Idempotents of double Burnside algebras, *L*-enriched bisets, and decomposition of *p*-biset functors

Serge Bouc

Abstract: Let R be a (unital) commutative ring, and G be a finite group with order invertible in R. We introduce new idempotents $\epsilon_{T,S}^G$ in the double Burnside algebra RB(G, G) of G over R, indexed by conjugacy classes of minimal sections (T, S) of G (i.e. sections such that $S \leq \Phi(T)$). These idempotents are orthogonal, and their sum is equal to the identity. It follows that for any biset functor F over R, the evaluation F(G) splits as a direct sum of specific R-modules indexed by minimal sections of G, up to conjugation.

The restriction of these constructions to the biset category of *p*-groups, where *p* is a prime number invertible in *R*, leads to a decomposition of the category of *p*-biset functors over *R* as a direct product of categories \mathcal{F}_L indexed by *atoric p*-groups *L* up to isomorphism.

We next introduce the notions of *L*-enriched biset and *L*-enriched biset functor for an arbitrary finite group *L*, and show that for an atoric *p*-group *L*, the category \mathcal{F}_L is equivalent to the category of *L*-enriched biset functors defined over elementary abelian *p*-groups.

Finally, the notion of *vertex* of an indecomposable *p*-biset functor is introduced (when $p \in \mathbb{R}^{\times}$), and when *R* is a field of characteristic different from *p*, the objects of the category \mathcal{F}_L are characterized in terms of vertices of their composition factors.

AMS subject classification: 18B99, 19A22, 20J15

Keywords: Minimal sections, idempotents, double Burnside algebra, enriched biset functor, atoric

1. Introduction

Let R denote throughout a commutative ring (with identity element). For a finite group G, we consider the double Burnside algebra RB(G,G) of Gover R. In the case where the order of G is invertible in R, we introduce idempotents $\epsilon_{T,S}^G$ in RB(G,G), indexed by the set $\mathcal{M}(G)$ of minimal sections of G, i.e. the set of pairs (T,S) of subgroups of G with $S \leq T$ and $S \leq \Phi(T)$, where $\Phi(T)$ is the Frattini subgroup of T (such sections have been considered in Section 5 of [9]). The idempotent $\epsilon_{T,S}^G$ only depends on the conjugacy class of (T,S) in G. Moreover, the idempotents $\epsilon_{T,S}^G$, where (T,S) runs through a set $[\mathcal{M}(G)]$ of representatives of orbits of G acting on $\mathcal{M}(G)$ by conjugation, are orthogonal, and their sum is equal to the identity element of RB(G,G). The idempotent $\epsilon_{G,1}^G$ plays a special role in our construction, and it is denoted by φ_1^G . In particular, when F is a biset functor over R (and the order of G is invertible in R), we set $\delta_{\Phi}F(G) = \varphi_1^GF(G)$. We show that $\delta_{\Phi}F(G)$ consists of those elements $u \in F(G)$ such that $\operatorname{Res}_H^G u = 0$ whenever H is a proper subgroup of G, and $\operatorname{Def}_{G/N}^G u = 0$ whenever N is a non-trivial normal subgroup of G contained in $\Phi(G)$. This yields moreover a decomposition

$$F(G) \cong \left(\bigoplus_{(T,S)\in\mathcal{M}(G)} \delta_{\Phi}F(T/S)\right)^G \cong \bigoplus_{(T,S)\in[\mathcal{M}(G)]} \delta_{\Phi}F(T/S)^{N_G(T,S)/T}$$

In view of the fact that the Frattini subgroup is well behaved for *p*-groups, it is natural to restrict these constructions to the biset category RC_p of *p*groups with coefficients in *R*, where *p* is a prime invertible in *R*, and to consider *p*-biset functors over *R*. Then we get orthogonal idempotents b_L in the *center* of RC_p , indexed by *atoric p*-groups, i.e. finite *p*-groups which cannot be split as a direct product $C_p \times Q$, for some *p*-group *Q*. We show next that every finite *p*-group *P* admits a unique largest atoric quotient $P^{@}$, well defined up to isomorphism, and that there exists an elementary abelian *p*-subgroup *E* of *P* (non unique in general) such that $P \cong E \times P^{@}$. For a given atoric *p*-group *L*, we introduce a category $RC_p^{\sharp L}$, defined as a quotient of the subcategory of RC_p consisting of *p*-groups *P* such that $P^{@} \cong L$. This leads to a decomposition of the category $\mathcal{F}_{p,R}$ of *p*-biset functors over *R* as a direct product

$$\mathcal{F}_{p,R} \cong \prod_{L \in [\mathcal{A}t_p]} \mathsf{Fun}_R (R\mathcal{C}_p^{\sharp L}, R\text{-}\mathsf{Mod})$$

of categories of representations of $RC_p^{\sharp L}$ over R, where L runs through a set $[\mathcal{A}t_p]$ of isomorphism classes of atoric p-groups. Similar questions on idempotents in double Burnside algebras and decomposition of biset functors categories have been considered by L. Barker ([1]), R. Boltje and S. Danz ([2], [3]), R. Boltje and B. Külshammer ([4]), and P. Webb ([16]).

In particular, via the above decomposition, to any indecomposable pbiset functor F is associated a unique atoric p-group, called the *vertex* of F. We show that this vertex is isomorphic to $Q^{\textcircled{Q}}$, for any p-group Q such that $F(Q) \neq \{0\}$ but F vanishes on any proper subquotient of Q.

Going back to arbitrary finite groups, we next introduce the notions of *L*-enriched biset and *L*-enriched biset functor, and show that when *L* is an atoric *p*-group, the abelian category $\operatorname{Fun}_R(R\mathcal{C}_p^{\sharp L}, R\operatorname{-Mod})$ is equivalent to the category of *L*-enriched biset functors from elementary abelian *p*-groups to *R*-modules.

The paper is organized as follows: Section 2 is a review of definitions and basic results on Burnside rings and biset functors. Section 3 is concerned

with the algebra $\mathcal{E}(G)$ obtained by "cutting" the double Burnside algebra RB(G,G) of a finite group G by the idempotent e_G^G corresponding to the "top" idempotent e_G^G of the Burnside algebra RB(G). Orthogonal idempotents φ_N^G of $\mathcal{E}(G)$ are introduced, indexed by normal subgroups N of G contained in $\Phi(G)$. It is shown moreover that if G is nilpotent, then φ_1^G is central in $\mathcal{E}(G)$. In Section 4, the idempotents $\epsilon_{T,S}^G$ of RB(G,G) are introduced, leading in Section 5 to the corresponding direct sum decomposition of the evaluation at G of any biset functor over R. In Section 6, atoric p-groups are introduced, and their main properties are stated. In Section 7, the biset category of p-groups over R is considered, leading to a splitting of the category $\mathcal{F}_{p,R}$ of p-biset functors over R as a direct product of abelian categories $\mathcal{F}_L = \mathsf{Fun}_R(R\mathcal{C}_p^{\sharp L}, R\text{-}\mathsf{Mod})$ indexed by atoric *p*-groups *L* up to isomorphism. In Section 8, for an arbitrary finite group L, the notions of L-enriched biset and L-enriched biset functor are introduced, and it is shown that when L is an atoric p-group, the category \mathcal{F}_L is equivalent to the category of L-enriched biset functors on elementary abelian p-groups. Finally, in Section 9, for a given atoric p-group L, and when p is invertible in R, the structure of the category \mathcal{F}_L is considered, and the notion of vertex of an indecomposable *p*-biset functor over R is introduced. In particular, when R is a field of characteristic different from p, it is shown that the objects of \mathcal{F}_L are those p-biset functors all composition factors of which have vertex L.

Contents

1	Introduction	1
2	Review of Burnside rings and biset functors	4
3	Idempotents in $\mathcal{E}(G)$	11
4	Idempotents in $RB(G,G)$	19
5	Application to biset functors	23
6	Atoric <i>p</i> -groups	25
7	Splitting the biset category of <i>p</i> -groups, when $p \in R^{\times}$	29
8	L-enriched bisets	42
9	The category $\widehat{b}_L \mathcal{F}_{p,R}$, for an atoric <i>p</i> -group L ($p \in R^{\times}$)	47

2. Review of Burnside rings and biset functors

This section recalls some basic definitions and notation on bisets, Burnside rings, and biset functors. Details can be found in [7].

2.1. Let G be a finite group, let s_G denote the set of subgroups of G, let $\overline{s_G}$ denote the set of conjugacy classes of subgroups of G, and let $[s_G]$ denote a set of representatives of $\overline{s_G}$.

Let B(G) denote the Burnside ring of G, i.e. the Grothendieck ring of the category of finite G-sets. It is a commutative ring, with an identity element, equal to the class of a G-set of cardinality 1. The additive group B(G) is a free abelian group on the set $\{[G/H] \mid H \in [s_G]\}$ of isomorphism classes of transitive G-sets.

2.2. • When G and H are finite groups, and L is a subgroup of $G \times H$, set

$$p_{1}(L) = \{g \in G \mid \exists h \in H, (g, h) \in L\} ,$$

$$p_{2}(L) = \{h \in H \mid \exists g \in G, (g, h) \in L\} ,$$

$$k_{1}(L) = \{g \in G \mid (g, 1) \in L\} ,$$

$$k_{2}(L) = \{h \in H \mid (1, h) \in L\} .$$

Recall that $k_i(L) \leq p_i(L)$, for $i \in \{1, 2\}$, that $(k_1(L) \times k_2(L)) \leq L$, and that there are canonical isomorphisms ([7], Proposition 2.3.21)

$$p_1(L)/k_1(L) \cong L/(k_1(L) \times k_2(L)) \cong p_2(L)/k_2(L)$$
.

Set moreover $q(L) = L/(k_1(L) \times k_2(L)).$

• When Z is a subgroup of G, set

$$\Delta(Z) = \{(z, z) \mid z \in Z\} \le (G \times G) \quad .$$

When N is a normal subgroup of a subgroup H of G, set

$$\Delta_N(H) = \{ (a, b) \in G \times G \mid a, b \in H, \ ab^{-1} \in N \} .$$

It is a subgroup of $G \times G$.

• When G, H, and K are groups, when $L \leq (G \times H)$ and $M \leq (H \times K)$, set

$$L * M = \{ (g, k) \in (G \times K) \mid \exists h \in H, (g, h) \in L \text{ and } (h, k) \in M \}$$

It is a subgroup of $(G \times K)$.

2.3. When G and H are finite groups, a (G, H)-biset U is a set endowed with

a left action of G and a right action of H which commute. In other words U is a $G \times H^{op}$ -set, where H^{op} is the opposite group of H. The opposite biset U^{op} is the (H, G)-biset equal to U as a set, with actions defined for $h \in H$, $u \in U$ and $g \in G$ by $h \cdot u \cdot g$ (in U^{op}) = $g^{-1}uh^{-1}$ (in U).

The Burnside group B(G, H) is the Grothendieck group of the category of finite (G, H)-bisets. It is a free abelian group on the set of isomorphism classes $[(G \times H)/L]$, for $L \in [s_{G \times H}]$, where the (G, H)-biset structure on $(G \times H)/L$ is given by

$$\forall a, g \in G, \forall b, h \in H, a \cdot (g, h)L \cdot b = (ag, b^{-1}h)L$$
.

When G, H, and K are finite groups, there is a unique bilinear product

 $\times_H : B(G, H) \times B(H, K) \to B(G, K)$

induced by the usual product $(U, V) \mapsto U \times_H V = (U \times V)/H$ of bisets, where the right action of H on $U \times V$ is defined for $u \in U, v \in V$ and $h \in H$ by $(u, v) \cdot h = (uh, h^{-1}v)$. As the group H is generally clear from the context, this product will often simply be denoted $(\alpha, \beta) \mapsto \alpha\beta$.

This leads to the following definitions:

2.4. Definition: The biset category of finite groups C is defined as follows:

- The objects of C are the finite groups.
- When G and H are finite groups,

$$\operatorname{Hom}_{\mathcal{C}}(G,H) = B(H,G) \quad .$$

• When G, H, and K are finite groups, the composition

 $\circ : \operatorname{Hom}_{\mathcal{C}}(H, K) \times \operatorname{Hom}_{\mathcal{C}}(G, H) \to \operatorname{Hom}_{\mathcal{C}}(G, K)$

is the product

$$\times_H : B(K,H) \times B(H,G) \to B(K,G)$$

• The identity morphism of the group G is the class of the set G, viewed as a (G,G)-biset by left and right multiplication.

A biset functor is an additive functor from C to the category of abelian groups.

When R is a commutative (unital) ring, the category RC is defined similarly by extending coefficients to R, i.e. by setting

$$\operatorname{Hom}_{R\mathcal{C}}(G,H) = R \otimes_{\mathbb{Z}} B(H,G)$$

which will be simply denoted by RB(H,G). A biset functor over R is an Rlinear functor from RC to the category R-Mod of R-modules. The category of biset functors over R (where morphisms are natural transformations of functors) is denoted by \mathcal{F}_R .

For simplicity, the composition of morphisms $\alpha \in RB(H,G)$ and $\beta \in RB(K,H)$ in the category $R\mathcal{C}$ will generally be simply denoted by $\beta \alpha$ instead of $\beta \times_H \alpha$.

The correspondence sending a (G, H)-biset U to its opposite U^{op} extends to an isomorphism of R-modules $RB(G, H) \to RB(H, G)$. These isomorphisms give an equivalence of R-linear categories from $R\mathcal{C}$ to its opposite category, which is the identity on objects.

2.5. Let G and H be finite groups, and F be a biset functor (with values in R-Mod). For any finite (H, G)-biset U, the isomorphism class [U] of U belongs to B(H, G), and it yields an R-linear map $F([U]) : F(G) \to F(H)$, simply denoted by F(U), or even $f \in F(G) \mapsto U(f) \in F(H)$. This is a very convenient abuse of notation. In particular:

- When H is a subgroup of G, denote by $\operatorname{Ind}_{H}^{G}$ the set G, viewed as a (G, H)-biset for left and right multiplication, and by $\operatorname{Res}_{H}^{G}$ the same set, viewed as an (H, G)-biset. This gives a map $\operatorname{Ind}_{H}^{G} : F(H) \to F(G)$, called induction, and a map $\operatorname{Res}_{H}^{G} : F(G) \to F(H)$, called restriction. We observe that $(\operatorname{Ind}_{H}^{G})^{op}$ and $\operatorname{Res}_{H}^{G}$ are isomorphic (H, G)-bisets (and similarly $(\operatorname{Res}_{H}^{G})^{op} \cong \operatorname{Ind}_{H}^{G}$ as (G, H)-bisets).
- When N is a normal subgroup of G, let $\operatorname{Inf}_{G/N}^G$ denote the set G/N, viewed as a (G, G/N)-biset for the left action of G, and right action of G/N by multiplication. Also let $\operatorname{Def}_{G/N}^G$ denote the set G/N, viewed as a (G/N, G)-biset. This gives a map $\operatorname{Inf}_{G/N}^G : F(G/N) \to F(G)$, called inflation, and a map $\operatorname{Def}_{G/N}^G : F(G) \to F(G/N)$, called deflation. We observe that $(\operatorname{Inf}_{G/N}^G)^{op}$ and $\operatorname{Def}_{G/N}^G$ are isomorphic (G/N, G)-bisets (and similarly $(\operatorname{Def}_{G/N}^G)^{op} \cong \operatorname{Inf}_{G/N}^G$ as (G, G/N)-bisets).
- Finally, when $f: G \to G'$ is a group isomorphism, denote by $\operatorname{Iso}(f)$ the set G', viewed as a (G', G)-biset for left multiplication in G', and right action of G given by multiplication by the image under f. This gives a map $\operatorname{Iso}(f): F(G) \to F(G')$, called transport by isomorphism. Clearly $(\operatorname{Iso}(f))^{op} \cong \operatorname{Iso}(f^{-1})$ as (G, G')-bisets.

The above bisets $\operatorname{Ind}_{H}^{G}$, $\operatorname{Res}_{H}^{G}$, $\operatorname{Inf}_{G/N}^{G}$, $\operatorname{Def}_{G/N}^{G}$ and $\operatorname{Iso}(f)$ are called *elementary* bisets, as they generate the biset category, in the following sense: when Gand H are finite groups, any (G, H)-biset is a disjoint union of transitive ones. It follows that any element of B(G, H) is a linear combination of morphisms of the form $[(G \times H)/L]$, where $L \in s_{G \times H}$. Moreover, any such morphism factors as

(2.6)
$$[(G \times H)/L] = \operatorname{Ind}_{p_1(L)}^G \operatorname{Inf}_{p_1(L)/k_1(L)}^{p_1(L)} \operatorname{Iso}(f) \operatorname{Def}_{p_2(L)/k_2(L)}^{p_2(L)} \operatorname{Res}_{p_2(L)}^H ,$$

where $f: p_2(L)/k_2(L) \to p_1(L)/k_1(L)$ is the canonical group isomorphism.

It follows that elementary bisets satisfy a (rather long) list of relations: the composition of two of them, when it makes sense, can always be expressed as a sum of compositions of the form Ind Inf Iso Def Res (in that order), given explicitly by (2.6). These compatibility relations are listed in Section 1.1.3 of [7]. We will use them freely.

For finite groups G, H, K, for $L \leq (G \times H)$ and $M \leq (H \times K)$, one has that

(2.7)
$$[(G \times H)/L] \times_H [(H \times K)/M] = \sum_{h \in p_2(L) \setminus H/p_1(M)} [(G \times K)/(L * {}^{(h,1)}M)]$$

in B(G, K).

2.8. Definition: When G is a finite group, a section (T, S) of G is a pair of subgroups of G such that $S \leq T$. A group H is called a subquotient of G (notation $H \sqsubseteq G$) if there exists a section (T, S) of G such that $T/S \cong H$.

When (T, S) is a section of G, we denote by $\operatorname{Indinf}_{T/S}^G$ the set G/S, viewed as a (G, T/S)-biset for the natural actions given by multiplication of G and T/S. One checks easily that $\operatorname{Indinf}_{T/S}^G$ is isomorphic to the composition $\operatorname{Ind}_{T}^{G}\operatorname{Inf}_{T/S}^{T}$ as (G, T/S)-biset. Similarly, we denote by $\operatorname{Defres}_{T/S}^{G}$ the set $S \setminus G$, viewed as a (T/S, G)-biset. It is isomorphic to the composition $\operatorname{Def}_{T/S}^{T}\operatorname{Res}_{T}^{G}$. We observe that $(\operatorname{Indinf}_{T/S}^{G})^{op} \cong \operatorname{Defres}_{T/S}^{G}$ as (T/S, G)-bisets, and that $(\text{Defres}_{T/S}^G)^{op} \cong \text{Indinf}_{T/S}^G$ as (G, T/S)-bisets.

With this notation, (2.6) gives in particular

(2.9)
$$[(G \times G)/\Delta_S(T)] = \operatorname{Indinf}_{T/S}^G \operatorname{Defres}_{T/S}^G .$$

Two special cases are worth noticing, as they will be used intensively in the sequel:

(2.10) for
$$N \trianglelefteq G$$
, $[(G \times G)/\Delta_N(G)] = \operatorname{Inf}_{G/N}^G \operatorname{Def}_{G/N}^G$.

(2.11) for
$$H \leq G$$
, $[(G \times G)/\Delta(H)] = \operatorname{Ind}_{H}^{G} \operatorname{Res}_{H}^{G}$

2.12. When G is a finite group, the group B(G, G) is the ring of endomorphisms of G in the category C. This ring is called the double Burnside ring of G. It is a non-commutative ring (if G is non trivial), with identity element equal to the class of the set G, viewed as a (G, G)-biset for left and right multiplication.

There is a unitary ring homomorphism $\alpha \mapsto \tilde{\alpha}$ from B(G) to B(G, G), induced by the functor $X \mapsto \tilde{X}$ from G-sets to (G, G)-bisets, where $\tilde{X} = G \times X$, with (G, G)-biset structure given by

$$\forall a, b, g \in G, \, \forall x \in X, \, a(g, x)b = (agb, b^{-1}x)$$

This construction has in particular the following properties (Corollary 2.5.12 of [7]):

2.13. Lemma: Let G be a finite group.

1. If H is a subgroup of G, and X is a finite G-set, then there is an isomorphism of (G, H)-bisets

$$\widetilde{X} \times_G \operatorname{Ind}_H^G \cong \operatorname{Ind}_H^G \times_H \operatorname{Res}_H^G X$$

and an isomorphism of (H, G)-bisets

$$\operatorname{Res}_{H}^{G} \times_{G} \widetilde{X} \cong \widetilde{\operatorname{Res}_{H}^{G}} X \times_{H} \operatorname{Res}_{H}^{G}$$

where $\operatorname{Res}_{H}^{G} X$ denotes the set X, viewed as an H-set by restriction.

