}} \mu_{\leq G}(\mathbf{1}, N) Y_{(N \times \mathbf{1})L} ,$$

and this is non zero if and only if $\operatorname{Ker} s \cap \Phi(G) = 1$. Now $s(\Phi(G))$ is equal to $\Phi(Q)$ since G is nilpotent: indeed $G = \prod_p G_p$ (resp. $Q = \prod_p Q_p$) is the direct product of its p-Sylow subgroups G_p (resp. Q_p), and s induces a surjective group homomorphism $G_p \to Q_p$, for any prime p. Moreover $\Phi(G) = \prod_p \Phi(G_p)$ (resp. $\Phi(Q) = \prod_p \Phi(Q_p)$). Finally $\Phi(G_p)$ is the subgroup of G_p generated by commutators and p-powers of elements of G_p , hence it maps by s onto the subgroup of Q_p generated by commutators and p-powers of elements of Q_p , that is $\Phi(Q_p)$. Similarly $t(\Phi(G)) = \Phi(Q)$.

If $\operatorname{Ker} s \cap \Phi(G) = \mathbf{1}$, it follows that s induces an isomorphism from $\Phi(G)$ to $\Phi(Q)$. Then the surjective homomorphism $\Phi(G) \to \Phi(Q)$ induced by t is also an isomorphism, and in particular $\operatorname{Ker} t \cap \Phi(G) = \mathbf{1}$.

Let $D = L \cap (\Phi(G) \times \Phi(G))$. Then $k_1(D) \subseteq k_1(L) \cap \Phi(G) = \operatorname{Ker} s \cap \Phi(G)$, hence $k_1(D) = \mathbf{1}$. Similarly $k_2(L) \subseteq k_2(L) \cap \Phi(G) = \operatorname{Ker} t \cap \Phi(G) = \mathbf{1}$, hence $k_2(D) = \mathbf{1}$. Since $s(\Phi(G)) = \Phi(Q) = t(\Phi(G))$, we have moreover $p_1(D) = \Phi(G) = p_2(D)$. It follows that there is an automorphism α of $\Phi(G)$ such that $D = \{(x, \alpha(x)) \mid x \in \Phi(G)\}$.

Moreover for any $y \in G$, there exists $z \in G$ such that $(y, z) \in L$. It follows that $(x^y, \alpha(x)^z) \in D$ for any $x \in \Phi(G)$, that is $\alpha(x^y) = \alpha(x)^z$. In particular if N is a normal subgroup of G contained in $\Phi(G)$, then so is $\alpha(N)$. Hence α induces an automorphism of the poset of normal subgroups of G contained in $\Phi(G)$. In particular $\mu_{\leq G}(\mathbf{1}, N) = \mu_{\leq G}(\mathbf{1}, \alpha(N))$.

Moreover for $n \in N$ and $(y, z) \in L$, we have

$$(n,1)(y,z) = (y,z)(n^y,1) = (y,z)(n^y,\alpha(n^y))(1,\alpha(n^y)^{-1})$$
.

Since $(n^y, \alpha(n^y)) \in D \leq L$, we have $(N \times \mathbf{1})L = L(\mathbf{1} \times \alpha(N))$. It follows

that

$$\varphi_{\mathbf{1}}^{G}Y_{L} = \sum_{\substack{N \leq G \\ N \leq \Phi(G)}} \mu_{\leq G}(\mathbf{1}, N)Y_{(N \times \mathbf{1})L} = \sum_{\substack{N \leq G \\ N \leq \Phi(G)}} \mu_{\leq G}(\mathbf{1}, N)Y_{L(\mathbf{1} \times \alpha(N))}$$

$$= \sum_{\substack{N \leq G \\ N \leq \Phi(G)}} \mu_{\leq G}(\mathbf{1}, \alpha(N))Y_{L(\mathbf{1} \times \alpha(N))} = \sum_{\substack{N \leq G \\ N \leq \Phi(G)}} \mu_{\leq G}(\mathbf{1}, N)Y_{L(\mathbf{1} \times N)}$$

$$= Y_{L}\varphi_{\mathbf{1}}^{G},$$

as was to be shown.

3.13. Remark: When G is not nilpotent, it is not true in general that φ_1^G is central in $\mathcal{E}(G)$. This is because $t(\Phi(G))$ need not be equal to $\Phi(Q)$ for a surjective group homomorphism $t:G\to Q$. For example, there is a surjection t from the group $G=C_4\times (C_5\rtimes C_4)$ to $Q=C_4$ with kernel $C_4\times C_5$ containing $\Phi(G)=C_2\times \mathbf{1}$, and another surjection $s:G\to Q$ with kernel $\mathbf{1}\times (C_5\rtimes C_4)$ intersecting trivially $\Phi(G)$. In this case, the group $L=\{(x,y)\in G\times G\mid s(x)=t(y)\}$ is in $\Sigma(G,G)$, and $k_1(L)\cap \Phi(G)=\mathbf{1}$, but $k_2(L)\cap \Phi(G)=\Phi(G)\neq \mathbf{1}$. By Proposition 3.9, we have $\varphi_1^GY_L\neq 0$ and $Y_L\varphi_1^G=0$, so φ_1^G is not central in $\mathcal{E}(G)$.

4. Idempotents in RB(G,G)

4.1. Definition: When G is a finite group, a section (T, S) of G is a pair of subgroups of G such that $S \subseteq T$.

A section (T, S) is called minimal (cf. [9]) if $S \leq \Phi(T)$. Let $\mathcal{M}(G)$ denote the set of minimal sections of G.

A group H is called a subquotient of G (notation $H \sqsubseteq G$) if there exists a section (T,S) of G such that $T/S \cong H$.

A section (T, S) is minimal if and only if the only subgroup H of T such that $H/(H \cap S) \cong T/S$ is T itself.

- **4.2. Notation:** Let G be a finite group, and let (T, S) be a section of G.
 - 1. Let $\operatorname{Indinf}_{T/S}^G \in B(G, T/S)$ denote (the isomorphism class of) the (G, T/S)-biset G/S, and let $\operatorname{Defres}_{T/S}^G \in B(T/S, G)$ denote (the isomorphism class of) the (T/S, G)-biset $S\backslash G$.
 - 2. Let R be a commutative ring in which the order of G is invertible. Let

 $u_{T,S}^G \in RB(G,T/S)$ be defined by

$$u_{T,S}^G = \operatorname{Indinf}_{T/S}^G \varphi_{\mathbf{1}}^{T/S}$$
,

and let $v_{T,S}^G \in RB(T/S,G)$ be defined by

$$v_{T,S}^G = \varphi_{\mathbf{1}}^{T/S} \text{Defres}_{T/S}^G$$
.

- **4.3. Remark:** Observe that $v_{T,S}^G = (u_{T,S}^G)^{op}$: indeed $(G/S)^{op} \cong S \backslash G$, and $(\varphi_1^{T/S})^{op} = \varphi_1^{T/S}$.
- **4.4. Theorem:** Let G be a finite group with order invertible in R.
 - 1. If (T,S) and (T',S') are minimal sections of G, then

$$v_{T',S'}^G u_{T,S}^G = 0$$

unless (T, S) and (T', S') are conjugate in G.

2. If (T, S) is a minimal section of G, then

$$v_{T,S}^G u_{T,S}^G = \varphi_1^{T/S} \left(\sum_{g \in N_G(T,S)/T} \operatorname{Iso}(c_g) \right) ,$$

where $N_G(T, S) = N_G(T) \cap N_G(S)$, and c_g is the automorphism of T/S induced by conjugation by g.

Proof: Indeed $(S' \setminus G) \times_G (G/S) \cong S' \setminus G/S$ as a (T'/S', T/S)-biset. Hence

$$v_{T',S'}^G u_{T,S}^G = \varphi_{\mathbf{1}}^{T'/S'} \Big(\sum_{g \in T' \backslash G/T} S' \backslash T'gT/S \Big) \varphi_{\mathbf{1}}^{T/S} .$$

For any $g \in G$, the (T'/S', T/S)-biset $S' \setminus T'gT/S$ is transitive, isomorphic to $((T'/S') \times (T/S))/L_g$, where

$$L_q = \{ (t'S', tS) \in (T'/S') \times (T/S) \mid t'gt^{-1} \in S'gS \}$$

Then $t'S' \in p_1(L_q)$ if and only if $t' \in S' \cdot gTg^{-1} \cap T'$. Hence

$$p_1(L_g) = ({}^gT \cap T')S'/S' .$$

Similarly $p_2(L_g) = (T'^g \cap T)S/S$. In particular $p_1(L_g) = T'/S'$ if and only if $(^gT \cap T')S' = T'$, i.e. $^gT \cap T' = T'$, since $S' \leq \Phi(T')$. Thus $p_1(L_g) = T'/S'$

if and only if $T' \leq {}^gT$. Similarly $p_2(L_q) = T/S$ if and only if $T \leq T'^g$. By Theorem 3.8, it follows that $\varphi_{\mathbf{1}}^{T'/S'}(S'\backslash T'gT/S)\varphi_{\mathbf{1}}^{T/S}=0$ unless $T'={}^gT$. Assume now that $T'={}^gT$. Then $t'S'\in k_1(L_G)$ if and only if t' lies in

 $S' \cdot qSq^{-1} \cap T'$. Hence

$$k_1(L_g) = ({}^gS \cap T')S'/S' ,$$

and similarly $k_2(L_g) = (S'^g \cap T)S/S$. But since $S \leq \Phi(T)$ and $S \subseteq T$, it follows that $gS \leq gT = T'$ and $gS' \leq g\Phi(T) = \Phi(T')$. Hence $gS \cdot S'/S'$ is contained in $k_1(L_g) \cap \Phi(T')/S'$. Moreover $\Phi(T')/S' = \Phi(T'/S')$, as

$$\Phi(T'/S') = \bigcap_{S' \leq M' < T'} (M'/S') = \bigcap_{M' < T'} (M'/S') = (\bigcap_{M' < T'} M')/S' = \Phi(T')/S' \ ,$$

where M' runs through maximal subgroups of T', which all contain S' since $S' < \Phi(T')$.

It follows that if $k_1(L_q) \cap \Phi(T'/S') = 1$, then ${}^gS \cdot S' = S'$, that is ${}^gS \leq S'$. Similarly if $k_2(L_g) \cap \Phi(T/S) = 1$, then $S'^g \leq S$. By Theorem 3.8, it follows that $\varphi_1^{T'/S'}(S' \setminus T'gT/S)\varphi_1^{T/S} = 0$ unless $T' = {}^gT$ and $S' = {}^gS$. This proves Assertion 1.

For Assertion 2, the same computation shows that

$$v_{T,S}^G u_{T,S}^G = \sum_{g \in N_G(T,S)/T} \varphi_{\mathbf{1}}^{T/S} (S \backslash TgT/S) \varphi_{\mathbf{1}}^{T/S} .$$

But $S \setminus TgT/S = gT/S$ if $g \in N_G(T,S)$, and this (T/S,T/S)-biset is isomorphic to Iso (c_q) . Assertion 2 follows, since moreover $\varphi_1^{T/S}$ commutes with any biset of the form $Iso(\theta)$, where θ is an automorphism of T/S.

4.5. Notation: For a minimal section
$$(T,S)$$
 of the group G , set
$$\epsilon_{T,S}^G = \frac{1}{|N_G(T,S):T|} u_{T,S}^G v_{T,S}^G = \frac{1}{|N_G(T,S):T|} \mathrm{Indinf}_{T/S}^G \varphi_{\mathbf{1}}^G \mathrm{Defres}_{T/S}^G \in RB(G,G) \ .$$

Note that $\epsilon_{T,S}^G = \epsilon_{g_{T,g_S}}^G$ for any $g \in G$, and that $\epsilon_{G,N}^G = \varphi_N^G$ when $N \subseteq G$ and $N \leq \Phi(G)$, by Proposition 3.5.

6. Proposition: Let (T, S) be a minimal section of G. Then

Proof: This is a straightforward consequence of the above definition of $\epsilon_{T,S}^G$, and from Assertion 2 of Proposition 3.6.

4.7. Theorem: Let G be a finite group with order invertible in R, let $[\mathcal{M}(G)]$ be a set of representatives of conjugacy classes of minimal sections of G. Then the elements $\epsilon_{T,S}^G$, for $(T,S) \in [\mathcal{M}(G)]$, are orthogonal idempotents of RB(G,G), and their sum is equal to the identity element of RB(G,G).

Proof: Let (T, S) and (T', S') be distinct elements of $[\mathcal{M}(G)]$. Then

$$\epsilon^G_{T',S'} \epsilon^G_{T,S} = \tfrac{1}{|N_G(T',S'):T'|} \tfrac{1}{|N_G(T,S):T|} u^G_{T',S'} v^G_{T',S'} u^G_{T,S} v^G_{T,S} = 0 \ ,$$

since $v_{T',S'}^G u_{T,S}^G = 0$ by Theorem 4.4. Moreover:

$$\begin{split} \sum_{(T,S)\in[\mathcal{M}(G)]} \epsilon_{T,S}^G &= \sum_{(T,S)\in[\mathcal{M}(G)]} \frac{1}{|N_G(T,S):T|} u_{T,S}^G v_{T,S}^G \\ &= \sum_{(T,S)\in\mathcal{M}(G)} \frac{1}{|G:T|} u_{T,S}^G v_{T,S}^G \\ &= \sum_{(T,S)\in\mathcal{M}(G)} \frac{1}{|G:T|} \mathrm{Indinf}_{T/S}^G \varphi_{\mathbf{1}}^{T/S} \mathrm{Defres}_{T/S}^G \end{split}$$

Now $\varphi_1^{T/S} = \widetilde{e_{T/S}^{T/S}} f_{T/S}$ by Proposition 3.6, where

$$f_{T/S} = \sum_{\substack{N/S \leq (T/S) \\ N/S < \Phi(T/S)}} \mu_{\leq G}(\mathbf{1}, N/S) [((T/S) \times (T/S))/\Delta_{N/S}(T/S)].$$

Hence $\varphi_{\mathbf{1}}^{T/S} = \widetilde{e_{T/S}^{T/S}} \mathrm{Def}_{T/S}^T \mathrm{Inf}_{T/S}^T f_{T/S}$, and

$$\sum_{(T,S)\in[\mathcal{M}(G)]} \epsilon_{T,S}^G = \sum_{(T,S)\in\mathcal{M}(G)} \tfrac{1}{|G:T|} \mathrm{Ind}_T^G \mathrm{Inf}_{T/S}^T \widetilde{e_{T/S}^{T/S}} \mathrm{Def}_{T/S}^T \mathrm{Inf}_{T/S}^T f_{T/S} \mathrm{Def}_{T/S}^T \mathrm{Res}_T^G \ .$$

Now $\operatorname{Inf}_{T/S}^T \widetilde{e_{T/S}^{T/S}} \operatorname{Def}_{T/S}^T = \operatorname{Inf}_{T/S}^T e_{T/S}^{T/S}$, and $\operatorname{Inf}_{T/S}^T e_{T/S}^{T/S}$ is equal to the sum over subgroups X or T such that XS = T, up to conjugation, of the idempotents e_X^T . Since $S \leq \Phi(T)$, the only subgroup X of T such that XS = T is T itself. Hence

$$\operatorname{Inf}_{T/S}^T \widetilde{e_{T/S}^{T/S}} \operatorname{Def}_{T/S}^T = \widetilde{e_T^T}$$
.

