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Abstract: Let R be a (unital) commutative ring, andG be a finite group
with order invertible in R. We introduce new idempotents ϵGT,S in the
double Burnside algebra RB(G,G) of G over R, indexed by conjugacy
classes of minimal sections (T, S) of G (i.e. sections such that S ≤ Φ(T )).
These idempotents are orthogonal, and their sum is equal to the identity.
It follows that for any biset functor F over R, the evaluation F (G) splits
as a direct sum of specific R-modules indexed by minimal sections of G,
up to conjugation.
The restriction of these constructions to the biset category of p-groups,
where p is a prime number invertible in R, leads to a decomposition of
the category of p-biset functors over R as a direct product of categories
FL indexed by atoric p-groups L up to isomorphism.
We next introduce the notions of L-enriched biset and L-enriched biset
functor for an arbitrary finite group L, and show that for an atoric p-
group L, the category FL is equivalent to the category of L-enriched
biset functors defined over elementary abelian p-groups.
Finally, the notion of vertex of an indecomposable p-biset functor is in-
troduced (when p ∈ R×), and when R is a field of characteristic different
from p, the objects of the category FL are characterized in terms of ver-
tices of their composition factors.
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1. Introduction

Let R denote throughout a commutative ring (with identity element). For
a finite group G, we consider the double Burnside algebra RB(G,G) of G
over R. In the case where the order of G is invertible in R, we introduce
idempotents ϵGT,S in RB(G,G), indexed by the setM(G) of minimal sections
of G, i.e. the set of pairs (T, S) of subgroups of G with S⊴T and S ≤ Φ(T ),
where Φ(T ) is the Frattini subgroup of T (such sections have been considered
in Section 5 of [9]). The idempotent ϵGT,S only depends on the conjugacy class
of (T, S) in G. Moreover, the idempotents ϵGT,S, where (T, S) runs through a
set [M(G)] of representatives of orbits of G acting onM(G) by conjugation,
are orthogonal, and their sum is equal to the identity element of RB(G,G).
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The idempotent ϵGG,1 plays a special role in our construction, and it is
denoted by φG

1 . In particular, when F is a biset functor over R (and the order
of G is invertible in R), we set δΦF (G) = φG

1F (G). We show that δΦF (G)
consists of those elements u ∈ F (G) such that ResGHu = 0 whenever H is a
proper subgroup of G, and DefGG/Nu = 0 whenever N is a non-trivial normal
subgroup of G contained in Φ(G). This yields moreover a decomposition

F (G) ∼=
(

⊕
(T,S)∈M(G)

δΦF (T/S)
)G ∼= ⊕

(T,S)∈[M(G)]
δΦF (T/S)NG(T,S)/T .

In view of the fact that the Frattini subgroup is well behaved for p-groups,
it is natural to restrict these constructions to the biset category RCp of p-
groups with coefficients in R, where p is a prime invertible in R, and to
consider p-biset functors over R. Then we get orthogonal idempotents bL
in the center of RCp, indexed by atoric p-groups, i.e. finite p-groups which
cannot be split as a direct product Cp × Q, for some p-group Q. We show
next that every finite p-group P admits a unique largest atoric quotient P@,
well defined up to isomorphism, and that there exists an elementary abelian
p-subgroup E of P (non unique in general) such that P ∼= E × P@. For a
given atoric p-group L, we introduce a category RC♯Lp , defined as a quotient
of the subcategory of RCp consisting of p-groups P such that P@ ∼= L. This
leads to a decomposition of the category Fp,R of p-biset functors over R as a
direct product

Fp,R
∼=

∏
L∈[Atp]

FunR
(
RC♯Lp , R-Mod

)
of categories of representations of RC♯Lp over R, where L runs through a
set [Atp] of isomorphism classes of atoric p-groups. Similar questions on
idempotents in double Burnside algebras and decomposition of biset functors
categories have been considered by L. Barker ([1]), R. Boltje and S. Danz
([2], [3]), R. Boltje and B. Külshammer ([4]), and P. Webb ([16]).

In particular, via the above decomposition, to any indecomposable p-
biset functor F is associated a unique atoric p-group, called the vertex of F .
We show that this vertex is isomorphic to Q@, for any p-group Q such that
F (Q) ̸= {0} but F vanishes on any proper subquotient of Q.

Going back to arbitrary finite groups, we next introduce the notions of
L-enriched biset and L-enriched biset functor, and show that when L is an
atoric p-group, the abelian category FunR

(
RC♯Lp , R-Mod

)
is equivalent to the

category of L-enriched biset functors from elementary abelian p-groups to
R-modules.

The paper is organized as follows: Section 2 is a review of definitions and
basic results on Burnside rings and biset functors. Section 3 is concerned
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with the algebra E(G) obtained by “cutting” the double Burnside algebra

RB(G,G) of a finite group G by the idempotent ẽGG corresponding to the
“top” idempotent eGG of the Burnside algebra RB(G). Orthogonal idem-
potents φG

N of E(G) are introduced, indexed by normal subgroups N of G
contained in Φ(G). It is shown moreover that if G is nilpotent, then φG

1 is
central in E(G). In Section 4, the idempotents ϵGT,S of RB(G,G) are intro-
duced, leading in Section 5 to the corresponding direct sum decomposition of
the evaluation at G of any biset functor over R. In Section 6, atoric p-groups
are introduced, and their main properties are stated. In Section 7, the biset
category of p-groups over R is considered, leading to a splitting of the cate-
gory Fp,R of p-biset functors over R as a direct product of abelian categories
FL = FunR

(
RC♯Lp , R-Mod

)
indexed by atoric p-groups L up to isomorphism.

In Section 8, for an arbitrary finite group L, the notions of L-enriched biset
and L-enriched biset functor are introduced, and it is shown that when L is
an atoric p-group, the category FL is equivalent to the category of L-enriched
biset functors on elementary abelian p-groups. Finally, in Section 9, for a
given atoric p-group L, and when p is invertible in R, the structure of the
category FL is considered, and the notion of vertex of an indecomposable
p-biset functor over R is introduced. In particular, when R is a field of char-
acteristic different from p, it is shown that the objects of FL are those p-biset
functors all composition factors of which have vertex L.
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2. Review of Burnside rings and biset functors

This section recalls some basic definitions and notation on bisets, Burnside
rings, and biset functors. Details can be found in [7].

2.1. Let G be a finite group, let sG denote the set of subgroups of G, let sG
denote the set of conjugacy classes of subgroups of G, and let [sG] denote a
set of representatives of sG.

Let B(G) denote the Burnside ring of G, i.e. the Grothendieck ring of the
category of finite G-sets. It is a commutative ring, with an identity element,
equal to the class of a G-set of cardinality 1. The additive group B(G) is a
free abelian group on the set {[G/H] | H ∈ [sG]} of isomorphism classes of
transitive G-sets.

2.2. • When G and H are finite groups, and L is a subgroup of G×H, set

p1(L) = {g ∈ G | ∃h ∈ H, (g, h) ∈ L} ,

p2(L) = {h ∈ H | ∃g ∈ G, (g, h) ∈ L} ,

k1(L) = {g ∈ G | (g, 1) ∈ L} ,

k2(L) = {h ∈ H | (1, h) ∈ L} .

Recall that ki(L)⊴ pi(L), for i ∈ {1, 2}, that
(
k1(L) × k2(L)

)
⊴L, and that

there are canonical isomorphisms ([7], Proposition 2.3.21)

p1(L)/k1(L) ∼= L/
(
k1(L)× k2(L)

) ∼= p2(L)/k2(L) .

Set moreover q(L) = L/
(
k1(L)× k2(L)

)
.

• When Z is a subgroup of G, set

∆(Z) = {(z, z) | z ∈ Z} ≤ (G×G) .

When N is a normal subgroup of a subgroup H of G, set

∆N(H) = {(a, b) ∈ G×G | a, b ∈ H, ab−1 ∈ N} .

It is a subgroup of G×G.

•When G, H, and K are groups, when L ≤ (G×H) and M ≤ (H×K), set

L ∗M = {(g, k) ∈ (G×K) | ∃h ∈ H, (g, h) ∈ L and (h, k) ∈M} .

It is a subgroup of (G×K).

2.3. When G and H are finite groups, a (G,H)-biset U is a set endowed with
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a left action of G and a right action of H which commute. In other words U
is a G ×Hop-set, where Hop is the opposite group of H. The opposite biset
U op is the (H,G)-biset equal to U as a set, with actions defined for h ∈ H,
u ∈ U and g ∈ G by h · u · g (in U op) = g−1uh−1 (in U).

The Burnside group B(G,H) is the Grothendieck group of the category
of finite (G,H)-bisets. It is a free abelian group on the set of isomorphism
classes [(G × H)/L], for L ∈ [sG×H ], where the (G,H)-biset structure on
(G×H)/L is given by

∀a, g ∈ G, ∀b, h ∈ H, a · (g, h)L · b = (ag, b−1h)L .

When G, H, and K are finite groups, there is a unique bilinear product

×H : B(G,H)×B(H,K)→ B(G,K)

induced by the usual product (U, V ) 7→ U ×H V = (U × V )/H of bisets,
where the right action of H on U ×V is defined for u ∈ U , v ∈ V and h ∈ H
by (u, v) ·h = (uh, h−1v). As the group H is generally clear from the context,
this product will often simply be denoted (α, β) 7→ αβ.

This leads to the following definitions:

2.4. Definition: The biset category of finite groups C is defined as follows:

• The objects of C are the finite groups.

• When G and H are finite groups,

HomC(G,H) = B(H,G) .

• When G, H, and K are finite groups, the composition

◦ : HomC(H,K)× HomC(G,H)→ HomC(G,K)

is the product

×H : B(K,H)×B(H,G)→ B(K,G) .

• The identity morphism of the group G is the class of the set G, viewed
as a (G,G)-biset by left and right multiplication.

A biset functor is an additive functor from C to the category of abelian groups.
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When R is a commutative (unital) ring, the category RC is defined simi-
larly by extending coefficients to R, i.e. by setting

HomRC(G,H) = R⊗Z B(H,G) ,

which will be simply denoted by RB(H,G). A biset functor over R is an R-
linear functor from RC to the category R-Mod of R-modules. The category
of biset functors over R (where morphisms are natural transformations of
functors) is denoted by FR.

For simplicity, the composition of morphisms α ∈ RB(H,G) and β ∈
RB(K,H) in the category RC will generally be simply denoted by β α instead
of β ×H α.