2. If H is a subgroup of G, and Y is a finite H-set, then there is an isomorphism of (G, G)-bisets

$$\operatorname{Ind}_{H}^{G} \times_{H} \widetilde{Y} \times_{H} \operatorname{Res}_{H}^{G} \cong \widetilde{\operatorname{Ind}_{H}^{G}Y}$$

where $\operatorname{Ind}_{H}^{G}Y = G \times_{H} Y$ is the G-set induced from Y.

3. If N is a normal subgroup of G, and X is a finite G/N-set, then there is an isomorphism of (G/N, G)-bisets

$$\widetilde{X} \times_{G/N} \operatorname{Def}_{G/N}^G \cong \operatorname{Def}_{G/N}^G \times_G \operatorname{Inf}_{G/N}^G X$$

where $\operatorname{Inf}_{G/N}^G X$ denotes the set X, viewed as a G-set by inflation.

4. If N is a normal subgroup of G, and X is a finite G-set, then there is an isomorphism of (G/N, G/N)-bisets

$$\operatorname{Def}_{G/N}^G \times_G \widetilde{X} \times_G \operatorname{Inf}_{G/N}^G \cong \operatorname{Def}_{G/N}^G X$$
,

where $\operatorname{Def}_{G/N}^G X$ is the set $N \setminus X$ of N-orbits on X, viewed as a G/N-set.

2.14. Remark: One checks easily from the definition that if Y = H/H, then \widetilde{H} is isomorphic to the identity (H, H)-biset. By Assertion 2 of Lemma 2.13, it follows more generally that if $H \leq G$, then $\widetilde{G/H}$ is isomorphic to the composition $\operatorname{Ind}_{H}^{G}\operatorname{Res}_{H}^{G}$ as a (G, G)-biset. By (2.11), it is also isomorphic to $(G \times G)/\Delta(H)$. By linearity, it also follows that $(\widetilde{X})^{op} \cong \widetilde{X}$ as (G, G)-biset, for any G-set X.

2.15. Lemma: If $f : G \to H$ is a group isomorphism, and X is a finite G-set, then there is an isomorphism of (H, G)-bisets

$$\operatorname{Iso}(f) \times_G \widetilde{X} \cong {}^{f}X \times_H \operatorname{Iso}(f) ,$$

where ${}^{f}X$ is the set X, on which H acts by $h.x = f^{-1}(h)x$, for $h \in H$ and $x \in X$.

Proof : This follows by linearity from the case X = G/K, for $K \leq G$. In this case indeed

$$\operatorname{Iso}(f) \times_G \widetilde{X} \cong \operatorname{Iso}(f) \operatorname{Ind}_K^G \operatorname{Res}_K^G \cong \operatorname{Ind}_{f(K)}^H \operatorname{Res}_{f(K)}^H \operatorname{Iso}(f) \cong \widetilde{H/f(K)} \times_H \operatorname{Iso}(f) \quad,$$

and there is an obvious isomorphism of *H*-sets ${}^{f}(G/K) \cong H/f(K)$.

2.16. Let RB(G) denote the *R*-algebra $R \otimes_{\mathbb{Z}} B(G)$. Assume moreover that the order of *G* is invertible in *R*. Then for $H \leq G$, let $e_H^G \in RB(G)$ be defined by

(2.17)
$$e_{H}^{G} = \frac{1}{|N_{G}(H)|} \sum_{K \le H} |K| \mu(K, H) [G/K]$$

where μ is the Möbius function of the poset of subgroups of G. The elements e_H^G , for $H \in [s_G]$, are orthogonal idempotents of RB(G), and their sum is equal to the identity element of RB(G). It follows that the elements $\widetilde{e_H^G}$, for $H \in [s_G]$, are orthogonal idempotents of the R-algebra RB(G,G) =

 $R \otimes_{\mathbb{Z}} B(G,G)$, and the sum of these idempotents is equal to the identity element of RB(G,G). The idempotents $\widetilde{e_G^G}$ play a special role, due to the following lemma:

2.18. Lemma: Let R be a commutative ring, and G be a finite group with order invertible in R.

1. Let H be a proper subgroup of G. Then

$$\operatorname{Res}_{H}^{G} \widetilde{e_{G}^{G}} = 0 \ and \ \widetilde{e_{G}^{G}} \operatorname{Ind}_{H}^{G} = 0$$

2. When $N \leq G$, let $m_{G,N} \in R$ be defined by

$$m_{G,N} = \frac{1}{|G|} \sum_{\substack{X \in s_G \\ XN = G}} |X| \mu(X,G) \quad .$$

Then

$$\operatorname{Def}_{G/N}^G \widetilde{e_G^G} \operatorname{Inf}_{G/N}^G = m_{G,N} \widetilde{e_{G/N}^{G/N}}$$

3. Let $N \leq G$, and suppose that N is contained in the Frattini subgroup $\Phi(G)$ of G. Then

$$\widetilde{e_{G/N}^{G/N}}\operatorname{Def}_{G/N}^G = \operatorname{Def}_{G/N}^G \widetilde{e_G^G} \ and \ \operatorname{Inf}_{G/N}^G \widetilde{e_{G/N}^G} = \widetilde{e_G^G}\operatorname{Inf}_{G/N}^G$$

Proof: Assertion 1 follows from Lemma 2.13 and Assertion 1 of Theorem 5.2.4. of [7].

Assertion 2 follows from Lemma 2.13 and Assertion 4 of Theorem 5.2.4. of [7].

Finally the first part of Assertion 3 follows from Lemma 2.13 and Assertion 3 of Theorem 5.2.4. of [7]: indeed $\operatorname{Inf}_{G/N}^G e_{G/N}^{G/N}$ is equal to the sum of the different idempotents e_X^G of RB(G) indexed by subgroups X such that XN = G. If $N \leq \Phi(G)$, then XN = G implies $X\Phi(G) = G$, hence X = G. The second part of Assertion 3 follows by taking opposite bisets, since $\widetilde{e_G^G}$ and $\widetilde{e_{G/N}^{G/N}}$ are equal to their opposite bisets, and since $(\operatorname{Def}_{G/N}^G)^{op} \cong \operatorname{Inf}_{G/N}^G$.

2.19. Remark: For the same reason, if $N \leq \Phi(G)$, then $m_{G,N} = 1$.

2.20. Remark: It follows from Assertion 1 and Equation 2.6 that if G and H are finite groups and if $L \leq (G \times H)$, then $\widetilde{e_G^G}[(G \times H)/L] = 0$ if $p_1(L) \neq G$,

and $[(G \times H)/L]\widetilde{e_H^H} = 0$ if $p_2(L) \neq H$.

3. Idempotents in $\mathcal{E}(G)$

3.1. Notation: When G is a finite group with order invertible in R, denote by $\mathcal{E}(G)$ the R-algebra defined by

$$\mathcal{E}(G) = \widetilde{e_G^G} \, RB(G,G) \, \widetilde{e_G^G} \; \; .$$

Set

$$\Sigma(G,G) = \{ L \in s_{G \times G} \mid p_1(L) = p_2(L) = G \} ,$$

and for $L \in s_{G \times G}$, set

$$Y_L = \widetilde{e_G^G} \left[(G \times G) / L \right] \widetilde{e_G^G} \in \mathcal{E}(G) \quad .$$

The *R*-algebra $\mathcal{E}(G)$ has been considered in [5], Section 9, in the case *R* is a field of characteristic 0. The extension of the results proved there to the case where *R* is a commutative ring in which the order of *G* is invertible is straightforward. In particular:

3.2. Proposition: Let G be a finite group with order invertible in R.

- 1. If $L \in s_{G \times G} \Sigma(G, G)$, then $Y_L = 0$.
- 2. The elements Y_L , for L in a set of representatives of $(G \times G)$ -conjugacy classes on $\Sigma(G, G)$, form an R-basis of $\mathcal{E}(G)$.
- 3. For $L, M \in \Sigma(G, G)$

in

$$Y_L Y_M = \frac{m_{G,k_2(L)\cap k_1(M)}}{|G|} \sum_{\substack{Z \le G \\ Zk_2(L) = Zk_1(M) = G \\ Z \ge k_2(L)\cap k_1(M)}} |Z| \mu(Z,G) Y_{L*\Delta(Z)*M}$$

$$\mathcal{E}(G).$$

3.3. Corollary: Let $L, M \in \Sigma(G, G)$. If one of the groups $k_2(L)$ or $k_1(M)$

is contained in $\Phi(G)$, then

$$Y_L Y_M = Y_{L*M} \quad .$$

Proof: Indeed if $k_2(L) \leq \Phi(G)$, then $Zk_2(L) = G$ implies $Z\Phi(G) = G$, hence Z = G. Similarly, if $k_1(M) \leq \Phi(G)$, then $Zk_1(M) = G$ implies Z = G. In each case, Proposition 3.2 then gives

$$Y_L Y_M = m_{G,k_2(L) \cap k_1(M)} Y_{L*M}$$
,

and moreover $m_{G,k_2(L)\cap k_1(M)} = 1$ since $k_2(L)\cap k_1(M) \leq \Phi(G)$, by Remark 2.19.

3.4. Notation: For a normal subgroup N of G such that $N \leq \Phi(G)$, set

$$\varphi_N^G = \sum_{\substack{M \leq G \\ N \leq M \leq \Phi(G)}} \mu_{\leq G}(N, M) Y_{\Delta_M(G)}$$

where $\mu_{\leq G}$ is the Möbius function of the poset of normal subgroups of G.

3.5. Proposition: Let $N \leq G$ with $N \leq \Phi(G)$. Then $\varphi_N^G = \operatorname{Inf}_{G/N}^G \varphi_1^{G/N} \operatorname{Def}_{G/N}^G$.

Proof: Indeed if $N \leq M \leq G$, then $\mu_{\leq G}(N, M) = \mu_{\leq G/N}(\mathbf{1}, M/N)$. Since moreover $N \leq \Phi(G)$, setting $\overline{G} = G/N$ and $\overline{M} = M/N$, we have by Lemma 2.18

$$\begin{aligned} \operatorname{Inf}_{G/N}^{G} Y_{\Delta_{\overline{G}}(\overline{M})} \operatorname{Def}_{G/N}^{G} &= \operatorname{Inf}_{G/N}^{G} e_{\overline{G}}^{\overline{G}} \left[(\overline{G} \times \overline{G}) / \Delta_{\overline{G}}(\overline{M}) \right] e_{\overline{G}}^{\overline{G}} \operatorname{Def}_{G/N}^{G} \\ &= \widetilde{e_{G}^{G}} \operatorname{Inf}_{G/N}^{G} \left[(\overline{G} \times \overline{G}) / \Delta_{\overline{G}}(\overline{M}) \right] \operatorname{Def}_{G/N}^{G} \widetilde{e_{G}^{G}} \\ &= \widetilde{e_{G}^{G}} \left[(G \times G) / \Delta_{M}(G) \right] \widetilde{e_{G}^{G}} \\ &= Y_{\Delta_{M}(G)} \quad, \end{aligned}$$

since $\operatorname{Inf}_{G/N}^{G}\left[(\overline{G} \times \overline{G})\right)/\Delta_{\overline{G}}(\overline{M})\right]\operatorname{Def}_{G/N}^{G} = (G \times G)/\Delta_{M}(G)$, by 2.10 and transitivity of inflation. Moreover summing over normal subgroups \overline{M} of \overline{G} contained in $\Phi(\overline{G})$ amounts to summing over normal subgroups M of G with $N \leq M \leq \Phi(G)$.

3.6. Proposition:

1. Let $N \leq G$, with $N \leq \Phi(G)$. Then

$$\varphi_N^G = \widetilde{e_G^G} \left(\sum_{\substack{M \leq G \\ N \leq M \leq \Phi(G)}} \mu_{\leq G}(N, M) \left[(G \times G) / \Delta_M(G) \right] \right)$$
$$= \left(\sum_{\substack{M \leq G \\ N \leq M \leq \Phi(G)}} \mu_{\leq G}(N, M) \left[(G \times G) / \Delta_M(G) \right] \right) \widetilde{e_G^G} .$$

2. In particular

$$\varphi_{\mathbf{1}}^{G} = \frac{1}{|G|} \sum_{\substack{X \le G, M \le G \\ M \le \Phi(G) \le X \le G}} |X| \mu(X, G) \mu_{\le G}(\mathbf{1}, M) \operatorname{Indinf}_{X/M}^{G} \operatorname{Defres}_{X/M}^{G} .$$

3. Let $N \leq G$ with $N \leq \Phi(G)$, and $f: G \rightarrow H$ be a group isomorphism. Then

$$\operatorname{Iso}(f) \varphi_N^G = \varphi_{f(N)}^H \operatorname{Iso}(f)$$
.

Proof: For Assertion 1, by definition

$$\varphi_N^G = \sum_{\substack{M \leq G \\ N \leq M \leq \Phi(G)}} \mu_{\leq G}(N, M) \widetilde{e_G^G}[(G \times G) / \Delta_M(G)] \sum_{X \leq G} \frac{|X|}{|G|} \mu(X, G)[(G \times G) / \Delta(X)].$$

Moreover $[(G \times G)/\Delta_M(G)][(G \times G)/\Delta(X)] = [(G \times G)/(\Delta_M(G) * \Delta(X))],$ by (2.7), and $\Delta_M(G) * \Delta(X) = \{(mx, x) \mid x \in X, m \in M\}$. The first projection of this group is equal to MX, hence it is equal to G if and only if X = G, since $M \leq \Phi(G)$. The first equality of Assertion 1 follows, by Remark 2.20, since moreover $\Delta_M(G) * \Delta(G) = \Delta_M(G)$. The second one follows by taking opposite bisets, since \widetilde{e}_G^G and $[(G \times G)/\Delta_M(G)]$ are equal to their opposite, by (2.10) and Remark 2.14.

Assertion 2 follows in the special case where N = 1, expanding $\widetilde{e_G^G}$ as

$$\widetilde{e_G^G} = \frac{1}{|G|} \sum_{X \le G} |X| \mu(X, G) \left[(G \times G) / \Delta(X) \right] \; ,$$

observing that $\mu(X,G) = 0$ unless $X \ge \Phi(G)$, and that if $X \ge \Phi(G) \ge M$, then

$$\left[(G \times G) / \Delta(X) \right] \left[(G \times G) / \Delta_M(G) \right] = \left[(G \times G) / \Delta_M(X) \right] ,$$

which is equal to $\operatorname{Indinf}_{X/M}^G \operatorname{Defres}_{X/M}^G$ by (2.9). Now for Assertion 3

$$\operatorname{Iso}(f) \varphi_N^G \operatorname{Iso}(f^{-1}) = \operatorname{Iso}(f) \widetilde{e_G^G} \operatorname{Iso}(f^{-1}) \operatorname{Iso}(f) \Sigma \operatorname{Iso}(f)^{-1}$$

where $\Sigma = \sum_{\substack{M \leq G \\ N \leq M \leq \Phi(G)}} \mu_{\leq G}(N, M) \left[(G \times G) / \Delta_M(G) \right]$. Moreover

$$\operatorname{Iso}(f) \, \widetilde{e_G^G} \, \operatorname{Iso}(f^{-1}) = \widetilde{e_H^H}$$

by Lemma 2.15, since obviously ${}^{f}(e_{G}^{G}) = e_{H}^{H}$. Finally

$$\operatorname{Iso}(f) \Sigma \operatorname{Iso}(f)^{-1} = \sum_{\substack{M \trianglelefteq G \\ N \le M \le \Phi(G)}} \mu_{\trianglelefteq G}(N, M) \operatorname{Iso}(f) \operatorname{Inf}_{G/M}^{G} \operatorname{Def}_{G/M}^{G} \operatorname{Iso}(f^{-1})$$
$$= \sum_{\substack{M \trianglelefteq G \\ N \le M \le \Phi(G)}} \mu_{\trianglelefteq G}(N, M) \operatorname{Inf}_{H/f(M)}^{H} \operatorname{Def}_{H/f(M)}^{H}$$
$$= \sum_{\substack{M' \trianglelefteq H \\ f(N) \le M' \le \Phi(H)}} \mu_{\trianglelefteq H}(f(N), M') \operatorname{Inf}_{H/M'}^{H} \operatorname{Def}_{H/M'}^{H}$$

where M' = f(M) in the last summation. It follows that

$$\operatorname{Iso}(f)\varphi_N^G \operatorname{Iso}(f^{-1}) = \widetilde{e_H^H} \sum_{\substack{M' \leq H \\ f(N) \leq M' \leq \Phi(H)}} \mu_{\leq H} (f(N), M') \operatorname{Inf}_{H/M'}^H \operatorname{Def}_{H/M'}^H = \varphi_{f(N)}^H ,$$

as was to be shown.

 $\begin{bmatrix} \textbf{3.7. Corollary:} \\ 1. Let H < G. Then \operatorname{Res}_{H}^{G} \varphi_{N}^{G} = 0 \text{ and } \varphi_{N}^{G} \operatorname{Ind}_{H}^{G} = 0. \\ 2. Let M \trianglelefteq G. If M \cap \Phi(G) \nleq N, then \operatorname{Def}_{G/M}^{G} \varphi_{N}^{G} = 0 \text{ and } \varphi_{N}^{G} \operatorname{Inf}_{G/M}^{G} = 0. \end{bmatrix}$

Proof: The first part of Assertion 1 follows from Lemma 2.18, since

$$\operatorname{Res}_{H}^{G}\varphi_{N}^{G} = \operatorname{Res}_{H}^{G}\widetilde{e_{G}^{G}}\varphi_{N}^{G} = 0$$

The second part follows by taking opposite bisets.

For Assertion 2, let $P = M \cap \Phi(G)$. Since $\operatorname{Def}_{G/M}^G = \operatorname{Def}_{G/M}^{G/P} \operatorname{Def}_{G/P}^G$, it suffices to consider the case M = P, i.e. the case where $M \leq \Phi(G)$. Then,

since $\left[(G \times G) / \Delta_M(G) \right] = \operatorname{Inf}_{G/M}^G \operatorname{Def}_{G/M}^G$ for any $M \leq G$, by 2.10, and since $\operatorname{Def}_{G/M}^G \operatorname{Inf}_{G/Q}^G = \operatorname{Inf}_{G/MQ}^{G/M} \operatorname{Def}_{G/MQ}^{G/Q}$ for any $M, Q \leq G$, we have

$$\begin{aligned} \operatorname{Def}_{G/M}^{G} \varphi_{N}^{G} &= \operatorname{Def}_{G/M}^{G} \sum_{\substack{Q \leq G \\ N \leq Q \leq \Phi(G)}} \mu_{\leq G}(N,Q) \operatorname{Inf}_{G/Q}^{G} \operatorname{Def}_{G/Q}^{G} \widetilde{e_{G}^{G}} \\ &= \sum_{\substack{Q \leq G \\ N \leq Q \leq \Phi(G)}} \mu_{\leq G}(N,Q) \operatorname{Inf}_{G/MQ}^{G/M} \operatorname{Def}_{G/MQ}^{G} \widetilde{e_{G}^{G}} \\ &= \sum_{\substack{P \leq G \\ NM \leq P \leq \Phi(G)}} \left(\sum_{\substack{Q \leq G \\ N \leq Q \leq \Phi(G) \\ QM = P}} \mu_{\leq G}(N,Q)\right) \operatorname{Inf}_{G/P}^{G/M} \operatorname{Def}_{G/P}^{G} \widetilde{e_{G}^{G}} \end{aligned}$$

Now for a given $P \trianglelefteq G$ with $P \le \Phi(G)$, the sum $\sum_{\substack{Q \trianglelefteq G \\ N \le Q \le \Phi(G) \\ QM = P}} \mu_{\trianglelefteq G}(N, Q)$ is

equal to zero unless NM = N, that is $M \leq N$, by classical properties of the Möbius function ([15] Corollary 3.9.3). This proves the first part of Assertion 2, and the second part follows by taking opposite bisets.