On the other hand

$$\operatorname{Inf}_{T/S}^{T}[((T/S)\times (T/S))/\Delta_{N/S}(T/S)]\operatorname{Def}_{T/S}^{T}=[(T\times T)/\Delta_{N}(T)].$$

It follows that the sum $\Sigma = \sum_{(T,S) \in [\mathcal{M}(G)]} \epsilon_{T,S}^G$ is equal to

$$\begin{split} \Sigma &= \sum_{(T,S)\in\mathcal{M}(G)} \frac{1}{|G:T|} \mathrm{Ind}_T^G \widetilde{e_T}^T \sum_{\substack{N \leq T \\ S \leq N \leq \Phi(T)}} \mu_{\leq T}(S,N) [(T \times T)/\Delta_N(T)] \mathrm{Res}_T^G \\ &= \sum_{(T,S)\in\mathcal{M}(G)} \frac{1}{|G:T|} \mathrm{Ind}_T^G \widetilde{e_T}^T \varphi_S^T \mathrm{Res}_T^G \text{ [by definition of } \varphi_S^T] \\ &= \sum_{T \leq G} \frac{1}{|G:T|} \mathrm{Ind}_T^G \widetilde{e_T}^T \sum_{\substack{S \leq T \\ S \leq \Phi(T)}} \varphi_S^T \mathrm{Res}_T^G \\ &= \sum_{T \leq G} \frac{1}{|G:T|} \mathrm{Ind}_T^G \widetilde{e_T}^T \mathrm{Res}_T^G \text{ [by Theorem 3.8]} \\ &= \sum_{T \leq G} \frac{1}{|G:N_G(T)|} \widetilde{\mathrm{Ind}_T^G} \widetilde{e_T}^T \text{ [by Lemma 2.10]} \\ &= \sum_{T \leq G} \frac{1}{|G:N_G(T)|} \widetilde{e_T}^G \text{ [by (2.12)]} \\ &= \sum_{T \leq G} \widetilde{e_T^G} = \widetilde{G/G} = [(G \times G)/\Delta(G)] \text{ .} \end{split}$$

So the sum Σ is equal to the identity of RB(G,G). Since $\epsilon_{T,S}^G \epsilon_{T',S'}^G = 0$ if (T,S) and (T',S') are distinct elements of $[\mathcal{M}(G)]$, it follows that for any $(T,S) \in [\mathcal{M}(G)]$

$$\epsilon_{T,S}^G = \epsilon_{T,S}^G \Sigma = (\epsilon_{T,S}^G)^2 ,$$

which completes the proof of the theorem.

5. Application to biset functors

5.1. Notation: Let F be a biset functor over R. When G is a finite group with order invertible in R, we set

$$\delta_{\Phi}F(G) = \varphi_{\mathbf{1}}^GF(G)$$

5.2. Proposition: Let F be a biset functor over R. Then for any finite group G with order invertible in R, the R-submodule $\delta_{\Phi}F(G)$ of F(G) is the set of elements $u \in F(G)$ such that

$$\begin{cases} \operatorname{Res}_{H}^{G} u = 0 & \forall H < G \\ \operatorname{Def}_{G/N}^{G} u = 0 & \forall N \leq G, \ N \cap \Phi(G) \neq \mathbf{1} \end{cases}$$

Proof: If $u \in \delta_{\Phi}F(G) = \varphi_{\mathbf{1}}^{G}F(G)$, then $\operatorname{Res}_{H}^{G}u = 0$ for any proper subgroup H of G, and $\operatorname{Def}_{G/N}^{G}u = 0$ for any $N \subseteq G$ such that $N \cap \Phi(G) \neq \mathbf{1}$, by Corollary 3.7.

Conversely, if $u \in F(G)$ fulfills the two conditions of the proposition, then $\widetilde{e_G^G}u = u$, because $\widetilde{e_G^G}$ is equal to the identity element $[(G \times G)/\Delta(G)]$ of RB(G,G), plus a linear combination of elements of the form $[(G \times G)/\Delta(H)] = \operatorname{Ind}_H^G \circ \operatorname{Res}_H^G$, for proper subgroups H of G. Similarly $\operatorname{Inf}_{G/N}^G \operatorname{Def}_{G/N}^G u = 0$ for any non-trivial normal subgroup of G contained in $\Phi(G)$, thus $\varphi_1^G u = u$. \square

- **5.3. Remark:** Since $\operatorname{Def}_{G/N}^G = \operatorname{Def}_{G/N}^{G/M} \circ \operatorname{Def}_{G/M}^G$, where $M = N \cap \Phi(G)$, saying that $\operatorname{Def}_{G/N}^G u = 0$ for any $N \subseteq G$ with $N \cap \Phi(G) \neq \mathbf{1}$ is equivalent to saying that $\operatorname{Def}_{G/N}^G u = 0$ for any non trivial normal subgroup N of G contained in $\Phi(G)$.
- **5.4. Theorem:** Let F be a biset functor over R. Then for any finite group G with order invertible in R, the maps

$$F(G) \xrightarrow{} \bigoplus_{(T,S) \in [\mathcal{M}(G)]} \left(\delta_{\Phi} F(T/S) \right)^{N_G(T,S)/T}$$

$$w \longmapsto^{V} \bigoplus_{(T,S)} \frac{1}{|N_G(T,S):T|} v_{T,S}^G w$$

$$\sum_{(T,S)} u_{T,S}^G w_{T,S} \xleftarrow{U} \bigoplus_{(T,S)} w_{T,S}$$

are well defined isomorphisms of R-modules, inverse to one other.

Proof: We have first to check that if $w \in F(G)$, then the element $v_{T,S}^G w$ of $\varphi_1^{T/S} F(T/S) = \delta_{\Phi} F(T/S)$ is invariant under the action of $N_G(T,S)/T$. But for any $g \in N_G(T/S)$

$$\operatorname{Iso}(c_g)v_{T,S}^G = v_{g_{T,g}S}^G \operatorname{Iso}(c_g) = v_{T,S}^G \operatorname{Iso}(c_g) ,$$

where $\text{Iso}(c_g): F(G) \to F(G)$ on the right hand side is conjugation by g, that is an inner automorphism, hence the identity map, for $g \in G$.

Now for $w \in F(G)$

$$UV(w) = \sum_{\substack{(T,S)\in[\mathcal{M}(G)]}} \frac{1}{|N_G(T,S):T|} u_{T,S}^G v_{T,S}^G w$$
$$= \sum_{\substack{(T,S)\in[\mathcal{M}(G)]}} \epsilon_{T,S}^G w = w ,$$

so UV is the identity map of F(G).

Conversely, if $w_{T,S} \in \left(\delta_{\Phi}F(T/S)\right)^{N_G(T,S)/T}$, for $(T,S) \in [\mathcal{M}(G)]$, then

$$VU\left(\bigoplus_{(T,S)\in[\mathcal{M}(G)]} w_{T,S}\right) = \bigoplus_{(T,S)\in[\mathcal{M}(G)]} \sum_{(T',S')\in[\mathcal{M}(G)]} \frac{1}{|N_G(T,S):T|} v_{T,S}^G u_{T',S'}^G w_{T',S'}$$

$$= \bigoplus_{(T,S)\in[\mathcal{M}(G)]} \frac{1}{|N_G(T,S):T|} v_{T,S}^G u_{T,S}^G w_{T,S}$$

$$= \bigoplus_{(T,S)\in[\mathcal{M}(G)]} \frac{1}{|N_G(T,S):T|} \sum_{g\in N_G(T,S)/T} \operatorname{Iso}(c_g) w_{T,S}$$

$$= \bigoplus_{(T,S)\in[\mathcal{M}(G)]} w_{T,S} ,$$

so VU is also equal to the identity map.

6. Atoric p-groups

For the remainder of the paper, we denote by p a (fixed) prime number.

6.1. Notation and Definition:

- If P is a finite p-group, let $\Omega_1 P$ denote the subgroup of P generated by the elements of order p.
- A finite p-group P is called atoric if it does not admit any decomposition $P = E \times Q$, where E is a non-trivial elementary abelian p-group. Let $\mathcal{A}t_p$ denote the class of atoric p-groups, and let $[\mathcal{A}t_p]$ denote a set of representatives of isomorphism classes in $\mathcal{A}t_p$.

The terminology "atoric" is inspired by [14], where elementary abelian p-groups are called p-tori. Atoric p-groups have been considered (without naming them) in [6], Example 5.8.

6.2. Lemma: Let P be a finite p-group, and N be a normal subgroup of P. The following conditions are equivalent:

- 1. $N \cap \Phi(P) = 1$
- 2. N is elementary abelian and central in P, and admits a complement in P.
- 3. N is elementary abelian and there exists a subgroup Q of P such that $P = N \times Q$.

Proof:

 $\boxed{1 \Rightarrow 3}$ Let $N \triangleleft P$ with $N \cap \Phi(P) = \mathbf{1}$. Then N maps injectively in the elementary abelian p-group $P/\Phi(P)$, so N is elementary abelian. Let $Q/\Phi(P)$ be a complement of $N\Phi(P)/\Phi(P)$ in $P/\Phi(P)$. Then $Q \geq \Phi(P) \geq [P,P]$, so Q is normal in P. Moreover $Q \cdot N = P$ and $Q \cap N\Phi(P) = (Q \cap N)\Phi(P) = \Phi(P)$, thus $Q \cap N \leq \Phi(P) \cap N = \mathbf{1}$. Now N and Q are normal subgroups of P which intersect trivially, hence they centralize each other. It follows that $P = N \times Q$.

 $\boxed{3 \Rightarrow 2}$ This is clear.

 $2 \Rightarrow 1$ If $P = N \cdot Q$ for some subgroup Q of P, and if N is central in P, then $P = N \times Q$. Thus $\Phi(P) = \mathbf{1} \times \Phi(Q)$, as N is elementary abelian. Then $N \cap \Phi(P) \leq N \cap Q = \mathbf{1}$.

- **6.3. Lemma:** Let P be a finite p-group. The following conditions are equivalent:
 - 1. P is atoric.
 - 2. If $N \subseteq P$ and $N \cap \Phi(P) = 1$, then N = 1.
 - 3. $\Omega_1 Z(P) \leq \Phi(P)$.

Proof:

 $\boxed{1\Rightarrow 2}$ Suppose that P is atoric. Let $N \unlhd P$ with $N \cap \Phi(P) = \mathbf{1}$. Then by Lemma 6.2, the group N is elementary abelian and there exists a subgroup Q of P such that $P = N \times Q$. Hence $N = \mathbf{1}$.

 $2 \Rightarrow 3$ Suppose now that Assertion 2 holds. If x is a central element of order p of P, then the subgroup N of P generated by x is normal in P, and non trivial. Then $N \cap \Phi(P) \neq \mathbf{1}$, hence $N \leq \Phi(P)$ since N has order p, thus $x \in \Phi(P)$.

 $\boxed{3 \Rightarrow 1}$ Finally, if Assertion 3 holds, and if $P = E \times Q$ for some subgroups E and Q of P with E elementary abelian, then $\Phi(P) = \mathbf{1} \times \Phi(Q)$. Moreover $E \leq \Omega_1 Z(P) \leq \Phi(P) \leq Q$, so $E = E \cap Q = \mathbf{1}$, and P is atoric.

- **6.4. Proposition:** Let P be a finite p-group, and N be a maximal normal subgroup of P such that $N \cap \Phi(P) = 1$. Then:
 - 1. The group N is elementary abelian and there exists a subgroup T of P such that $P = N \times T$.
 - 2. The group $P/N \cong T$ is atoric.
 - 3. If Q is an atoric p-group and $s: P \rightarrow Q$ is a surjective group homomorphism, then s(T) = Q. In particular Q is isomorphic to a quotient of T.

Proof: (1) This follows from Lemma 6.2.

- (2) By (1), there exists $T \leq P$ such that $P = N \times T$. In particular $P/N \cong T$. Now if $T = E \times S$, for some subgroups E and S of T with E elementary abelian, then $P \cong P_1 = (N \times E) \times S$, and $N \times E$ is an elementary abelian normal subgroup of P_1 which intersects trivially $\Phi(P_1) = \Phi(S)$. By maximality of N, it follows that $E = \mathbf{1}$, so $T \cong P/N$ is atoric.
- (3) Let $s: P \to Q$ be a surjective group homomorphism, where Q is atoric. By (1), the group N is elementary abelian, and there exists a subgroup T of P such that $P = N \times T$. Then $T \cong P^{@}$, and $\Phi(P) = \Phi(T)$. Moreover $s(\Phi(P)) = \Phi(Q)$ as P is a p-group, and $s(Z(P)) \leq Z(Q)$ as s is surjective. It follows that s(N) is an elementary abelian central subgroup of Q, so $s(N) \leq \Phi(Q)$ since Q is atoric, by Lemma 6.3. Now s(P) = Q = s(N)s(T), thus $Q = \Phi(Q)s(T)$, and s(T) = Q, as was to be shown.
- **6.5. Notation:** When P is a finite p-group, and N is a maximal normal subgroup of P such that $N \cap \Phi(P) = 1$, we set $P^{@} = P/N$.