The correspondence sending a (G,H)-biset U to its opposite U op extends
to an isomorphism of R-modules RB(G,H) → RB(H,G). These isomor-
phisms give an equivalence of R-linear categories from RC to its opposite
category, which is the identity on objects.

2.5. Let G and H be finite groups, and F be a biset functor (with values
in R-Mod). For any finite (H,G)-biset U , the isomorphism class [U ] of U
belongs to B(H,G), and it yields an R-linear map F ([U ]) : F (G) → F (H),
simply denoted by F (U), or even f ∈ F (G) 7→ U(f) ∈ F (H). This is a very
convenient abuse of notation. In particular:

• When H is a subgroup of G, denote by IndG
H the set G, viewed as

a (G,H)-biset for left and right multiplication, and by ResGH the same
set, viewed as an (H,G)-biset. This gives a map IndG

H : F (H)→ F (G),
called induction, and a map ResGH : F (G) → F (H), called restriction.
We observe that (IndG

H)
op and ResGH are isomorphic (H,G)-bisets (and

similarly (ResGH)
op ∼= IndG

H as (G,H)-bisets).

• When N is a normal subgroup of G, let InfGG/N denote the set G/N ,
viewed as a (G,G/N)-biset for the left action of G, and right action of
G/N by multiplication. Also let DefGG/N denote the set G/N , viewed

as a (G/N,G)-biset. This gives a map InfGG/N : F (G/N) → F (G),

called inflation, and a map DefGG/N : F (G)→ F (G/N), called deflation.

We observe that (InfGG/N)
op and DefGG/N are isomorphic (G/N,G)-bisets

(and similarly (DefGG/N)
op ∼= InfGG/N as (G,G/N)-bisets).

• Finally, when f : G→ G′ is a group isomorphism, denote by Iso(f) the
set G′, viewed as a (G′, G)-biset for left multiplication in G′, and right
action of G given by multiplication by the image under f . This gives a
map Iso(f) : F (G)→ F (G′), called transport by isomorphism. Clearly(
Iso(f)

)op ∼= Iso(f−1) as (G,G′)-bisets.
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The above bisets IndG
H ,Res

G
H , Inf

G
G/N ,Def

G
G/N and Iso(f) are called elementary

bisets, as they generate the biset category, in the following sense: when G
andH are finite groups, any (G,H)-biset is a disjoint union of transitive ones.
It follows that any element of B(G,H) is a linear combination of morphisms
of the form [(G × H)/L], where L ∈ sG×H . Moreover, any such morphism
factors as

(2.6) [(G×H)/L] = IndG
p1(L)

Inf
p1(L)
p1(L)/k1(L)

Iso(f)Def
p2(L)
p2(L)/k2(L)

ResHp2(L) ,

where f : p2(L)/k2(L)→ p1(L)/k1(L) is the canonical group isomorphism.

It follows that elementary bisets satisfy a (rather long) list of relations:
the composition of two of them, when it makes sense, can always be expressed
as a sum of compositions of the form Ind Inf IsoDef Res (in that order), given
explicitly by (2.6). These compatibility relations are listed in Section 1.1.3
of [7]. We will use them freely.

For finite groups G,H,K, for L ≤ (G×H) and M ≤ (H ×K), one has
that

(2.7) [(G×H)/L]×H [(H ×K)/M ] =
∑

h∈p2(L)\H/p1(M)

[(G×K)/(L ∗ (h,1)M)

in B(G,K).

2.8. Definition: When G is a finite group, a section (T, S) of G is a pair
of subgroups of G such that S⊴T .

A group H is called a subquotient of G (notation H ⊑ G) if there exists
a section (T, S) of G such that T/S ∼= H.

When (T, S) is a section of G, we denote by IndinfGT/S the set G/S,
viewed as a (G, T/S)-biset for the natural actions given by multiplication of
G and T/S. One checks easily that IndinfGT/S is isomorphic to the compo-

sition IndG
T Inf

T
T/S as (G, T/S)-biset. Similarly, we denote by DefresGT/S the

set S\G, viewed as a (T/S,G)-biset. It is isomorphic to the composition
DefTT/SRes

G
T . We observe that (IndinfGT/S)

op ∼= DefresGT/S as (T/S,G)-bisets,

and that (DefresGT/S)
op ∼= IndinfGT/S as (G, T/S)-bisets.

With this notation, (2.6) gives in particular

(2.9) [(G×G)/∆S(T )] = IndinfGT/S Defres
G
T/S .

Two special cases are worth noticing, as they will be used intensively in the
sequel:

(2.10) for N ⊴G, [(G×G)/∆N(G)] = InfGG/N DefGG/N .
7



(2.11) for H ≤ G, [(G×G)/∆(H)] = IndG
H ResGH .

2.12. When G is a finite group, the group B(G,G) is the ring of endomor-
phisms of G in the category C. This ring is called the double Burnside ring
of G. It is a non-commutative ring (if G is non trivial), with identity element
equal to the class of the set G, viewed as a (G,G)-biset for left and right
multiplication.

There is a unitary ring homomorphism α 7→ α̃ from B(G) to B(G,G),

induced by the functor X 7→ X̃ from G-sets to (G,G)-bisets, where X̃ =
G×X, with (G,G)-biset structure given by

∀a, b, g ∈ G, ∀x ∈ X, a(g, x)b = (agb, b−1x) .

This construction has in particular the following properties (Corollary 2.5.12
of [7]):

2.13. Lemma: Let G be a finite group.

1. If H is a subgroup of G, and X is a finite G-set, then there is an
isomorphism of (G,H)-bisets

X̃ ×G IndG
H
∼= IndG

H ×H R̃esGHX ,

and an isomorphism of (H,G)-bisets

ResGH ×G X̃ ∼= R̃esGHX ×H ResGH ,

where ResGHX denotes the set X, viewed as an H-set by restriction.

2. If H is a subgroup of G, and Y is a finite H-set, then there is an
isomorphism of (G,G)-bisets

IndG
H ×H Ỹ ×H ResGH

∼= ĨndG
HY ,

where IndG
HY = G×H Y is the G-set induced from Y .

3. If N is a normal subgroup of G, and X is a finite G/N-set, then there
is an isomorphism of (G/N,G)-bisets

X̃ ×G/N DefGG/N
∼= DefGG/N ×G

˜InfGG/NX ,
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where InfGG/NX denotes the set X, viewed as a G-set by inflation.

4. If N is a normal subgroup of G, and X is a finite G-set, then there is
an isomorphism of (G/N,G/N)-bisets

DefGG/N ×G X̃ ×G InfGG/N
∼= ˜DefGG/NX ,

where DefGG/NX is the set N\X of N-orbits on X, viewed as a G/N-set.

2.14. Remark: One checks easily from the definition that if Y = H/H, then

H̃ is isomorphic to the identity (H,H)-biset. By Assertion 2 of Lemma 2.13,

it follows more generally that if H ≤ G, then G̃/H is isomorphic to the
composition IndG

H ResGH as a (G,G)-biset. By (2.11), it is also isomorphic to

(G×G)/∆(H). By linearity, it also follows that (X̃)op ∼= X̃ as (G,G)-biset,
for any G-set X.

2.15. Lemma: If f : G → H is a group isomorphism, and X is a finite
G-set, then there is an isomorphism of (H,G)-bisets

Iso(f)×G X̃ ∼= f̃X ×H Iso(f) ,

where fX is the set X, on which H acts by h.x = f−1(h)x, for h ∈ H and
x ∈ X.

Proof : This follows by linearity from the case X = G/K, for K ≤ G. In
this case indeed

Iso(f)×G X̃∼=Iso(f)IndG
KRes

G
K
∼=IndH

f(K)Res
H
f(K)Iso(f)

∼=H̃/f(K)×H Iso(f) ,

and there is an obvious isomorphism of H-sets f (G/K) ∼= H/f(K).

2.16. Let RB(G) denote the R-algebra R⊗Z B(G). Assume moreover that
the order of G is invertible in R. Then for H ≤ G, let eGH ∈ RB(G) be
defined by

(2.17) eGH =
1

|NG(H)|
∑
K≤H

|K|µ(K,H) [G/K] ,

where µ is the Möbius function of the poset of subgroups of G. The elements
eGH , for H ∈ [sG], are orthogonal idempotents of RB(G), and their sum is

equal to the identity element of RB(G). It follows that the elements ẽGH ,
for H ∈ [sG], are orthogonal idempotents of the R-algebra RB(G,G) =
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R ⊗Z B(G,G), and the sum of these idempotents is equal to the identity

element of RB(G,G). The idempotents ẽGG play a special role, due to the
following lemma:

2.18. Lemma: Let R be a commutative ring, and G be a finite group with
order invertible in R.

1. Let H be a proper subgroup of G. Then

ResGH ẽGG = 0 and ẽGG IndG
H = 0 .

2. When N ⊴G, let mG,N ∈ R be defined by

mG,N =
1

|G|
∑
X∈sG
XN=G

|X|µ(X,G) .

Then

DefGG/N ẽGG InfGG/N = mG,N ẽ
G/N
G/N .

3. Let N ⊴G, and suppose that N is contained in the Frattini subgroup
Φ(G) of G. Then

ẽ
G/N
G/N DefGG/N = DefGG/N ẽGG and InfGG/N ẽ

G/N
G/N = ẽGG InfGG/N .

Proof : Assertion 1 follows from Lemma 2.13 and Assertion 1 of Theo-
rem 5.2.4. of [7].

Assertion 2 follows from Lemma 2.13 and Assertion 4 of Theorem 5.2.4.
of [7].

Finally the first part of Assertion 3 follows from Lemma 2.13 and Asser-
tion 3 of Theorem 5.2.4. of [7]: indeed InfGG/Ne

G/N
G/N is equal to the sum of

the different idempotents eGX of RB(G) indexed by subgroups X such that
XN = G. If N ≤ Φ(G), then XN = G implies XΦ(G) = G, hence X = G.

The second part of Assertion 3 follows by taking opposite bisets, since ẽGG and

ẽ
G/N
G/N are equal to their opposite bisets, and since (DefGG/N)

op ∼= InfGG/N .

2.19. Remark: For the same reason, if N ≤ Φ(G), then mG,N = 1.

2.20. Remark: It follows from Assertion 1 and Equation 2.6 that if G andH

are finite groups and if L ≤ (G×H), then ẽGG [(G×H)/L] = 0 if p1(L) ̸= G,
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and [(G×H)/L]ẽHH = 0 if p2(L) ̸= H.