3.8. Theorem: Let G be a finite group with order invertible in R.

- 1. The elements φ_N^G , for $N \leq G$ with $N \leq \Phi(G)$, form a set of orthogonal idempotents in the algebra $\mathcal{E}(G)$, and their sum is equal to the identity element $\widetilde{e_G^G}$ of $\mathcal{E}(G)$.
- 2. Let $N \leq G$ with $N \leq \Phi(G)$, and let H be a finite group.
 - (a) If $L \leq (G \times H)$, then $\varphi_N^G[(G \times H)/L] = 0$ unless $p_1(L) = G$ and $k_1(L) \cap \Phi(G) \leq N$.
 - (b) If $L' \leq (H \times G)$, then $[(H \times G)/L'] \varphi_N^G = 0$ unless $p_2(L') = G$ and $k_2(L') \cap \Phi(G) \leq N$.

Proof: For $N \leq G$, set $u_N^G = Y_{\Delta_N(G)}$. Since $\Delta_N(G) * \Delta_M(G) = \Delta_{NM}(G)$ for any normal subgroups N and M of G, it follows from Corollary 3.3 that if either N or M is contained in $\Phi(G)$, then $u_N^G u_M^G = u_{NM}^G$.

Now Assertion 1 follows from the following general procedure for building orthogonal idempotents (see [13] Theorem 10.1 for details): we have a finite lattice P (here P is the lattice of normal subgroups of G contained in $\Phi(G)$), and a set of elements g_x of a ring A, for $x \in P$ (here $A = \mathcal{E}(G)$ and $g_N = u_N^G$), with the property that $g_x g_y = g_{x \lor y}$ for any $x, y \in P$, and $g_0 = 1$, where 0 is the smallest element of P (here this element is the trivial subgroup of G, and $u_{\mathbf{1}}^G = Y_{\Delta_{\mathbf{1}}(G)} = \widetilde{e_G^G}$). Then the elements f_x defined for $x \in P$ by

$$f_x = \sum_{\substack{y \in P \\ x \le y}} \mu(x, y) g_y \quad ,$$

where μ is the Möbius function of P, are orthogonal idempotents of A, and their sum is equal to the identity element of A. This is exactly Assertion 1 (since $f_x = \varphi_N^G$ here, for $x = N \in P$).

Let $L \leq (G \times H)$. Assertion (a) follows from (2.6) and Corollary 3.7, since

$$\varphi_N^G \operatorname{Ind}_{p_1(L)}^G \operatorname{Inf}_{p_1(L)/k_1(L)}^{p_1(L)} = 0$$

unless $p_1(L) = G$ and $k_1(L) \cap \Phi(G) \leq N$. The proof of Assertion (b) is similar. Alternatively, one can take opposite bisets in (a).

3.9. Proposition: Let G be a finite group with order invertible in R.

1. Let $L \in \Sigma(G, G)$. Then

$$\varphi_{\mathbf{1}}^{G} Y_{L} = \sum_{\substack{N \leq G \\ N \leq \Phi(G)}} \mu_{\leq G}(\mathbf{1}, N) Y_{(N \times \mathbf{1})L}$$

This is non zero if and only if $k_1(L) \cap \Phi(G) = 1$. Similarly

$$Y_L \varphi_{\mathbf{1}}^G = \sum_{\substack{N \leq G \\ N \leq \Phi(G)}} \mu_{\leq G}(\mathbf{1}, N) Y_{L(\mathbf{1} \times N)} ,$$

and $Y_L \varphi_1^G \neq 0$ if and only if $k_2(L) \cap \Phi(G) = \mathbf{1}$.

2. The elements $\varphi_{\mathbf{1}}^G Y_L$ (resp. $Y_L \varphi_{\mathbf{1}}^G$), when L runs through a set of representatives of conjugacy classes of elements of $\Sigma(G,G)$ such that $k_1(L) \cap \Phi(G) = \mathbf{1}$ (resp. $k_2(L) \cap \Phi(G) = \mathbf{1}$), form an R-basis of the right ideal $\varphi_{\mathbf{1}}^G \mathcal{E}(G)$ (resp. the left ideal $\mathcal{E}(G) \varphi_{\mathbf{1}}^G$) of $\mathcal{E}(G)$.

Proof: Let $L \in \Sigma(G, G)$. By Proposition 3.6, we have

$$\varphi_{\mathbf{1}}^{G}Y_{L} = \widetilde{e_{G}^{G}} \left(\sum_{\substack{N \leq G \\ N \leq \Phi(G)}} \mu_{\leq G}(\mathbf{1}, N) \left[(G \times G) / \Delta_{N}(G) \right] \right) \left[(G \times G) / L \right] \widetilde{e_{G}^{G}}$$
$$= \widetilde{e_{G}^{G}} \left(\sum_{\substack{N \leq G \\ N \leq \Phi(G)}} \mu_{\leq G}(\mathbf{1}, N) \left[(G \times G) / (\Delta_{N}(G) * L) \right] \right) \widetilde{e_{G}^{G}}$$

$$\begin{split} &= \widetilde{e_G^G} \left(\sum_{\substack{N \leq G \\ N \leq \Phi(G)}} \mu_{\leq G}(\mathbf{1}, N) \left[(G \times G) / (N \times \mathbf{1}) L \right] \right) \widetilde{e_G^G} \ . \\ &= \sum_{\substack{N \leq G \\ N \leq \Phi(G)}} \mu_{\leq G}(\mathbf{1}, N) Y_{(N \times \mathbf{1})L} \ . \end{split}$$

Set $M = k_1(L) \cap \Phi(G)$. Then $M \leq G$, and $(N \times \mathbf{1})L = (NM \times \mathbf{1})L$ for any normal subgroup N of G contained in $\Phi(G)$. Thus

(3.10)
$$\varphi_{\mathbf{1}}^{G} Y_{L} = \sum_{\substack{P \leq G \\ M \leq P \leq \Phi(G)}} \left(\sum_{\substack{N \leq G \\ NM = P}} \mu_{\leq G}(\mathbf{1}, N) \right) Y_{(P \times \mathbf{1})L} .$$

If $M \neq \mathbf{1}$, then $\left(\sum_{\substack{N \trianglelefteq G \\ NM = P}} \mu_{\trianglelefteq G}(\mathbf{1}, N)\right) = 0$ for any $P \trianglelefteq G$ with $M \le P \le \Phi(G)$,

again by [15], Corollary 3.9.3. Hence $\varphi_{\mathbf{1}}^G Y_L = 0$ in this case. And if $M = \mathbf{1}$, Equation (3.10) reads

$$\varphi_{\mathbf{1}}^{G} Y_{L} = \sum_{\substack{P \leq G \\ P \leq \Phi(G)}} \mu_{\leq G}(\mathbf{1}, P) Y_{(P \times \mathbf{1})L} \quad .$$

The element $Y_{(P \times \mathbf{1})L}$ is equal to Y_L if and only if $(P \times \mathbf{1})L$ is conjugate to L. This implies that $k_1((P \times \mathbf{1})L)$ is conjugate to (hence equal to) $k_1(L)$. Thus $P \leq k_1((P \times \mathbf{1})L) \leq k_1(L)$, so $P \leq k_1(L) \cap \Phi(G) = \mathbf{1}$, hence $P = \mathbf{1}$. So the coefficient of Y_L in $\varphi_1^G Y_L$ is equal to 1, hence $\varphi_1^G Y_L \neq 0$. The remaining statements of Assertion 1 follow by taking opposite bisets.

Assertion 2 follows from Proposition 3.2, and from the fact that the coefficient of Y_L in $\varphi_1^G Y_L$ is equal to 1 when $k_1(L) \cap \Phi(G) = \mathbf{1}$.

3.11. Corollary: Let G be a finite group of order invertible in R. If every minimal (non-trivial) normal subgroup of G is contained in $\Phi(G)$, then φ_1^G is central in $\mathcal{E}(G)$, and the algebra $\varphi_1^G \mathcal{E}(G)$ is isomorphic to $\operatorname{ROut}(G)$.

Proof: Indeed if $L \in \Sigma(L, L)$ and $\varphi_1^G Y_L \neq 0$, then $k_1(L) \cap \Phi(G) = \mathbf{1}$. It follows that $k_1(L)$ contains no minimal normal subgroup of G, and then $k_1(L) = \mathbf{1}$. Equivalently $q(L) \cong p_1(L)/k_1(L) \cong G \cong p_2(L)/k_2(L)$, i.e. $k_2(L) = \mathbf{1}$ also, or equivalently $k_2(L) \cap \Phi(G) = \mathbf{1}$. Hence $\varphi_1^G Y_L \neq 0$ if and only if $Y_L \varphi_1^G \neq 0$, and in this case, there exists an automorphism θ of G such that

$$L = \Delta_{\theta}(G) = \{ (\theta(x), x) \mid x \in G \} .$$

In this case for any normal subgroup N of G contained in $\Phi(G)$

$$(N \times \mathbf{1})L = \{(a, b) \in G \times G \mid a\theta(b)^{-1} \in N\}$$

= $\{(a, b) \in G \times G \mid a^{-1}\theta(b) \in N\}$
= $L(\mathbf{1} \times \theta^{-1}(N))$.

Now $N \mapsto \theta^{-1}(N)$ is a permutation of the set of normal subgroups of G contained in $\Phi(G)$. Moreover $\mu_{\leq G}(\mathbf{1}, N) = \mu_{\leq G}(\mathbf{1}, \theta^{-1}(N))$.

Summing over all $N \leq \Phi(G)$, it follows that $\varphi_{\mathbf{1}}^G Y_L = Y_L \varphi_{\mathbf{1}}^G$, so $\varphi_{\mathbf{1}}^G$ is central in $\mathcal{E}(G)$. Moreover the map $\theta \in \operatorname{Aut}(G) \mapsto \varphi_{\mathbf{1}}^G Y_{\Delta_{\theta}(G)}$ clearly induces an algebra isomorphism $\operatorname{ROut}(G) \to \varphi_{\mathbf{1}}^G \mathcal{E}(G)$ (observe indeed that if θ is an inner automorphism of G, then $\Delta_{\theta}(G)$ is conjugate to $\Delta(G)$ in $G \times G$, so $Y_{\Delta_{\theta}(G)} = Y_{\Delta(G)} = \widetilde{e_G^G}$.

3.12. Theorem: Let G be a finite group with order invertible in R. If G is nilpotent, then $\varphi_{\mathbf{1}}^{G}$ is a central idempotent of $\mathcal{E}(G)$.

Proof: Let $L \in \Sigma(G, G)$. Setting Q = q(L), there are two surjective group homomorphisms $s, t : G \to Q$ such that $L = \{(x, y) \in G \times G \mid s(x) = t(y)\}$. Then $k_1(L) = \text{Ker } s$ and $k_2(L) = \text{Ker } t$. Now by Proposition 3.9

$$\varphi_{\mathbf{1}}^{G}Y_{L} = \sum_{\substack{N \leq G \\ N \leq \Phi(G)}} \mu_{\leq G}(\mathbf{1}, N) Y_{(N \times \mathbf{1})L}$$

and this is non zero if and only if $\operatorname{Ker} s \cap \Phi(G) = \mathbf{1}$. Now $s(\Phi(G))$ is equal to $\Phi(Q)$ since G is nilpotent: indeed $G = \prod_p G_p$ (resp. $Q = \prod_p Q_p$) is the direct product of its p-Sylow subgroups G_p (resp. Q_p), and s induces a surjective group homomorphism $G_p \to Q_p$, for any prime p. Moreover $\Phi(G) = \prod_p \Phi(G_p)$ (resp. $\Phi(Q) = \prod_p \Phi(Q_p)$). Finally $\Phi(G_p)$ is the subgroup of G_p generated by commutators and p-powers of elements of G_p , hence it maps by s onto the subgroup of Q_p generated by commutators and p-powers of elements of Q_p , that is $\Phi(Q_p)$. Similarly $t(\Phi(G)) = \Phi(Q)$.

If Ker $s \cap \Phi(G) = \mathbf{1}$, it follows that s induces an isomorphism from $\Phi(G)$ to $\Phi(Q)$. Then the surjective homomorphism $\Phi(G) \to \Phi(Q)$ induced by t is also an isomorphism, and in particular Ker $t \cap \Phi(G) = \mathbf{1}$.

Let $D = L \cap (\Phi(G) \times \Phi(G))$. Then $k_1(D) \subseteq k_1(L) \cap \Phi(G) = \text{Ker } s \cap \Phi(G)$, hence $k_1(D) = \mathbf{1}$. Similarly $k_2(L) \subseteq k_2(L) \cap \Phi(G) = \text{Ker } t \cap \Phi(G) = \mathbf{1}$, hence $k_2(D) = \mathbf{1}$. Since $s(\Phi(G)) = \Phi(Q) = t(\Phi(G))$, we have moreover $p_1(D) = \Phi(G) = p_2(D)$. It follows that there is an automorphism α of $\Phi(G)$ such that $D = \{(x, \alpha(x)) \mid x \in \Phi(G)\}$. Moreover for any $y \in G$, there exists $z \in G$ such that $(y, z) \in L$. It follows that $(x^y, \alpha(x)^z) \in D$ for any $x \in \Phi(G)$, that is $\alpha(x^y) = \alpha(x)^z$. In particular if N is a normal subgroup of G contained in $\Phi(G)$, then so is $\alpha(N)$. Hence α induces an automorphism of the poset of normal subgroups of G contained in $\Phi(G)$. In particular $\mu_{\leq G}(\mathbf{1}, N) = \mu_{\leq G}(\mathbf{1}, \alpha(N))$.

Moreover for $n \in N$ and $(y, z) \in L$, we have

$$(n,1)(y,z) = (y,z)(n^y,1) = (y,z)(n^y,\alpha(n^y))(1,\alpha(n^y)^{-1})$$

Since $(n^y, \alpha(n^y)) \in D \leq L$, we have $(N \times \mathbf{1})L = L(\mathbf{1} \times \alpha(N))$. It follows that

$$\begin{split} \varphi_{\mathbf{1}}^{G}Y_{L} &= \sum_{\substack{N \leq G \\ N \leq \Phi(G)}} \mu_{\leq G}(\mathbf{1}, N) \, Y_{(N \times \mathbf{1})L} = \sum_{\substack{N \leq G \\ N \leq \Phi(G)}} \mu_{\leq G}(\mathbf{1}, N) \, Y_{L(\mathbf{1} \times \alpha(N))} \\ &= \sum_{\substack{N \leq G \\ N \leq \Phi(G)}} \mu_{\leq G}(\mathbf{1}, \alpha(N)) \, Y_{L(\mathbf{1} \times \alpha(N))} = \sum_{\substack{N \leq G \\ N \leq \Phi(G)}} \mu_{\leq G}(\mathbf{1}, N) \, Y_{L(\mathbf{1} \times N)} \\ &= Y_{L}\varphi_{\mathbf{1}}^{G} \; , \end{split}$$

as was to be shown.

3.13. Remark: When G is not nilpotent, it is not true in general that φ_1^G is central in $\mathcal{E}(G)$. This is because $t(\Phi(G))$ need not be equal to $\Phi(Q)$ for a surjective group homomorphism $t: G \to Q$. For example, there is a surjection t from the group $G = C_4 \times (C_5 \rtimes C_4)$ to $Q = C_4$ with kernel $C_4 \times C_5$ containing $\Phi(G) = C_2 \times \mathbf{1}$, and another surjection $s: G \to Q$ with kernel $\mathbf{1} \times (C_5 \rtimes C_4)$ intersecting $\Phi(G)$ trivially. In this case, the group $L = \{(x, y) \in G \times G \mid s(x) = t(y)\}$ is in $\Sigma(G, G)$, and $k_1(L) \cap \Phi(G) = \mathbf{1}$, but $k_2(L) \cap \Phi(G) = \Phi(G) \neq \mathbf{1}$. By Proposition 3.9, we have $\varphi_1^G Y_L \neq 0$ and $Y_L \varphi_1^G = 0$, so φ_1^G is not central in $\mathcal{E}(G)$.

4. Idempotents in RB(G,G)

Recall from Definition 2.8 that a section (T, S) of a finite group G is a pair of subgroups of G such that $S \leq T$. For such a section (T, S) of G, recall that $\operatorname{Indinf}_{T/S}^G \in B(G, T/S)$ denotes (the isomorphism class of) the (G, T/S)-biset G/S, and that $\operatorname{Defres}_{T/S}^G \in B(T/S, G)$ denote (the isomorphism class of) the (T/S, G)-biset $S \setminus G$.

The group G acts by conjugation on the set of its sections: if $g \in G$ and (T, S) is a section of G, then ${}^{g}(T, S) = ({}^{g}T, {}^{g}S)$ is another section of G.

4.1. Notation: Let G be a finite group, and let (T, S) be a section of G.

1. Let R be a commutative ring in which the order of G is invertible. Let $u_{T,S}^G \in RB(G,T/S)$ be defined by

$$u_{T,S}^G = \operatorname{Indinf}_{T/S}^G \varphi_{\mathbf{1}}^{T/S}$$
,

and let $v_{T,S}^G \in RB(T/S,G)$ be defined by

$$v_{T,S}^G = \varphi_{\mathbf{1}}^{T/S} \operatorname{Defres}_{T/S}^G$$
.

4.2. Remark: Observe that $v_{T,S}^G = (u_{T,S}^G)^{op}$: indeed $(G/S)^{op} \cong S \setminus G$, and $(\varphi_1^{T/S})^{op} = \varphi_1^{T/S}$.

4.3. Definition: A section (T, S) of a finite group G is called minimal (cf. [9]) if $S \leq \Phi(T)$. Let $\mathcal{M}(G)$ denote the set of minimal sections of G.

4.4. Remark: The terminology comes from the following observation: if (T, S) is any section of G, and H is a subgroup of T minimal subject to HS = T, then the section $(H, H \cap S)$ is such that $H/(H \cap S) \cong T/S$, and it is moreover minimal in the sense of Definition 4.3 (for if $K \leq H$ is such that $K(H \cap S) = H$, then KS = HS = T, thus K = H, showing that $H \cap S \leq \Phi(H)$). In other words a section (T, S) is minimal if and only if the only subgroup H of T such that $H/(H \cap S) \cong T/S$ is T itself.

4.5. Theorem: Let G be a finite group with order invertible in R.
1. If (T, S) and (T', S') are minimal sections of G, then

$$v_{T',S'}^G u_{T,S}^G = 0$$

unless (T, S) and (T', S') are conjugate in G.

2. If (T, S) is a minimal section of G, then

$$v_{T,S}^G u_{T,S}^G = \varphi_{\mathbf{1}}^{T/S} \Big(\sum_{g \in N_G(T,S)/T} \operatorname{Iso}(c_g) \Big) = \Big(\sum_{g \in N_G(T,S)/T} \operatorname{Iso}(c_g) \Big) \varphi_{\mathbf{1}}^{T/S} ,$$

where $N_G(T,S) = N_G(T) \cap N_G(S)$, and c_g is the automorphism of T/S induced by conjugation by g.