By Proposition 6.4, the group $P^{@}$ does not depend on the choice of N, up to isomorphism: it is the greatest atoric quotient of P, in the sense that any atoric quotient of P is isomorphic to a quotient of $P^{@}$. In particular $P^{@}$ is trivial if and only if P is elementary abelian.

6.6. Proposition: Let $s: P \to Q$ be a surjective group homomorphism. Then $P^{@} \cong Q^{@}$ if and only if $\operatorname{Ker}(s) \cap \Phi(P) = \mathbf{1}$.

Proof: Let E be a maximal normal subgroup of P such that $E \cap \Phi(P) = 1$, and T be a subgroup of P such that $P = E \times T$. Then E is elementary abelian, and $\Phi(P) = \Phi(T)$. Let $\pi: Q \to Q^{@}$ be the canonical projection. By definition, we have $T \cong P^{@}$, and by Proposition 6.4, we have $\pi \circ s(T) = Q^{@}$.

Hence $Q^{@}$ is a quotient of $P^{@}$, and $P^{@} \cong Q^{@}$ if and only if the map $\pi \circ s$ induces an isomorphism from T to $Q^{@}$, that is if $\operatorname{Ker}(\pi \circ s) \cap T = \mathbf{1}$. This implies $\operatorname{Ker}(s) \cap T = \mathbf{1}$, hence $\operatorname{Ker}(s) \cap \Phi(P) = \mathbf{1}$.

Conversely, if $\operatorname{Ker}(s) \cap \Phi(P) = \mathbf{1}$, then $\operatorname{Ker}(s) \cap \Phi(T) = \mathbf{1}$. Now the group $M = \operatorname{Ker}(s) \cap T$ is a normal subgroup of T such that $M \cap \Phi(T) = \mathbf{1}$. Since T is atoric, it follows from Lemma 6.3 that $M = \mathbf{1}$, hence $s(T) \cong T$. Now Q = s(E)s(T), and s(E) is a central elementary abelian subgroup of Q, since s is surjective. Let F be a complement of $G = s(E) \cap s(T)$ in s(E). Then $Q = (F \cdot G)s(T) = F \cdot s(T)$, thus $Q = F \times s(T)$ since F is central in Q. It follows that s(T) is a quotient of Q. Since $s(T) \cong T \cong P^{@}$ is atoric, the group $P^{@}$ is isomorphic to a quotient of $Q^{@}$, thus $P^{@} \cong Q^{@}$.

6.7. Proposition: Let P be a finite p-group, and Q be a subquotient of P. Then $Q^{@}$ is a subquotient of $P^{@}$.

Proof: Let (V, U) be a section of P such that $V/U \cong Q$. Then $Q^{@}$ is isomorphic to a quotient of $V^{@}$, by Lemma 6.4. Hence it suffices to prove that $V^{@}$ is a subquotient of $P^{@}$.

Let E be a maximal normal subgroup of P such that $E \cap \Phi(P) = \mathbf{1}$, and T be a subgroup of P such that $P = E \times T$. Then $V \leq E \times T$, so there exist a subgroup F of E, a subgroup X of T, a group Y, and surjective group homomorphisms $\alpha : F \to Y$ and $\beta : X \to Y$ such that

$$V = \{(f,x) \in F \times X \mid \alpha(f) = \beta(x)\} .$$

Now $F \leq E$ is elementary abelian. If $(f, x), (f', x') \in V$, then [(f, x), (f', x')] = (1, [x, x']), so $[V, V] \leq \mathbf{1} \times [X, X]$. Conversely if $x, x' \in X$, then there exist $f, f' \in F$ such that $\alpha(f) = \beta(x)$ and $\alpha(f') = \beta(x')$, i.e. $(f, x), (f', x') \in V$. Then [(f, x), (f', x')] = (1, [x, x']), and it follows that $[V, V] = \mathbf{1} \times [X, X]$. Similarly, if $(f, x) \in V$, then $(f, x)^p = (1, x^p)$. Conversely, if $x \in X$, then there exists $f \in F$ such that $\alpha(f) = \beta(x)$, i.e. $(f, x) \in V$, and $(1, x^p) = (f, x)^p$. It follows that $\Phi(V) = \mathbf{1} \times \Phi(X)$.

Now $N = \operatorname{Ker}(\alpha) \times \mathbf{1}$ is a normal subgroup of V, and $N \cap \Phi(V) = \mathbf{1}$. By Proposition 6.6, it follows that $V^@ \cong (V/N)^@$. Moreover the group homomorphism $(f,x) \in V \mapsto x \in X$ is surjective with kernel N, hence $V/N \cong X$. It follows that $V^@ \cong X^@$ is a isomorphic to a quotient of the subgroup X of $T \cong P^@$. Hence $V^@$ is a subquotient of $P^@$, as was to be shown.

6.8. Proposition: Let P be a finite p-group, let N be a normal subgroup of P such that $P/N \cong P^{@}$, and let Q be a subgroup of P. The following are

equivalent:

- 1. $Q^{@} \cong P^{@}$.
- 2. QN = P.
- 3. There exists a central elementary abelian subgroup E of P such that P = EQ.
- 4. There exists an elementary abelian subgroup E of P such that $P = E \times Q$.

Proof: $\boxed{1\Rightarrow 2}$ Suppose $Q^@\cong P^@$. We have $N\cap\Phi(T)=\mathbf{1}$, by Proposition 6.6. Moreover $\Phi(Q)\leq\Phi(P)$, as P is a p-group. Setting $M=N\cap Q$, we have $M\cap\Phi(Q)=\mathbf{1}$, so $(Q/M)^@\cong Q^@\cong P^@$. But $\overline{Q}=Q/M\cong QN/N$ is a subgroup of $P/N\cong P^@$, and moreover there exists an elementary abelian subgroup E of \overline{Q} such that $\overline{Q}\cong E\times \overline{Q}^@\cong E\times P^@$. Hence $E=\mathbf{1}$ and $\overline{Q}\cong QN/N\cong P/N$, so QN=P, as was to be shown.

 $2 \Rightarrow 3$ We have $N \cap \Phi(P) = 1$, by Proposition 6.6. Hence N is elementary abelian, and central in P, and 2 implies 3.

 $2 \Rightarrow 3$ Let E be an elementary abelian central subgroup of P such that P = EQ. Let F be a complement of $E \cap Q$ in E. Then F is elementary abelian and central in P. Moreover QF = QE = P, and $Q \cap F = 1$. Hence $P = F \times Q$.

 $\boxed{4 \Rightarrow 1}$ If $P = E \times Q$ and E is elementary abelian, then $\Phi(P) = \mathbf{1} \times \Phi(Q)$. Thus $E \cap \Phi(P) = \mathbf{1}$, so $(P/E)^{@} \cong P^{@}$ by Proposition 6.6, and $Q^{@} \cong P^{@}$. \square

6.9. Proposition:

1. Let L be an atoric p-group, let $P = E \times L$ and $Q = F \times L$, where E and F are elementary abelian p-groups, and let $s: P \to Q$ be a group homomorphism. Then s is surjective if and only if there exist a surjective group homomorphism $a: E \to F$, group homomorphisms $b: L \to F$ and $c: E \to \Omega_1 Z(L)$, and an automorphism d of L such that

$$\forall (e,l) \in E \times L, \quad s(e,l) = (a(e)b(l), c(e)d(l)).$$

Moreover in this case $b \circ c(e) = 1$ for any $e \in E$, and s is an isomorphism if and only if a is an isomorphism.

2. Let P be a finite p-group. For a group homomorphism

$$\lambda: P \to \Omega_1 Z(P) \cap \Phi(P)$$
,

- let $\alpha_{\lambda}: P \to P$ be defined by $\alpha(x) = x\lambda(x)$, for $x \in P$. Then α_{λ} is an automorphism of P.
- 3. Let P be a finite p-group, and let $P = E \times Q$, where Q is atoric and E is elementary abelian. Then the correspondence $\lambda \mapsto \alpha_{\lambda}(E)$ is a bijection from the set of group homomorphisms $\lambda : P \to \Omega_1 Z(P) \cap \Phi(P)$ such that $Q \leq \operatorname{Ker} \lambda$ to the set of subgroups N of P such that $P = N \times Q$.

Proof : (1) If s is surjective, then s(E) is central in Q, so $s(E) \leq \Omega_1 Z(Q) = F \times \Omega_1 Z(L)$. Hence there exists group homomorphisms $a: E \to F$ and $c: E \to \Omega_1 Z(L)$ such that s(e,1) = (a(e),c(e)), for any $e \in E$. Let $b: L \to F$ and $d: L \to L$ be the group homomorphisms defined by s(1,l) = (b(l),d(l)), for $l \in L$. Then s(e,l) = s(e,1)s(1,l) = (a(e)b(l),c(e)d(l)) for all $(e,l) \in P$. Moreover $b \circ c(e) = 1$ for any $e \in E$, since $c(E) \leq \Omega_1 Z(L) \leq \Phi(L)$, as L is atoric, and $\Phi(L) \leq \operatorname{Ker} b$, as F is elementary abelian.

Now the composition of s with the projection $F \times L \to L$ is surjective, hence $s(\mathbf{1} \times L) = L$ by Proposition 6.4. In other words d is surjective, hence it is an automorphism of L.

Since s is surjective, for any $(f,y) \in Q$, there exists $(e,x) \in P$ such that a(e)b(x) = f and c(e)d(x) = y. The latter gives $x = d^{-1}(c(e)^{-1}y)$. Then $b(x) = bd^{-1}(c(e)^{-1})bd^{-1}(y)$, and $bd^{-1}(c(e)^{-1}) = 1$ since $d^{-1}(c(e)^{-1}) \in d^{-1}\Omega_1 Z(L) = \Omega_1 Z(L)$, and $\Omega_1 Z(L) \leq \Phi(L) \leq \text{Ker } b$. Then $b(x) = bd^{-1}(y)$, and $f = a(e)bd^{-1}(y)$. In particular, taking y = 1, we get that for any $f \in L$, there exists $e \in E$ such that f = a(e). In other words a is surjective.

Conversely, given a surjective group homomorphism $a: E \to F$, a group homomorphism $b: L \to F$, a group homomorphism $c: E \to \Omega_1 Z(L)$, and an automorphism d of L, we can define $s: P \to Q$ by s(e,x) = (a(e)b(x), c(e)d(x)), for $(e,x) \in P$. This is clearly a group homomorphism, as F is abelian, and the image of c is central in L. We have again $\Omega_1 Z(L) \le \Phi(L) \le \text{Ker } b$, since F is elementary abelian. If $(f,y) \in Q$, we can choose an element $e \in E$ such that $f = a(e)bd^{-1}(y)$, and then set $x = d^{-1}(c(e)^{-1}y)$, i.e. c(e)d(x) = y. We also have $b(x) = bd^{-1}(y)$, since $d^{-1}(c(e)) \in \Omega_1 Z(L)$, so f = a(e)b(x). Hence s(e,x) = (f,y), and s is surjective.

Finally if s is an isomorphism, then $E \cong F$, and then the surjection a is an isomorphism. Conversely, if a is an isomorphism, then $E \cong F$, so $P \cong Q$, and the surjection s is an isomorphism.

- (2) Clearly α_{λ} is a group homomorphism, since $\lambda(P) \leq Z(P)$. Moreover if $x \in \text{Ker } \alpha_{\lambda}$, then $\lambda(x) = x$, so $x \in \Omega_1 Z(P) \cap \Phi(P) \leq \Phi(P) \leq \text{Ker } \lambda$, since $\Omega_1 Z(P) \cap \Phi(P)$ is elementary abelian. Thus x = 1, and α_{λ} is injective. Hence it is an automorphism.
- (3) Since $P = E \times Q$, we have $\Omega_1 Z(P) = E \times \Omega_1 Z(Q)$, and $\Phi(P) = \mathbf{1} \times \Phi(Q)$.

So if λ is a group homomorphism from P to $\Omega_1 Z(P) \cap \Phi(P)$ with $Q \leq \operatorname{Ker} \lambda$, we have $\lambda(e,l) = (1,\beta(e))$ for some group homomorphism $\beta: E \to \Omega_1 Z(Q)$. Then the group $N = \alpha_{\lambda}(E) = \{(e,\beta(e)) \mid e \in E\}$ is central in P. Moreover $N \cap Q = \mathbf{1}$, and NQ = P, so $P = N \times Q$. Note that N determines the homomorphism β , hence also the homomorphism λ , so the map $\lambda \mapsto \alpha_{\lambda}(E)$ is injective.

It is moreover surjective: indeed, if N is a subgroup of $P = E \times Q$ such that $P = N \times Q$, then $N \cong P/Q \cong E$ is elementary abelian, hence central in P. Since NQ = P, for any $e \in E$, there exists $(a,b) \in N$ and $q \in Q$ such that (e,1) = (a,b)(1,q), that is e = a and $q = b^{-1}$. In other words $p_1(N) = E$. Moreover $N \cap Q = 1$, so $k_2(N) = 1$. So for $e \in E$, there exists a unique $x \in Q$ such that $(e,x) \in N$. Setting $x = \beta(e)$, we get a group homomorphism $\beta : E \to Q$, such that $N = \{(e,\beta(e)) \mid e \in E\}$. Since N is central in P, the image of β is contained in $\Omega_1 Z(Q) \leq \Phi(Q)$. Moreover $\Omega_1 Z(P) = E \times \Omega_1 Z(Q)$, and $\Phi(P) = 1 \times \Phi(Q)$, so $(1 \times \beta(E)) \leq \Omega_1 Z(P) \cap \Phi(P)$. Setting $\lambda(e,l) = (1,\beta(e))$, we get a group homomorphism from P to $\Omega_1 Z(P) \cap \Phi(P)$, such that $Q \leq \text{Ker } \lambda$, and $N = \alpha_{\lambda}(E)$.

7. Splitting the biset category of p-groups, when $p \in R^{\times}$

7.1. Notation and Definition: Let RC_p denote the full subcategory of the biset category RC consisting of finite p-groups. A p-biset functor over R is an R-linear functor from RC_p to the category of R-modules. Let $\mathcal{F}_{p,R}$ denote the full subcategory of \mathcal{F}_R consisting of p-biset functors over R.