3. Idempotents in E(G)

3.1. Notation: When G is a finite group with order invertible in R, denote
by E(G) the R-algebra defined by

E(G) = ẽGG RB(G,G) ẽGG .

Set
Σ(G,G) = {L ∈ sG×G | p1(L) = p2(L) = G} ,

and for L ∈ sG×G, set

YL = ẽGG [(G×G)/L] ẽGG ∈ E(G) .

The R-algebra E(G) has been considered in [5], Section 9, in the case R
is a field of characteristic 0. The extension of the results proved there to the
case where R is a commutative ring in which the order of G is invertible is
straightforward. In particular:

3.2. Proposition: Let G be a finite group with order invertible in R.

1. If L ∈ sG×G − Σ(G,G), then YL = 0.

2. The elements YL, for L in a set of representatives of (G×G)-conjugacy
classes on Σ(G,G), form an R-basis of E(G).

3. For L,M ∈ Σ(G,G)

YLYM =
mG,k2(L)∩k1(M)

|G|
∑
Z≤G

Zk2(L)=Zk1(M)=G

Z≥k2(L)∩k1(M)

|Z|µ(Z,G) YL∗∆(Z)∗M

in E(G).

3.3. Corollary: Let L,M ∈ Σ(G,G). If one of the groups k2(L) or k1(M)
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is contained in Φ(G), then

YL YM = YL∗M .

Proof : Indeed if k2(L) ≤ Φ(G), then Zk2(L) = G implies ZΦ(G) = G,
hence Z = G. Similarly, if k1(M) ≤ Φ(G), then Zk1(M) = G implies
Z = G. In each case, Proposition 3.2 then gives

YL YM = mG,k2(L)∩k1(M)YL∗M ,

and moreover mG,k2(L)∩k1(M) = 1 since k2(L) ∩ k1(M) ≤ Φ(G), by Re-
mark 2.19.

3.4. Notation: For a normal subgroup N of G such that N ≤ Φ(G), set

φG
N =

∑
M ⊴G

N≤M≤Φ(G)

µ⊴G(N,M)Y∆M (G) ,

where µ⊴G is the Möbius function of the poset of normal subgroups of G.

3.5. Proposition: Let N ⊴G with N ≤ Φ(G). Then

φG
N = InfGG/N φ

G/N
1 DefGG/N .

Proof : Indeed if N ≤ M ⊴G, then µ⊴G(N,M) = µ⊴G/N(1,M/N). Since
moreover N ≤ Φ(G), setting G = G/N and M = M/N , we have by
Lemma 2.18

InfGG/N Y∆G(M)Def
G
G/N = InfGG/N ẽG

G

[
(G×G)/∆G(M)

]
ẽG
G
DefGG/N

= ẽGG InfGG/N

[
(G×G)/∆G(M)

]
DefGG/N ẽGG

= ẽGG
[
(G×G)/∆M(G)

]
ẽGG

= Y∆M (G) ,

since InfGG/N

[
(G × G))/∆G(M)

]
DefGG/N = (G × G)/∆M(G), by 2.10 and

transitivity of inflation. Moreover summing over normal subgroups M of G
contained in Φ(G) amounts to summing over normal subgroups M of G with
N ≤M ≤ Φ(G).

12



3.6. Proposition:

1. Let N ⊴G, with N ≤ Φ(G). Then

φG
N = ẽGG

( ∑
M ⊴G

N≤M≤Φ(G)

µ⊴G(N,M)
[
(G×G)/∆M(G)

])

=
( ∑

M ⊴G
N≤M≤Φ(G)

µ⊴G(N,M)
[
(G×G)/∆M(G)

])
ẽGG .

2. In particular

φG
1 =

1

|G|
∑

X≤G,M ⊴G

M≤Φ(G)≤X≤G

|X|µ(X,G)µ⊴G(1,M) IndinfGX/M DefresGX/M .

3. Let N ⊴G with N ≤ Φ(G), and f : G → H be a group isomorphism.
Then

Iso(f)φG
N = φH

f(N) Iso(f) .

Proof : For Assertion 1, by definition

φG
N =

∑
M ⊴G

N≤M≤Φ(G)

µ⊴G(N,M)ẽGG[(G×G)/∆M(G)]
∑
X≤G

|X|
|G|µ(X,G)[(G×G)/∆(X)].

Moreover [(G×G)/∆M(G)] [(G×G)/∆(X)] = [(G×G)/
(
∆M(G) ∗∆(X)

)
],

by (2.7), and ∆M(G) ∗ ∆(X) = {(mx, x) | x ∈ X,m ∈ M}. The first
projection of this group is equal to MX, hence it is equal to G if and only
if X = G, since M ≤ Φ(G). The first equality of Assertion 1 follows, by
Remark 2.20, since moreover ∆M(G) ∗ ∆(G) = ∆M(G). The second one

follows by taking opposite bisets, since ẽGG and [(G × G)/∆M(G)] are equal
to their opposite, by (2.10) and Remark 2.14.

Assertion 2 follows in the special case where N = 1, expanding ẽGG as

ẽGG =
1

|G|
∑
X≤G

|X|µ(X,G)
[
(G×G)/∆(X)

]
,

observing that µ(X,G) = 0 unless X ≥ Φ(G), and that if X ≥ Φ(G) ≥ M ,
then [

(G×G)/∆(X)
] [

(G×G)/∆M(G)
]
=

[
(G×G)/∆M(X)

]
,

13



which is equal to IndinfGX/M DefresGX/M by (2.9).
Now for Assertion 3

Iso(f)φG
N Iso(f−1) = Iso(f) ẽGG Iso(f−1) Iso(f) Σ Iso(f)−1 ,

where Σ =
∑

M ⊴G
N≤M≤Φ(G)

µ⊴G(N,M)
[
(G×G)/∆M(G)

]
. Moreover

Iso(f) ẽGG Iso(f−1) = ẽHH

by Lemma 2.15, since obviously f (eGG) = eHH . Finally

Iso(f) Σ Iso(f)−1 =
∑
M ⊴G

N≤M≤Φ(G)

µ⊴G(N,M) Iso(f) InfGG/MDefGG/M Iso(f−1)

=
∑
M ⊴G

N≤M≤Φ(G)

µ⊴G(N,M) InfHH/f(M)Def
H
H/f(M)

=
∑

M ′ ⊴H
f(N)≤M ′≤Φ(H)

µ⊴H

(
f(N),M ′) InfHH/M ′ DefHH/M ′

where M ′ = f(M) in the last summation. It follows that

Iso(f)φG
N Iso(f

−1) = ẽHH
∑

M ′ ⊴H
f(N)≤M ′≤Φ(H)

µ⊴H

(
f(N),M ′) InfHH/M ′DefHH/M ′ = φH

f(N) ,

as was to be shown.

3.7. Corollary:

1. Let H < G. Then ResGH φG
N = 0 and φG

N IndG
H = 0.

2. Let M ⊴G. If M∩Φ(G)≰N , then DefGG/M φG
N = 0 and φG

N InfGG/M = 0.

Proof : The first part of Assertion 1 follows from Lemma 2.18, since

ResGH φG
N = ResGH ẽGG φG

N = 0 .

The second part follows by taking opposite bisets.
For Assertion 2, let P = M ∩ Φ(G). Since DefGG/M = Def

G/P
G/M DefGG/P , it

suffices to consider the case M = P , i.e. the case where M ≤ Φ(G). Then,
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since
[
(G×G)/∆M(G)

]
= InfGG/M DefGG/M for any M ⊴G, by 2.10, and since

DefGG/M InfGG/Q = Inf
G/M
G/MQ Def

G/Q
G/MQ for any M,Q⊴G, we have

DefGG/M φG
N = DefGG/M

∑
Q⊴G

N≤Q≤Φ(G)

µ⊴G(N,Q) InfGG/Q DefGG/Q ẽGG

=
∑
Q⊴G

N≤Q≤Φ(G)

µ⊴G(N,Q) Inf
G/M
G/MQDefGG/MQ ẽGG

=
∑
P ⊴G

NM≤P≤Φ(G)

( ∑
Q⊴G

N≤Q≤Φ(G)

QM=P

µ⊴G(N,Q)
)
Inf

G/M
G/P DefGG/P ẽGG .

Now for a given P ⊴G with P ≤ Φ(G), the sum
∑

Q⊴G

N≤Q≤Φ(G)

QM=P

µ⊴G(N,Q) is

equal to zero unless NM = N , that is M ≤ N , by classical properties
of the Möbius function ([15] Corollary 3.9.3). This proves the first part of
Assertion 2, and the second part follows by taking opposite bisets.

3.8. Theorem: Let G be a finite group with order invertible in R.

1. The elements φG
N , for N ⊴G with N ≤ Φ(G), form a set of orthogonal

idempotents in the algebra E(G), and their sum is equal to the identity

element ẽGG of E(G).

2. Let N ⊴G with N ≤ Φ(G), and let H be a finite group.

(a) If L ≤ (G×H), then φG
N [(G×H)/L] = 0 unless p1(L) = G and

k1(L) ∩ Φ(G) ≤ N .

(b) If L′ ≤ (H×G), then [(H×G)/L′]φG
N = 0 unless p2(L

′) = G and
k2(L

′) ∩ Φ(G) ≤ N .

Proof : For N ⊴G, set uG
N = Y∆N (G). Since ∆N(G) ∗∆M(G) = ∆NM(G) for

any normal subgroups N and M of G, it follows from Corollary 3.3 that if
either N or M is contained in Φ(G), then uG

N uG
M = uG

NM .
Now Assertion 1 follows from the following general procedure for building

orthogonal idempotents (see [13] Theorem 10.1 for details): we have a finite
lattice P (here P is the lattice of normal subgroups of G contained in Φ(G)),
and a set of elements gx of a ring A, for x ∈ P (here A = E(G) and gN = uG

N),
with the property that gxgy = gx∨y for any x, y ∈ P , and g0 = 1, where 0
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is the smallest element of P (here this element is the trivial subgroup of G,

and uG
1 = Y∆1(G) = ẽGG). Then the elements fx defined for x ∈ P by

fx =
∑
y∈P
x≤y

µ(x, y)gy ,

where µ is the Möbius function of P , are orthogonal idempotents of A, and
their sum is equal to the identity element of A. This is exactly Assertion 1
(since fx = φG

N here, for x = N ∈ P ).
Let L ≤ (G × H). Assertion (a) follows from (2.6) and Corollary 3.7,

since
φG
N IndG

p1(L)
Inf

p1(L)
p1(L)/k1(L)

= 0

unless p1(L) = G and k1(L) ∩ Φ(G) ≤ N . The proof of Assertion (b) is
similar. Alternatively, one can take opposite bisets in (a).