Proof: Indeed $(S' \setminus G) \times_G (G/S) \cong S' \setminus G/S$ as a (T'/S', T/S)-biset. Hence

$$v_{T',S'}^G u_{T,S}^G = \varphi_{\mathbf{1}}^{T'/S'} \Big(\sum_{g \in T' \setminus G/T} S' \setminus T'gT/S \Big) \varphi_{\mathbf{1}}^{T/S}$$

For any $q \in G$, the (T'/S', T/S)-biset $S' \setminus T'qT/S$ is transitive, isomorphic to $((T'/S') \times (T/S))/L_q$, where

$$L_g = \{ (t'S', tS) \in (T'/S') \times (T/S) \mid t'gt^{-1} \in S'gS \}$$

Then $t'S' \in p_1(L_q)$ if and only if $t' \in S' \cdot qTq^{-1} \cap T'$. Hence

$$p_1(L_g) = ({}^gT \cap T')S'/S'$$

Similarly $p_2(L_g) = (T'^g \cap T)S/S$. In particular $p_1(L_g) = T'/S'$ if and only if $({}^{g}T \cap T')S' = T'$, i.e. ${}^{g}T \cap T' = T'$, since $S' \leq \Phi(T')$. Thus $p_1(L_g) = T'/S'$ if and only if $T' \leq {}^{g}T$. Similarly $p_2(L_g) = T/S$ if and only if $T \leq T'^{g}$. By Theorem 3.8, it follows that $\varphi_{\mathbf{1}}^{T'/S'}(S' \setminus T'gT/S)\varphi_{\mathbf{1}}^{T/S} = 0$ unless $T' = {}^{g}T$. Assume now that $T' = {}^{g}T$. Then $t'S' \in k_1(L_G)$ if and only if t' lies in

 $S' \cdot gSg^{-1} \cap T'$. Hence

$$k_1(L_g) = ({}^gS \cap T')S'/S'$$

and similarly $k_2(L_g) = (S'^g \cap T)S/S$. But since $S \leq \Phi(T)$ and $S \leq T$, it follows that ${}^{g}S \trianglelefteq {}^{g}T = T'$ and ${}^{g}S \le {}^{g}\Phi(T) = \Phi(T')$. Hence ${}^{g}S \cdot S'/S'$ is contained in $k_1(L_a) \cap \Phi(T')/S'$. Moreover $\Phi(T')/S' = \Phi(T'/S')$, as

$$\Phi(T'/S') = \bigcap_{S' \le M' < T'} (M'/S') = \bigcap_{M' < T'} (M'/S') = (\bigcap_{M' < T'} M')/S' = \Phi(T')/S' ,$$

where M' runs through maximal subgroups of T', which all contain S' since $S' \leq \Phi(T').$

It follows that if $k_1(L_q) \cap \Phi(T'/S') = 1$, then ${}^gS \cdot S' = S'$, that is ${}^gS \leq S'$. Similarly if $k_2(L_q) \cap \Phi(T/S) = 1$, then $S'^g \leq S$. By Theorem 3.8, it follows that $\varphi_{\mathbf{1}}^{T'/S'}(S'\backslash T'gT/S)\varphi_{\mathbf{1}}^{T/S} = 0$ unless $T' = {}^{g}T$ and $S' = {}^{g}S$. This proves Assertion 1.

For Assertion 2, the same computation shows that

$$v_{T,S}^G \, u_{T,S}^G = \sum_{g \in N_G(T,S)/T} \varphi_{\mathbf{1}}^{T/S} \left(S \backslash TgT/S \right) \varphi_{\mathbf{1}}^{T/S} \ .$$

But $S \setminus T gT/S = gT/S$ if $g \in N_G(T, S)$, and this (T/S, T/S)-biset is isomorphic to Iso(c_q). Assertion 2 follows, since moreover $\varphi_1^{T/S}$ commutes with any biset of the form $\text{Iso}(\theta)$, where θ is an automorphism of T/S, by Proposition 3.6.

4.6. Notation: For a minimal section
$$(T, S)$$
 of the group G , set
 $\epsilon_{T,S}^G = \frac{1}{|N_G(T,S):T|} u_{T,S}^G v_{T,S}^G = \frac{1}{|N_G(T,S):T|} \text{Indinf}_{T/S}^G \varphi_1^{T/S} \text{Defres}_{T/S}^G \in RB(G,G)$.

Note that $\epsilon_{T,S}^G = \epsilon_{g_{T,g_S}}^G$ for any $g \in G$, and that $\epsilon_{G,N}^G = \varphi_N^G$ when $N \leq G$ and $N \leq \Phi(G)$, by Proposition 3.5.

4.7. Proposition: Let
$$(T, S)$$
 be a minimal section of G . Then

$$\epsilon_{T,S}^{G} = \frac{1}{|N_{G}(T,S)|} \sum_{\substack{X \leq T,M \leq T \\ S \leq M \leq \Phi(T) \leq X \leq T}} |X| \mu(X,T) \mu_{\leq T}(S,M) \operatorname{Indinf}_{X/M}^{G} \operatorname{Defres}_{X/M}^{G} .$$

Proof: This is a straightforward consequence of the above definition of $\epsilon_{T,S}^G$, and of Assertion 2 of Proposition 3.6, using the transitivity of Defres and Indinf involved.

4.8. Theorem: Let G be a finite group with order invertible in R, let $[\mathcal{M}(G)]$ be a set of representatives of conjugacy classes of minimal sections of G. Then the elements $\epsilon_{T,S}^G$, for $(T,S) \in [\mathcal{M}(G)]$, are orthogonal idempotents of RB(G,G), and their sum is equal to the identity element of RB(G,G).

Proof: Let (T, S) and (T', S') be distinct elements of $[\mathcal{M}(G)]$. Then

$$\epsilon^G_{T',S'} \, \epsilon^G_{T,S} = \frac{1}{|N_G(T',S'):T'|} \frac{1}{|N_G(T,S):T|} \, u^G_{T',S'} \, v^G_{T',S'} \, u^G_{T,S} \, v^G_{T,S} = 0 \quad ,$$

since $v_{T',S'}^G u_{T,S}^G = 0$ by Theorem 4.5. Moreover:

$$\begin{split} \Sigma &= \sum_{(T,S)\in[\mathcal{M}(G)]} \epsilon^G_{T,S} = \sum_{(T,S)\in[\mathcal{M}(G)]} \frac{1}{|N_G(T,S):T|} u^G_{T,S} v^G_{T,S} \\ &= \sum_{(T,S)\in\mathcal{M}(G)} \frac{1}{|G:T|} u^G_{T,S} v^G_{T,S} \\ &= \sum_{(T,S)\in\mathcal{M}(G)} \frac{1}{|G:T|} \operatorname{Indinf}^G_{T/S} \varphi^{T/S}_{\mathbf{1}} \operatorname{Defres}^G_{T/S} \end{split}$$

Now for a given $T \leq G$

$$\begin{split} \sum_{\substack{S \leq T \\ S \leq \Phi(T)}} \operatorname{Indinf}_{T/S}^{G} \varphi_{\mathbf{1}}^{T/S} \operatorname{Defres}_{T/S}^{G} &= \operatorname{Ind}_{T}^{G} \Big(\sum_{\substack{S \leq T \\ S \leq \Phi(T)}} \operatorname{Inf}_{T/S}^{T} \varphi_{\mathbf{1}}^{T/S} \operatorname{Def}_{T/S}^{T} \Big) \operatorname{Res}_{T}^{G} \\ &= \operatorname{Ind}_{T}^{G} \Big(\sum_{\substack{S \leq T \\ S \leq \Phi(T)}} \varphi_{S}^{T} \Big) \operatorname{Res}_{T}^{G} = \operatorname{Ind}_{T}^{G} \widetilde{e_{T}^{T}} \operatorname{Res}_{T}^{G} \end{split}$$

by Proposition 3.5 and Theorem 3.8.

Moreover $\operatorname{Ind}_T^G \widetilde{e_T^T} \operatorname{Res}_T^G = |N_G(T) : T| \widetilde{e_T^G}$, by (2.17) and Lemma 2.13. Thus

$$\sum_{(T,S)\in[\mathcal{M}(G)]} \epsilon_{T,S}^G = \sum_{T\leq G} \frac{|N_G(T):T|}{|G:T|} \widetilde{e_T^G} = \sum_{T\in[s_G]} \widetilde{e_T^G} = \widetilde{G/G} = \left[(G\times G)/\Delta(G) \right] \ .$$

So the sum Σ is equal to the identity of RB(G,G). Since $\epsilon_{T,S}^G \epsilon_{T',S'}^G = 0$ if (T,S) and (T',S') are distinct elements of $[\mathcal{M}(G)]$, it follows that for any $(T,S) \in [\mathcal{M}(G)]$

$$\epsilon^G_{T,S} = \epsilon^G_{T,S} \Sigma = (\epsilon^G_{T,S})^2 \quad ,$$

which completes the proof of the theorem.

5. Application to biset functors

5.1. Notation: Let F be a biset functor over R. When G is a finite group with order invertible in R, we set

$$\delta_{\Phi}F(G) = \varphi_1^G F(G)$$

5.2. Proposition: Let F be a biset functor over R. Then for any finite group G with order invertible in R, the R-submodule $\delta_{\Phi}F(G)$ of F(G) is the set of elements $u \in F(G)$ such that

$$\begin{cases} \operatorname{Res}_{H}^{G} u = 0 & \forall H < G \\ \operatorname{Def}_{G/N}^{G} u = 0 & \forall N \leq G, \ N \cap \Phi(G) \neq \mathbf{1} \end{cases}$$

Proof: If $u \in \delta_{\Phi}F(G) = \varphi_1^G F(G)$, then $\operatorname{Res}_H^G u = 0$ for any proper subgroup H of G, and $\operatorname{Def}_{G/N}^G u = 0$ for any $N \leq G$ such that $N \cap \Phi(G) \neq \mathbf{1}$, by Corollary 3.7.

Conversely, if $u \in F(G)$ fulfills the two conditions of the proposition, then $\widetilde{e_G^G}u = u$, because $\widetilde{e_G^G}$ is equal to the identity element $[(G \times G)/\Delta(G)]$ of RB(G,G), plus a linear combination of elements of the form $[(G \times G)/\Delta(H)] =$ $\operatorname{Ind}_H^G \operatorname{Res}_H^G$, for proper subgroups H of G. Similarly, it follows again from Corollary 3.7 that $\operatorname{Inf}_{G/N}^G \operatorname{Def}_{G/N}^G u = 0$ for any non-trivial normal subgroup of G contained in $\Phi(G)$, thus $\varphi_1^G u = u$.

5.3. Remark: Since $\operatorname{Def}_{G/N}^G = \operatorname{Def}_{G/N}^{G/M} \operatorname{Def}_{G/M}^G$, where $M = N \cap \Phi(G)$, saying that $\operatorname{Def}_{G/N}^G u = 0$ for any $N \leq G$ with $N \cap \Phi(G) \neq \mathbf{1}$ is equivalent to saying that $\operatorname{Def}_{G/N}^G u = 0$ for any non trivial normal subgroup N of G contained in $\Phi(G)$.

5.4. Theorem: Let F be a biset functor over R. Then for any finite group G with order invertible in R, the maps

$$F(G) \xrightarrow{} \bigoplus_{(T,S) \in [\mathcal{M}(G)]} \left(\delta_{\Phi} F(T/S) \right)^{N_G(T,S)/T}$$
$$w \xrightarrow{V} \bigoplus_{(T,S)} \frac{1}{|N_G(T,S):T|} v_{T,S}^G w$$
$$\sum_{(T,S)} u_{T,S}^G w_{T,S} \xleftarrow{U} \bigoplus_{(T,S)} w_{T,S}$$

are well defined isomorphisms of R-modules, inverse to one other.

Proof: We have first to check that if $w \in F(G)$, then the element $v_{T,S}^G w$ of $\varphi_1^{T/S} F(T/S) = \delta_{\Phi} F(T/S)$ is invariant under the action of $N_G(T,S)/T$. But for any $g \in N_G(T/S)$

$$\operatorname{Iso}(c_g) v_{T,S}^G = v_{g_{T,g_S}}^G \operatorname{Iso}(c_g) = v_{T,S}^G \operatorname{Iso}(c_g) ,$$

where $\text{Iso}(c_g) : F(G) \to F(G)$ on the right hand side is conjugation by g, that is an inner automorphism, hence the identity map, for $g \in G$.

Now for $w \in F(G)$

$$UV(w) = \sum_{(T,S)\in[\mathcal{M}(G)]} \frac{1}{|N_G(T,S):T|} u_{T,S}^G v_{T,S}^G w$$
$$= \sum_{(T,S)\in[\mathcal{M}(G)]} \epsilon_{T,S}^G w = w ,$$

so UV is the identity map of F(G).

Conversely, if $w_{T,S} \in (\delta_{\Phi} F(T/S))^{N_G(T,S)/T}$, for $(T,S) \in [\mathcal{M}(G)]$, then by Theorem 4.5

$$VU\left(\bigoplus_{(T,S)\in[\mathcal{M}(G)]} w_{T,S}\right) = \bigoplus_{(T,S)\in[\mathcal{M}(G)]} \sum_{(T',S')\in[\mathcal{M}(G)]} \frac{1}{|N_G(T,S):T|} v_{T,S}^G u_{T',S'}^G w_{T',S'}$$
$$= \bigoplus_{(T,S)\in[\mathcal{M}(G)]} \frac{1}{|N_G(T,S):T|} v_{T,S}^G u_{T,S}^G w_{T,S}$$
$$= \bigoplus_{(T,S)\in[\mathcal{M}(G)]} \frac{1}{|N_G(T,S):T|} \sum_{g\in N_G(T,S)/T} \operatorname{Iso}(c_g) w_{T,S}$$
$$= \bigoplus_{(T,S)\in[\mathcal{M}(G)]} w_{T,S} ,$$

so VU is also equal to the identity map.

6. Atoric *p*-groups

For the remainder of the paper, we denote by p a (fixed) prime number.

6.1. Notation and Definition:

- If P is a finite p-group, let $\Omega_1 P$ denote the subgroup of P generated by the elements of order p.
- A finite p-group P is called atoric if it does not admit any decomposition
 P = E × Q, where E is a non-trivial elementary abelian p-group. Let
 At_p denote the class of atoric p-groups, and let [At_p] denote a set of
 representatives of isomorphism classes in At_p.

The terminology "atoric" is inspired by [14], where elementary abelian p-groups are called p-tori. Atoric p-groups have been considered (without naming them) in [6], Example 5.8.

6.2. Lemma: Let P be a finite p-group, and N be a normal subgroup of P. The following conditions are equivalent:

- 1. $N \cap \Phi(P) = \mathbf{1}$
- 2. N is elementary abelian and central in P, and admits a complement in P.
- 3. N is elementary abelian and there exists a subgroup Q of P such that $P = N \times Q$.

Proof: $[1 \Rightarrow 3]$ Let $N \leq P$ with $N \cap \Phi(P) = \mathbf{1}$. Then N maps injectively in the elementary abelian p-group $P/\Phi(P)$, so N is elementary abelian. Let $Q/\Phi(P)$ be a complement of $N\Phi(P)/\Phi(P)$ in $P/\Phi(P)$. Then $Q \geq \Phi(P) \geq$ [P, P], so Q is normal in P. Moreover $Q \cdot N = P$ and $Q \cap N\Phi(P) =$ $(Q \cap N)\Phi(P) = \Phi(P)$, thus $Q \cap N \leq \Phi(P) \cap N = \mathbf{1}$. Now N and Q are normal subgroups of P which intersect trivially, hence they centralize each other. It follows that $P = N \times Q$.

 $3 \Rightarrow 2$ This is clear.

 $\lfloor 2 \Rightarrow 1 \rfloor$ If $P = N \cdot Q$ for some subgroup Q of P, and if N is central in P, then $P = N \times Q$. Thus $\Phi(P) = \mathbf{1} \times \Phi(Q)$, as N is elementary abelian. Then $N \cap \Phi(P) \leq N \cap Q = \mathbf{1}$.

6.3. Lemma: Let *P* be a finite *p*-group. The following conditions are equivalent:

- 1. P is atoric.
- 2. If $N \leq P$ and $N \cap \Phi(P) = \mathbf{1}$, then $N = \mathbf{1}$.
- 3. $\Omega_1 Z(P) \leq \Phi(P).$

Proof : $[1 \Rightarrow 2]$ Suppose that *P* is atoric. Let $N \leq P$ with $N \cap \Phi(P) = \mathbf{1}$. Then by Lemma 6.2, the group *N* is elementary abelian and there exists a subgroup *Q* of *P* such that $P = N \times Q$. Hence $N = \mathbf{1}$.

 $2 \Rightarrow 3$ Suppose now that Assertion 2 holds. If x is a central element of order p of P, then the subgroup N of P generated by x is normal in P, and non trivial. Then $N \cap \Phi(P) \neq \mathbf{1}$, hence $N \leq \Phi(P)$ since N has order p, thus $x \in \Phi(P)$.

 $3 \Rightarrow 1$ Finally, if Assertion 3 holds, and if $P = E \times Q$ for some subgroups E and Q of P with E elementary abelian, then $\Phi(P) = \mathbf{1} \times \Phi(Q)$. Moreover $E \leq \Omega_1 Z(P) \leq \Phi(P) \leq Q$, so $E = E \cap Q = \mathbf{1}$, and P is atoric.

6.4. Proposition: Let P be a finite p-group, and N be a maximal normal subgroup of P such that $N \cap \Phi(P) = \mathbf{1}$. Then:

- 1. The group N is elementary abelian and there exists a subgroup T of P such that $P = N \times T$.
- 2. The group $P/N \cong T$ is atoric.
- 3. If Q is an atoric p-group and $s: P \rightarrow Q$ is a surjective group homo-

morphism, then s(T) = Q. In particular Q is isomorphic to a quotient of T.

Proof: (1) This follows from Lemma 6.2.

(2) By (1), there exists $T \leq P$ such that $P = N \times T$. In particular $P/N \cong T$. Now if $T = E \times S$, for some subgroups E and S of T with E elementary abelian, then $P = (N \times E) \times S$, and $N \times E$ is an elementary abelian normal subgroup of P which intersects trivially $\Phi(P) = \Phi(S)$. By maximality of N, it follows that $E = \mathbf{1}$, so $T \cong P/N$ is atoric.

(3) Let $s: P \twoheadrightarrow Q$ be a surjective group homomorphism, where Q is atoric. By (1), the group N is elementary abelian, and there exists a subgroup T of P such that $P = N \times T$. Moreover $s(\Phi(P)) = \Phi(Q)$ as P is a p-group, as already shown in the proof of Theorem 3.12, and $s(Z(P)) \leq Z(Q)$ as s is surjective. It follows that $s(N) \leq \Omega_1 Z(Q)$, so $s(N) \leq \Phi(Q)$ since Q is atoric, by Lemma 6.3. Now s(P) = Q = s(N)s(T), thus $Q = \Phi(Q)s(T)$, and s(T) = Q, as was to be shown.

6.5. Notation: When P is a finite p-group, and N is a maximal normal subgroup of P such that $N \cap \Phi(P) = \mathbf{1}$, we set $P^{@} = P/N$.

By Proposition 6.4, the group $P^{@}$ does not depend on the choice of N, up to isomorphism: it is the greatest atoric quotient of P, in the sense that any atoric quotient of P is isomorphic to a quotient of $P^{@}$. In particular $P^{@}$ is trivial if and only if P is elementary abelian.

6.6. Proposition: Let $s : P \twoheadrightarrow Q$ be a surjective group homomorphism. Then $P^{@} \cong Q^{@}$ if and only if $Ker(s) \cap \Phi(P) = \mathbf{1}$.

Proof: Let N = Ker(s). If $N \cap \Phi(P) = \mathbf{1}$, then by Lemma 6.2, the group N is elementary abelian, and there exists a subgroup T of P such that $P = N \times T$. Moreover $T \cong Q$. So by Proposition 6.4, there exists an elementary abelian subgroup E of T, and a subgroup S of T with $S \cong T^{@} \cong Q^{@}$ such that $T = E \times S$. Then $P = N \times E \times S$, so $P^{@} \cong S$, since S is atoric and $N \times E$ is elementary abelian. Hence $P^{@} \cong Q^{@}$.

Conversely if $P^{@} \cong Q^{@}$, to prove that $\operatorname{Ker}(s) \cap \Phi(P) = \mathbf{1}$, it suffices to prove that $\operatorname{Ker}(\pi \circ s) \cap \Phi(P) = \mathbf{1}$, where π is a surjective group homomorphism $Q \to Q^{@}$. Now there is an elementary abelian subgroup E of P and an atoric subgroup $T \cong P^{@}$ of P such that $P = E \times T$. By Proposition 6.4, we have $(\pi \circ s)(T) = Q^{@} \cong T$, so $\pi \circ s$ induces an isomorphism from T to $Q^{@}$. In particular $\operatorname{Ker}(\pi \circ s) \cap T = \mathbf{1}$, so $\operatorname{Ker}(\pi \circ s) \cap \Phi(P) = \mathbf{1}$ since $\Phi(P) \leq T$. \Box **6.7. Proposition:** Let P be a finite p-group, let N be a normal subgroup of P such that $P/N \cong P^{\textcircled{a}}$, and let Q be a subgroup of P. The following are equivalent:

- 1. $Q^{@} \cong P^{@}$.
- 2. QN = P.
- 3. There exists a central elementary abelian subgroup E of P such that P = EQ.
- 4. There exists an elementary abelian subgroup E of P such that $P = E \times Q$.