In the statements below, we indicate by $[p \in R^{\times}]$ the assumption that p is invertible in R.

7.2. Theorem: $[p \in R^{\times}]$ Let P and Q be finite p-groups, let (T, S) be a minimal section of P, and (V, U) be a minimal section of Q. Then

$$\epsilon^Q_{V\!,U}\,RB(Q,P)\,\epsilon^P_{T\!,S} \neq \{0\} \ \Longrightarrow \ (V\!/U)^@ \cong (T\!/S)^@ \ .$$

Proof: If $\epsilon_{V,U}^{Q}RB(Q,P)\epsilon_{T,S}^{P}$, there exists $a \in RB(Q,P)$ such that

$$\epsilon_{V\!,U}^Q\,a\,\epsilon_{T\!,S}^P = \mathrm{Indinf}_{V\!/U}^Q \varphi_{\mathbf{1}}^{V\!/U} \mathrm{Defres}_{V\!/U}^Q\,a\,\mathrm{Indinf}_{T\!/S}^P \varphi_{\mathbf{1}}^{T\!/S} \mathrm{Defres}_{T\!/S}^P \neq 0 \ ,$$

and in particular the element $b = \operatorname{Defres}_{V/U}^{Q} a \operatorname{Indinf}_{T/S}^{P}$ of RB(V/U, T/S) is such that $\varphi_{\mathbf{1}}^{V/U} b \varphi_{\mathbf{1}}^{T/S} \neq 0$. It follows that there is a subgroup L of the

product $(V/U) \times (T/S)$ such that

$$\varphi_{\mathbf{1}}^{V/U} [((V/U) \times (T/S))/L] \varphi_{\mathbf{1}}^{T/S} \neq 0$$
.

Then Theorem 3.8 implies that $p_1(L) = V/U$, $k_1(L) \cap \Phi(V/U) = \mathbf{1}$, $p_2(L) = T/S$, and $k_2(L) \cap \Phi(T/S) = \mathbf{1}$. By Proposition 6.6, it follows that

$$(V/U)^{@} \cong (p_1(L)/k_1(L))^{@} \cong (p_2(L)/k_2(L))^{@} \cong (T/S)^{@}$$
,

as was to be shown.

7.3. Notation: $[p \in R^{\times}]$ Let L be an atoric p-group. If P is a finite p-group, we set

$$b_L^P = \sum_{\substack{(T,S) \in [\mathcal{M}(G)] \\ (T/S)^{@} \cong L}} \epsilon_{T,S}^P .$$

7.4. Theorem: $[p \in R^{\times}]$

- 1. Let L be an atoric p-group, and P be a finite p-group. Then $b_L^P \neq 0$ if and only if $L \sqsubseteq P^@$.
- 2. Let L and M be atoric p-groups, and let P and Q be finite p-groups. If $b_M^Q RB(Q, P)b_L^P \neq \{0\}$, then $M \cong L$.
- 3. Let L be an atoric p-group, and let P and Q be finite p-groups. Then for any $a \in RB(Q, P)$

$$b_L^Q a = a b_L^P .$$

- 4. The family of elements $b_L^P \in RB(P, P)$, for finite p-groups P, is an idempotent endomorphism b_L of the identity functor of the category RC_p (i.e. an idempotent of the center of RC_p). The idempotents b_L , for $L \in [At_p]$, are orthogonal, and their sum is equal to the identity element of the center of RC_p .
- 5. For a given finite p-group P, the elements b_L^P , for $L \in [\mathcal{A}t_p]$ such that $L \sqsubseteq P^{@}$, are non zero orthogonal central idempotents of RB(P, P), and their sum is equal to the identity of RB(P, P).

Proof: (1) The idempotent b_L^P is non zero if and only if there exists a minimal section (T,S) of P such that $(T/S)^@ \cong L$. Then $L \sqsubseteq P^@$, by Proposition 6.7. Conversely, if $L \sqsubseteq P^@$, then $L \sqsubseteq P$, and there exists a minimal section (T,S) of P such that $T/S \cong L$. Then $(T/S)^@ \cong L^@ \cong L$, so $\epsilon_{T,S}^P$ appears in the sum defining b_L^P , thus $b_L^P \neq 0$.

- (2) If $b_M^Q RB(Q,P)b_L^P \neq \{0\}$, then there exist a minimal section (V,U) of Q with $(V/U)^@\cong M$ and a minimal section (T,S) of P with $(T/S)^@\cong L$ such that $\epsilon_{V,U}^Q RB(Q,P)\epsilon_{T,S}^P \neq 0$. Then $(V/U)^@\cong (T/S)^@$ by Theorem 7.2, that is $M\cong L$.
- (3) The identity element of RB(P,P) is equal to the sum of the idempotents $\epsilon_{T,S}^P$, for $(T,S) \in [\mathcal{M}(P)]$. Grouping those idempotents $\epsilon_{T,S}^P$ for which $(T/S)^{@}$ is isomorphic to a given $L \in [\mathcal{A}t_p]$ shows that the identity element of RB(P,P) is equal to the sum of the idempotents b_L^P , for $L \in [\mathcal{A}t_p]$ (and there are finitely many non zero b_L^P , by (1)). It follows that

$$b_{M}^{Q} a = b_{M}^{Q} a \sum_{L \in [At_{p}]} b_{L}^{P} = \sum_{L \in [At_{p}]} b_{M}^{Q} a b_{L}^{P}$$

$$= b_{M}^{Q} a b_{M}^{P} \text{ [by (2)]}$$

$$= \sum_{L \in [At_{p}]} b_{L}^{Q} a b_{M}^{P} \text{ [by (2)]}$$

$$= a b_{M}^{P} ,$$

since $\sum_{L \in [\mathcal{A}t_p]} b_L^Q$ is the identity element of RB(Q,Q).

It follows that the family b_L^P , where P is a finite p-group, is an element b_L of the center of $R\mathcal{C}_p$. Clearly $b_L^2 = b_L$, and if L and M are non isomorphic atoric p-groups, then $b_L b_M = 0$, by (2). Moreover the infinite sum $\sum_{L \in [\mathcal{A}t_p]} b_L$ is actually locally finite, i.e. for each finite p-group P, the sum $\sum_{L \in [\mathcal{A}t_p]} b_L^P$ has only finitely many non zero terms. The sum $\sum_{L \in [\mathcal{A}t_p]} b_L$ is clearly equal to the identity endomorphism of the identity functor of $R\mathcal{C}_p$.

(4) This is a straightforward consequence of (1) and (3).

7.5. Corollary: $[p \in R^{\times}]$

1. Let L be an atoric p-group. For a p-biset functor F, the family of maps $F(b_L^P): F(P) \to F(P)$, for finite p-groups P, is an endomorphism of F, denoted by $F(b_L)$.

2. If $\theta: F \to G$ is a natural transformation of p-biset functors, the diagram

$$F \xrightarrow{F(b_L)} F$$

$$\theta \downarrow \qquad \qquad \downarrow \theta$$

$$G \xrightarrow{G(b_L)} G$$

is commutative. Hence the family of endomorphisms $F(b_L)$, for p-biset functors F, is an idempotent of the center of the category $\mathcal{F}_{p,R}$, denoted by \hat{b}_L .

- 3. The idempotents \hat{b}_L , for $L \in [\mathcal{A}t_p]$, are orthogonal idempotents of the center of $\mathcal{F}_{p,R}$, and their sum is the identity.
- 4. If F is a p-biset functor over R, let $\widehat{b}_L F$ denote the image of the endomorphism $F(b_L)$ of F. Then $F = \bigoplus_{L \in [At_p]} \widehat{b}_L F$.
- 5. Let $\widehat{b}_L \mathcal{F}_{p,R}$ denote the full subcategory of $\mathcal{F}_{p,R}$ consisting of functors F such that $F = \widehat{b}_L F$. Then $\widehat{b}_L \mathcal{F}_{p,R}$ is an abelian subcategory of $\mathcal{F}_{p,R}$. Moreover the functor

$$F \in \mathcal{F}_{p,R} \mapsto (\widehat{b}_L F)_{L \in [\mathcal{A}t_p]} \in \prod_{L \in [\mathcal{A}t_p]} \widehat{b}_L \mathcal{F}_{p,R}$$

is an equivalence of categories.

Proof : All assertions are straightforward consequences of Theorem 7.4. \Box

7.6. Notation: For an atoric p-group L, let RC_p^L denote the full subcategory of RC_p consisting of the class \mathcal{Y}_L of finite p-groups P such that $P^@ \sqsubseteq L$. When $p \in R^\times$, Let moreover

$$b_L^+ = \sum_{\substack{H \in [\mathcal{A}t_p] \\ H \subseteq L}} b_H$$

be the sum of the idempotents b_H corresponding to atoric subquotients of L, up to isomorphism.

The class \mathcal{Y}_L is closed under taking subquotients, by Proposition 6.7. It follows that we can apply the results of Section 6 (Appendix) of [12]: if F is a p-biset functor over R, we can restrict F to an R-linear functor from $R\mathcal{C}_p^L$ to R-Mod. This yields a forgetful functor $\mathcal{O}_{\mathcal{Y}_L}: \mathcal{F}_{p,R} \to \operatorname{Fun}_R(R\mathcal{C}_p^L, R\text{-Mod})$. The right adjoint $\mathcal{R}_{\mathcal{Y}_L}$ of this functor is described in full detail in Section 6 of [12], as follows: if G is an R-linear functor from $R\mathcal{C}_p^L$ to R-Mod, and P is a finite p-group, set

(7.7)
$$\mathcal{R}_{\mathcal{Y}_L}(G)(P) = \varprojlim_{(X,M) \in \Sigma_L(P)} G(X/M)$$

the inverse limit of modules G(X/M) on the set $\Sigma_L(P)$ of sections (X,M)

of P such that $(X/M)^{@} \subseteq L$, i.e. the set of sequences $(l_{X,M})_{(X,M)\in\Sigma_L(P)}$ with the following properties:

- 1. if $(X, M) \in \Sigma_L(P)$, then $l_{X,M} \in G(X/M)$.
- 2. if $(X, M), (Y, N) \in \Sigma_L(P)$ and $M \leq N \leq Y \leq X$, then

Defres_{Y/N}^{X/M}
$$l_{X,M} = l_{Y,N}$$
.

3. if $x \in P$ and $(X, M) \in \Sigma_L(P)$, then ${}^x l_{X,M} = l_{{}^x X, {}^x M}$.

Recall now that for finite groups P and Q, and for a finite (Q, P)-biset U, for a subgroup T of Q and an element u of U, the subgroup T^u of P is defined by $T^u = \{x \in P \mid \exists t \in T \ tu = ux\}$. By Lemma 6.4 of [12], if (T, S) is a section of Q, then (T^u, S^u) is a section of P, and T^u/S^u is a subquotient of T/S.

With this notation, when P and Q are finite p-groups, when U is a finite (Q, P)-biset, and $l = (l_{X,M})_{(X,M) \in \Sigma_L(P)}$ is an element of $\mathcal{R}_{\mathcal{Y}_L}(G)(P)$, we denote by Ul the sequence indexed by $\Sigma_L(Q)$ defined by

$$(Ul)_{Y,N} = \sum_{u \in [Y \setminus U/P]_L} (N \setminus Yu)(l_{Y^u,N^u})$$

where $[Y \setminus U/P]$ is a set of representatives of $(Y \times P)$ -orbits on U, and $N \setminus Yu$ is viewed as a $(Y/N, Y^u/N^u)$ -biset. It shown in Section 6 of [12] that $Ul \in \mathcal{R}_{\mathcal{Y}_L}(G)(Q)$, and that $\mathcal{R}_{\mathcal{Y}_L}(G)$ becomes a p-biset functor in this way. Moreover¹:

- **7.8. Theorem:** [[12] Theorem 6.15] The assignment $G \mapsto \mathcal{R}_{\mathcal{Y}_L}(G)$ is an R-linear functor $\mathcal{R}_{\mathcal{Y}_L}$ from $\operatorname{Fun}_R(R\mathcal{C}_p^L, R\operatorname{-Mod})$ to $\mathcal{F}_{p,R}$, which is right adjoint to the forgetful functor $\mathcal{O}_{\mathcal{Y}_L}$. Moreover the composition $\mathcal{O}_{\mathcal{Y}_L} \circ \mathcal{R}_{\mathcal{Y}_L}$ is isomorphic to the identity functor of $\operatorname{Fun}_R(R\mathcal{C}_p^L, R\operatorname{-Mod})$.
- **7.9. Theorem:** $[p \in R^{\times}]$ For an atoric p-group L, let $\widehat{b}_{L}^{+}\mathcal{F}_{p,R}$ be the full subcategory of $\mathcal{F}_{p,R}$ consisting of functors F such that $\widehat{b}_{L}^{+}F = F$. Then the forgetful functor $\mathcal{O}_{\mathcal{Y}_{L}}$ and its right adjoint $\mathcal{R}_{\mathcal{Y}_{L}}$ restrict to quasi-inverse equivalences of categories

$$\widehat{b}_L^+ \mathcal{F}_{p,R} \xrightarrow[\mathcal{R}_{\mathcal{Y}_L}]{\mathcal{O}_{\mathcal{Y}_L}} \operatorname{Fun}_R \left(R \mathcal{C}_p^L, R\text{-Mod} \right) \ .$$

¹In Theorem 6.15 of [12], only the case $R = \mathbb{Z}$ is considered, but the proofs extend trivially to the case of an arbitrary commutative ring R

Proof: First step: The first thing to check is that the image of the functor $\mathcal{R}_{\mathcal{Y}_L}$ is contained in $\widehat{b}_L^+ \mathcal{F}_{p,R}$. We first prove that if H is an atoric p-group, if $F \in \mathcal{F}_{p,R}$, and if $\mathcal{O}_{\mathcal{Y}_L}(\widehat{b}_H F) \neq 0$, then $H \sqsubseteq L$: indeed in that case, there exists $P \in \mathcal{Y}_L$ such that $b_H^P F(P) \neq 0$. In particular $b_H^P \neq 0$ by Theorem 7.4, hence $H \sqsubseteq P^@$. Since $P^@ \sqsubseteq L$ as $P \in \mathcal{Y}_L$, it follows that $H \sqsubseteq L$, as claimed. In particular

$$\mathcal{O}_{\mathcal{Y}_L}(F) = \mathcal{O}_{\mathcal{Y}_L}\left(\sum_{\substack{H \in [\mathcal{A}t_p] \\ H \subseteq L}} \widehat{b}_H F\right) = \mathcal{O}_{\mathcal{Y}_L}\left(\widehat{b}_L^+ F\right) .$$