3.9. Proposition: Let G be a finite group with order invertible in R.

1. Let L ∈ Σ(G,G). Then

φG
1 YL =

∑
N ⊴G

N≤Φ(G)

µ⊴G(1, N)Y(N×1)L .

This is non zero if and only if k1(L) ∩ Φ(G) = 1. Similarly

YL φ
G
1 =

∑
N ⊴G

N≤Φ(G)

µ⊴G(1, N)YL(1×N) ,

and YL φ
G
1 ̸= 0 if and only if k2(L) ∩ Φ(G) = 1.

2. The elements φG
1 YL (resp. YL φ

G
1 ), when L runs through a set of

representatives of conjugacy classes of elements of Σ(G,G) such that
k1(L) ∩ Φ(G) = 1 (resp. k2(L) ∩ Φ(G) = 1), form an R-basis of the
right ideal φG

1 E(G) (resp. the left ideal E(G)φG
1 ) of E(G).

Proof : Let L ∈ Σ(G,G). By Proposition 3.6, we have

φG
1 YL= ẽGG

( ∑
N ⊴G

N≤Φ(G)

µ⊴G(1, N)
[
(G×G)/∆N(G)

])
[(G×G)/L] ẽGG

= ẽGG

( ∑
N ⊴G

N≤Φ(G)

µ⊴G(1, N)
[
(G×G)/(∆N(G) ∗ L)

])
ẽGG
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= ẽGG

( ∑
N ⊴G

N≤Φ(G)

µ⊴G(1, N)
[
(G×G)/(N × 1)L

])
ẽGG .

=
∑
N ⊴G

N≤Φ(G)

µ⊴G(1, N)Y(N×1)L .

Set M = k1(L) ∩ Φ(G). Then M ⊴G, and (N × 1)L = (NM × 1)L for any
normal subgroup N of G contained in Φ(G). Thus

(3.10) φG
1 YL =

∑
P ⊴G

M≤P≤Φ(G)

( ∑
N ⊴G
NM=P

µ⊴G(1, N)
)
Y(P×1)L .

IfM ̸= 1, then
( ∑

N ⊴G
NM=P

µ⊴G(1, N)
)
= 0 for any P ⊴G withM ≤ P ≤ Φ(G),

again by [15], Corollary 3.9.3. Hence φG
1 YL = 0 in this case. And if M = 1,

Equation (3.10) reads

φG
1 YL =

∑
P ⊴G

P≤Φ(G)

µ⊴G(1, P )Y(P×1)L .

The element Y(P×1)L is equal to YL if and only if (P × 1)L is conjugate to L.
This implies that k1

(
(P × 1)L

)
is conjugate to (hence equal to) k1(L). Thus

P ≤ k1
(
(P × 1)L

)
≤ k1(L), so P ≤ k1(L) ∩ Φ(G) = 1, hence P = 1. So

the coefficient of YL in φG
1 YL is equal to 1, hence φG

1 YL ̸= 0. The remaining
statements of Assertion 1 follow by taking opposite bisets.

Assertion 2 follows from Proposition 3.2, and from the fact that the co-
efficient of YL in φG

1 YL is equal to 1 when k1(L) ∩ Φ(G) = 1.

3.11. Corollary: Let G be a finite group of order invertible in R. If every
minimal (non-trivial) normal subgroup of G is contained in Φ(G), then φG

1

is central in E(G), and the algebra φG
1 E(G) is isomorphic to ROut(G).

Proof : Indeed if L ∈ Σ(L,L) and φG
1 YL ̸= 0, then k1(L) ∩ Φ(G) = 1. It

follows that k1(L) contains no minimal normal subgroup of G, and then
k1(L) = 1. Equivalently q(L) ∼= p1(L)/k1(L) ∼= G ∼= p2(L)/k2(L), i.e.
k2(L) = 1 also, or equivalently k2(L) ∩ Φ(G) = 1. Hence φG

1 YL ̸= 0 if
and only if YLφ

G
1 ̸= 0, and in this case, there exists an automorphism θ of G

such that
L = ∆θ(G) = {

(
θ(x), x

)
| x ∈ G} .
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In this case for any normal subgroup N of G contained in Φ(G)

(N × 1)L = {(a, b) ∈ G×G | aθ(b)−1 ∈ N}
= {(a, b) ∈ G×G | a−1θ(b) ∈ N}
= L

(
1× θ−1(N)

)
.

Now N 7→ θ−1(N) is a permutation of the set of normal subgroups of G
contained in Φ(G). Moreover µ⊴G(1, N) = µ⊴G

(
1, θ−1(N)

)
.

Summing over all N ≤ Φ(G), it follows that φG
1 YL = YL φ

G
1 , so φG

1 is
central in E(G). Moreover the map θ ∈ Aut(G) 7→ φG

1 Y∆θ(G) clearly induces
an algebra isomorphism ROut(G)→ φG

1 E(G) (observe indeed that if θ is an
inner automorphism of G, then ∆θ(G) is conjugate to ∆(G) in G × G, so

Y∆θ(G) = Y∆(G) = ẽGG).

3.12. Theorem: Let G be a finite group with order invertible in R. If G
is nilpotent, then φG

1 is a central idempotent of E(G).

Proof : Let L ∈ Σ(G,G). Setting Q = q(L), there are two surjective group
homomorphisms s, t : G→ Q such that L = {(x, y) ∈ G×G | s(x) = t(y)}.
Then k1(L) = Ker s and k2(L) = Ker t. Now by Proposition 3.9

φG
1 YL =

∑
N ⊴G

N≤Φ(G)

µ⊴G(1, N)Y(N×1)L ,

and this is non zero if and only if Ker s ∩ Φ(G) = 1. Now s
(
Φ(G)

)
is equal

to Φ(Q) since G is nilpotent: indeed G =
∏

pGp (resp. Q =
∏

p Qp) is
the direct product of its p-Sylow subgroups Gp (resp. Qp), and s induces
a surjective group homomorphism Gp → Qp, for any prime p. Moreover
Φ(G) =

∏
p Φ(Gp) (resp. Φ(Q) =

∏
pΦ(Qp)). Finally Φ(Gp) is the subgroup

of Gp generated by commutators and p-powers of elements of Gp, hence it
maps by s onto the subgroup of Qp generated by commutators and p-powers
of elements of Qp, that is Φ(Qp). Similarly t

(
Φ(G)

)
= Φ(Q).

If Ker s∩Φ(G) = 1, it follows that s induces an isomorphism from Φ(G)
to Φ(Q). Then the surjective homomorphism Φ(G)→ Φ(Q) induced by t is
also an isomorphism, and in particular Ker t ∩ Φ(G) = 1.

Let D = L∩
(
Φ(G)×Φ(G)

)
. Then k1(D) ⊆ k1(L)∩Φ(G) = Ker s∩Φ(G),

hence k1(D) = 1. Similarly k2(L) ⊆ k2(L) ∩ Φ(G) = Ker t ∩ Φ(G) = 1,
hence k2(D) = 1. Since s

(
Φ(G)

)
= Φ(Q) = t

(
Φ(G)

)
, we have moreover

p1(D) = Φ(G) = p2(D). It follows that there is an automorphism α of Φ(G)
such that D = {

(
x, α(x)

)
| x ∈ Φ(G)}.

18



Moreover for any y ∈ G, there exists z ∈ G such that (y, z) ∈ L. It follows
that

(
xy, α(x)z

)
∈ D for any x ∈ Φ(G), that is α(xy) = α(x)z. In particular

if N is a normal subgroup of G contained in Φ(G), then so is α(N). Hence α
induces an automorphism of the poset of normal subgroups of G contained
in Φ(G). In particular µ⊴G(1, N) = µ⊴G

(
1, α(N)

)
.

Moreover for n ∈ N and (y, z) ∈ L, we have

(n, 1)(y, z) = (y, z)(ny, 1) = (y, z)
(
ny, α(ny)

)(
1, α(ny)−1

)
.

Since
(
ny, α(ny)

)
∈ D ≤ L, we have (N × 1)L = L

(
1 × α(N)

)
. It follows

that

φG
1 YL =

∑
N ⊴G

N≤Φ(G)

µ⊴G(1, N)Y(N×1)L =
∑
N ⊴G

N≤Φ(G)

µ⊴G(1, N)YL(1×α(N))

=
∑
N ⊴G

N≤Φ(G)

µ⊴G

(
1, α(N)

)
YL(1×α(N)) =

∑
N ⊴G

N≤Φ(G)

µ⊴G

(
1, N)YL(1×N)

= YLφ
G
1 ,

as was to be shown.

3.13. Remark: When G is not nilpotent, it is not true in general that
φG
1 is central in E(G). This is because t

(
Φ(G)

)
need not be equal to Φ(Q)

for a surjective group homomorphism t : G → Q. For example, there is a
surjection t from the group G = C4 × (C5 ⋊ C4) to Q = C4 with kernel
C4 × C5 containing Φ(G) = C2 × 1, and another surjection s : G → Q
with kernel 1× (C5 ⋊C4) intersecting Φ(G) trivially. In this case, the group
L = {(x, y) ∈ G × G | s(x) = t(y)} is in Σ(G,G), and k1(L) ∩ Φ(G) = 1,
but k2(L) ∩ Φ(G) = Φ(G) ̸= 1. By Proposition 3.9, we have φG

1 YL ̸= 0 and
YL φ

G
1 = 0, so φG

1 is not central in E(G).

4. Idempotents in RB(G,G)

Recall from Definition 2.8 that a section (T, S) of a finite group G is a pair of
subgroups of G such that S⊴T . For such a section (T, S) of G, recall that
IndinfGT/S ∈ B(G, T/S) denotes (the isomorphism class of) the (G, T/S)-biset

G/S, and that DefresGT/S ∈ B(T/S,G) denote (the isomorphism class of) the
(T/S,G)-biset S\G.

The group G acts by conjugation on the set of its sections: if g ∈ G and
(T, S) is a section of G, then g(T, S) = (gT, gS) is another section of G.
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4.1. Notation: Let G be a finite group, and let (T, S) be a section of G.

1. Let R be a commutative ring in which the order of G is invertible. Let
uG
T,S ∈ RB(G, T/S) be defined by

uG
T,S = IndinfGT/S φ

T/S
1 ,

and let vGT,S ∈ RB(T/S,G) be defined by

vGT,S = φ
T/S
1 DefresGT/S .