Proof: $\boxed{1 \Rightarrow 2}$ Suppose $Q^{@} \cong P^{@}$. We have $N \cap \Phi(P) = \mathbf{1}$, by Proposition 6.6. Moreover $\Phi(Q) \leq \Phi(P)$, as P is a p-group. Setting $M = N \cap Q$, we have $M \cap \Phi(Q) = \mathbf{1}$, so $(Q/M)^{@} \cong Q^{@} \cong P^{@}$. But $\overline{Q} = Q/M \cong QN/N$ is a subgroup of $P/N \cong P^{@}$, and moreover there exists an elementary abelian subgroup E of \overline{Q} such that $\overline{Q} \cong E \times \overline{Q}^{@} \cong E \times P^{@}$. Hence $E = \mathbf{1}$ and $\overline{Q} \cong QN/N \cong P/N$, so QN = P, as was to be shown.

 $2 \Rightarrow 3$ We have $N \cap \Phi(P) = 1$, by Proposition 6.6. Hence N is elementary abelian, and central in P, and 2 implies 3.

 $3 \Rightarrow 4$ Let *E* be an elementary abelian central subgroup of *P* such that P = EQ. Let *F* be a complement of $E \cap Q$ in *E*. Then *F* is elementary abelian and central in *P*. Moreover QF = QE = P, and $Q \cap F = \mathbf{1}$. Hence $P = F \times Q$.

 $4 \Rightarrow 1$ If $P = E \times Q$ and E is elementary abelian, then $\Phi(P) = \mathbf{1} \times \Phi(Q)$. Thus $E \cap \Phi(P) = \mathbf{1}$, so $(P/E)^{@} \cong P^{@}$ by Proposition 6.6, and $Q^{@} \cong P^{@}$. □

6.8. Proposition: Let P be a finite p-group, and Q be a subquotient of P. Then $Q^{@}$ is a subquotient of $P^{@}$.

Proof: Let (V, U) be a section of P such that $V/U \cong Q$. Then $Q^{@}$ is isomorphic to a quotient of $V^{@}$, by Proposition 6.4. Hence it suffices to prove that $V^{@}$ is a subquotient of $P^{@}$.

Let E be a maximal normal subgroup of P such that $E \cap \Phi(P) = \mathbf{1}$, and $T \cong P^{@}$ be a subgroup of P such that $P = E \times T$. Let W = EV. Then $W^{@} \cong V^{@}$ by Proposition 6.7. Moreover $E \leq W \leq E \times T$, so $W = E \times S$, where $S = W \cap T$. Then $V^{@} \cong W^{@} \cong S^{@}$, and $S^{@}$ is a quotient of S, hence a subquotient of $T \cong P^{@}$. This completes the proof.

7. Splitting the biset category of *p*-groups, when $p \in R^{\times}$

7.1. Notation and Definition: Let C_p (resp. RC_p) denote the full subcategory of the biset category C (resp. RC) consisting of finite p-groups. A p-biset functor over R is an R-linear functor from RC_p to the category of R-modules. Let $\mathcal{F}_{p,R}$ denote the category of p-biset functors over R.

In the statements below, we indicate by $[p \in R^{\times}]$ the assumption that p is invertible in R.

7.2. Theorem: $[p \in R^{\times}]$ Let P and Q be finite p-groups, let (T, S) be a minimal section of P, and (V, U) be a minimal section of Q. Then

$$\epsilon^Q_{V,U} RB(Q, P) \epsilon^P_{T,S} \neq \{0\} \implies (V/U)^{@} \cong (T/S)^{@}$$

Proof: If $\epsilon_{V,U}^Q RB(Q, P) \epsilon_{T,S}^P \neq \{0\}$, there exists $a \in RB(Q, P)$ such that

$$\epsilon^Q_{V,U} a \, \epsilon^P_{T,S} = \operatorname{Indinf}^Q_{V/U} \varphi^{V/U}_1 \operatorname{Defres}^Q_{V/U} a \operatorname{Indinf}^P_{T/S} \varphi^{T/S}_1 \operatorname{Defres}^P_{T/S} \neq 0 \quad,$$

and in particular the element $b = \text{Defres}_{V/U}^Q a \operatorname{Indinf}_{T/S}^P$ of RB(V/U, T/S) is such that $\varphi_1^{V/U} b \varphi_1^{T/S} \neq 0$. It follows that there is a subgroup L of the product $(V/U) \times (T/S)$ such that

$$\varphi_{\mathbf{1}}^{V/U} \big[\big((V/U) \times (T/S) \big) / L \big] \varphi_{\mathbf{1}}^{T/S} \neq 0 \ .$$

Then Theorem 3.8 implies that $p_1(L) = V/U$, $k_1(L) \cap \Phi(V/U) = 1$, $p_2(L) = T/S$, and $k_2(L) \cap \Phi(T/S) = 1$. By Proposition 6.6, it follows that

$$(V/U)^{@} \cong (p_1(L)/k_1(L))^{@} \cong (p_2(L)/k_2(L))^{@} \cong (T/S)^{@}$$

as was to be shown.

7.3. Notation: $[p \in R^{\times}]$ Let L be an atoric p-group. If P is a finite p-group, we denote by b_L^P the element of RB(P, P) defined by

$$b_L^P = \sum_{\substack{(T,S) \in [\mathcal{M}(P)] \\ (T/S)^{@} \cong L}} \epsilon_{T,S}^P .$$

Recall that the center $Z(\mathcal{D})$ of an essentially small category \mathcal{D} is by definition the set of natural transformations from the identity functor $\mathrm{Id}_{\mathcal{D}}$ to itself. Thus an element θ of $Z(\mathcal{D})$ assigns to each object D of \mathcal{D} an endomorphism θ_D of D, in such a way that for any morphism $f: D \to D'$ in \mathcal{D} , the diagram

$$\begin{array}{c} D \xrightarrow{\theta_D} D \\ f & & & \\ f & & & \\ D' \xrightarrow{\theta_{D'}} D' \end{array}$$

is commutative. The center $Z(\mathcal{D})$ is in general a monoid for the composition of natural transformations. If \mathcal{D} is *R*-linear (for some commutative ring *R*), then $Z(\mathcal{D})$ becomes an *R*-algebra in a natural way (the *R*-module structure is given by *R*-linear combination of natural transformations).

7.4. Theorem: $[p \in R^{\times}]$

- 1. Let L be an atoric p-group, and P be a finite p-group. Then $b_L^P \neq 0$ if and only if $L \subseteq P^{@}$.
- 2. Let L and M be atoric p-groups, and let P and Q be finite p-groups. If $b_M^Q RB(Q, P) b_L^P \neq \{0\}$, then $M \cong L$.
- 3. Let L be an atoric p-group, and let P and Q be finite p-groups. Then for any $a \in RB(Q, P)$

$$b_L^Q a = a b_L^P$$
 .

- 4. The family of elements $b_L^P \in RB(P, P)$, for finite p-groups P, is an idempotent endomorphism b_L of the identity functor of the category $R\mathcal{C}_p$ (i.e. an idempotent of the center of $R\mathcal{C}_p$). The idempotents b_L , for $L \in [\mathcal{A}t_p]$, are orthogonal, and their sum is equal to the identity element of the center of $R\mathcal{C}_p$.
- 5. For a given finite p-group P, the elements b_L^P , for $L \in [\mathcal{A}t_p]$ such that $L \subseteq P^{@}$, are non zero orthogonal central idempotents of RB(P, P), and their sum is equal to the identity of RB(P, P).
- 6. For given finite p-groups P and Q, and a given atoric p-group L, let \mathcal{S} be a set of representatives of conjugacy classes of subgroups Y of $Q \times P$ such that $q(Y)^{@} \cong L$. Then the elements $b_L^Q[(Q \times P)/Y] = [(Q \times P)/Y] b_L^P$, for $Y \in \mathcal{S}$, form an R-basis of $b_L^Q RB(Q, P)$.

Proof: (1) The idempotent b_L^P is non zero if and only if there exists a minimal section (T, S) of P such that $(T/S)^{@} \cong L$. Then $L \sqsubseteq P^{@}$, by Proposition 6.8. Conversely, if $L \sqsubseteq P^{@}$, then $L \sqsubseteq P$, and by Remark 4.4, there exists a

minimal section (T, S) of P such that $T/S \cong L$. Then $(T/S)^{@} \cong L^{@} \cong L$, so $\epsilon_{T,S}^{P}$ appears in the sum defining b_{L}^{P} , thus $b_{L}^{P} \neq 0$.

(2) If $b_M^Q RB(Q, P) b_L^P \neq \{0\}$, then there exist a minimal section (V, U) of Q with $(V/U)^@ \cong M$ and a minimal section (T, S) of P with $(T/S)^@ \cong L$ such that $\epsilon_{V,U}^Q RB(Q, P) \epsilon_{T,S}^P \neq 0$. Then $(V/U)^@ \cong (T/S)^@$ by Theorem 7.2, that is $M \cong L$.

(3) By Theorem 4.8, the identity element of RB(P, P) is equal to the sum of the idempotents $\epsilon_{T,S}^P$, for $(T,S) \in [\mathcal{M}(P)]$. Grouping those idempotents $\epsilon_{T,S}^P$ for which $(T/S)^{@}$ is isomorphic to a given $L \in [\mathcal{A}t_p]$ shows that the identity element of RB(P, P) is equal to the sum of the idempotents b_L^P , for $L \in [\mathcal{A}t_p]$ (and there are finitely many non zero b_L^P , by (1)). It follows that

$$b_{M}^{Q} a = b_{M}^{Q} a \sum_{L \in [\mathcal{A}t_{p}]} b_{L}^{P} = \sum_{L \in [\mathcal{A}t_{p}]} b_{M}^{Q} a b_{L}^{P}$$
$$= b_{M}^{Q} a b_{M}^{P} \text{ [by (2)]}$$
$$= \sum_{L \in [\mathcal{A}t_{p}]} b_{L}^{Q} a b_{M}^{P} \text{ [by (2)]}$$
$$= a b_{M}^{P} ,$$

since $\sum_{L \in [\mathcal{A}t_p]} b_L^Q$ is the identity element of RB(Q, Q).

(4) It follows that the family b_L^P , where P runs over finite p-groups, is an element b_L of the center of RC_p . Clearly $b_L^2 = b_L$, and if L and M are non isomorphic atoric p-groups, then $b_L b_M = 0$, by (2). Moreover the infinite sum $\sum_{L \in [At_p]} b_L$ is actually locally finite, i.e. for each finite p-group P, the sum $\sum_{L \in [At_p]} b_P$ has only finitely many non zero terms. The sum $\sum_{L \in [At_p]} b_L$ is clearly

 $\sum_{L \in [\mathcal{A}t_p]} b_L^P \text{ has only finitely many non zero terms. The sum } \sum_{L \in [\mathcal{A}t_p]} b_L \text{ is clearly equal to the identity endomorphism of the identity functor of } R\mathcal{C}_p.$

(5) This is a straightforward consequence of (1) and (3).

(6) Let Y be any subgroup of $Q \times P$. By 2.6, we can factorize $[(Q \times P)/Y]$ as $[(Q \times P)/Y] = ab$, where $a \in RB(Q, q(Y))$ and $b \in RB(q(Y), P)$. If $b_L^Q[(Q \times P)/Y]$ is non zero, then $b_L^Q a$, equal to $ab_L^{q(Y)}$ by Assertion 3, is also non zero, hence $b_L^{q(Y)} \neq 0$, so $L \sqsubseteq q(Y)$ by Assertion 1. Thus $L \cong L^{@} \sqsubseteq q(Y)^{@}$.

But on the other hand b_L^Q is the sum of the distinct idempotents $\epsilon_{T,S}^Q$ corresponding to minimal sections (T, S) of Q such that $(T/S)^{@} \cong L$. By Proposition 4.7, together with (2.9), it follows that b_L^Q is a linear combination of terms of the form $[(Q \times Q)/\Delta_M(X)]$, where (X, M) is a section of Q such that $S \leq M \leq \Phi(T) \leq X \leq T$ for one of these minimal sections (T, S) of Q. Now the composition $b_L^Q[(Q \times P)/Y]$ is a linear combination of terms of the form $[(Q \times Q)/\Delta_M(X)][(Q \times P)/Y]$, that is by (2.7), a linear combination of terms $[(Q \times P)/(\Delta_M(X)*^{(x,1)}Y)]$, for some $x \in Q$. By Lemma 2.3.22 of [7], the group $q(\Delta_M(X)*^{(x,1)}Y)$ is a subquotient of $q(\Delta_M(X)) \cong X/M$, hence it is a subquotient of T/S. It follows that $b_L^Q[(Q \times P)/Y]$ is a linear combination of terms of the form $[(Q \times P)/Z]$, where $q(Z) \sqsubseteq T/S$ for some minimal section (T, S) of Q with $(T/S)^{@} \cong L$. In particular $q(Z)^{@} \sqsubseteq (T/S)^{@} \cong L$.

of terms of the form $[(Q \times P)/Z]$, where $q(Z) \sqsubseteq T/S$ for some minimal section (T, S) of Q with $(T/S)^{@} \cong L$. In particular $q(Z)^{@} \sqsubseteq (T/S)^{@} \cong L$. But then, composing with b_{L}^{Q} , we get that $b_{L}^{Q}[(Q \times P)/Y]$ is a linear combination of terms of the form $b_{L}^{Q}[(Q \times P)/Z]$, where $q(Z)^{@} \sqsubseteq L$. On the other hand, we have seen that $b_{L}^{Q}[(Q \times P)/Z] = 0$ unless $L \sqsubseteq q(Z)^{@}$. It follows that the elements $b_{L}^{Q}[(Q \times P)/Z]$, for $q(Z)^{@} \cong L$, generate $b_{L}^{Q} RB(Q, P)$.

Allowing L to run through all atoric p-groups, we see that the elements $b_{q(Z)^{\textcircled{0}}}^{Q}[(Q \times P)/Z]$, when Z runs through subgroups of $Q \times P$ up to conjugation, generate RB(Q, P). In other words the linear endomorphism β of RB(Q, P) sending $[(Q \times P)/Z]$ to $b_{q(Z)^{\textcircled{0}}}^{Q}[(Q \times P)/Z]$ is surjective. As RB(Q, P) is a free R-module, the linear map β must be split surjective, and there is a linear endomorphism γ of RB(Q, P) such that $\beta\gamma = \text{Id}$. This can be viewed as a product of square matrices with coefficients in R. Taking determinants (which makes sense since R is commutative), we get that β and γ are both isomorphisms, and in particular the elements $b_{q(Z)^{\textcircled{0}}}^{Q}[(Q \times P)/Z]$, for Z in a set of representatives of conjugacy classes of subgroups of $Q \times P$, are linearly independent. In particular, for a fixed atoric p-group L, the elements $b_{L}^{Q}[(Q \times P)/Z]$, for $Z \in S$, are linearly independent. This completes the proof.

7.5. Corollary: [$p \in R^{\times}$]

- 1. Let L be an atoric p-group. For a p-biset functor F, the family of maps $F(b_L^P): F(P) \to F(P)$, for finite p-groups P, is an endomorphism of F, denoted by $F(b_L)$.
- 2. If $\theta: F \to G$ is a natural transformation of p-biset functors, the diagram

is commutative. Hence the family of maps $F(b_L^P) : F(P) \to F(P)$, for p-groups P and p-biset functors F, is an idempotent of the center of

the category $\mathcal{F}_{p,R}$, denoted by \hat{b}_L .

- 3. The idempotents \hat{b}_L , for $L \in [\mathcal{A}t_p]$, are orthogonal idempotents of the center of $\mathcal{F}_{p,R}$, and their sum is the identity.
- 4. If F is a p-biset functor over R, let $\hat{b}_L F$ denote the image of the endomorphism $F(b_L)$ of F. Then $F = \bigoplus_{L \in [\mathcal{A}t_p]} \hat{b}_L F$.
- 5. Let $\hat{b}_L \mathcal{F}_{p,R}$ denote the full subcategory of $\mathcal{F}_{p,R}$ consisting of functors F such that $F = \hat{b}_L F$. Then $\hat{b}_L \mathcal{F}_{p,R}$ is an abelian subcategory of $\mathcal{F}_{p,R}$. Moreover the functor

(7.6)
$$F \in \mathcal{F}_{p,R} \mapsto (\widehat{b}_L F)_{L \in [\mathcal{A}t_p]} \in \prod_{L \in [\mathcal{A}t_p]} \widehat{b}_L \mathcal{F}_{p,R}$$

is an equivalence of categories.

Proof : All assertions are straightforward consequences of Theorem 7.4. \Box

In order to study the categories appearing in the above decomposition (7.6) of $\mathcal{F}_{p,R}$, it will be convenient to consider first the product of those categories $\hat{b}_H \mathcal{F}_{p,R}$ obtained when H runs through atoric subquotients of a given atoric *p*-group L. This motivates the following notation:

7.7. Notation: For an atoric p-group L, let RC_p^L denote the full subcategory of RC_p consisting of the class \mathcal{Y}_L of finite p-groups P such that $P^{@} \sqsubseteq L$. When $p \in R^{\times}$, let moreover

$$b_L^+ = \sum_{\substack{H \in [\mathcal{A}t_p] \ H \sqsubseteq L}} b_H$$

be the sum of the idempotents b_H corresponding to atoric subquotients of L, up to isomorphism. When P is any finite p-group, we get a corresponding central idempotent of RB(P, P), defined by

$$b_L^{+P} = \sum_{\substack{H \in [\mathcal{A}t_p] \\ H \sqsubseteq L}} b_H^P \quad .$$

Similarly, we denote by

$$\widehat{b}_L^+ = \sum_{\substack{H \in [\mathcal{A}t_p] \\ H \sqsubseteq L}} \widehat{b}_H$$

the central idempotent of $\mathcal{F}_{p,R}$ corresponding to b_L^+ . For any finite p-group P and any p-biset functor F, we get a linear map

$$F(b_L^{+P}) = \sum_{\substack{H \in [\mathcal{A}t_p] \\ H \sqsubseteq L}} F(b_H^P) : F(P) \to F(P) \quad .$$

The class \mathcal{Y}_L is closed under taking subquotients, by Proposition 6.8. It follows that we can apply the results of Section 6 (Appendix) of [12]: if F is a *p*-biset functor over R, we can restrict F to an R-linear functor from \mathcal{RC}_p^L to R-Mod. This yields a forgetful functor $\mathcal{O}_{\mathcal{Y}_L} : \mathcal{F}_{p,R} \to \mathsf{Fun}_R(\mathcal{RC}_p^L, R\text{-Mod})$. The right adjoint $\mathcal{R}_{\mathcal{Y}_L}$ of this functor is described in full detail in Section 6 of [12], as follows: if G is an R-linear functor from \mathcal{RC}_p^L to R-Mod, and P is a finite p-group, set

(7.8)
$$\mathcal{R}_{\mathcal{Y}_L}(G)(P) = \lim_{(X,M)\in\Sigma_L(P)} G(X/M)$$

the inverse limit of modules G(X/M) on the set $\Sigma_L(P)$ of sections (X, M) of P such that $(X/M)^{@} \sqsubseteq L$, i.e. the set of sequences $(l_{X,M})_{(X,M)\in\Sigma_L(P)}$ with the following properties:

(7.9)
$$\begin{cases} 1. \text{ if } (X, M) \in \Sigma_L(P), \text{ then } l_{X,M} \in G(X/M). \\ 2. \text{ if } (X, M), (Y, N) \in \Sigma_L(P) \text{ and } M \leq N \leq Y \leq X, \text{ then} \\ \text{Defres}_{Y/N}^{X/M} l_{X,M} = l_{Y,N} \\ 3. \text{ if } x \in P \text{ and } (X, M) \in \Sigma_L(P), \text{ then } {}^x l_{X,M} = l_{{}^x X, {}^x M}. \end{cases}$$

7.10. Remark: Observe that in Condition 2, there is no need to assume that $(Y, N) \in \Sigma_L(P)$: indeed if $M \leq N \leq Y \leq X$ and if $(X, M) \in \Sigma_L(P)$, then Y/N is a subquotient of X/M, so $(Y/N)^{@}$ is a subquotient of L, by Proposition 6.8, that is $(Y, N) \in \Sigma_L(P)$.