Set $\mathcal{G}_p^L = \operatorname{Fun}_R(R\mathcal{C}_p^L, R\operatorname{\mathsf{-Mod}})$, and let $G \in \mathcal{G}_p^L$. Let H be an atoric p-group such that $H \not\sqsubseteq L$. If $F \in \mathcal{F}_{p,R}$, then

$$\operatorname{Hom}_{\mathcal{F}_{p,R}}(F, \widehat{b}_{H}\mathcal{R}_{\mathcal{Y}_{L}}(G)) = \operatorname{Hom}_{\mathcal{F}_{p,R}}(\widehat{b}_{H}F, \widehat{b}_{H}\mathcal{R}_{\mathcal{Y}_{L}}(G))$$

$$= \operatorname{Hom}_{\mathcal{F}_{p,R}}(\widehat{b}_{H}F, \mathcal{R}_{\mathcal{Y}_{L}}(G))$$

$$\cong \operatorname{Hom}_{\mathcal{G}_{p}^{L}}(\mathcal{O}_{\mathcal{C}_{\mathcal{Y}_{L}}}(\widehat{b}_{H}F), G) = \{0\} .$$

So the functor $F \mapsto \operatorname{Hom}_{\mathcal{F}_{p,R}}(F, \widehat{b}_H \mathcal{R}_{\mathcal{Y}_L}(G))$ is the zero functor, and it follows from Yoneda's lemma that $\widehat{b}_H \mathcal{R}_{\mathcal{Y}_L}(G) = 0$ if $H \not\sqsubseteq L$. In other words $\mathcal{R}_{\mathcal{Y}_L}(G) = \widehat{b}_L^+ \mathcal{R}_{\mathcal{Y}_L}(G)$, as was to be shown.

Second step: The first step shows that we have adjoint functors

$$\widehat{b}_L^+ \mathcal{F}_{p,R} \xrightarrow[\mathcal{R}_{\mathcal{Y}_I}]{\mathcal{O}_{\mathcal{Y}_L}} \mathsf{Fun}_R \big(R\mathcal{C}_p^L, R\text{-Mod} \big) = \mathcal{G}_p^L \enspace .$$

Moreover, the composition $\mathcal{O}_{\mathcal{Y}_L} \circ \mathcal{R}_{\mathcal{Y}_L}$ is isomorphic to the identity functor, by Theorem 7.8. All we have to show is that the unit of the adjunction is also an isomorphism, in other words, that for any $F \in \hat{b}_L^+ \mathcal{F}_{p,R}$ and any finite p-group P, the natural map

(7.10)
$$\eta_P: F(P) \to \mathcal{R}_{\mathcal{Y}_L} \mathcal{O}_{\mathcal{Y}_L}(F)(P) = \varprojlim_{(X,M) \in \Sigma_L(P)} F(X/M)$$

sending $u \in F(P)$ to the sequence $\left(\operatorname{Defres}_{X/M}^P u\right)_{(X,M)\in\Sigma_L(P)}$, is an isomorphism.

sm. The map η_P is injective: indeed, if $u \in F(P)$, then $u = \sum_{\substack{H \in [\mathcal{A}t_p] \\ H \subset L}} b_H^P u$, as

 $F = \widehat{b}_L^+ F$. If $\operatorname{Defres}_{X/M}^P u = 0$ for any section (X, M) of P with $(X/M)^@ \sqsubseteq L$,

then $F(\epsilon_{T,S}^P)(u) = 0$ for any section (T,S) of P such that $(T/S)^{@} \sqsubseteq L$, by Proposition 4.6 and Proposition 6.7. In particular $b_H^P u = 0$ for any atoric subquotient H of L, hence u = 0.

To prove that η_P is also surjective, we generalize the construction of Theorem A.2 of [11] (which is the case $L = \mathbf{1}$), and we define, for an element $v = (v_{X,M})_{(X,M)\in\Sigma_L(P)}$ in $\mathcal{R}_{\mathcal{Y}_L}\mathcal{O}_{\mathcal{Y}_L}(F)(P)$, an element $u = \iota_P(v)$ of F(P) by

$$u = \frac{1}{|P|} \sum_{\substack{(T,S) \in \mathcal{M}(P) \\ (T/S) @ \square L}} \sum_{\substack{X \le T, M \le T \\ S \le M \le \Phi(T) \le X \le T}} |X| \mu(X,T) \mu_{\trianglelefteq T}(S,M) \operatorname{Indinf}_{X/M}^{P} v_{X,M} .$$

This yields an R-linear map $\iota_P : \mathcal{R}_{\mathcal{Y}_L} \mathcal{O}_{\mathcal{Y}_L}(F)(P) \to F(P)$. For $(Y, N) \in \Sigma_L(P)$, set $u_{Y,N} = \mathrm{Defres}_{Y/N}^P u$. Then:

$$u_{Y,N} = \sum_{\substack{(T,S) \in \mathcal{M}(P) \\ (T/S) @ \square L}} \sum_{\substack{X \leq T, M \leq T \\ S \leq M \leq \Phi(T) \leq X \leq T}} \frac{|X|}{|P|} \mu(X,T) \mu_{\unlhd T}(S,M) \operatorname{Defres}_{Y/N}^{P} \operatorname{Indinf}_{X/M}^{P} v_{X,M}.$$

Moreover

$$\operatorname{Defres}_{Y/N}^{P}\operatorname{Indinf}_{X/M}^{P}v_{X,M} = \sum_{g \in [Y \setminus P/X]} \operatorname{Indinf}_{J_g/J_g'}^{Y/N} \operatorname{Iso}(\phi_g) \operatorname{Defres}_{I_g/I_g'}^{gX/gMg} v_{X,N} ,$$

where $J_g = N(Y \cap^g X)$, $J'_g = N(Y \cap^g M)$, $I_g = {}^g M(Y \cap^g X)$, $I'_g = {}^g M(N \cap^g X)$, and ϕ_g is the isomorphism $I_g/I'_g \to J_g/J'_g$ sending xI'_g to xJ'_g , for $x \in Y \cap^g X$. Hence

$$\operatorname{Defres}_{Y/N}^{P}\operatorname{Indinf}_{X/M}^{P}v_{X,M} = \sum_{g \in [Y \setminus P/X]} \operatorname{Indinf}_{J_{g}/J'_{g}}^{Y/N} \operatorname{Iso}(\phi_{g})v_{I_{g},I'_{g}} \\
= \frac{|Y \cap {}^{g}X|}{|Y||X|} \sum_{g \in P} \operatorname{Indinf}_{J_{g}/J'_{g}}^{Y/N} \operatorname{Iso}(\phi_{g})v_{I_{g},I'_{g}} .$$

Thus

$$u_{Y,N} = \sum_{\substack{(T,S) \in \mathcal{M}(P) \\ (T/S)^{@} \sqsubseteq L \\ X \leq T, M \leq T \\ g \in P}} \frac{|Y \cap {}^{g}X|}{|P||Y|} \mu(X,T) \mu_{\trianglelefteq T}(S,M) \operatorname{Indinf}_{J_{g}/J'_{g}}^{Y/N} \operatorname{Iso}(\phi_{g}) v_{I_{g},I'_{g}}.$$

Now $\mu(X,T) = \mu({}^gX,{}^gT)$ and $\mu_{\preceq T}(S,M) = \mu_{\preceq {}^gT}({}^gS,{}^gM)$, so summing over $({}^gT,{}^gS,{}^gX,{}^gM)$ instead of (T,S,X,M) we get

$$u_{Y,N} = \sum_{\substack{(T,S) \in \mathcal{M}(P) \\ (T/S)^{@} \sqsubseteq L \\ X \leq T, M \leq T \\ S \leq M \leq \Phi(T) \leq X \leq T}} \frac{|Y \cap X|}{|Y|} \mu(X,T) \mu_{\trianglelefteq T}(S,M) \operatorname{Indinf}_{J_1/J_1'}^{Y/N} \operatorname{Iso}(\phi_1) v_{I_1,I_1'}.$$

Setting $W = Y \cap X$, we have $J_1 = NW$, $J'_1 = N(W \cap M)$, $I_1 = MW$, $I'_1 = M(N \cap W)$, and these four groups only depend on W, once M and N are given. Hence, for given T, S and M, we can group together the terms of the above summation for which $Y \cap X$ is a given subgroup W of $Y \cap T$. This gives

$$u_{Y,N} = \sum_{\substack{(T,S) \in \mathcal{M}(P) \\ (T/S) \stackrel{@}{\sqsubseteq} L \\ X \cap Y = W}} \left(\sum_{\substack{\Phi(T) \leq X \leq T \\ X \cap Y = W}} \mu(X,T) \right) \frac{|W|}{|Y|} \mu_{\trianglelefteq T}(S,M) \operatorname{Indinf}_{J_1/J_1'}^{Y/N} \operatorname{Iso}(\phi_1) v_{I_1,I_1'}.$$

Moreover
$$\sum_{\substack{\Phi(T) \leq X \leq T \\ X \cap Y = W}} \mu(X,T) = \sum_{\substack{X \leq T \\ X \cap (Y \cap T) = W}} \mu(X,T), \text{ since } \mu(X,T) = 0 \text{ unless}$$

 $X \ge \Phi(T)$, and the latter summation vanishes unless $Y \cap T = T$, by classical combinatorial lemmas ([15] Corollary 3.9.3). This gives:

$$u_{Y,N} = \sum_{\substack{(T,S) \in \mathcal{M}(P) \\ (T/S) @ \sqsubseteq L \\ M \preceq T \\ S \leq M \leq \Phi(T) \leq W \leq T \leq Y}} \frac{|W|}{|Y|} \mu(W,T) \mu_{\preceq T}(S,M) \operatorname{Indinf}_{J_1/J_1'}^{Y/N} \operatorname{Iso}(\phi_1) v_{I_1,I_1'}.$$

Moreover in this summation $J_1 = NW$, $J'_1 = N(W \cap M) = NM$, $I_1 = MW = W$, $I'_1 = M(N \cap W) = MN \cap W$. All these groups remain unchanged if we replace M by $M(N \cap \Phi(T))$, so for given T, S and W, we can group together those terms for which $M(N \cap \Phi(T))$ is a given normal subgroup U of T with $U \leq \Phi(T)$. The sum $\sum_{S \leq M \leq T} \mu_{\leq T}(S, M)$ is equal to 0 (by the $M(N \cap \Phi(T)) = U$

same above-mentioned classical combinatorial lemmas) unless $N \cap \Phi(T) \leq S$. Hence

$$u_{Y,N} = \sum_{\substack{(T,S) \in \mathcal{M}(P) \\ (T/S)^{@} \sqsubseteq L \\ V \subseteq T \\ N \cap \Phi(T) \leq S \leq U \leq \Phi(T) \leq W \leq T \leq Y}} \frac{|W|}{|Y|} \mu(W,T) \mu_{\preceq T}(S,U) \operatorname{Indinf}_{J_1/J_1'}^{Y/N} \operatorname{Iso}(\phi_1) v_{I_1,I_1'},$$

where $J_1 = NW$, $J'_1 = NU$, $I_1 = W$, $I'_1 = UN \cap W$.

Now if $N \cap \Phi(T) \leq S \leq \Phi(T) \leq T \leq Y$, then $(TN/N)^{@} \sqsubseteq (Y/N)^{@}$. Moreover the normal subgroup $(N \cap T)/(N \cap \Phi(T))$ of $T/(N \cap \Phi(T))$ intersects trivially the Frattini subgroup

$$\Phi\Big(T/\big(N\cap\Phi(T)\big)\Big) = \Phi(T)\big(N\cap\Phi(T)\big)/\big(N\cap\Phi(T)\big) \ ,$$

so $\left(T/\left(N\cap\Phi(T)\right)\right)^{@}\cong \left(T/(T\cap N)^{@}\cong (TN/N)^{@}$ by Proposition 6.6. Then $(T/S)^{@}\sqsubseteq \left(T/\left(N\cap\Phi(T)\right)\right)^{@}\sqsubseteq (TN/N)^{@}\sqsubseteq (Y/N)^{@}$. As $(Y/N)^{@}\sqsubseteq L$ by assumption, it follows that

$$u_{Y,N} = \sum_{\substack{S \leq T \leq Y \\ U \leq T \\ N \cap \Phi(T) \leq S \leq U \leq \Phi(T) \leq W \leq T \leq Y}} \frac{|W|}{|Y|} \mu(W,T) \mu_{\exists T}(S,U) \operatorname{Indinf}_{J_1/J_1'}^{Y/N} \operatorname{Iso}(\phi_1) v_{I_1,I_1'}.$$

Now the sum $\sum_{\substack{S \leq T \\ N \cap \Phi(T) \leq S \leq U}} \mu_{\unlhd T}(S,U)$ is equal to zero unless $U = N \cap \Phi(T)$.

Hence

$$u_{Y,N} = \sum_{\Phi(T) \le W \le T \le Y} \frac{|W|}{|Y|} \mu(W,T) \operatorname{Indinf}_{J_1/J_1'}^{Y/N} \operatorname{Iso}(\phi_1) v_{I_1,I_1'}.$$

For a given subgroup W of Y, the sum $\sum_{\Phi(T) \leq W \leq T \leq Y} \mu(W,T)$ is equal to $\sum_{W \leq T \leq Y} \mu(W,T)$ since $\mu(W,T) = 0$ unless $W \geq \Phi(T)$, and the latter is equal to zero if $W \neq Y$, and to 1 if W = Y. Thus

$$u_{Y,N} = \frac{|Y|}{|Y|} \operatorname{Indinf}_{J_1/J_1'}^{Y/N} \operatorname{Iso}(\phi_1) v_{I_1,I_1'},$$

where $J_1 = NY = Y$, $J_1' = N(Y \cap U) = N$, $I_1 = Y = I_1' = UN \cap Y = N$. Hence $I_1 = J_1 = Y$ and $I_1' = J_1' = N$, so ϕ_1 is equal to the identity. It follows that $u_{Y,N} = v_{Y,N}$ for any $(Y,N) \in \Sigma_L(P)$, so $\eta_P(u) = v$. This proves that the map η_P is surjective, hence an isomorphism, with inverse ι_P . This completes the proof of Theorem 7.9.