4.2. Remark: Observe that vGT,S = (uG
T,S)

op: indeed (G/S)op ∼= S\G, and

(φ
T/S
1 )op = φ

T/S
1 .

4.3. Definition: A section (T, S) of a finite group G is called minimal
(cf. [9]) if S ≤ Φ(T ). LetM(G) denote the set of minimal sections of G.

4.4. Remark: The terminology comes from the following observation: if
(T, S) is any section of G, and H is a subgroup of T minimal subject to
HS = T , then the section (H,H ∩ S) is such that H/(H ∩ S) ∼= T/S, and
it is moreover minimal in the sense of Definition 4.3 (for if K ≤ H is such
that K(H ∩ S) = H, then KS = HS = T , thus K = H, showing that
H ∩S ≤ Φ(H)). In other words a section (T, S) is minimal if and only if the
only subgroup H of T such that H/(H ∩ S) ∼= T/S is T itself.

4.5. Theorem: Let G be a finite group with order invertible in R.

1. If (T, S) and (T ′, S ′) are minimal sections of G, then

vGT ′,S′ uG
T,S = 0

unless (T, S) and (T ′, S ′) are conjugate in G.

2. If (T, S) is a minimal section of G, then

vGT,S u
G
T,S = φ

T/S
1

( ∑
g∈NG(T,S)/T

Iso(cg)
)
=

( ∑
g∈NG(T,S)/T

Iso(cg)
)
φ
T/S
1 ,

where NG(T, S) = NG(T )∩NG(S), and cg is the automorphism of T/S
induced by conjugation by g.
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Proof : Indeed (S ′\G)×G (G/S) ∼= S ′\G/S as a (T ′/S ′, T/S)-biset. Hence

vGT ′,S′uG
T,S = φ

T ′/S′

1

( ∑
g∈T ′\G/T

S ′\T ′gT/S
)
φ
T/S
1 .

For any g ∈ G, the (T ′/S ′, T/S)-biset S ′\T ′gT/S is transitive, isomorphic to(
(T ′/S ′)× (T/S)

)
/Lg, where

Lg = {(t′S ′, tS) ∈ (T ′/S ′)× (T/S) | t′gt−1 ∈ S ′gS} .

Then t′S ′ ∈ p1(Lg) if and only if t′ ∈ S ′ · gTg−1 ∩ T ′. Hence

p1(Lg) = (gT ∩ T ′)S ′/S′ .

Similarly p2(Lg) = (T ′g ∩ T )S/S. In particular p1(Lg) = T ′/S ′ if and only if
(gT ∩ T ′)S ′ = T ′, i.e. gT ∩ T ′ = T ′, since S ′ ≤ Φ(T ′). Thus p1(Lg) = T ′/S ′

if and only if T ′ ≤ gT . Similarly p2(Lg) = T/S if and only if T ≤ T ′g. By

Theorem 3.8, it follows that φ
T ′/S′

1 (S ′\T ′gT/S)φ
T/S
1 = 0 unless T ′ = gT .

Assume now that T ′ = gT . Then t′S ′ ∈ k1(LG) if and only if t′ lies in
S ′ · gSg−1 ∩ T ′. Hence

k1(Lg) = (gS ∩ T ′)S ′/S ′ ,

and similarly k2(Lg) = (S ′g ∩ T )S/S. But since S ≤ Φ(T ) and S⊴T , it
follows that gS⊴ gT = T ′ and gS ≤ gΦ(T ) = Φ(T ′). Hence gS · S ′/S ′ is
contained in k1(Lg) ∩ Φ(T ′)/S ′. Moreover Φ(T ′)/S ′ = Φ(T ′/S ′), as

Φ(T ′/S ′) =
∩

S′≤M ′<T ′

(M ′/S ′) =
∩

M ′<T ′

(M ′/S ′) = (
∩

M ′<T ′

M ′)/S ′ = Φ(T ′)/S ′ ,

where M ′ runs through maximal subgroups of T ′, which all contain S ′ since
S ′ ≤ Φ(T ′).

It follows that if k1(Lg)∩Φ(T ′/S ′) = 1, then gS ·S ′ = S ′, that is gS ≤ S ′.
Similarly if k2(Lg) ∩ Φ(T/S) = 1, then S ′g ≤ S. By Theorem 3.8, it follows

that φ
T ′/S′

1 (S ′\T ′gT/S)φ
T/S
1 = 0 unless T ′ = gT and S ′ = gS. This proves

Assertion 1.

For Assertion 2, the same computation shows that

vGT,S u
G
T,S =

∑
g∈NG(T,S)/T

φ
T/S
1 (S\TgT/S)φT/S

1 .

But S\TgT/S = gT/S if g ∈ NG(T, S), and this (T/S, T/S)-biset is isomor-

phic to Iso(cg). Assertion 2 follows, since moreover φ
T/S
1 commutes with any
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biset of the form Iso(θ), where θ is an automorphism of T/S, by Proposi-
tion 3.6.

4.6. Notation: For a minimal section (T, S) of the group G, set

ϵGT,S = 1
|NG(T,S):T |u

G
T,Sv

G
T,S = 1

|NG(T,S):T |Indinf
G
T/Sφ

T/S
1 DefresGT/S ∈ RB(G,G) .

Note that ϵGT,S = ϵGgT,gS for any g ∈ G, and that ϵGG,N = φG
N when N ⊴G

and N ≤ Φ(G), by Proposition 3.5.

4.7. Proposition: Let (T, S) be a minimal section of G. Then

ϵGT,S=
1

|NG(T, S)|
∑

X≤T,M ⊴T

S≤M≤Φ(T )≤X≤T

|X|µ(X,T )µ⊴T (S,M) IndinfGX/M DefresGX/M .

Proof : This is a straightforward consequence of the above definition of ϵGT,S,
and of Assertion 2 of Proposition 3.6, using the transitivity of Defres and
Indinf involved.

4.8. Theorem: Let G be a finite group with order invertible in R, let
[M(G)] be a set of representatives of conjugacy classes of minimal sec-
tions of G. Then the elements ϵGT,S, for (T, S) ∈ [M(G)], are orthogonal
idempotents of RB(G,G), and their sum is equal to the identity element of
RB(G,G).

Proof : Let (T, S) and (T ′, S ′) be distinct elements of [M(G)]. Then

ϵGT ′,S′ ϵGT,S = 1
|NG(T ′,S′):T ′|

1
|NG(T,S):T | u

G
T ′,S′ vGT ′,S′ uG

T,S v
G
T,S = 0 ,

since vGT ′,S′uG
T,S = 0 by Theorem 4.5. Moreover:

Σ =
∑

(T,S)∈[M(G)]

ϵGT,S =
∑

(T,S)∈[M(G)]

1
|NG(T,S):T | u

G
T,S v

G
T,S

=
∑

(T,S)∈M(G)

1
|G:T | u

G
T,S v

G
T,S

=
∑

(T,S)∈M(G)

1
|G:T | Indinf

G
T/S φ

T/S
1 DefresGT/S
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Now for a given T ≤ G∑
S ⊴T

S≤Φ(T )

IndinfGT/S φ
T/S
1 DefresGT/S = IndG

T

( ∑
S ⊴T

S≤Φ(T )

InfTT/S φ
T/S
1 DefTT/S

)
ResGT

= IndG
T

( ∑
S ⊴T

S≤Φ(T )

φT
S

)
ResGT = IndG

T ẽTT ResGT

by Proposition 3.5 and Theorem 3.8.

Moreover IndG
T ẽTT ResGT = |NG(T ) : T | ẽGT , by (2.17) and Lemma 2.13.

Thus∑
(T,S)∈[M(G)]

ϵGT,S =
∑
T≤G

|NG(T ):T |
|G:T | ẽGT =

∑
T∈[sG]

ẽGT = G̃/G =
[
(G×G)/∆(G)

]
.

So the sum Σ is equal to the identity of RB(G,G). Since ϵGT,Sϵ
G
T ′,S′ = 0 if

(T, S) and (T ′, S ′) are distinct elements of [M(G)], it follows that for any
(T, S) ∈ [M(G)]

ϵGT,S = ϵGT,SΣ = (ϵGT,S)
2 ,

which completes the proof of the theorem.

5. Application to biset functors

5.1. Notation: Let F be a biset functor over R. When G is a finite group
with order invertible in R, we set

δΦF (G) = φG
1F (G)

5.2. Proposition: Let F be a biset functor over R. Then for any finite
group G with order invertible in R, the R-submodule δΦF (G) of F (G) is the
set of elements u ∈ F (G) such that{

ResGHu = 0 ∀H < G
DefGG/Nu = 0 ∀N ⊴G, N ∩ Φ(G) ̸= 1

.
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Proof : If u ∈ δΦF (G) = φG
1F (G), then ResGHu = 0 for any proper subgroup

H of G, and DefGG/Nu = 0 for any N ⊴G such that N ∩ Φ(G) ̸= 1, by
Corollary 3.7.

Conversely, if u ∈ F (G) fulfills the two conditions of the proposition,

then ẽGGu = u, because ẽGG is equal to the identity element
[
(G×G)/∆(G)

]
of

RB(G,G), plus a linear combination of elements of the form
[
(G×G)/∆(H)

]
=

IndG
H ResGH , for proper subgroups H of G. Similarly, it follows again from

Corollary 3.7 that InfGG/N DefGG/Nu = 0 for any non-trivial normal subgroup

of G contained in Φ(G), thus φG
1 u = u.

5.3. Remark: Since DefGG/N = Def
G/M
G/N DefGG/M , where M = N ∩ Φ(G),

saying that DefGG/Nu = 0 for any N ⊴G with N ∩ Φ(G) ̸= 1 is equivalent

to saying that DefGG/Nu = 0 for any non trivial normal subgroup N of G
contained in Φ(G).

5.4. Theorem: Let F be a biset functor over R. Then for any finite group G
with order invertible in R, the maps

F (G) // ⊕
(T,S)∈[M(G)]

(
δΦF (T/S)

)NG(T,S)/Too

w � V // ⊕
(T,S)

1
|NG(T,S):T | v

G
T,S w∑

(T,S)

uG
T,S wT,S ⊕

(T,S)
wT,S

�Uoo

are well defined isomorphisms of R-modules, inverse to one other.

Proof : We have first to check that if w ∈ F (G), then the element vGT,S w of

φ
T/S
1 F (T/S) = δΦF (T/S) is invariant under the action of NG(T, S)/T . But

for any g ∈ NG(T/S)

Iso(cg) v
G
T,S = vGgT,gS Iso(cg) = vGT,S Iso(cg) ,

where Iso(cg) : F (G) → F (G) on the right hand side is conjugation by g,
that is an inner automorphism, hence the identity map, for g ∈ G.