Recall now that for finite groups P and Q, and for a finite (Q, P)-biset U, for a subgroup T of Q and an element u of U, the subgroup T^u of P is defined by $T^u = \{x \in P \mid \exists t \in T \ tu = ux\}$. By Lemma 6.4 of [12], if (T, S) is a section of Q, then (T^u, S^u) is a section of P, and T^u/S^u is a subquotient of T/S.

With this notation, when P and Q are finite p-groups, when U is a finite (Q, P)-biset, and $l = (l_{X,M})_{(X,M)\in\Sigma_L(P)}$ is an element of $\mathcal{R}_{\mathcal{Y}_L}(G)(P)$, we denote by Ul the sequence indexed by $\Sigma_L(Q)$ defined by

$$(Ul)_{Y,N} = \sum_{u \in [Y \setminus U/P]_L} (N \setminus Yu)(l_{Y^u,N^u})$$

where $[Y \setminus U/P]$ is a set of representatives of $(Y \times P)$ -orbits on U, and $N \setminus Yu$ is viewed as a $(Y/N, Y^u/N^u)$ -biset. It is shown in Section 6 of [12] that $Ul \in \mathcal{R}_{\mathcal{Y}_L}(G)(Q)$, and that $\mathcal{R}_{\mathcal{Y}_L}(G)$ becomes a *p*-biset functor in this way. Moreover¹:

7.11. Theorem: [[12] Theorem 6.15] The assignment $G \mapsto \mathcal{R}_{\mathcal{Y}_L}(G)$ is an *R*-linear functor $\mathcal{R}_{\mathcal{Y}_L}$ from $\operatorname{Fun}_R(R\mathcal{C}_p^L, R\operatorname{-Mod})$ to $\mathcal{F}_{p,R}$, which is right adjoint to the forgetful functor $\mathcal{O}_{\mathcal{Y}_L}$. Moreover the composition $\mathcal{O}_{\mathcal{Y}_L} \circ \mathcal{R}_{\mathcal{Y}_L}$ is isomorphic to the identity functor of $\operatorname{Fun}_R(R\mathcal{C}_p^L, R\operatorname{-Mod})$.

7.12. Theorem: $[p \in R^{\times}]$ For an atoric p-group L, let $\hat{b}_L^+ \mathcal{F}_{p,R}$ be the full subcategory of $\mathcal{F}_{p,R}$ consisting of functors F such that $\hat{b}_L^+ F = F$. Then the forgetful functor $\mathcal{O}_{\mathcal{Y}_L}$ and its right adjoint $\mathcal{R}_{\mathcal{Y}_L}$ restrict to quasi-inverse equivalences of categories

$$\widehat{b}_L^+ \mathcal{F}_{p,R} \xrightarrow[\mathcal{R}_{\mathcal{Y}_L}]{\mathcal{O}_{\mathcal{Y}_L}} \mathsf{Fun}_R \big(R\mathcal{C}_p^L, R\operatorname{\mathsf{-Mod}} \big) \ .$$

Proof : First step: The first thing to check is that the image of the functor $\mathcal{R}_{\mathcal{Y}_L}$ is contained in $\widehat{b}_L^+ \mathcal{F}_{p,R}$. We first prove that if H is an atoric p-group, if $F \in \mathcal{F}_{p,R}$, and if $\mathcal{O}_{\mathcal{Y}_L}(\widehat{b}_H F) \neq 0$, then $H \sqsubseteq L$: indeed in that case, there exists $P \in \mathcal{Y}_L$ such that $b_H^P F(P) \neq 0$. In particular $b_H^P \neq 0$, hence $H \sqsubseteq P^@$, by Theorem 7.4. Since $P^@ \sqsubseteq L$ as $P \in \mathcal{Y}_L$, it follows that $H \sqsubseteq L$, as claimed. In particular

$$\mathcal{O}_{\mathcal{Y}_L}(F) = \mathcal{O}_{\mathcal{Y}_L}\Big(\sum_{\substack{H \in [\mathcal{A}t_p]\\ H \sqsubseteq L}} \widehat{b}_H F\Big) = \mathcal{O}_{\mathcal{Y}_L}\Big(\widehat{b}_L^+ F\Big) \ .$$

Set $\mathcal{G}_p^L = \operatorname{Fun}_R(R\mathcal{C}_p^L, R\operatorname{-Mod})$, and let $G \in \mathcal{G}_p^L$. Let H be an atoric p-group such that $H \not\sqsubseteq L$, and let $F \in \mathcal{F}_{p,R}$. Then $\mathcal{O}_{\mathcal{Y}_L}(\widehat{b}_H F) = \{0\}$ by the above

¹In Theorem 6.15 of [12], only the case $R = \mathbb{Z}$ is considered, but the proofs extend trivially to the case of an arbitrary commutative ring R

claim. Moreover

$$\operatorname{Hom}_{\mathcal{F}_{p,R}}(F,\widehat{b}_{H}\mathcal{R}_{\mathcal{Y}_{L}}(G)) = \operatorname{Hom}_{\mathcal{F}_{p,R}}(\widehat{b}_{H}F,\widehat{b}_{H}\mathcal{R}_{\mathcal{Y}_{L}}(G))$$
$$= \operatorname{Hom}_{\mathcal{F}_{p,R}}(\widehat{b}_{H}F,\mathcal{R}_{\mathcal{Y}_{L}}(G))$$
$$\cong \operatorname{Hom}_{\mathcal{G}_{p}^{L}}(\mathcal{O}_{\mathcal{Y}_{L}}(\widehat{b}_{H}F),G) = \{0\} .$$

So the functor $F \mapsto \operatorname{Hom}_{\mathcal{F}_{p,R}}(F, \widehat{b}_H \mathcal{R}_{\mathcal{Y}_L}(G))$ is the zero functor, and it follows from Yoneda's lemma that $\widehat{b}_H \mathcal{R}_{\mathcal{Y}_L}(G) = 0$ if $H \not\subseteq L$. In other words $\mathcal{R}_{\mathcal{Y}_L}(G) = \widehat{b}_L^+ \mathcal{R}_{\mathcal{Y}_L}(G)$, as was to be shown.

Second step: The first step shows that we have adjoint functors

$$\widehat{b}_{L}^{+}\mathcal{F}_{p,R} \xrightarrow[\mathcal{R}_{\mathcal{Y}_{L}}]{\mathcal{O}_{\mathcal{Y}_{L}}} \mathsf{Fun}_{R} \big(R\mathcal{C}_{p}^{L}, R\text{-}\mathsf{Mod} \big) = \mathcal{G}_{p}^{L} \quad .$$

Moreover, the composition $\mathcal{O}_{\mathcal{Y}_L} \circ \mathcal{R}_{\mathcal{Y}_L}$ is isomorphic to the identity functor, by Theorem 7.11. All we have to show is that the unit of the adjunction is also an isomorphism, in other words, that for any $F \in \hat{b}_L^+ \mathcal{F}_{p,R}$ and any finite *p*-group *P*, the natural map

(7.13)
$$\eta_P : F(P) \to \mathcal{R}_{\mathcal{Y}_L}\mathcal{O}_{\mathcal{Y}_L}(F)(P) = \lim_{(X,M)\in\Sigma_L(P)} F(X/M)$$

sending $u \in F(P)$ to the sequence $\left(\operatorname{Defres}_{X/M}^{P} u\right)_{(X,M)\in\Sigma_{L}(P)}$, is an isomorphism.

The map η_P is injective: indeed, if $u \in F(P)$, then $u = \sum_{\substack{H \in [\mathcal{A}t_p] \\ H \sqsubset L}} b_H^P u$, as

 $F = \widehat{b}_L^+ F$. If Defres $_{X/M}^P u = 0$ for any section (X, M) of P with $(X/M)^{@} \sqsubseteq L$, then $F(\epsilon_{T,S}^P)(u) = 0$ for any section (T, S) of P such that $(T/S)^{@} \sqsubseteq L$, by Proposition 4.7 and Proposition 6.8. In particular $b_H^P u = 0$ for any atoric subquotient H of L, hence u = 0.

To prove that η_P is also surjective, we generalize the construction of Theorem A.2 of [11] (which is the case $L = \mathbf{1}$), and we define, for an element $v = (v_{X,M})_{(X,M)\in\Sigma_L(P)}$ in $\mathcal{R}_{\mathcal{Y}_L}\mathcal{O}_{\mathcal{Y}_L}(F)(P)$, an element $u = \iota_P(v)$ of F(P) by

$$u = \frac{1}{|P|} \sum_{\substack{(T,S)\in\mathcal{M}(P)\\(T/S)^{@} \sqsubseteq L}} \sum_{\substack{X \le T, M \le T\\S \le M \le \Phi(T) \le X \le T}} |X| \mu(X,T) \mu_{\le T}(S,M) \operatorname{Indinf}_{X/M}^{P} v_{X,M}$$

This yields an *R*-linear map $\iota_P : \mathcal{R}_{\mathcal{Y}_L}\mathcal{O}_{\mathcal{Y}_L}(F)(P) \to F(P).$
For $(Y, N) \in \Sigma_L(P)$, set $u_{Y,N} = \text{Defres}_{Y/N}^P u$. Then:

$$u_{Y,N} = \sum_{\substack{(T,S)\in\mathcal{M}(P)\\(T/S)^{@}\subseteq L}} \sum_{\substack{X\leq T, M \leq T\\S\leq M\leq \Phi(T)\leq X\leq T}} \frac{|X|}{|P|} \mu(X,T) \mu_{\leq T}(S,M) \text{Defres}_{Y/N}^{P} \text{Indinf}_{X/M}^{P} v_{X,M}$$

Moreover, by Proposition A.1 of [11]

$$\operatorname{Defres}_{Y/N}^{P}\operatorname{Indinf}_{X/M}^{P}v_{X,M} = \sum_{g \in [Y \setminus P/X]} \operatorname{Indinf}_{J_g/J_g'}^{Y/N} \operatorname{Iso}(\phi_g) \operatorname{Defres}_{I_g/I_g'}^{g_{X/g}Mg} v_{X,N} ,$$

where $J_g = N(Y \cap {}^gX)$, $J'_g = N(Y \cap {}^gM)$, $I_g = {}^gM(Y \cap {}^gX)$, $I'_g = {}^gM(N \cap {}^gX)$, and ϕ_g is the isomorphism $I_g/I'_g \to J_g/J'_g$ sending xI'_g to xJ'_g , for $x \in Y \cap {}^gX$. Moreover $\operatorname{Defres}_{I_g/I'_g}^{sX/gMg} v_{X,N} = v_{I_g,I'_g}$ by Conditions 2 and 3 in the definition (7.9) of the inverse limit on $\Sigma_L(P)$, since moreover $(I_g, I'_g) \in \Sigma_L(P)$ by Remark 7.10. Hence

$$Defres_{Y/N}^{P} \operatorname{Indinf}_{X/M}^{P} v_{X,M} = \sum_{g \in [Y \setminus P/X]} \operatorname{Indinf}_{J_g/J'_g}^{Y/N} \operatorname{Iso}(\phi_g) v_{I_g,I'_g}$$
$$= \sum_{g \in P} \frac{|Y \cap {}^gX|}{|Y||X|} \operatorname{Indinf}_{J_g/J'_g}^{Y/N} \operatorname{Iso}(\phi_g) v_{I_g,I'_g}$$

Thus

$$u_{Y,N} = \sum_{\substack{(T,S)\in\mathcal{M}(P)\\ (T/S)^{@}\sqsubseteq L\\ X \leq T, M \leq T\\ S \leq M \leq \Phi(T) \leq X \leq T}} \frac{|Y \cap {}^{g}X|}{|P||Y|} \mu(X,T) \mu_{\leq T}(S,M) \operatorname{Indinf}_{J_{g}/J'_{g}}^{Y/N} \operatorname{Iso}(\phi_{g}) v_{I_{g},I'_{g}}.$$

Now $\mu(X,T) = \mu({}^{g}X,{}^{g}T)$ and $\mu_{\leq T}(S,M) = \mu_{\leq {}^{g}T}({}^{g}S,{}^{g}M)$, so summing over $({}^{g}T,{}^{g}S,{}^{g}X,{}^{g}M)$ instead of (T,S,X,M) we get

$$u_{Y,N} = \sum_{\substack{(T,S)\in\mathcal{M}(P)\\(T/S)^{@}\subseteq L\\X\leq T, M \leq T\\S\leq M \leq \Phi(T)\leq X \leq T}} \frac{|Y \cap X|}{|Y|} \mu(X,T) \mu_{\leq T}(S,M) \operatorname{Indinf}_{J_1/J_1'}^{Y/N} \operatorname{Iso}(\phi_1) v_{I_1,I_1'}$$

Setting $W = Y \cap X$, we have $J_1 = NW$, $J'_1 = N(W \cap M)$, $I_1 = MW$, $I'_1 = M(N \cap W)$, and these four groups only depend on W, once M and N are given. Hence, for given T, S and M, we can group together the terms of

the above summation for which $Y \cap X$ is a given subgroup W of $Y \cap T$. This gives

$$u_{Y,N} = \sum_{\substack{(T,S)\in\mathcal{M}(P)\\ (T/S)^{@} \sqsubseteq L\\ M \trianglelefteq T\\ S \le M \le \Phi(T)\\ W \le Y \cap T}} \Big(\sum_{\substack{\Phi(T) \le X \le T\\ X \cap Y = W}} \mu(X,T) \Big) \frac{|W|}{|Y|} \mu_{\trianglelefteq T}(S,M) \operatorname{Indinf}_{J_1/J_1'}^{Y/N} \operatorname{Iso}(\phi_1) v_{I_1,I_1'}.$$

Moreover $\sum_{\substack{\Phi(T) \le X \le T \\ X \cap Y = W}} \mu(X, T) = \sum_{\substack{X \le T \\ X \cap (Y \cap T) = W}} \mu(X, T), \text{ since } \mu(X, T) = 0 \text{ unless}$

 $X \ge \Phi(T)$, and the latter summation vanishes unless $Y \cap T = T$, by classical combinatorial lemmas ([15] Corollary 3.9.3). This gives:

$$u_{Y,N} = \sum_{\substack{(T,S)\in\mathcal{M}(P)\\ (T/S)^{@} \sqsubseteq L\\ M \trianglelefteq T\\ S \le M \le \Phi(T) \le W \le T \le Y}} \frac{|W|}{|Y|} \mu(W,T) \mu_{\trianglelefteq T}(S,M) \operatorname{Indinf}_{J_1/J_1'}^{Y/N} \operatorname{Iso}(\phi_1) v_{I_1,I_1'} .$$

Moreover in this summation $J_1 = NW$, $J'_1 = N(W \cap M) = NM$, $I_1 = MW = W$, $I'_1 = M(N \cap W) = MN \cap W$. All these groups remain unchanged if we replace M by $M(N \cap \Phi(T))$, so for given T, S and W, we can group together those terms for which $M(N \cap \Phi(T))$ is a given normal subgroup Uof T with $U \leq \Phi(T)$. The sum $\sum_{\substack{S \leq M \leq T \\ M(N \cap \Phi(T)) = U}} \mu_{\leq T}(S, M)$ is equal to 0 (by the

same above-mentioned classical combinatorial lemmas, applied to the normal subgroup $S(N \cap \Phi(T))$ of T) unless $S(N \cap \Phi(T)) = S$, i.e. $N \cap \Phi(T) \leq S$. Hence

$$u_{Y,N} = \sum_{\substack{(T,S)\in\mathcal{M}(P)\\(T/S)^{@}\subseteq L\\U \trianglelefteq T\\N \cap \Phi(T) \le S \le U \le \Phi(T) \le W \le T \le Y}} \frac{|W|}{|Y|} \mu(W,T) \mu_{\trianglelefteq T}(S,U) \operatorname{Indinf}_{J_1/J_1'}^{Y/N} \operatorname{Iso}(\phi_1) v_{I_1,I_1'},$$

where $J_1 = NW$, $J'_1 = NU$, $I_1 = W$, $I'_1 = UN \cap W$.

Now if $N \cap \Phi(T) \leq S \leq \Phi(T) \leq T \leq Y$, then $(TN/N)^{@} \sqsubseteq (Y/N)^{@}$. Moreover the normal subgroup $(N \cap T)/(N \cap \Phi(T))$ of $T/(N \cap \Phi(T))$ intersects trivially the Frattini subgroup

$$\Phi\Big(T/\big(N \cap \Phi(T)\big)\Big) = \Phi(T)/\big(N \cap \Phi(T)\big) ,$$

so $\left(T/\left(N\cap\Phi(T)\right)\right)^{@} \cong \left(T/(N\cap T)^{@} \cong (TN/N)^{@}$ by Proposition 6.6, applied to the quotient map $T/\left(N\cap\Phi(T)\right) \to T/(N\cap T)$.

Then $(T/S)^{@} \subseteq (T/(N \cap \Phi(T)))^{@} \subseteq (TN/N)^{@} \subseteq (Y/N)^{@}$. Since $(Y/N)^{@} \subseteq L$ by assumption, it follows that

$$u_{Y,N} = \sum_{\substack{S \stackrel{d}{\triangleleft} T \leq Y \\ U \stackrel{d}{\triangleleft} T \\ N \cap \Phi(T) \leq S \leq U \leq \Phi(T) \leq W \leq T \leq Y}} \frac{|W|}{|Y|} \mu(W,T) \mu_{\exists T}(S,U) \operatorname{Indinf}_{J_1/J_1'}^{Y/N} \operatorname{Iso}(\phi_1) v_{I_1,I_1'}.$$

Now the sum $\sum_{\substack{S \leq T \\ N \cap \Phi(T) \leq S \leq U}} \mu_{\leq T}(S, U)$ is equal to zero unless $U = N \cap \Phi(T)$.

Hence

$$u_{Y,N} = \sum_{\Phi(T) \le W \le T \le Y} \frac{|W|}{|Y|} \mu(W,T) \operatorname{Indinf}_{J_1/J_1'}^{Y/N} \operatorname{Iso}(\phi_1) v_{I_1,I_1'}$$

For a given subgroup W of Y, the sum $\sum_{\Phi(T) \leq W \leq T \leq Y} \mu(W,T)$ is equal to $\sum_{W \leq T \leq Y} \mu(W,T)$ since $\mu(W,T) = 0$ unless $W \geq \Phi(T)$, and the latter is equal to zero if $W \neq Y$, and to 1 if W = Y. Thus

$$u_{Y,N} = \frac{|Y|}{|Y|} \operatorname{Indinf}_{J_1/J_1'}^{Y/N} \operatorname{Iso}(\phi_1) v_{I_1,I_1'},$$

where $J_1 = NY = Y$, $J'_1 = NU = N$, $I_1 = Y$, $I'_1 = UN \cap Y = N$. Hence $I_1 = J_1 = Y$ and $I'_1 = J'_1 = N$, so ϕ_1 is equal to the identity. It follows that $u_{Y,N} = v_{Y,N}$ for any $(Y,N) \in \Sigma_L(P)$, so $\eta_P(u) = v$. This proves that the map η_P is surjective, hence an isomorphism, with inverse ι_P . This completes the proof of Theorem 7.12.

7.14. Definition: Let L be an atoric p-group, and let $RC_p^{\sharp L}$ be the following category:

- The objects of $R\mathcal{C}_p^{\sharp L}$ are the finite p-groups P such that $P^{@} \cong L$.
- If P and Q are finite p-groups such that $P^{@} \cong Q^{@} \cong L$, then

$$\operatorname{Hom}_{\mathcal{RC}_{p}^{\sharp L}}(P,Q) = RB(Q,P) / \sum_{L \not\subseteq S} RB(Q,S)B(S,P)$$

is the quotient of RB(Q, P) by the R-submodule generated by all morphisms from P to Q in RC_p which factor through a p-group S which does not admit L as a subquotient. The composition of morphisms in RC^{#L}_p is induced by the composition of morphisms in RC_p.

7.15. Remark: Morphisms in RC_p which factor through a *p*-group *S* such that $L \not\sqsubseteq S$ clearly generate a two-sided ideal, so the composition in $RC_p^{\sharp L}$ is well defined. Moreover the category $RC_p^{\sharp L}$ is *R*-linear. Let $\operatorname{Fun}_R(RC_p^{\sharp L}, R\operatorname{-Mod})$ denote the category of *R*-linear functors from $RC_p^{\sharp L}$ to the category *R*-Mod of *R*-modules.