7.11. Definition: Let $RC_p^{\sharp L}$ be the following category:

- The objects of $RC_p^{\sharp L}$ are the finite p-groups P such that $P^@\cong L$.
- If P and Q are finite p-groups such that $P^{@} \cong Q^{@} \cong L$, then

$$\operatorname{Hom}_{R\mathcal{C}_p^{\sharp L}}(P,Q) = RB(Q,P) / \sum_{L \not\sqsubseteq S} RB(Q,S)B(S,P)$$

is the quotient of RB(Q, P) by the R-submodule generated by all morphisms from P to Q in RC_p which factor through a p-group S which do not admit L as a subquotient.

• The composition of morphisms in $RC_p^{\sharp L}$ is induced by the composition of morphisms in RC_p .

- **7.12. Remark:** Morphisms in RC_p which factor through a p-group S such that $L \not\sqsubseteq S$ clearly generate a two-sided ideal, so the composition in $RC_p^{\sharp L}$ is well defined. Moreover the category $RC_p^{\sharp L}$ is R-linear. Let $\operatorname{Fun}_R(RC_p^{\sharp L}, R\operatorname{-Mod})$ denote the category of R-linear functors from $RC_p^{\sharp L}$ to the category $R\operatorname{-Mod}$ of R-modules.
- **7.13. Lemma:** Let p be a prime, and L be an atoric p-group. Let P and Q be finite p-groups.
 - 1. If $P^{@} \cong L$ or $Q^{@} \cong L$, and if $M \leq (Q \times P)$, then $q(M)^{@} \sqsubseteq L$. Moreover $q(M)^{@} \cong L$ if and only if $L \sqsubseteq q(M)$.
 - 2. If $P^{@} \cong Q^{@} \cong L$, then

$$\operatorname{Hom}_{R\mathcal{C}_p^{\sharp L}}(P,Q) = RB(Q,P) / \sum_{S^{@} \sqsubset L} RB(Q,S)B(S,P)$$

is also the quotient of RB(Q, P) by the R-submodule generated by all morphisms from P to Q in RC_p which factor through a p-group S such that $S^{@}$ is a proper subquotient of L.

- 3. If $P^{@} \cong Q^{@} \cong L$, then $\operatorname{Hom}_{R\mathcal{C}_p^{\sharp L}}(P,Q)$ has an R-basis consisting of the (images of the) transitive (Q,P)-bisets $(Q\times P)/M$, where M is a subgroup of $(Q\times P)$ such that $q(M)^{@} \cong L$ (up to conjugation).
- **Proof**: (1) Indeed q(M) is a subquotient of P, and a subquotient of Q. Hence $q(M)^@$ is a subquotient of $P^@$ and a subquotient of $Q^@$, thus $q(M) \sqsubseteq L^@ \cong L$. Now suppose that $q(M)^@ \cong L$. Then L is a quotient of q(M), so $L \sqsubseteq q(M)$. Conversely, if $L \sqsubseteq q(M)$, then $L \cong L^@$ is a subquotient of $q(M)^@$, which is a subquotient of P. So P is a subquotient of P.
- (2) Let S be a finite p-group such that $L \not\sqsubseteq S$, or equivalently $L \not\sqsubseteq S^{@}$. Any element of RB(Q,S)B(S,P) is a linear combination of (Q,P)-bisets of the form $(Q \times P)/(M * N)$, for $M \leq (Q \times S)$ and $N \leq (S \times P)$. This biset $(Q \times P)/(M * N)$ also factors though T = q(M * N), by 2.6. Moreover T is a subquotient of q(M) and q(N), hence a subquotient of Q, S, and P. Hence $T^{@} \sqsubseteq Q^{@} \cong L$, and $T^{@} \ncong L$, since $L \not\sqsubseteq S^{@}$. Hence $T \sqsubseteq L$.
- (3) The (images of the) elements $(Q \times P)/M$, where M is a subgroup of $(Q \times P)$ such that $q(M)^{@} \cong L$ (up to conjugation), clearly generate $\operatorname{Hom}_{R\mathcal{C}_p^{\sharp L}}(P,Q)$. Moreover, the proof of (2) shows that they are linearly independent, since any transitive (Q,P)-biset $(Q \times P)/N$ appearing in an

element of the sum $\sum_{S^{@} \subset L} RB(Q, S)B(S, P)$ is such that $q(N)^{@} \subset L$.

7.14. Remark: If G is an R-linear functor from $R\mathcal{C}_p^{\sharp L}$ to the category R-Mod of R-modules, we can extend G to an R-linear functor from $R\mathcal{C}_p^L$ to R-Mod by setting $G(P)=\{0\}$ if P is a finite p-group such that $P^@$ is a proper subquotient of L. Conversely, an R-linear functor from $R\mathcal{C}_p^L$ to R-Mod which vanishes on p-groups P such that $P^@ \ncong L$ can be viewed as an R-linear functor from $R\mathcal{C}_p^{\sharp L}$ to R-Mod. In the sequel, we will freely identify those two types of functors, and consider $\operatorname{Fun}_R(R\mathcal{C}_p^{\sharp L}, R$ -Mod) as the full subcategory of $\operatorname{Fun}_R(R\mathcal{C}_p^L, R$ -Mod) consisting of functors which vanish on p-groups P such that $P^@ \ncong L$.

7.15. Theorem: $[p \in R^{\times}]$ Let L be an atoric p-group.

- 1. If F is a p-biset functor over R such that $F = \widehat{b}_L F$, and P is a finite p-group such that $L \not\subseteq P$, then $F(P) = \{0\}$.
- 2. If G is an R-linear functor from $RC_p^{\sharp L}$ to R-Mod, then $\widehat{b}_L \mathcal{R}_{\mathcal{Y}_L}(G) = \mathcal{R}_{\mathcal{Y}_L}(G)$.
- 3. The forgetful functor $\mathcal{O}_{\mathcal{Y}_L}$ and its right adjoint $\mathcal{R}_{\mathcal{Y}_L}$ restrict to quasi-inverse equivalences of categories

$$\widehat{b}_L \mathcal{F}_{p,R} \xrightarrow[\mathcal{R}_{\mathcal{Y}_I}]{\mathcal{O}_{\mathcal{Y}_L}} \operatorname{Fun}_R \left(R \mathcal{C}_p^{\sharp L}, R \operatorname{-Mod} \right) \ .$$

Proof: (1) Since $\hat{b}_L F = F$, then in particular $F(b_L^P) F(P) = F(P)$. If $L \not\sqsubseteq P$, then there is no minimal section (T, S) of P with $(T/S)^{@} \cong L$, thus $b_L^P = 0$, and $F(P) = \{0\}$.

(2) Let G be an R-linear functor from $R\mathcal{C}_p^{\sharp L}$ to R-Mod, in other words an R-linear functor from \mathcal{FC}_p^L to R-Mod which vanishes on p-groups P such that $P^@$ is a proper subquotient of L. By Theorem 7.9, we have $\widehat{b}_L^+\mathcal{R}_{\mathcal{Y}_L}(G) = \mathcal{R}_{\mathcal{Y}_L}(G)$. If H is an atoric p-group which is a proper subquotient of L, then G vanishes over any subquotient Q of H, since $Q^@ \sqsubseteq H \sqsubseteq L$ if $Q \sqsubseteq H$. In particular b_H^P acts by 0 on $\mathcal{R}_{\mathcal{Y}_L}(G)(P)$, for any finite p-group P: indeed b_H^P is a linear combination of terms of the form $\mathrm{Indinf}_{X/M}^P \mathrm{Defres}_{X/M}^P$, where (X,M) is a section of P such that $S \leq M \leq \Phi(T) \leq X \leq T$, for some section (T,S) of P with $(T/S)^@ \cong H$. For such a section (X,M) of P, we have $(X/M)^@ \sqsubseteq (T/S)^@ \sqsubseteq H$, thus G vanishes on any subquotient of X/M, so $\mathcal{R}_{\mathcal{Y}_L}(G)(X/M) = \{0\}$, hence $b_H^P = 0$ on $\mathcal{R}_{\mathcal{Y}_L}(G)(P)$, as claimed. It follows

that $\widehat{b}_H \mathcal{R}_{\mathcal{Y}_L}(G) = 0$, hence $\widehat{b}_L^+ \mathcal{R}_{\mathcal{Y}_L}(G) = \mathcal{R}_{\mathcal{Y}_L}(G) = \widehat{b}_L \mathcal{R}_{\mathcal{Y}_L}(G)$.

- (3) This is a straightforward consequence of (1) and (2), by Theorem 7.9. \Box The following proposition gives some detail on the structure of the category $R\mathcal{C}_p^{\sharp L}$:
- **7.16.** Proposition: Let p be a prime, and L be an atoric p-group.
 - 1. Let P be a finite p-group. Then $P^{@} \cong L$ if and only if there exists an elementary abelian p-group E such that $P \cong E \times L$.
 - 2. Let $P = E \times L$ and $Q = F \times L$, where E and F are elementary abelian p-groups. If $M \leq (Q \times P)$, then $q(M)^{@} \cong L$ if and only if

$$p_{1,2}(M) = p_{2,2}(M) = L$$
 and $k_{1,2}(M) = k_{2,2}(M) = 1$,

where $p_{1,2}$ and $p_{2,2}$ are the morphisms from $((H \times L) \times (G \times L))$ to L defined by $p_{1,2}((h,x),(g,y)) = x$ and $p_{2,2}((h,x),(g,y)) = y$, and

$$\begin{array}{rcl} k_{1,2}(M) & = & \{x \in L \mid \big((1,x),(1,1)\big) \in M\} \ , \\ k_{2,2}(M) & = & \{x \in L \mid \big((1,1),(1,x)\big) \in M\} \ . \end{array}$$

Proof: (1) This follows from Proposition 6.8.

(2) By Lemma 7.13, the R-module RB(Q,P) has a basis consisting of the isomorphism classes of (Q,P)-bisets of the form $(Q\times P)/M$, where M is a subgroup of $(Q\times P)$, up to conjugation, and $q(M)^{@}\cong L$. If M is such a subgroup, then $L\cong \left(p_1(M)/k_1(M)\right)^{@}\sqsubseteq \left(p_1(M)\right)^{@}\sqsubseteq Q^{@}\cong L$, so $p_1(M)^{@}\cong L$, and similarly $p_2(M)^{@}\cong L$. By Proposition 6.8 $p_1(M)^{@}\cong L$ if and only if $Ep_1(M)=P$, which in turn is equivalent to $p_{1,2}(M)=L$. Similarly $p_2(M)^{@}\cong L$ if and only if $p_{2,2}(M)=L$.

Then $(p_1(M)/k_1(M))^{@} \cong L$ if and only if $k_1(M) \cap \Phi(p_1(M)) = \mathbf{1}$, by Proposition 6.6. Moreover $\Phi(p_1(M)) = \Phi(P)$, as there exists an elementary abelian subgroup E' of P such that $P = E' \times p_1(M)$, by Proposition 6.8 again. Since $\Phi(P) = \mathbf{1} \times \Phi(L)$, it follows that $k_1(M) \cap (\mathbf{1} \times \Phi(L)) = \mathbf{1}$. Now $N = k_1(L) \cap (\mathbf{1} \times L)$ is a normal subgroup of $(\mathbf{1} \times L)$ (since $p_{1,2}(M) = L$), which intersect trivially $(\mathbf{1} \times \Phi(L))$. Since L is atoric, by Lemma 6.3, any central element of order p of $(\mathbf{1} \times L)$ is contained in $(\mathbf{1} \times \Phi(L))$, so N contains no non trivial central element of $(\mathbf{1} \times L)$, hence $N = \mathbf{1}$. Thus $k_1(L) \cap (\mathbf{1} \times L) = \mathbf{1}$, or equivalently $k_{1,2}(M) = \mathbf{1}$. Similarly $k_{2,2}(M) = \mathbf{1}$. Hence $q(M)^{@} \cong L$ if and only if $p_{1,2}(M) = p_{2,2}(M) = L$ and $k_{1,2}(M) = k_{2,2}(M) = \mathbf{1}$.

8. L-enriched bisets

8.1. Notation: Let G and H be finite groups. If U is an (H, G)-biset, and $u \in U$, let $(H, G)_u$ denote the stabilizer of u in $(H \times G)$, i.e.

$$(H,G)_u = \{(h,g) \in (H \times G) \mid hu = ug\} .$$

Let $H_u = k_1((H, G)_u)$ denote the stabilizer of u in H, and ${}_uG = k_2((H, G)_u)$ denote the stabilizer of u in G. Set moreover

$$q(u) = q((H,G)_u) = (H,G)_u/(H_u \times {}_uG) .$$

8.2. Definition: Let L be a finite group. For two finite groups G and H, an L-enriched (H,G)-biset is a $(H \times L, G \times L)$ -biset U such that $L \sqsubseteq q(u)$, for any $u \in U$. A morphism of L-enriched (H,G)-bisets is a morphism of $(H \times L, G \times L)$ -bisets.

The disjoint union of two L-enriched (H,G)-bisets is again an L-enriched (H,G)-biset. Let B[L](H,G) denote the Grothendieck group of finite L-enriched (H,G)-bisets for relations given by disjoint union decompositions. The group B[L](H,G) is called the Burnside group of L-enriched (H,G)-bisets.

8.3. Lemma: Let G, H, L be finite groups, and U be an $(H \times L, G \times L)$ -biset. Let $U^{\sharp L}$ denote the set of elements $u \in U$ such that $L \sqsubseteq q(u)$. Then $U^{\sharp L}$ is the largest sub-L-enriched (H, G)-biset of U.