Now for w ∈ F (G)

UV (w) =
∑

(T,S)∈[M(G)]

1
|NG(T,S):T | u

G
T,S v

G
T,S w

=
∑

(T,S)∈[M(G)]

ϵGT,S w = w ,
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so UV is the identity map of F (G).

Conversely, if wT,S ∈
(
δΦF (T/S)

)NG(T,S)/T
, for (T, S) ∈ [M(G)], then by

Theorem 4.5

V U
(

⊕
(T,S)∈[M(G)]

wT,S

)
= ⊕

(T,S)∈[M(G)]

∑
(T ′,S′)∈[M(G)]

1
|NG(T,S):T | v

G
T,S u

G
T ′,S′ wT ′,S′

= ⊕
(T,S)∈[M(G)]

1
|NG(T,S):T | v

G
T,S u

G
T,S wT,S

= ⊕
(T,S)∈[M(G)]

1
|NG(T,S):T |

∑
g∈NG(T,S)/T

Iso(cg)wT,S

= ⊕
(T,S)∈[M(G)]

wT,S ,

so V U is also equal to the identity map.

6. Atoric p-groups

For the remainder of the paper, we denote by p a (fixed) prime number.

6.1. Notation and Definition:

• If P is a finite p-group, let Ω1P denote the subgroup of P generated by
the elements of order p.

• A finite p-group P is called atoric if it does not admit any decomposition
P = E × Q, where E is a non-trivial elementary abelian p-group. Let
Atp denote the class of atoric p-groups, and let [Atp] denote a set of
representatives of isomorphism classes in Atp.

The terminology “atoric” is inspired by [14], where elementary abelian
p-groups are called p-tori. Atoric p-groups have been considered (without
naming them) in [6], Example 5.8.

6.2. Lemma: Let P be a finite p-group, and N be a normal subgroup of P .
The following conditions are equivalent:

1. N ∩ Φ(P ) = 1

2. N is elementary abelian and central in P , and admits a complement
in P .

3. N is elementary abelian and there exists a subgroup Q of P such that
P = N ×Q.
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Proof : 1⇒ 3 Let N ⊴P with N ∩ Φ(P ) = 1. Then N maps injectively
in the elementary abelian p-group P/Φ(P ), so N is elementary abelian. Let
Q/Φ(P ) be a complement of NΦ(P )/Φ(P ) in P/Φ(P ). Then Q ≥ Φ(P ) ≥
[P, P ], so Q is normal in P . Moreover Q · N = P and Q ∩ NΦ(P ) =
(Q ∩ N)Φ(P ) = Φ(P ), thus Q ∩ N ≤ Φ(P ) ∩ N = 1. Now N and Q are
normal subgroups of P which intersect trivially, hence they centralize each
other. It follows that P = N ×Q.

3⇒ 2 This is clear.

2⇒ 1 If P = N · Q for some subgroup Q of P , and if N is central in P ,
then P = N ×Q. Thus Φ(P ) = 1×Φ(Q), as N is elementary abelian. Then
N ∩ Φ(P ) ≤ N ∩Q = 1.

6.3. Lemma: Let P be a finite p-group. The following conditions are
equivalent:

1. P is atoric.

2. If N ⊴P and N ∩ Φ(P ) = 1, then N = 1.

3. Ω1Z(P ) ≤ Φ(P ).

Proof : 1⇒ 2 Suppose that P is atoric. Let N ⊴P with N ∩ Φ(P ) = 1.
Then by Lemma 6.2, the group N is elementary abelian and there exists a
subgroup Q of P such that P = N ×Q. Hence N = 1.

2⇒ 3 Suppose now that Assertion 2 holds. If x is a central element of
order p of P , then the subgroup N of P generated by x is normal in P , and
non trivial. Then N ∩Φ(P ) ̸= 1, hence N ≤ Φ(P ) since N has order p, thus
x ∈ Φ(P ).

3⇒ 1 Finally, if Assertion 3 holds, and if P = E × Q for some subgroups
E and Q of P with E elementary abelian, then Φ(P ) = 1×Φ(Q). Moreover
E ≤ Ω1Z(P ) ≤ Φ(P ) ≤ Q, so E = E ∩Q = 1, and P is atoric.

6.4. Proposition: Let P be a finite p-group, and N be a maximal normal
subgroup of P such that N ∩ Φ(P ) = 1. Then:

1. The group N is elementary abelian and there exists a subgroup T of P
such that P = N × T .

2. The group P/N ∼= T is atoric.

3. If Q is an atoric p-group and s : P ↠ Q is a surjective group homo-
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morphism, then s(T ) = Q. In particular Q is isomorphic to a quotient
of T .

Proof : (1) This follows from Lemma 6.2.

(2) By (1), there exists T ≤ P such that P = N×T . In particular P/N ∼= T .
Now if T = E × S, for some subgroups E and S of T with E elementary
abelian, then P = (N ×E)×S, and N ×E is an elementary abelian normal
subgroup of P which intersects trivially Φ(P ) = Φ(S). By maximality of N ,
it follows that E = 1, so T ∼= P/N is atoric.

(3) Let s : P ↠ Q be a surjective group homomorphism, where Q is atoric.
By (1), the group N is elementary abelian, and there exists a subgroup T
of P such that P = N × T . Moreover s

(
Φ(P )

)
= Φ(Q) as P is a p-group,

as already shown in the proof of Theorem 3.12, and s
(
Z(P )

)
≤ Z(Q) as s

is surjective. It follows that s(N) ≤ Ω1Z(Q), so s(N) ≤ Φ(Q) since Q is
atoric, by Lemma 6.3. Now s(P ) = Q = s(N)s(T ), thus Q = Φ(Q)s(T ), and
s(T ) = Q, as was to be shown.

6.5. Notation: When P is a finite p-group, and N is a maximal normal
subgroup of P such that N ∩ Φ(P ) = 1, we set P@ = P/N .

By Proposition 6.4, the group P@ does not depend on the choice of N ,
up to isomorphism: it is the greatest atoric quotient of P , in the sense that
any atoric quotient of P is isomorphic to a quotient of P@. In particular P@

is trivial if and only if P is elementary abelian.

6.6. Proposition: Let s : P ↠ Q be a surjective group homomorphism.
Then P@ ∼= Q@ if and only if Ker(s) ∩ Φ(P ) = 1.

Proof : LetN = Ker(s). IfN∩Φ(P ) = 1, then by Lemma 6.2, the groupN is
elementary abelian, and there exists a subgroup T of P such that P = N×T .
Moreover T ∼= Q. So by Proposition 6.4, there exists an elementary abelian
subgroup E of T , and a subgroup S of T with S ∼= T@ ∼= Q@ such that
T = E × S. Then P = N × E × S, so P@ ∼= S, since S is atoric and N × E
is elementary abelian. Hence P@ ∼= Q@.

Conversely if P@ ∼= Q@, to prove that Ker(s) ∩ Φ(P ) = 1, it suffices to
prove that Ker(π◦s)∩Φ(P ) = 1, where π is a surjective group homomorphism
Q→ Q@. Now there is an elementary abelian subgroup E of P and an atoric
subgroup T ∼= P@ of P such that P = E × T . By Proposition 6.4, we have
(π ◦ s)(T ) = Q@ ∼= T , so π ◦ s induces an isomorphism from T to Q@. In
particular Ker(π ◦ s) ∩ T = 1, so Ker(π ◦ s) ∩ Φ(P ) = 1 since Φ(P ) ≤ T .
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6.7. Proposition: Let P be a finite p-group, let N be a normal subgroup
of P such that P/N ∼= P@, and let Q be a subgroup of P . The following are
equivalent:

1. Q@ ∼= P@.

2. QN = P .

3. There exists a central elementary abelian subgroup E of P such that
P = EQ.

4. There exists an elementary abelian subgroup E of P such that P =
E ×Q.

Proof : 1⇒ 2 Suppose Q@ ∼= P@. We have N ∩ Φ(P ) = 1, by Proposi-
tion 6.6. Moreover Φ(Q) ≤ Φ(P ), as P is a p-group. Setting M = N ∩Q, we
have M ∩ Φ(Q) = 1, so (Q/M)@ ∼= Q@ ∼= P@. But Q = Q/M ∼= QN/N is
a subgroup of P/N ∼= P@, and moreover there exists an elementary abelian

subgroup E of Q such that Q ∼= E × Q
@ ∼= E × P@. Hence E = 1 and

Q ∼= QN/N ∼= P/N , so QN = P , as was to be shown.

2⇒ 3 We have N ∩ Φ(P ) = 1, by Proposition 6.6. Hence N is elementary
abelian, and central in P , and 2 implies 3.

3⇒ 4 Let E be an elementary abelian central subgroup of P such that
P = EQ. Let F be a complement of E ∩ Q in E. Then F is elementary
abelian and central in P . Moreover QF = QE = P , and Q ∩ F = 1. Hence
P = F ×Q.

4⇒ 1 If P = E ×Q and E is elementary abelian, then Φ(P ) = 1× Φ(Q).
Thus E ∩ Φ(P ) = 1, so (P/E)@ ∼= P@ by Proposition 6.6, and Q@ ∼= P@.

6.8. Proposition: Let P be a finite p-group, and Q be a subquotient of P .
Then Q@ is a subquotient of P@.

Proof : Let (V, U) be a section of P such that V/U ∼= Q. Then Q@ is
isomorphic to a quotient of V @, by Proposition 6.4. Hence it suffices to
prove that V @ is a subquotient of P@.

Let E be a maximal normal subgroup of P such that E ∩Φ(P ) = 1, and
T ∼= P@ be a subgroup of P such that P = E × T . Let W = EV . Then
W@ ∼= V @ by Proposition 6.7. Moreover E ≤ W ≤ E × T , so W = E × S,
where S = W ∩ T . Then V @ ∼= W@ ∼= S@, and S@ is a quotient of S, hence
a subquotient of T ∼= P@. This completes the proof.
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7. Splitting the biset category of p-groups, when p ∈ R×

7.1. Notation and Definition: Let Cp (resp. RCp) denote the full sub-
category of the biset category C (resp. RC) consisting of finite p-groups. A
p-biset functor over R is an R-linear functor from RCp to the category of
R-modules. Let Fp,R denote the category of p-biset functors over R.