7.16. Lemma: Let p be a prime, and L be an atoric p-group. Let P and Q be finite p-groups.

- 1. If $P^{@} \cong L$ or $Q^{@} \cong L$, and if $M \leq (Q \times P)$, then $q(M)^{@} \sqsubseteq L$. Moreover $q(M)^{@} \cong L$ if and only if $L \sqsubseteq q(M)$.
- 2. If $P^{@} \cong Q^{@} \cong L$, then

$$\operatorname{Hom}_{R\mathcal{C}_p^{\sharp L}}(P,Q) = RB(Q,P) / \sum_{S^@ \sqsubset L} RB(Q,S)B(S,P)$$

is also the quotient of RB(Q, P) by the *R*-submodule generated by all morphisms from *P* to *Q* in RC_p which factor through a *p*-group *S* such that $S^{@}$ is a proper subquotient of *L*.

3. If $P^{@} \cong Q^{@} \cong L$, then $\operatorname{Hom}_{R\mathcal{C}_{p}^{\sharp L}}(P,Q)$ has an *R*-basis consisting of the (images of the) transitive (Q, P)-bisets $(Q \times P)/M$, where *M* is a subgroup of $(Q \times P)$ such that $q(M)^{@} \cong L$ (up to conjugation).

Proof: (1) Indeed q(M) is a subquotient of P, and a subquotient of Q. Hence $q(M)^{@}$ is a subquotient of $P^{@}$ and a subquotient of $Q^{@}$, so $q(M)^{@} \sqsubseteq L^{@} \cong L$. Now suppose that $q(M)^{@} \cong L$. Then L is a quotient of q(M), so $L \sqsubseteq q(M)$. Conversely, if $L \sqsubseteq q(M)$, then $L \cong L^{@}$ is a subquotient of $q(M)^{@}$, which is a subquotient of L. So $q(M)^{@} \cong L$.

(2) First if S is a finite p-group with $S^{@} \sqsubset L$, then $L \not\sqsubseteq S$, for otherwise $L \sqsubseteq S^{@} \sqsubset L$, a contradiction. Conversely, let S be a finite p-group such that $L \not\sqsubseteq S$, or equivalently $L \not\sqsubseteq S^{@}$. By (2.7), any element of RB(Q, S)B(S, P) is a linear combination of (Q, P)-bisets of the form $(Q \times P)/(M * N)$, for $M \leq (Q \times S)$ and $N \leq (S \times P)$. This biset $(Q \times P)/(M * N)$ also factors through T = q(M * N), by 2.6. Moreover T is a subquotient of q(M) and q(N), by Lemma 2.3.22 of [7], hence a subquotient of Q, S, and P. Hence $T^{@} \sqsubseteq Q^{@} \cong L$, and $T^{@} \ncong L$, since $L \not\sqsubseteq S^{@}$. Hence $T^{@} \sqsubset L$. We observe that conversely, any transitive biset $(Q \times P)/N$, with $q(N)^{@} \sqsubset L$, factors through

q(N), so it lies in the sum $\sum_{S^{@} \sqsubset L} RB(Q, S)B(S, P)$. Hence this sum is equal to the set of linear combinations of bisets $(Q \times P)/N$, with $q(N)^{@} \sqsubset L$.

(3) The (images of the) elements $(Q \times P)/M$, where M is a subgroup of $(Q \times P)$ such that $q(M)^{@} \cong L$ (up to conjugation), clearly generate $\operatorname{Hom}_{R\mathcal{C}_{p}^{\sharp L}}(P,Q)$. Moreover, they are linearly independent, since the transitive (Q,P)-bisets of the form $(Q \times P)/M$, for $q(M)^{@} \cong L$, generate a supplement in RB(Q,P) of the sum $\sum_{S^{@} \sqsubset L} RB(Q,S)B(S,P)$, by the observation at the end of the proof of Assertion 2.

7.17. Remark: If G is an R-linear functor from $RC_p^{\sharp L}$ to the category R-Mod of R-modules, we can extend G to an R-linear functor from RC_p^L to R-Mod by setting $G(P) = \{0\}$ if P is a finite p-group such that $P^{@}$ is a proper subquotient of L. Conversely, an R-linear functor from RC_p^L to R-Mod which vanishes on p-groups P such that $P^{@} \ncong L$ can be viewed as an R-linear functor from $RC_p^{\sharp L}$ to R-Mod. In the sequel, we will freely identify those two types of functors, and consider $\mathsf{Fun}_R(RC_p^{\sharp L}, R-\mathsf{Mod})$ as the full subcategory of $\mathsf{Fun}_R(RC_p^L, R-\mathsf{Mod})$ consisting of functors which vanish on p-groups P such that $P^{@} \ncong L$.

- **7.18. Theorem:** $[p \in R^{\times}]$ Let L be an atoric p-group.
 - 1. If F is a p-biset functor over R such that $F = \hat{b}_L F$, and P is a finite p-group such that $L \not\subseteq P$, then $F(P) = \{0\}$.
 - 2. If G is an R-linear functor from $R\mathcal{C}_p^{\sharp L}$ to R-Mod, then $\widehat{b}_L \mathcal{R}_{\mathcal{Y}_L}(G) = \mathcal{R}_{\mathcal{Y}_L}(G)$.
 - 3. The forgetful functor $\mathcal{O}_{\mathcal{Y}_L}$ and its right adjoint $\mathcal{R}_{\mathcal{Y}_L}$ restrict to quasiinverse equivalences of categories

$$\widehat{b}_{L}\mathcal{F}_{p,R} \xrightarrow{\mathcal{O}_{\mathcal{Y}_{L}}} \mathsf{Fun}_{R} \big(R\mathcal{C}_{p}^{\sharp L}, R\text{-}\mathsf{Mod} \big)$$

Proof: (1) Since $\hat{b}_L F = F$, then in particular $F(b_L^P)F(P) = F(P)$. If $L \not\subseteq P$, then there is no minimal section (T, S) of P with $(T/S)^{@} \cong L$, thus $b_L^P = 0$, and $F(P) = \{0\}$.

(2) Let G be an R-linear functor from $R\mathcal{C}_p^{\sharp L}$ to R-Mod, in other words an R-linear functor from \mathcal{FC}_p^L to R-Mod which vanishes on p-groups P such that $P^{@}$ is a proper subquotient of L. By Theorem 7.12, we have $\hat{b}_L^+ \mathcal{R}_{\mathcal{Y}_L}(G) =$

 $\mathcal{R}_{\mathcal{Y}_L}(G)$. If H is an atoric p-group which is a proper subquotient of L, then G vanishes over any subquotient Q of H, since $Q^{@} \sqsubseteq H \sqsubset L$ if $Q \sqsubseteq H$. In particular b_H^P acts by 0 on $\mathcal{R}_{\mathcal{Y}_L}(G)(P)$, for any finite p-group P: indeed b_H^P is a linear combination of terms of the form $\operatorname{Indinf}_{X/M}^P \operatorname{Defres}_{X/M}^P$, where (X, M) is a section of P such that $S \leq M \leq \Phi(T) \leq X \leq T$, for some section (T, S) of P with $(T/S)^{@} \cong H$. For such a section (X, M) of P, we have $(X/M)^{@} \sqsubseteq (T/S)^{@} \sqsubseteq H$, thus G vanishes on any subquotient of X/M, so $\mathcal{R}_{\mathcal{Y}_L}(G)(X/M) = \{0\}$, hence b_H^P acts by 0 on $\mathcal{R}_{\mathcal{Y}_L}(G)(P)$, as claimed. It follows that $\hat{b}_H \mathcal{R}_{\mathcal{Y}_L}(G) = 0$, hence the equality $\hat{b}_L^+ \mathcal{R}_{\mathcal{Y}_L}(G) = \mathcal{R}_{\mathcal{Y}_L}(G)$ reduces to $\hat{b}_L \mathcal{R}_{\mathcal{Y}_L}(G) = \mathcal{R}_{\mathcal{Y}_L}(G)$.

(3) This is a straightforward consequence of (1) and (2), by Theorem 7.12, using Remark 7.17. $\hfill \Box$

7.19. Corollary: $[p \in R^{\times}]$ The category $\mathcal{F}_{p,R}$ of p-biset functors over R is equivalent to the direct product of the categories $\operatorname{Fun}_R(R\mathcal{C}_p^{\sharp L}, R\operatorname{-Mod})$ of R-linear functors from $R\mathcal{C}_p^{\sharp L}$ to $R\operatorname{-Mod}$, for $L \in [\mathcal{A}t_p]$.

Proof : This follows from Theorem 7.18, using Equivalence (7.6) of Corollary 7.5. $\hfill \Box$

8. *L*-enriched bisets

8.1. Notation: Let G and H be finite groups. If U is an (H,G)-biset, and $u \in U$, let $(H,G)_u$ denote the stabilizer of u in $(H \times G)$, i.e.

$$(H,G)_u = \{(h,g) \in (H \times G) \mid hu = ug\}$$
.

Let $H_u = k_1((H,G)_u)$ denote the stabilizer of u in H, and $_uG = k_2((H,G)_u)$ denote the stabilizer of u in G. Set moreover

$$q(u) = q((H,G)_u) = (H,G)_u/(H_u \times _u G)$$

8.2. Definition: Let L be a finite group. For two finite groups G and H, an L-enriched (H, G)-biset is an $(H \times L, G \times L)$ -biset U such that $L \sqsubseteq q(u)$, for any $u \in U$. A morphism of L-enriched (H, G)-bisets is a morphism of $(H \times L, G \times L)$ -bisets.

The disjoint union of two L-enriched (H,G)-bisets is again an L-

enriched (H,G)-biset. Let B[L](H,G) denote the Grothendieck group of finite L-enriched (H,G)-bisets for relations given by disjoint union decompositions. The group B[L](H,G) is called the Burnside group of L-enriched (H,G)-bisets.

8.3. Lemma: Let G, H, L be finite groups, and U be an $(H \times L, G \times L)$ biset. Let $U^{\sharp L}$ denote the set of elements $u \in U$ such that $L \sqsubseteq q(u)$. Then $U^{\sharp L}$ is the largest L-enriched (H, G)-sub-biset of U.

Proof: It suffices to show that $U^{\sharp L}$ is a $(H \times L, G \times L)$ -sub-biset of U, for then it is clearly the largest *L*-enriched (H, G)-sub-biset of U. And this is straightforward, since for any $(u, g, h, x, y) \in (U \times G \times H \times L \times L)$, if v = (h, y)u(g, x), then

$$(H \times L, G \times L)_v = {((h,y),(g,x)^{-1})}(H \times L, G \times L)_u ,$$

and this conjugation induces a group isomorphism $q(v) \cong q(u)$.

8.4. Lemma: Let G, H, L be finite groups.

- 1. Let U be an L-enriched (H,G)-biset. If V is an $(H \times L, G \times L)$ -sub-biset of U, then V is an L-enriched (H,G)-biset.
- 2. The group B[L](H,G) has a \mathbb{Z} -basis consisting of the transitive bisets $((H \times L) \times (G \times L))/M$, where M is a subgroup of $((H \times L) \times (G \times L))$ (up to conjugation) such that $L \sqsubseteq q(M)$.

Proof: (1) This is straightforward.

(2) It follows from (1) that B[L](H,G) has a basis consisting of the isomorphism classes of *L*-enriched (H,G)-bisets which are transitive $(H \times L, G \times L)$ -bisets. These are of the form $U = ((H \times L) \times (G \times L))/M$, for some subgroup M of $((H \times L) \times (G \times L))$. Now if u is the element ((1,1),(1,1))M of U, the group $(H \times L, G \times L)_u$ is equal to M, hence $q(u) \cong q(M)$.

8.5. Example: Let G, H, K, L be finite groups. The following can easily be checked:

1. For an (H,G)-biset U, endow $U \times L$ with the $(H \times L, G \times L)$ -biset structure defined by

$$\forall h \in H, \forall g \in G, \forall x, y, z \in L, \forall u \in U, \quad (h, x)(u, y)(g, z) = (hug, xyz) \quad .$$

Then $U \times L$ is an *L*-enriched (H, G)-biset.

- 2. In particular, for any finite group G, the identity biset of $G \times L$ is an L-enriched (G, G)-biset.
- 3. If U is an (H,G)-biset and V is a (K,H)-biset, then there is an isomorphism

$$(V \times L) \times_{(H \times L)} (U \times L) \cong (V \times_H U) \times L$$

of L-enriched (H, G)-bisets.

8.6. Notation: Let G, H, K, L be finite groups. If U is an L-enriched (H, G)-biset and V is an L-enriched (K, H)-biset, let $V \stackrel{L}{\times}_{H} U$ denote the L-enriched (K, G)-biset defined by

$$V \overset{L}{\times}_{H} U = \left(V \times_{(H \times L)} U \right)^{\sharp L} .$$

8.7. Remark: The set $V \stackrel{L}{\times}_{H} U$ is in general a proper subset of $V \times_{(H \times L)} U$: for example if $K = G = \mathbf{1}$ and H = L, and if $V = ((K \times L) \times (H \times L))/N$ and $U = ((H \times L) \times (G \times L))/M$, where $N = \{(1, l), (l, 1)) \mid l \in L\}$ and $M = \{(1, l), (1, l)) \mid l \in L\}$, then $p_2(N) = L \times \mathbf{1}$ and $k_2(N) = \mathbf{1} \times \mathbf{1}$, so $q(N) \cong (L \times L)/(L \times \mathbf{1}) \cong L$. Similarly $p_1(M) = \mathbf{1} \times L$ and $k_1(M) = \mathbf{1} \times \mathbf{1}$, so $q(M) \cong L$. However by 2.7, since $p_2(N)p_1(M) = H \times L$,

$$V \times_{(H \times L)} U = \left((K \times L) \times (G \times L) \right) / (N * M) ,$$

and moreover $N * M = \{(1, l), (l, 1)\} \mid l \in L\} * \{(1, l), (1, l)\} \mid l \in L\} = \mathbf{1} \times \mathbf{1}$, so $q(N * M) = \mathbf{1}$. It follows that $V \stackrel{L}{\times}_{H} U = \emptyset$ if L is non trivial.

8.8. Lemma: Let G, H, J, K, L be finite groups.

1. If V is a $(K \times L, H \times L)$ -biset and U is an $(H \times L, G \times L)$ -biset, then

$$(V \times_{(H \times L)} U)^{\sharp L} = V^{\sharp L} \overset{L}{\times}_{H} U^{\sharp L} \quad .$$

In particular, if V and U are L-enriched bisets, so is $V \stackrel{\scriptscriptstyle L}{\times}_H U$.

2. If U and U' are L-enriched (H,G)-bisets, if V,V' are L-enriched (K,H)-bisets, then there are isomorphisms

$$V \stackrel{\scriptscriptstyle L}{\times}_H (U \sqcup U') \cong (V \stackrel{\scriptscriptstyle L}{\times}_H U) \sqcup (V \stackrel{\scriptscriptstyle L}{\times}_H U')$$

$$(V \sqcup V') \stackrel{\scriptscriptstyle L}{\times}_H U \cong (V \stackrel{\scriptscriptstyle L}{\times}_H U) \sqcup (V' \stackrel{\scriptscriptstyle L}{\times}_H U)$$

of L-enriched (K, G)-bisets.

3. If moreover W is an L-enriched (J, K)-biset, then there is a canonical isomorphism

$$(W \stackrel{\scriptscriptstyle L}{\times}_{K} V) \stackrel{\scriptscriptstyle L}{\times}_{H} U \cong W \stackrel{\scriptscriptstyle L}{\times}_{K} (V \stackrel{\scriptscriptstyle L}{\times}_{H} U)$$

of L-enriched (J, G)-bisets.

Proof: (1) Denote by [v, u] the image in $V \times_{(H \times L)} U$ of a pair $(v, u) \in (V \times U)$. By Lemma 2.3.20 of [7],

$$(K \times L, G \times L)_{[v,u]} = (K \times L, H \times L)_v * (H \times L, G \times L)_u ,$$

so by Lemma 2.3.22 of [7], the group q([v, u]) is a subquotient of q(v) and q(u). So if $[v, u] \in (V \times_{(H \times L)} U)^{\sharp L}$, then L is a subquotient of q([v, u]), hence it is a subquotient of q(v) and q(u), that is $v \in V^{\sharp L}$ and $u \in U^{\sharp L}$. Hence

$$(V \times_{(H \times L)} U)^{\sharp L} \subseteq (V^{\sharp L} \times_{(H \times L)} U^{\sharp L})^{\sharp L} = V^{\sharp L} \overset{L}{\times}_{H} U^{\sharp L}$$

and the reverse inclusion $(V^{\sharp L} \times_{(H \times L)} U^{\sharp L})^{\sharp L} \subseteq (V \times_{(H \times L)} U)^{\sharp L}$ is obvious. Hence $(V \times_{(H \times L)} U)^{\sharp L} = V^{\sharp L} \overset{L}{\times}_{H} U^{\sharp L}$. If V and U are L-enriched bisets, i.e. if $V = V^{\sharp L}$ and $U = U^{\sharp L}$, this gives $(V \times_{(H \times L)} U)^{\sharp L} = V \overset{L}{\times}_{H} U$, so $V \overset{L}{\times}_{H} U$ is an L-enriched biset.

- (2) This is straightforward.
- (3) With the above notation, there is a canonical isomorphism

$$\alpha: (W \times_{(K \times L)} V) \times_{(H \times L)} U \to W \times_{(K \times L)} (V \times_{(H \times L)} U)$$

sending [[w, v], u] to [w, [v, u]]. Hence

$$(W \stackrel{L}{\times}_{K} V) \stackrel{L}{\times}_{H} U = ((W \stackrel{L}{\times}_{K} V) \times_{(H \times L)} U)^{\sharp L}$$
$$= ((W \times_{(K \times L)} V)^{\sharp L} \times_{(H \times L)} U)^{\sharp L}$$
$$= ((W \times_{(K \times L)} V) \times_{(H \times L)} U)^{\sharp L} \text{ [by (1)]}$$

Similarly

$$W_{\times K}^{L}(V_{\times H}^{L}U) = (W \times_{(K \times L)} (V_{\times H}^{L}U))^{\sharp L}$$
$$= (W \times_{(K \times L)} (V \times_{(H \times L)} U)^{\sharp L})^{\sharp L}$$
$$= (W \times_{(K \times L)} (V \times_{(H \times L)} U))^{\sharp L} \text{ [by (1)]}$$

Hence α induces an isomorphism $(W \stackrel{L}{\times}_{K} V) \stackrel{L}{\times}_{H} U \cong W \stackrel{L}{\times}_{K} (V \stackrel{L}{\times}_{H} U).$

8.9. Definition: Let L be a finite group, and R be a commutative ring. The L-enriched biset category RC[L] of finite groups over R is defined as follows:

- The objects of RC[L] are the finite groups.
- For finite groups G and H,

$$\operatorname{Hom}_{RC[L]}(G,H) = R \otimes_{\mathbb{Z}} B[L](H,G) = RB[L](H,G)$$

is the R-linear extension of the Burnside group of L-enriched (H,G)-bisets.

- The composition in RC[L] is the R-linear extension of the product $(V, U) \mapsto V \stackrel{L}{\times}_{H} U$ defined in 8.6.
- The identity morphism of the group G is (the image in RB[L](G,G) of) the identity biset of $G \times L$, viewed as an L-enriched (G,G)-biset.

The category RC[L] is R-linear. An L-enriched biset functor over R is an R-linear functor from RC[L] to R-Mod. The category of L-enriched biset functors over R is denoted by $\mathcal{F}_R[L]$. It is an abelian R-linear category.

8.10. Theorem: Let p be a prime number, and R be a commutative ring.

- 1. If L is an atoric p-group, the category $RC_p^{\sharp L}$ of Definition 7.14 is equivalent to the full subcategory $R\mathcal{E}l_p[L]$ of RC[L] consisting of elementary abelian p-groups.
- 2. If $p \in \mathbb{R}^{\times}$, the category $\mathcal{F}_{p,R}$ of p-biset functors over \mathbb{R} is equivalent to the direct product of the categories $\operatorname{Fun}_R(\mathbb{REl}_p[L], \mathbb{R}\operatorname{-Mod})$ of \mathbb{R} -linear functors from $\mathbb{REl}_p[L]$ to $\mathbb{R}\operatorname{-Mod}$, for $L \in [\mathcal{A}t_p]$.