Proof: It suffices to show that $U^{\sharp L}$ is a sub- $(H \times L, G \times L)$ -biset of U, for then it is clearly the largest sub-L-enriched (H, G)-biset of U. And this is straightforward, since for any $(u, g, h, x, y) \in (U \times G \times H \times L \times L)$, if $v = (h, y)u(g, x)^{-1}$, then

$$(H \times L, G \times L)_v = {((h,y),(g,x))} (H \times L, G \times L)_u ,$$

and this conjugation induces a group isomorphism $q(v) \cong q(u)$.

- **8.4. Lemma:** Let G, H, L be finite groups.
 - 1. Let U be an L-enriched (H,G)-biset. If V is a sub- $(H \times L, G \times L)$ -biset of U, then V is an L-enriched (H,G)-biset.

2. The group B[L](H,G) has a \mathbb{Z} -basis consisting of the transitive bisets $((H \times L) \times (G \times L))/M$, where M is a subgroup of $((H \times L) \times (G \times L))$ (up to conjugation) such that $L \sqsubseteq q(M)$.

Proof: (1) This is straightforward.

- (2) It follows from (1) that B[L](H,G) has a basis consisting of the isomorphism classes of L-enriched (H,G)-bisets which are transitive $(H \times L, G \times L)$ -bisets. These are of the form $U = ((H \times L) \times (G \times L))/M$, for some subgroup M of $((H \times L) \times (G \times L))$. Now if u is the element ((1,1),(1,1))M of U, the group $(H \times L, G \times L)_u$ is equal to M, hence $q(u) \cong q(M)$.
- **8.5. Lemma:** Let G, H, K, L be finite groups.
 - 1. For an (H,G)-biset U, endow $U \times L$ with the $(H \times L, G \times L)$ -biset structure defined by

$$\forall h \in H, \forall g \in G, \forall x, y, z \in L, \forall u \in U, \quad (h, x)(u, y)(g, z) = (hug, xyz)$$
.

Then $U \times L$ is an L-enriched (H, G)-biset.

- 2. In particular, for any finite group G, the identity biset of $G \times L$ is an L-enriched (G, G)-biset.
- 3. If U is an (H,G)-biset and V is a (K,H)-biset, then there is an isomorphism

$$(V \times L) \times_{(H \times L)} (U \times L) \cong (V \times_H U) \times L$$

of L-enriched (H,G)-bisets.

Proof: (1) For $u \in U$ and $l \in L$,

$$(H \times L, G \times L)_{(u,l)} = \{((h, {}^{l}x), (g, x)) \mid hug = u, l \in L\} \cong (H, G)_{u} \times L .$$

In particular $(H \times L)_{(u,l)} = H_u \times \mathbf{1}$ and $_{(u,l)}(G \times L) = _uG \times \mathbf{1}$, and $q((u,l)) \cong q(u) \times L$ has a (sub)quotient isomorphic to L.

- (2) In particular, if H = G and U is the identity (G, G)-biset, then $U \times L$ is the identity biset of $(G \times L)$.
- (3) It is straightforward to check that the maps

$$[(v,x),(u,y)] \in (V \times L) \times_{(H \times L)} (U \times L) \longmapsto ([v,u],xy) \in (V \times_H U) \times L$$
$$[(v,1),(u,l)] \in (V \times L) \times_{(H \times L)} (U \times L) \longleftarrow ([v,u],l) \in (V \times_H U) \times L$$

are well defined isomorphisms of $(K \times L, G \times L)$ -bisets, inverse to one another.

8.6. Notation: Let G, H, K, L be finite groups. If U is an L-enriched (H, G)-biset and V is an L-enriched (K, H)-biset, let $V \stackrel{L}{\times}_H U$ denote the L-enriched (K, G)-biset defined by

$$V \overset{\scriptscriptstyle L}{\times}_H U = \left(V \times_{(H \times L)} U\right)^{\sharp L} .$$

- **8.7. Lemma:** Let G, H, J, K, L be finite groups.
 - 1. If V is a $(K \times L, H \times L)$ -biset and U is an $(H \times L, G \times L)$ -biset, then

$$(V \times_{(H \times L)} U)^{\sharp L} = V^{\sharp L} \overset{\scriptscriptstyle L}{\times}_H U^{\sharp L} \ .$$

In particular, if V and U are L-enriched bisets, so is $V \stackrel{\text{\tiny L}}{\times}_H U$.

2. If U and U' are L-enriched (H,G)-bisets, if V,V' are L-enriched (K,H)-bisets, then there are isomorphisms

$$V \overset{\scriptscriptstyle L}{\times}_{H} (U \sqcup U') \cong (V \overset{\scriptscriptstyle L}{\times}_{H} U) \sqcup (V \overset{\scriptscriptstyle L}{\times}_{H} U')$$
$$(V \sqcup V') \overset{\scriptscriptstyle L}{\times}_{H} U \cong (V \overset{\scriptscriptstyle L}{\times}_{H} U) \sqcup (V' \overset{\scriptscriptstyle L}{\times}_{H} U)$$

of L-enriched (K, G)-bisets.

3. If moreover W is an L-enriched (J,K)-biset, then there is a canonical isomorphism

$$(W \overset{\scriptscriptstyle L}{\times} {}_{\scriptscriptstyle K} V) \overset{\scriptscriptstyle L}{\times} {}_{\scriptscriptstyle H} U \cong W \overset{\scriptscriptstyle L}{\times} {}_{\scriptscriptstyle K} (V \overset{\scriptscriptstyle L}{\times} {}_{\scriptscriptstyle H} U)$$

of L-enriched (J, G)-bisets.

Proof: (1) Denote by [v, u] the image in $V \times_{(H \times L)} U$ of a pair $(v, u) \in (V \times U)$. By Lemma 2.3.20 of [7],

$$(K \times L, G \times L)_{[v,u]} = (K \times L, H \times L)_v * (H \times L, G \times L)_u ,$$

so by Lemma 2.3.22 of [7], the group q([v,u]) is a subquotient of q(v) and q(u). So if $[v,u] \in (V \times_{(H \times L)} U)^{\sharp L}$, then L is a subquotient of q([v,u]), hence it is a subquotient of q(v) and q(u), that is $v \in V^{\sharp L}$ and $u \in U^{\sharp L}$. Hence

$$(V \times_{(H \times L)} U)^{\sharp L} \subseteq (V^{\sharp L} \times_{(H \times L)} U^{\sharp L})^{\sharp L} = V^{\sharp L} \times_H U^{\sharp L} ,$$

and the reverse inclusion $(V^{\sharp L} \times_{(H \times L)} U^{\sharp L})^{\sharp L} \subseteq (V \times_{(H \times L)} U)^{\sharp L}$ is obvious. Hence $(V \times_{(H \times L)} U)^{\sharp L} = V^{\sharp L} \times_H U^{\sharp L}$. If V and U are L-enriched bisets, i.e. if $V = V^{\sharp L}$ and $U = U^{\sharp L}$, this gives $(V \times_{(H \times L)} U)^{\sharp L} = V \times_H^L U$, so $V \times_H U$ is an L-enriched biset.

- (2) This is straightforward.
- (3) With the above notation, there is a canonical isomorphism

$$\alpha: (W \times_{(K \times L)} V) \times_{(H \times L)} U \to W \times_{(K \times L)} (V \times_{(H \times L)} U)$$

sending [w, v], u to [w, [v, u]]. Hence

$$(W \overset{L}{\times}_{K} V) \overset{L}{\times}_{H} U = ((W \overset{L}{\times}_{K} V) \times_{(H \times L)} U)^{\sharp L}$$

$$= ((W \times_{(K \times L)} V)^{\sharp L} \times_{(H \times L)} U)^{\sharp L}$$

$$= ((W \times_{(K \times L)} V) \times_{(H \times L)} U)^{\sharp L} \text{ [by (1)]}$$

Similarly

$$W_{\times K}^{L}(V_{\times H}^{L}U) = (W_{\times (K \times L)} (V_{\times H}^{L}U))^{\sharp L}$$

$$= (W_{\times (K \times L)} (V_{\times (H \times L)} U)^{\sharp L})^{\sharp L}$$

$$= (W_{\times (K \times L)} (V_{\times (H \times L)} U))^{\sharp L} \text{ [by (1)]}.$$

Hence α induces an isomorphism $(W \overset{L}{\times}_{K} V) \overset{L}{\times}_{H} U \cong W \overset{L}{\times}_{K} (V \overset{L}{\times}_{H} U)$.

- **8.8. Definition:** Let L be a finite group, and R be a commutative ring. The L-enriched biset category RC[L] of finite groups over R is defined as follows:
 - The objects of RC[L] are the finite groups.
 - For finite groups G and H,

$$\operatorname{Hom}_{R\mathcal{C}[L]}(G,H) = R \otimes_{\mathbb{Z}} B[L](H,G) = RB[L](H,G)$$

is the R-linear extension of the Burnside group of L-enriched (H,G)-bisets.

• The composition in RC[L] is the R-linear extension of the product $(V, U) \mapsto V \overset{\text{\tiny L}}{\times}_H U$ defined in 8.6.

• The identity morphism of the group G is (image in RB[L](G, G) of) the identity biset of $G \times L$, viewed as an L-enriched (G, G)-biset.

The category RC[L] is R-linear. An L-enriched biset functor over R is an R-linear functor from RC[L] to R-Mod. The category of L-enriched biset functors over R is denoted by $\mathcal{F}_R[L]$. It is an abelian R-linear category.

8.9. Theorem: Let p be a prime number, and R be a commutative ring.

- 1. If L is an atoric p-group, the category $RC_p^{\sharp L}$ of Definition 7.11 is equivalent to the full subcategory $R\mathcal{E}l_p[L]$ of RC[L] consisting of elementary abelian p-groups.
- 2. If $p \in \mathcal{F}^{\times}$, the category $\mathcal{F}_{p,R}$ of p-biset functors over R is equivalent to the direct product of the categories $\operatorname{Fun}_R(R\mathcal{E}l_p[L], R\operatorname{-Mod})$ of $R\operatorname{-linear}$ functors from $R\mathcal{E}l_p[L]$ to $R\operatorname{-Mod}$, for $L \in [\mathcal{A}t_p]$.

Proof: (1) Let E be an elementary abelian p-group. Then $(E \times L)^{@} \cong L$, so $E \times L$ is an object of $R\mathcal{C}_p^{\sharp L}$. Set $\mathcal{I}(E) = E \times L$. If E and F are elementary abelian p-groups, and if U is a finite L-enriched (F, E)-biset, then U is in particular an $(F \times L, E \times L)$ -biset, an we can consider its image $\mathcal{I}(U)$ in the quotient $\operatorname{Hom}_{R\mathcal{C}_p^{\sharp L}}(E \times L, F \times L)$ of $RB(F \times L, E \times L)$. This yields a unique R-linear map $RB[L](F, E) \to \operatorname{Hom}_{R\mathcal{C}_p^{\sharp L}}(E \times L, F \times L)$, still denoted by \mathcal{I} .

We claim that these assignments define a functor \mathcal{I} from $R\mathcal{E}l_p[L]$ to $R\mathcal{C}_p^{\sharp L}$: indeed, the identity $(E \times L, E \times L)$ -biset is clearly mapped to the identity morphism of $\mathcal{I}(E)$. Moreover, if G is an elementary abelian p-group, if V is an L-enriched (G, F)-biset and U is an L-enriched (F, E)-biset, it is clear that

$$\mathcal{I}(V \overset{\scriptscriptstyle L}{\times}_F U) = \mathcal{I}(V) \circ \mathcal{I}(U) ,$$

where the right hand side composition is in the category $RC_p^{\sharp L}$: indeed, the transitive bisets $(Q \times P)/M$ with $q(M)^{@} \sqsubset L$ appearing in the product $V \times_{(F \times L)} U$ are exactly those vanishing in $\operatorname{Hom}_{RC_p^{\sharp L}} (\mathcal{I}(E), \mathcal{I}(F))$, by Lemma 7.13. Hence \mathcal{I} is an isomorphism

$$\mathcal{I}: RB[L](F, E) \to \operatorname{Hom}_{R\mathcal{C}_p^{\sharp L}} (\mathcal{I}(E), \mathcal{I}(F))$$
.

In other words \mathcal{I} is a fully faithful functor from $R\mathcal{E}l_p[L]$ to $R\mathcal{C}_p^{\sharp L}$. Moreover, by Proposition 6.8, if P is a finite p-group with $P^{@} \cong L$, there exists an elementary abelian p-group E such that P is isomorphic to $E \times L$, hence P is isomorphic to $E \times L$ in the category $R\mathcal{C}_p^{\sharp L}$.

It follows that the functor \mathcal{I} is fully faithful and essentially surjective, so it is an equivalence of categories.

(2) This is a straightforward consequence of (1), Assertion 5 of Corollary 7.5, and Assertion 3 of Theorem 7.15.

9. The category $\widehat{b}_L \mathcal{F}_{p,R}$, for an atoric p-group L $(p \in R^{\times})$

Let L be a fixed atoric p-group. In this section, we give some detail on the structure of the category $\widehat{b}_L \mathcal{F}_{p,R}$ of p-biset functors invariant by the idempotent \widehat{b}_L .

We start by straightforward consequences of Theorem 7.15. For a finite p-group P, we denote by $\Sigma_{\sharp L}(P)$ the subset of $\Sigma_L(P)$ consisting of sections (X, M) of P such that $(X/M)^{@} \cong L$. When G is an R-linear functor from $R\mathcal{C}_p^{\sharp L}$ to R-Mod, we can compute $\mathcal{R}_{\mathcal{Y}_L}(G)$ at P by restricting the inverse limit of 7.7 to the subset $\Sigma_{\sharp L}(P)$, i.e. by

$$\mathcal{R}_{\mathcal{Y}_L}(G)(P) = \varprojlim_{(X,M) \in \Sigma_{\sharp L}(P)} G(X/M)$$
.