In the statements below, we indicate by [ p ∈ R×] the assumption that
p is invertible in R.

7.2. Theorem: [ p ∈ R×] Let P and Q be finite p-groups, let (T, S) be a
minimal section of P , and (V, U) be a minimal section of Q. Then

ϵQV,U RB(Q,P ) ϵPT,S ̸= {0} =⇒ (V/U)@ ∼= (T/S)@ .

Proof : If ϵQV,U RB(Q,P ) ϵPT,S ̸= {0}, there exists a ∈ RB(Q,P ) such that

ϵQV,U a ϵPT,S = IndinfQV/U φ
V/U
1 DefresQV/U a IndinfPT/S φ

T/S
1 DefresPT/S ̸= 0 ,

and in particular the element b = DefresQV/U a IndinfPT/S of RB(V/U, T/S)

is such that φ
V/U
1 b φ

T/S
1 ̸= 0. It follows that there is a subgroup L of the

product (V/U)× (T/S) such that

φ
V/U
1

[(
(V/U)× (T/S)

)
/L

]
φ
T/S
1 ̸= 0 .

Then Theorem 3.8 implies that p1(L) = V/U , k1(L) ∩Φ(V/U) = 1, p2(L) =
T/S, and k2(L) ∩ Φ(T/S) = 1. By Proposition 6.6, it follows that

(V/U)@ ∼=
(
p1(L)/k1(L)

)@ ∼= (
p2(L)/k2(L)

)@ ∼= (T/S)@ ,

as was to be shown.

7.3. Notation: [ p ∈ R×] Let L be an atoric p-group. If P is a finite
p-group, we denote by bPL the element of RB(P, P ) defined by

bPL =
∑

(T,S)∈[M(P )]

(T/S)@∼=L

ϵPT,S .
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Recall that the center Z(D) of an essentially small category D is by
definition the set of natural transformations from the identity functor IdD
to itself. Thus an element θ of Z(D) assigns to each object D of D an
endomorphism θD of D, in such a way that for any morphism f : D → D′

in D, the diagram

D

f
��

θD // D

f
��

D′ θD′ // D′

is commutative. The center Z(D) is in general a monoid for the composition
of natural transformations. If D is R-linear (for some commutative ring R),
then Z(D) becomes an R-algebra in a natural way (the R-module structure
is given by R-linear combination of natural transformations).

7.4. Theorem: [ p ∈ R×]

1. Let L be an atoric p-group, and P be a finite p-group. Then bPL ̸= 0 if
and only if L ⊑ P@.

2. Let L and M be atoric p-groups, and let P and Q be finite p-groups. If
bQM RB(Q,P ) bPL ̸= {0}, then M ∼= L.

3. Let L be an atoric p-group, and let P and Q be finite p-groups. Then
for any a ∈ RB(Q,P )

bQL a = a bPL .

4. The family of elements bPL ∈ RB(P, P ), for finite p-groups P , is an
idempotent endomorphism bL of the identity functor of the category
RCp (i.e. an idempotent of the center of RCp). The idempotents bL,
for L ∈ [Atp], are orthogonal, and their sum is equal to the identity
element of the center of RCp.

5. For a given finite p-group P , the elements bPL , for L ∈ [Atp] such that
L ⊑ P@, are non zero orthogonal central idempotents of RB(P, P ), and
their sum is equal to the identity of RB(P, P ).

6. For given finite p-groups P and Q, and a given atoric p-group L, let
S be a set of representatives of conjugacy classes of subgroups Y of
Q × P such that q(Y )@ ∼= L. Then the elements bQL [(Q × P )/Y ] =
[(Q× P )/Y ] bPL , for Y ∈ S, form an R-basis of bQLRB(Q,P ).

Proof : (1) The idempotent bPL is non zero if and only if there exists a minimal
section (T, S) of P such that (T/S)@ ∼= L. Then L ⊑ P@, by Proposition 6.8.
Conversely, if L ⊑ P@, then L ⊑ P , and by Remark 4.4, there exists a
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minimal section (T, S) of P such that T/S ∼= L. Then (T/S)@ ∼= L@ ∼= L,
so ϵPT,S appears in the sum defining bPL , thus b

P
L ̸= 0.

(2) If bQM RB(Q,P ) bPL ̸= {0}, then there exist a minimal section (V, U) of Q
with (V/U)@ ∼= M and a minimal section (T, S) of P with (T/S)@ ∼= L such
that ϵQV,U RB(Q,P ) ϵPT,S ̸= 0. Then (V/U)@ ∼= (T/S)@ by Theorem 7.2, that
is M ∼= L.

(3) By Theorem 4.8, the identity element of RB(P, P ) is equal to the sum of
the idempotents ϵPT,S, for (T, S) ∈ [M(P )]. Grouping those idempotents ϵPT,S
for which (T/S)@ is isomorphic to a given L ∈ [Atp] shows that the identity
element of RB(P, P ) is equal to the sum of the idempotents bPL , for L ∈ [Atp]
(and there are finitely many non zero bPL , by (1)). It follows that

bQM a = bQM a
∑

L∈[Atp]

bPL =
∑

L∈[Atp]

bQM a bPL

= bQM a bPM [by (2)]

=
∑

L∈[Atp]

bQL a bPM [by (2)]

= a bPM ,

since
∑

L∈[Atp]

bQL is the identity element of RB(Q,Q).

(4) It follows that the family bPL , where P runs over finite p-groups, is an
element bL of the center of RCp. Clearly b2L = bL, and if L and M are non
isomorphic atoric p-groups, then bLbM = 0, by (2). Moreover the infinite
sum

∑
L∈[Atp]

bL is actually locally finite, i.e. for each finite p-group P , the sum∑
L∈[Atp]

bPL has only finitely many non zero terms. The sum
∑

L∈[Atp]

bL is clearly

equal to the identity endomorphism of the identity functor of RCp.
(5) This is a straightforward consequence of (1) and (3).

(6) Let Y be any subgroup of Q× P . By 2.6, we can factorize [(Q× P )/Y ]
as [(Q × P )/Y ] = ab, where a ∈ RB

(
Q, q(Y )

)
and b ∈ RB

(
q(Y ), P

)
. If

bQL [(Q×P )/Y ] is non zero, then bQLa, equal to ab
q(Y )
L by Assertion 3, is also non

zero, hence b
q(Y )
L ̸= 0, so L ⊑ q(Y ) by Assertion 1. Thus L ∼= L@ ⊑ q(Y )@.

But on the other hand bQL is the sum of the distinct idempotents ϵQT,S
corresponding to minimal sections (T, S) of Q such that (T/S)@ ∼= L. By
Proposition 4.7, together with (2.9), it follows that bQL is a linear combination
of terms of the form

[
(Q×Q)/∆M(X)

]
, where (X,M) is a section of Q such

that S ≤M ≤ Φ(T ) ≤ X ≤ T for one of these minimal sections (T, S) of Q.
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Now the composition bQL [(Q× P )/Y ] is a linear combination of terms of
the form [(Q×Q)/∆M(X)] [(Q×P )/Y ], that is by (2.7), a linear combination
of terms [(Q×P )/

(
∆M(X)∗(x,1)Y

)
], for some x ∈ Q. By Lemma 2.3.22 of [7],

the group q
(
∆M(X)∗ (x,1)Y

)
is a subquotient of q

(
∆M(X)

) ∼= X/M , hence it

is a subquotient of T/S. It follows that bQL [(Q×P )/Y ] is a linear combination
of terms of the form [(Q×P )/Z], where q(Z) ⊑ T/S for some minimal section
(T, S) of Q with (T/S)@ ∼= L. In particular q(Z)@ ⊑ (T/S)@ ∼= L.

But then, composing with bQL , we get that bQL [(Q × P )/Y ] is a linear
combination of terms of the form bQL [(Q× P )/Z], where q(Z)@ ⊑ L. On the
other hand, we have seen that bQL [(Q×P )/Z] = 0 unless L ⊑ q(Z)@. It follows
that the elements bQL [(Q× P )/Z], for q(Z)@ ∼= L, generate bQL RB(Q,P ).

Allowing L to run through all atoric p-groups, we see that the elements
bQ
q(Z)@

[(Q×P )/Z], when Z runs through subgroups ofQ×P up to conjugation,

generate RB(Q,P ). In other words the linear endomorphism β of RB(Q,P )
sending [(Q×P )/Z] to bQ

q(Z)@
[(Q×P )/Z] is surjective. As RB(Q,P ) is a free

R-module, the linear map β must be split surjective, and there is a linear
endomorphism γ of RB(Q,P ) such that βγ = Id. This can be viewed as
a product of square matrices with coefficients in R. Taking determinants
(which makes sense since R is commutative), we get that β and γ are both
isomorphisms, and in particular the elements bQ

q(Z)@
[(Q × P )/Z], for Z in

a set of representatives of conjugacy classes of subgroups of Q × P , are
linearly independent. In particular, for a fixed atoric p-group L, the elements
bQL [(Q × P )/Z], for Z ∈ S, are linearly independent. This completes the
proof.

7.5. Corollary: [ p ∈ R×]

1. Let L be an atoric p-group. For a p-biset functor F , the family of maps
F (bPL) : F (P )→ F (P ), for finite p-groups P , is an endomorphism of F ,
denoted by F (bL).

2. If θ : F → G is a natural transformation of p-biset functors, the dia-
gram

F

θ
��

F (bL) // F

θ
��

G
G(bL)

// G

is commutative. Hence the family of maps F (bPL) : F (P )→ F (P ), for
p-groups P and p-biset functors F , is an idempotent of the center of
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the category Fp,R, denoted by b̂L.

3. The idempotents b̂L, for L ∈ [Atp], are orthogonal idempotents of the
center of Fp,R, and their sum is the identity.

4. If F is a p-biset functor over R, let b̂LF denote the image of the endo-
morphism F (bL) of F . Then F = ⊕

L∈[Atp]
b̂LF .

5. Let b̂LFp,R denote the full subcategory of Fp,R consisting of functors F

such that F = b̂LF . Then b̂LFp,R is an abelian subcategory of Fp,R.
Moreover the functor

(7.6) F ∈ Fp,R 7→ (̂bLF )L∈[Atp] ∈
∏

L∈[Atp]

b̂LFp,R

is an equivalence of categories.

Proof : All assertions are straightforward consequences of Theorem 7.4.