Proof: (1) Let E be an elementary abelian p-group. Then $(E \times L)^{@} \cong L$, so $E \times L$ is an object of $\mathcal{RC}_{p}^{\sharp L}$. Set $\mathcal{I}(E) = E \times L$. If E and F are elementary abelian p-groups, and if U is a finite L-enriched (F, E)-biset, then U is in particular an $(F \times L, E \times L)$ -biset, and we can consider its image $\mathcal{I}(U)$ in the quotient $\operatorname{Hom}_{\mathcal{RC}_{p}^{\sharp L}}(E \times L, F \times L)$ of $\mathcal{RB}(F \times L, E \times L)$. This yields a unique R-linear map $\mathcal{RB}[L](F, E) \to \operatorname{Hom}_{\mathcal{RC}_{p}^{\sharp L}}(E \times L, F \times L)$, still denoted by \mathcal{I} .

We claim that these assignments define a functor \mathcal{I} from $R\mathcal{E}l_p[L]$ to $R\mathcal{C}_p^{\sharp L}$: indeed, the identity $(E \times L, E \times L)$ -biset is clearly mapped to the identity morphism of $\mathcal{I}(E)$. Moreover, if G is an elementary abelian p-group, if V is an *L*-enriched (G, F)-biset and *U* is an *L*-enriched (F, E)-biset, it is clear that

$$\mathcal{I}(V \stackrel{\scriptscriptstyle L}{\times}_F U) = \mathcal{I}(V) \circ \mathcal{I}(U)$$
,

where the right hand side composition is in the category $R\mathcal{C}_p^{\sharp L}$: indeed, the transitive bisets $((G \times L) \times (E \times L))/M$ with $q(M)^{@} \sqsubset L$ appearing in the product $V \times_{(F \times L)} U$ are exactly those vanishing in $\operatorname{Hom}_{R\mathcal{C}_p^{\sharp L}}(\mathcal{I}(E), \mathcal{I}(F))$, by Lemma 7.16. Hence \mathcal{I} induces an isomorphism

$$\mathcal{I}: RB[L](F, E) \to \operatorname{Hom}_{RC_{p}^{\sharp L}}(\mathcal{I}(E), \mathcal{I}(F))$$

In other words \mathcal{I} is a fully faithful functor from $R\mathcal{E}l_p[L]$ to $R\mathcal{C}_p^{\sharp L}$. Moreover, by Proposition 6.7, if P is a finite p-group with $P^{@} \cong L$, there exists an elementary abelian p-group E such that P is isomorphic to $E \times L$, hence Pis isomorphic to $E \times L$ in the category $R\mathcal{C}_p^{\sharp L}$.

It follows that the functor \mathcal{I} is fully faithful and essentially surjective, so it is an equivalence of categories.

(2) This is a straightforward consequence of (1), Assertion 5 of Corollary 7.5, and Assertion 3 of Theorem 7.18. $\hfill \Box$

8.11. Remark: Let E and F be elementary abelian p-groups. In view of Theorem 8.10, it is interesting to give some detail on the hom set from E to F in the category $R\mathcal{E}l_p[L]$, in other words to describe the subgroups M of $(F \times L) \times (E \times L)$ such that $q(M)^{@} \cong L$. One can show that they are exactly those subgroups M such that

$$p_{1,2}(M) = p_{2,2}(M) = L$$
 and $k_{1,2}(M) = k_{2,2}(M) = 1$,

where $p_{1,2}$ and $p_{2,2}$ are the morphisms from $((H \times L) \times (G \times L))$ to L defined by $p_{1,2}((h, x), (g, y)) = x$ and $p_{2,2}((h, x), (g, y)) = y$, and

> $k_{1,2}(M) = \{x \in L \mid ((1,x), (1,1)) \in M\},$ $k_{2,2}(M) = \{x \in L \mid ((1,1), (1,x)) \in M\}.$

9. The category $\hat{b}_L \mathcal{F}_{p,R}$, for an atoric *p*-group L ($p \in R^{\times}$)

Let L be a fixed atoric p-group. In this section, we give some detail on the structure of the category $\hat{b}_L \mathcal{F}_{p,R}$ of p-biset functors invariant by the idempotent \hat{b}_L . We return to the initial definition of this category given in Assertion 5 of Corollary 7.5, and we do not use the equivalent category $\operatorname{Fun}_R(R\mathcal{E}l_p[L], R\operatorname{-Mod})$ of Theorem 8.10.

We start by straightforward consequences of Theorem 7.18. For a finite p-group P, we denote by $\Sigma_{\sharp L}(P)$ the subset of $\Sigma_L(P)$ consisting of sections (X, M) of P such that $(X/M)^{@} \cong L$. When G is an R-linear functor from $R\mathcal{C}_p^{\sharp L}$ to R-Mod, we first extend it to a functor defined on $R\mathcal{C}_p^L$ by setting $G(P) = \{0\}$ if $P^{@} \sqsubset L$, as in Remark 7.17. Then we compute $\mathcal{R}_{\mathcal{Y}_L}(G)$ at P by restricting the inverse limit of 7.8 to the subset $\Sigma_{\sharp L}(P)$, i.e. by

$$\mathcal{R}_{\mathcal{Y}_L}(G)(P) = \lim_{(X,M)\in\Sigma_{\sharp L}(P)} G(X/M) \ .$$

9.1. Proposition: $[p \in R^{\times}]$ Let L be an atoric p-group. If F is a p-biset functor in $\hat{b}_L \mathcal{F}_{p,R}$, and P is a finite p-group, then

$$F(P) \cong \lim_{\substack{(X,M) \in \Sigma_{\sharp L}(P) \\ \oplus \\ (T,S) \in [\mathcal{M}(P)] \\ (T/S)^{@} \cong L}} F(X/M) ,$$

Proof: The isomorphism $F(P) \cong \varprojlim_{(X,M)\in\Sigma_{\sharp L}(P)} F(X/M)$ is Assertion 3 of Theorem 7.18. The second isomorphism follows from Theorem 5.4, which

Theorem 7.18. The second isomorphism follows from Theorem 5.4, which implies that for $(T, S) \in \mathcal{M}(P)$

$$\delta_{\Phi} F(T/S)^{N_P(T,S)/T} \cong F(\epsilon_{T,S}^P)(F(P))$$

Moreover $F(b_L^P)F(P) = F(P)$ since $F \in \hat{b}_L \mathcal{F}_{p,R}$, and

$$F(\epsilon_{T,S}^P)F(b_L^P) = F(\epsilon_{T,S}^P b_L^P) = 0$$

unless $(T/S)^{@} \cong L$. Thus $\delta_{\Phi} F(T/S)^{N_P(T,S)/T} = \{0\}$ unless $(T/S)^{@} \cong L$, which completes the proof.

The decomposition of the category $\mathcal{F}_{p,R}$ of *p*-biset functors stated in Corollary 7.5 leads to the following natural definition:

9.2. Definition: $[p \in R^{\times}]$ Let F be an indecomposable p-biset functor over R. There exists a unique atoric p-group L (up to isomorphism) such that $F = \hat{b}_L F$. The group L is called the vertex of F.

9.3. Remark:

- 1. It follows in particular from this definition that if F and F' are indecomposable *p*-biset functors over R with non-isomorphic vertices, then $\operatorname{Ext}^*_{\mathcal{F}_n R}(F, F') = \{0\}.$
- 2. It may happen that an indecomposable *p*-biset functor F with vertex L vanishes at L (see e.g. the case of a simple functor $F = S_{Q,V}$ of Corollary 9.5, when $Q \ncong Q^{@}$).

9.4. Theorem: $[p \in R^{\times}]$ Let F be an indecomposable p-biset functor over R and let L be a vertex of F. If Q is a finite p-group such that $F(Q) \neq \{0\}$, but F vanishes on any proper subquotient of Q, then $L \cong Q^{@}$.

Proof: Let Q be a finite p-group such that $F(Q) \neq \{0\}$ and $F(Q') = \{0\}$ for any proper subquotient Q' of Q. By Proposition 4.7, if (T, S) is a minimal section of Q, then

$$\epsilon_{T,S}^{Q} = \frac{1}{|N_{Q}(T,S)|} \sum_{\substack{X \le T, M \le T\\S \le M \le \Phi(T) \le X \le T}} |X| \mu(X,T) \mu_{\le T}(S,M) \operatorname{Indinf}_{X/M}^{Q} \operatorname{Defres}_{X/M}^{Q}$$

Now if X/M is a proper subquotient of Q, i.e. if $X \neq Q$ or $M \neq \mathbf{1}$, then $F(X/M) = \{0\}$, and $F(\operatorname{Indinf}_{X/M}^Q \operatorname{Defres}_{X/M}^Q) = 0$. Hence $F(\epsilon_{T,S}^Q) = 0$ unless T = Q and $S = \mathbf{1}$, and moreover

$$F(\epsilon_{Q,\mathbf{1}}^{Q}) = \frac{1}{|Q|} |Q| \mu(Q,Q) \mu_{\trianglelefteq Q}(\mathbf{1},\mathbf{1}) F(\operatorname{Indinf}_{Q/\mathbf{1}}^{Q} \operatorname{Defres}_{Q/\mathbf{1}}^{Q}) = \operatorname{Id}_{F(Q)}$$

Since $\hat{b}_L F = F$, then in particular $F(b_L^Q)$ is equal to the identity map of F(Q). This can only occur if the idempotent $\epsilon_{Q,1}^Q$ appears in the sum defining b_L^Q , in other words if $(Q/\mathbf{1})^{@} \cong L$, i.e. $Q^{@} \cong L$.

We assume from now on that R = k is a field. Recall ([7] Chapter 4) that the simple *p*-biset functors $S_{Q,V}$ over *k* are indexed by pairs (Q, V) consisting of a *p*-group *Q* and a simple kOut(Q)-module *V*. Also recall that if *P* is a finite *p*-group and if $Q \not\subseteq P$, then $S_{Q,V}(P) = \{0\}$. Moreover $S_{Q,V}(Q) \cong V$.

9.5. Corollary: Let k be a field of characteristic different from p.

1. If Q is a finite p-group, and V is a simple kOut(Q)-module, then the vertex of the simple p-biset functor $S_{Q,V}$ is isomorphic to $Q^{@}$.

2. Let Q (resp. Q') be a finite p-group, and V (resp. V') be a simple kOut(Q)-module (resp. a simple kOut(Q')-module). If $Q^{@} \ncong Q'^{@}$, then $\text{Ext}^{*}_{\mathcal{F}_{p,k}}(S_{Q,V}, S_{Q',V'}) = \{0\}.$

Proof: (1) Indeed Q is a minimal group for $S_{Q,V}$, so $S_{Q,V}(Q) \neq \{0\}$, but $S_{Q,V}$ vanishes on any proper subquotient of Q.

(2) Follows from (1) and Remark 9.3.

9.6. Definition: Let F be a p-biset functor. A non zero functor S is a subquotient of F (notation $S \subseteq F$) if there exist subfunctors $F_2 < F_1 \leq F$ such that $F_1/F_2 \cong S$. A composition factor of F is a simple subquotient of F.

9.7. Lemma: Let k be a field, and F be a p-biset functor over k.

- 1. If F is non zero, then F admits a composition factor.
- 2. If S is a family of simple p-biset functors over k, there exists a greatest subfunctor of F all composition factors of which belong to S.

Proof: (1) Let P be a finite p-group such that $F(P) \neq \{0\}$. Then F(P) is a kB(P, P)-module. Choose $m \in F(P) - \{0\}$, and consider the kB(P, P)submodule M of F(P) generated by m. Since kB(P, P) is finite dimensional over k, the module M is also finite dimensional over k, hence it contains a simple submodule V. By Proposition 3.1 of [8], there exists a simple pbiset functor S such that $S(P) \cong V$ as kB(P, P)-module. Then S(P) is a subquotient of F(P), so by Proposition 3.5 of [8], there exists a subquotient of F isomorphic to S.

(2) Observe first that if M, N are subfunctors of F, then any composition factor of M + N is a composition factor of M or a composition factor of N: indeed, if S is a composition factor of M + N, let $F_2 < F_1 \leq M + N$ with $S \cong F_2/F_1$, and consider the images F'_1 and F'_2 of F_1 and F_2 , respectively, in the quotient $(M + N)/N \cong M/(M \cap N)$. If $F'_1 \neq F'_2$, that is if $F_1 + N \neq$ $F_2 + N$, then $F'_1/F'_2 \cong (F_1 + N)/(F_2 + N) \cong F_1/F_2 \cong S$ is a subquotient of $(M + N)/N \cong M/(M \cap N)$, hence S is a subquotient of M. Otherwise $F_1 + N = F_2 + N$, so $F_1 = F_2 + (F_1 \cap N)$, hence $S \cong F_1/F_2 \cong (F_1 \cap N)/(F_2 \cap N)$ is a subquotient of N. It follows by induction that any composition factor Sof a finite sum $\sum_{M \in \mathcal{I}} M$ of subfunctors of F is a composition factor of some $M \in \mathcal{I}$. The latter also holds when \mathcal{I} is infinite: let $\Sigma = \sum_{M \in \mathcal{I}} M$ be an arbitrary sum of subfunctors of F, and S be a composition factor of Σ . Let $F_2 < F_1$ be subfunctors of Σ such that $S \cong F_1/F_2$. If P is a p-group such that $S(P) \cong$ $F_1(P)/F_2(P) \neq 0$, let U be a finite subset of $F_1(P)$ such that $F_1(P)/F_2(P)$ is generated as a kB(P, P)-module by the images of the elements of U (such a set exists because S(P) is finite dimensional over k, for any P). If V is the kB(P, P)-submodule of $F_1(P)$ generated by U, then V maps surjectively on the module $F_1(P)/F_2(P)$, so there is a kB(P, P)-submodule W of V such that $V/W \cong S(P)$. Now since U is finite, there exists a finite subset \mathcal{J} of \mathcal{I} such that $U \subseteq \sum_{M \in \mathcal{J}} M(P)$. Setting $\Sigma_1 = \sum_{M \in \mathcal{J}} M$, it follows that $V/W \cong S(P)$ is a subquotient of $\Sigma_1(P)$, so by Proposition 3.5 of [8], there exists a subquotient of Σ_1 isomorphic to S. By the observation above S is a subquotient of some $M \in \mathcal{J} \subseteq \mathcal{I}$.

Now let \mathcal{I} be the set of subfunctors M of F such that all the composition factors of M belong to \mathcal{S} , and $N = \sum_{M \in \mathcal{I}} M$. The above discussion shows that $N \in \mathcal{I}$, so N is the greatest element of \mathcal{I} .

9.8. Theorem: Let k be a field of characteristic different from p, and L be an atoric p-group. Let $\mathcal{F}_{p,k}[L]$ be the full subcategory of $\mathcal{F}_{p,k}$ consisting of functors whose composition factors all have vertex L, i.e. are all isomorphic to $S_{P,V}$, for some p-group P such that $P^{@} \cong L$, and some simple kOut(P)-module V.

- 1. If F is a p-biset functor, then $\hat{b}_L F$ is the greatest subfunctor of F which belongs to $\mathcal{F}_{p,k}[L]$.
- 2. In particular $\hat{b}_L \mathcal{F}_{p,k} = \mathcal{F}_{p,k}[L]$.

Proof: (1) Let F be a p-biset functor over k, and let $F_1 = \hat{b}_L F$. If S is a composition factor of F_1 , then $S = \hat{b}_L S$, as S is a subquotient of F_1 . Hence S has vertex L, by Definition 9.2. It follows that F_1 is contained in the greatest subfunctor F_2 of F which belongs to $\mathcal{F}_{p,k}[L]$ (such a subfunctor exists by Lemma 9.7).

Conversely, we know that $F_2 = \bigoplus_{Q \in [\mathcal{A}t_p]} \widehat{b}_Q F_2$. For $Q \in [\mathcal{A}t_p]$, any composition factor S of $\widehat{b}_Q F_2$ has vertex Q, by Definition 9.2. But S is also a composition factor of F_2 , so $Q \cong L$. It follows that if $Q \ncong L$, then $\widehat{b}_Q F_2$ has no composition factor, so $\widehat{b}_Q F_2 = \{0\}$, by Lemma 9.7. In other words $F_2 = \widehat{b}_L F_2$, hence $F_2 \leq F_1$, and $F_2 = F_1$, as was to be shown. (2) Let F be a p-biset functor. Then $F \in \hat{b}_L \mathcal{F}_{p,k}$ if and only if $F = \hat{b}_L F$, i.e. by (1) if and only if all the composition factors of F have vertex L.

9.9. Example: the Burnside functor. Let k be a field of characteristic $q \neq p$ ($q \geq 0$). It was shown in [10] Theorem 8.2 (see also [7] 5.6.9) that the Burnside functor kB restricted to the class of p-groups (hence an object of $\mathcal{F}_{p,k}$) is uniserial, hence indecomposable. As $kB(\mathbf{1}) \neq 0$, the vertex of kB is the trivial group, by Theorem 9.4, thus kB is an object of $\hat{b}_{\mathbf{1}}\mathcal{F}_{p,k} = \mathcal{F}_{p,k}[\mathbf{1}]$. It means that all the composition factors of kB have to be of form $S_{Q,V}$, where $Q^{@} = \mathbf{1}$, i.e. Q is elementary abelian. And indeed by [10] Theorem 8.2, the composition factors of kB are all of the form $S_{Q,k}$, where Q runs through a specific set of elementary abelian p-groups which depends on the order of p modulo q (suitably interpreted when q = 0).

Acknowledgments: I wish to thank several anonymous referees for their careful reading of this work, and their many valuable comments and suggestions.

References

- [1] L. Barker. Blocks of Mackey categories. J. Algebra, 446:34–57, 2016.
- [2] R. Boltje and S. Danz. A ghost ring for the left-free double Burnside ring and an application to fusion systems. Adv. Math., 229(3):1688–1733, 2012.
- [3] R. Boltje and S. Danz. A ghost algebra of the double Burnside algebra in characteristic zero. J. Pure Appl. Algebra, 217(4):608–635, 2013.
- [4] R. Boltje and B. Külshammer. Central idempotents of the bifree and left-free double Burnside ring. Israel J. Math., 202(1):161–193, 2014.
- [5] S. Bouc. Foncteurs d'ensembles munis d'une double action. J. of Algebra, 183(0238):664–736, 1996.
- [6] S. Bouc. Polynomial ideals and classes of finite groups. J. of Algebra, 229:153–174, 2000.
- [7] S. Bouc. *Biset functors for finite groups*, volume 1990 of *Lecture Notes in Mathematics*. Springer, 2010.
- [8] S. Bouc, R. Stancu, and J. Thévenaz. Simple biset functors and double Burnside ring. *Journal of Pure and Applied Algebra*, 217:546–566, 2013.

- [9] S. Bouc, R. Stancu, and J. Thévenaz. Vanishing evaluations of simple functors. J.P.A.A., 218:218–227, 2014.
- [10] S. Bouc and J. Thévenaz. The group of endo-permutation modules. Invent. Math., 139:275–349, 2000.
- [11] S. Bouc and J. Thévenaz. Gluing torsion endo-permutation modules. J. London Math. Soc., 78(2):477–501, 2008.
- [12] S. Bouc and J. Thévenaz. A sectional characterization of the Dade group. Journal of Group Theory, 11(2):155–298, 2008.
- [13] S. Bouc and J. Thévenaz. The algebra of essential relations on a finite set. J. reine angew. Math., 712:225–250, 2016.
- [14] D. Quillen. Homotopy properties of the poset of non-trivial p-subgroups. Adv. in Maths, 28(2):101–128, 1978.
- [15] R. P. Stanley. Enumerative combinatorics, volume 1. Wadsworth & Brooks/Cole, Monterey, 1986.
- [16] P. Webb. Stratifications and Mackey functors II: globally defined Mackey functors. J. K-Theory, 6(1):99–170, 2010.

Serge Bouc LAMFA-CNRS UMR7352 33 rue St Leu, 80039 - Amiens - Cedex 01 France email: serge.bouc@u-picardie.fr