9.1. Proposition: $[p \in R^{\times}]$ Let L be an atoric p-group. If F is a p-biset functor in $\widehat{b}_L \mathcal{F}_{p,R}$, and P is a finite p-group, then

$$F(P) \cong \varprojlim_{(X,M)\in\Sigma_{\sharp L}(P)} F(X/M) ,$$

$$\cong \bigoplus_{\substack{(T,S)\in[\mathcal{M}(P)]\\ (T/S)^{@}\cong L}} \delta_{\Phi} F(T/S)^{N_{P}(T,S)/T} .$$

Proof: The isomorphism $F(P)\cong \varprojlim_{(X,M)\in\Sigma_{\sharp L}(P)} F(X/M)$ is Assertion 3 of

Theorem 7.15. The second isomorphism follows from Theorem 5.4, which implies that for $(T, S) \in \mathcal{M}(P)$

$$\delta_{\Phi} F(T/S)^{N_P(T,S)/T} \cong F(\epsilon_{T,S}^P) \big(F(P) \big) .$$

Moreover $F(b_L^P)F(P) = F(P)$ since $F \in \widehat{b}_L \mathcal{F}_{p,R}$, and

$$F(\epsilon_{T,S}^P)F(b_L^P) = F(\epsilon_{T,S}^Pb_L^P) = 0$$

unless $(T/S)^{@} \cong L$. Thus $\delta_{\Phi}F(T/S)^{N_{P}(T,S)/T} = \{0\}$ unless $(T/S)^{@} \cong L$, which completes the proof.

The decomposition of the category $\mathcal{F}_{p,R}$ of p-biset functors stated in Corollary 7.5 leads to the following natural definition:

- **9.2. Definition:** $[p \in R^{\times}]$ Let F be an indecomposable p-biset functor over R. There exists a unique atoric p-group L (up to isomorphism) such that $F = \widehat{b}_L F$. The group L is called the vertex of F.
- **9.3. Remark:** It follows in particular from this definition that if F and F' are indecomposable p-biset functors over R with non-isomorphic vertices, then $\operatorname{Ext}_{\mathcal{F}_{n,R}}^*(F,F')=\{0\}.$
- **9.4. Theorem:** $[p \in R^{\times}]$ Let F be an indecomposable p-biset functor over R and let L be a vertex of F. If Q is a finite p-group such that $F(Q) \neq \{0\}$, but F vanishes on any proper subquotient of Q, then $L \cong Q^{@}$.

Proof: Let Q be a finite p-group such that $F(Q) \neq \{0\}$ and $F(Q') = \{0\}$ for any proper subquotient Q' of Q. By Proposition 4.6, if (T, S) is a minimal section of Q, then

$$\epsilon_{T,S}^Q = \frac{1}{|N_Q(T,S)|} \sum_{\substack{X \leq T,M \leq T \\ S \leq M \leq \Phi(T) \leq X \leq T}} |X| \mu(X,T) \mu_{\trianglelefteq T}(S,M) \operatorname{Indinf}_{X/M}^Q \circ \operatorname{Defres}_{X/M}^Q \ .$$

Now if X/M is a proper subquotient of Q, i.e. if $X \neq Q$ or $M \neq \mathbf{1}$, then $F(X/M) = \{0\}$, and $F(\operatorname{Indinf}_{X/M}^Q \circ \operatorname{Defres}_{X/M}^Q) = 0$. Hence $F(\epsilon_{T,S}^Q) = 0$ unless T = Q and $S = \mathbf{1}$, and moreover

$$F(\epsilon_{Q,\mathbf{1}}^Q) = \frac{1}{|Q|} |Q| \mu(Q,Q) \mu_{\trianglelefteq Q}(\mathbf{1},Q) F(\mathrm{Indinf}_{Q/\mathbf{1}}^Q \mathrm{Defres}_{Q/\mathbf{1}}^Q) = \mathrm{Id}_{F(Q)} \ .$$

If $\hat{b}_L F = F$, then in particular $F(b_L^Q)$ is equal to the identity map of F(Q). This can only occur if the idempotent $\epsilon_{Q,1}^Q$ appears in the sum defining b_L^Q , in other words if $(Q/\mathbf{1})^@\cong L$, i.e. $Q^@\cong L$. Conversely, if $Q^@\cong L$, then $F(b_L^Q) = F(\epsilon_{Q,1}^Q) = \mathrm{Id}_{F(Q)} \neq 0$. It follows that $\hat{b}_L F \neq 0$, hence $\hat{b}_L F = F$, since F is indecomposable. Hence $Q^@$ is (isomorphic to) the vertex of F, as was to be shown.

We assume from now on that R = k is a field. Recall ([7] Chapter 4) that the simple p-biset functors over k are indexed by pairs (Q, V) consisting of a p-group Q and a simple kOut(Q)-module V.

- **9.5.** Corollary: Let k be a field of characteristic different from p.
 - 1. If Q is a finite p-group, and V is a simple kOut(Q)-module, then the vertex of the simple p-biset functor $S_{Q,V}$ is isomorphic to $Q^{@}$.
 - 2. Let Q (resp. Q') be a finite p-group, and V (resp. V') be a simple $k\mathrm{Out}(Q)$ -module (resp. a simple $k\mathrm{Out}(Q')$ -module). If $Q^@\ncong Q'^@$, then $\mathrm{Ext}_{\mathcal{F}_{p,k}}^*(S_{Q,V},S_{Q',V'})=\{0\}$.

Proof: (1) Indeed Q is a minimal group for $S_{Q,V}$, so $S_{Q,V}(Q) \neq \{0\}$, but $S_{Q,V}$ vanishes on any proper subquotient of Q.

- (2) Follows from (1) and Remark 9.3.
- **9.6. Definition:** Let F be a p-biset functor. A functor S is a subquotient of F (notation $S \subseteq F$) if there exist subfunctors $F_2 < F_1 \leq F$ such that $F_1/F_2 \cong S$. A composition factor of F is a simple subquotient of F.
- **9.7. Lemma:** Let k be a field, and F be a p-biset functor over k.
 - 1. If F is a non zero, then F admits a composition factor.
 - 2. If S is a family of simple p-biset functors over k, there exists a greatest subfunctor of F all composition factors of which belong to S.
- **Proof**: (1) Let P be a finite p-group such that $F(P) \neq \{0\}$. Then F(P) is a kB(P,P)-module. Choose $m \in F(P) \{0\}$, and consider the kB(P,P)-submodule M of F(P) generated by m. Since kB(P,P) is finite dimensional over k, the module M is also finite dimensional over k, hence it contains a simple submodule V. By Proposition 3.1 of [8], there exists a simple p-biset functor S such that $S(P) \cong V$ as kB(P,P)-module. Then S(P) is a subquotient of F(P), so by Proposition 3.5 of [8], there exists a subquotient of F isomorphic to S.
- (2) Observe first that if M, N are subfunctors of F, then any composition factor of M+N is a composition factor of M or a composition factor of N: indeed, if S is a composition factor of M+N, let $F_2 < F_1 \le M+N$ with $S \cong F_2/F_1$, and consider the images F_1' and F_2' of F_1 and F_2 , respectively, in the quotient $(M+N)/N \cong M/(M\cap N)$. If $F_1' \ne F_2'$, that is if $F_1 + N \ne F_2 + N$, then $F_1'/F_2' \cong (F_1 + N)/(F_2 + N) \cong F_1/F_2 \cong S$ is a subquotient of $(M+N)/N \cong M/(M\cap N)$, hence S is a subquotient of M. Otherwise $F_1+N=F_2+N$, so $F_1=F_2+(F_1\cap N)$, hence $S\cong F_1/F_2\cong (F_1\cap N)/(F_2\cap N)$

is a subquotient of N. It follows by induction that any subquotient S of a finite sum $\sum_{M \in \mathcal{I}} M$ of subfunctors of F is a subquotient of some $M \in \mathcal{I}$.

The latter also holds when \mathcal{I} is infinite: let $\Sigma = \sum_{M \in \mathcal{I}} M$ be an arbitrary sum of subfunctors of F, and S be a composition factor of Σ . Let $F_2 < F_1$ be subfunctors of Σ such that $S \cong F_1/F_2$. If P is a p-group such that $S(P) \cong F_1(P)/F_2(P) \neq 0$, let U be a finite subset of $F_1(P)$ such that $F_1(P)/F_2(P)$ is generated as a kB(P,P)-module by the images of the elements of U (such a set exists because S(P) is finite dimensional over k, for any P). If V is the kB(P,P)-submodule of $F_1(P)$ generated by U, then V maps surjectively on the module $F_1(P)/F_2(P)$, so there is a kB(P,P)-submodule W of V such that $V/W \cong S(P)$. Now since U is finite, there exists a finite subset \mathcal{J} of \mathcal{I} such that $U \subseteq \sum_{M \in \mathcal{J}} M(P)$. Setting $\Sigma_1 = \sum_{M \in \mathcal{J}} M$, it follows that $V/W \cong S(P)$ is a subquotient of Σ_1 isomorphic to S. By the observation above S is a subquotient of some $M \in \mathcal{J} \subseteq \mathcal{I}$.

Now let \mathcal{I} the set of subfunctors M of F such that all the composition factors of M belong to \mathcal{S} , and $N = \sum_{M \in \mathcal{I}} M$. The above discussion shows that $N \in \mathcal{I}$, so N is the greatest element of \mathcal{I} .

- **9.8. Theorem:** Let k be a field of characteristic different from p, and L be an atoric p-group. Let $\mathcal{F}_{p,k}[L]$ the full subcategory of $\mathcal{F}_{p,k}$ consisting of functors whose composition factors all have vertex L, i.e. are all isomorphic to $S_{P,V}$, for some p-group P such that $P^{@} \cong L$, and some simple $k\operatorname{Out}(P)$ -module V.
 - 1. If F is a p-biset functor, then $\widehat{b}_L \mathcal{F}_{p,k}$ is the greatest subfunctor of F which belongs to $\mathcal{F}_{p,k}[L]$.
 - 2. In particular $\widehat{b}_L \mathcal{F}_{p,k} = \mathcal{F}_{p,k}[L]$.

Proof: (1) Let F be a p-biset functor over k, and let $F_1 = \widehat{b}_L F$. If S is a composition factor of F_1 , then $S = \widehat{b}_L S$, as S is a subquotient of F_1 . Hence S has vertex L, by Definition 9.2. It follows that F_1 is contained in the greatest subfunctor F_2 of F which belongs to $\mathcal{F}_{p,k}[L]$ (such a subfunctor exists by Lemma 9.7).

Conversely, we know that $F_2 = \bigoplus_{Q \in [\mathcal{A}t_p]} \widehat{b}_Q F_2$. For $Q \in [\mathcal{A}t_p]$, any composition factor S of $\widehat{b}_Q F_2$ has vertex Q, by Definition 9.2. But S is also a direct summand of F_2 , so $Q \cong L$. It follows that if $Q \ncong L$, then $\widehat{b}_Q F_2$ has no com-

position factor, so $\widehat{b}_Q F_2 = \{0\}$, by Lemma 9.7. In other words $F_2 = \widehat{b}_L F_2$, hence $F_2 \leq F_1$, and $F_2 = F_1$, as was to be shown.

- (2) Let F be a p-biset functor. Then $F \in \widehat{b}_L \mathcal{F}_{p,k}$ if and only if $F = \widehat{b}_L F$, i.e. by (1) if and only if all the composition factors of F have vertex L.
- **9.9. Example: the Burnside functor.** Let k be a field of characteristic $q \neq p$ ($q \geq 0$). It was shown in [10] Theorem 8.2 (see also [7] 5.6.9) that the Burnside functor kB is uniserial, hence indecomposable. As $kB(1) \neq 0$, the vertex of kB is the trivial group, by Theorem 9.4, thus kB is an object of $\hat{b}_1 \mathcal{F}_{p,k} = \mathcal{F}_{p,k}[1]$. It means that all the composition factors of kB have to be of form $S_{Q,V}$, where $Q^{@} = 1$, i.e. Q is elementary abelian. And indeed by [10] Theorem 8.2, the composition factors of kB are all of the form $S_{Q,k}$, where Q runs through a specific set of elementary abelian p-groups which depends on the order of p modulo q (suitably interpreted when q = 0).

References

- [1] L. Barker. Blocks of Mackey categories. J. Algebra, 446:34–57, 2016.
- [2] R. Boltje and S. Danz. A ghost ring for the left-free double Burnside ring and an application to fusion systems. *Adv. Math.*, 229(3):1688–1733, 2012.
- [3] R. Boltje and S. Danz. A ghost algebra of the double Burnside algebra in characteristic zero. *J. Pure Appl. Algebra*, 217(4):608–635, 2013.
- [4] R. Boltje and B. Külshammer. Central idempotents of the bifree and left-free double Burnside ring. *Israel J. Math.*, 202(1):161–193, 2014.
- [5] S. Bouc. Foncteurs d'ensembles munis d'une double action. *J. of Algebra*, 183(0238):664–736, 1996.
- [6] S. Bouc. Polynomial ideals and classes of finite groups. J. of Algebra, 229:153–174, 2000.
- [7] S. Bouc. Biset functors for finite groups, volume 1990 of Lecture Notes in Mathematics. Springer, 2010.
- [8] S. Bouc, R. Stancu, and J. Thévenaz. Simple biset functors and double Burnside ring. *Journal of Pure and Applied Algebra*, 217:546–566, 2013.
- [9] S. Bouc, R. Stancu, and J. Thévenaz. Vanishing evaluations of simple functors. *J.P.A.A.*, 218:218–227, 2014.

- [10] S. Bouc and J. Thévenaz. The group of endo-permutation modules. *Invent. Math.*, 139:275–349, 2000.
- [11] S. Bouc and J. Thévenaz. Gluing torsion endo-permutation modules. J. London Math. Soc., 78(2):477–501, 2008.
- [12] S. Bouc and J. Thévenaz. A sectional characterization of the Dade group. *Journal of Group Theory*, 11(2):155–298, 2008.
- [13] S. Bouc and J. Thévenaz. The algebra of essential relations on a finite set. *J. reine angew. Math.*, 712:225–250, 2016.
- [14] D. Quillen. Homotopy properties of the poset of non-trivial p-subgroups. Adv. in Maths, 28(2):101-128, 1978.
- [15] R. P. Stanley. *Enumerative combinatorics*, volume 1. Wadsworth & Brooks/Cole, Monterey, 1986.
- [16] P. Webb. Stratifications and Mackey functors II: globally defined Mackey functors. J. K-Theory, 6(1):99–170, 2010.

Serge Bouc LAMFA-CNRS UMR7352 33 rue St Leu, 80039 - Amiens - Cedex 01 France

email: serge.bouc@u-picardie.fr