In order to study the categories appearing in the above decomposition
(7.6) of Fp,R, it will be convenient to consider first the product of those

categories b̂HFp,R obtained when H runs through atoric subquotients of a
given atoric p-group L. This motivates the following notation:

7.7. Notation: For an atoric p-group L, let RCLp denote the full subcategory
of RCp consisting of the class YL of finite p-groups P such that P@ ⊑ L.
When p ∈ R×, let moreover

b+L =
∑

H∈[Atp]
H⊑L

bH

be the sum of the idempotents bH corresponding to atoric subquotients of L,
up to isomorphism. When P is any finite p-group, we get a corresponding
central idempotent of RB(P, P ), defined by

b+P
L =

∑
H∈[Atp]
H⊑L

bPH .

Similarly, we denote by

b̂+L =
∑

H∈[Atp]
H⊑L

b̂H
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the central idempotent of Fp,R corresponding to b+L . For any finite p-group P
and any p-biset functor F , we get a linear map

F (b+P
L ) =

∑
H∈[Atp]
H⊑L

F (bPH) : F (P )→ F (P ) .

The class YL is closed under taking subquotients, by Proposition 6.8. It
follows that we can apply the results of Section 6 (Appendix) of [12]: if F is
a p-biset functor over R, we can restrict F to an R-linear functor from RCLp
to R-Mod. This yields a forgetful functor OYL

: Fp,R → FunR
(
RCLp , R-Mod).

The right adjoint RYL
of this functor is described in full detail in Section 6

of [12], as follows: if G is an R-linear functor from RCLp to R-Mod, and P is
a finite p-group, set

(7.8) RYL
(G)(P ) = lim←−

(X,M)∈ΣL(P )

G(X/M)

the inverse limit of modules G(X/M) on the set ΣL(P ) of sections (X,M)
of P such that (X/M)@ ⊑ L, i.e. the set of sequences (lX,M)(X,M)∈ΣL(P ) with
the following properties:

(7.9)



1. if (X,M) ∈ ΣL(P ), then lX,M ∈ G(X/M).

2. if (X,M), (Y,N) ∈ ΣL(P ) and M ≤ N ≤ Y ≤ X, then

Defres
X/M
Y/N lX,M = lY,N .

3. if x ∈ P and (X,M) ∈ ΣL(P ), then xlX,M = lxX,xM .

7.10. Remark: Observe that in Condition 2, there is no need to assume
that (Y,N) ∈ ΣL(P ): indeed if M ≤ N ≤ Y ≤ X and if (X,M) ∈ ΣL(P ),
then Y/N is a subquotient of X/M , so (Y/N)@ is a subquotient of L, by
Proposition 6.8, that is (Y,N) ∈ ΣL(P ).

Recall now that for finite groups P and Q, and for a finite (Q,P )-biset U ,
for a subgroup T of Q and an element u of U , the subgroup T u of P is defined
by T u = {x ∈ P | ∃t ∈ T tu = ux}. By Lemma 6.4 of [12], if (T, S) is a
section of Q, then (T u, Su) is a section of P , and T u/Su is a subquotient of
T/S.

With this notation, when P and Q are finite p-groups, when U is a fi-
nite (Q,P )-biset, and l = (lX,M)(X,M)∈ΣL(P ) is an element of RYL

(G)(P ), we

34



denote by Ul the sequence indexed by ΣL(Q) defined by

(Ul)Y,N =
∑

u∈[Y \U/P ]L

(N\Y u)(lY u,Nu)

where [Y \U/P ] is a set of representatives of (Y ×P )-orbits on U , and N\Y u
is viewed as a (Y/N, Y u/Nu)-biset. It is shown in Section 6 of [12] that
Ul ∈ RYL

(G)(Q), and that RYL
(G) becomes a p-biset functor in this way.

Moreover1:

7.11. Theorem: [[12] Theorem 6.15] The assignment G 7→ RYL
(G) is an R-

linear functor RYL
from FunR

(
RCLp , R-Mod

)
to Fp,R, which is right adjoint to

the forgetful functor OYL
. Moreover the composition OYL

◦RYL
is isomorphic

to the identity functor of FunR
(
RCLp , R-Mod

)
.

7.12. Theorem: [ p ∈ R×] For an atoric p-group L, let b̂+LFp,R be the

full subcategory of Fp,R consisting of functors F such that b̂+LF = F . Then
the forgetful functor OYL

and its right adjoint RYL
restrict to quasi-inverse

equivalences of categories

b̂+LFp,R

OYL // FunR
(
RCLp , R-Mod

)
.

RYL

oo

Proof : First step: The first thing to check is that the image of the functor

RYL
is contained in b̂+LFp,R. We first prove that if H is an atoric p-group,

if F ∈ Fp,R, and if OYL
(̂bHF ) ̸= 0, then H ⊑ L: indeed in that case, there

exists P ∈ YL such that bPHF (P ) ̸= 0. In particular bPH ̸= 0, hence H ⊑ P@,
by Theorem 7.4. Since P@ ⊑ L as P ∈ YL, it follows that H ⊑ L, as claimed.

In particular

OYL
(F ) = OYL

( ∑
H∈[Atp]
H⊑L

b̂HF
)
= OYL

(̂
b+LF

)
.

Set GLp = FunR
(
RCLp , R-Mod

)
, and let G ∈ GLp . Let H be an atoric p-group

such that H ̸⊑ L, and let F ∈ Fp,R. Then OYL
(̂bHF ) = {0} by the above

1In Theorem 6.15 of [12], only the case R = Z is considered, but the proofs extend
trivially to the case of an arbitrary commutative ring R
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claim. Moreover

HomFp,R

(
F, b̂HRYL

(G)
)

= HomFp,R

(̂
bHF, b̂HRYL

(G)
)

= HomFp,R

(̂
bHF,RYL

(G)
)

∼= HomGL
p

(
OYL

(̂
bHF

)
, G

)
= {0} .

So the functor F 7→ HomFp,R

(
F, b̂HRYL

(G)
)
is the zero functor, and it fol-

lows from Yoneda’s lemma that b̂HRYL
(G) = 0 if H ̸⊑ L. In other words

RYL
(G) = b̂+LRYL

(G), as was to be shown.

Second step: The first step shows that we have adjoint functors

b̂+LFp,R

OYL // FunR
(
RCLp , R-Mod

)
= GLp .

RYL

oo

Moreover, the composition OYL
◦ RYL

is isomorphic to the identity functor,
by Theorem 7.11. All we have to show is that the unit of the adjunction is
also an isomorphism, in other words, that for any F ∈ b̂+LFp,R and any finite
p-group P , the natural map

(7.13) ηP : F (P )→RYL
OYL

(F )(P ) = lim←−
(X,M)∈ΣL(P )

F (X/M)

sending u ∈ F (P ) to the sequence
(
DefresPX/Mu

)
(X,M)∈ΣL(P )

, is an isomor-

phism.
The map ηP is injective: indeed, if u ∈ F (P ), then u =

∑
H∈[Atp]
H⊑L

bPHu, as

F = b̂+LF . If DefresPX/Mu = 0 for any section (X,M) of P with (X/M)@ ⊑ L,

then F (ϵPT,S)(u) = 0 for any section (T, S) of P such that (T/S)@ ⊑ L, by
Proposition 4.7 and Proposition 6.8. In particular bPHu = 0 for any atoric
subquotient H of L, hence u = 0.

To prove that ηP is also surjective, we generalize the construction of
Theorem A.2 of [11] (which is the case L = 1), and we define, for an element
v = (vX,M)(X,M)∈ΣL(P ) in RYL

OYL
(F )(P ), an element u = ιP (v) of F (P ) by

u =
1

|P |
∑

(T,S)∈M(P )

(T/S)@⊑L

∑
X≤T,M ⊴T

S≤M≤Φ(T )≤X≤T

|X|µ(X,T )µ⊴T (S,M)IndinfPX/MvX,M .

This yields an R-linear map ιP : RYL
OYL

(F )(P )→ F (P ).
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For (Y,N) ∈ ΣL(P ), set uY,N = DefresPY/Nu. Then:

uY,N =
∑

(T,S)∈M(P )

(T/S)@⊑L

∑
X≤T,M ⊴T

S≤M≤Φ(T )≤X≤T

|X|
|P |

µ(X,T )µ⊴T (S,M)DefresPY/N Indinf
P
X/MvX,M .

Moreover, by Proposition A.1 of [11]

DefresPY/N IndinfPX/MvX,M =
∑

g∈[Y \P/X]

Indinf
Y/N
Jg/J ′

g
Iso(ϕg)Defres

gX/gM
Ig/I′g

gvX,N ,

where Jg = N(Y ∩ gX), J ′
g = N(Y ∩ gM), Ig =

gM(Y ∩ gX), I ′g =
gM(N ∩

gX), and ϕg is the isomorphism Ig/I
′
g → Jg/J

′
g sending xI ′g to xJ ′

g, for x ∈
Y ∩ gX. Moreover Defres

gX/gM
Ig/I′g

gvX,N = vIg ,I′g by Conditions 2 and 3 in the

definition (7.9) of the inverse limit on ΣL(P ), since moreover (Ig, I
′
g) ∈ ΣL(P )

by Remark 7.10. Hence

DefresPY/N IndinfPX/MvX,M =
∑

g∈[Y \P/X]

Indinf
Y/N
Jg/J ′

g
Iso(ϕg)vIg ,I′g

=
∑
g∈P

|Y ∩ gX|
|Y ||X|

Indinf
Y/N
Jg/J ′

g
Iso(ϕg)vIg ,I′g .

Thus

uY,N =
∑

(T,S)∈M(P )

(T/S)@⊑L
X≤T,M ⊴T

S≤M≤Φ(T )≤X≤T
g∈P

|Y ∩ gX|
|P ||Y |

µ(X,T )µ⊴T (S,M) Indinf
Y/N
Jg/J ′

g
Iso(ϕg)vIg ,I′g .

Now µ(X,T ) = µ(gX, gT ) and µ⊴T (S,M) = µ⊴ gT (
gS, gM), so summing over

(gT , gS, gX, gM) instead of (T, S,X,M) we get

uY,N =
∑

(T,S)∈M(P )

(T/S)@⊑L
X≤T,M ⊴T

S≤M≤Φ(T )≤X≤T

|Y ∩X|
|Y |

µ(X,T )µ⊴T (S,M) Indinf
Y/N

J1/J ′
1
Iso(ϕ1)vI1,I′1 .

Setting W = Y ∩ X, we have J1 = NW , J ′
1 = N(W ∩ M), I1 = MW ,

I ′1 = M(N ∩W ), and these four groups only depend on W , once M and N
are given. Hence, for given T, S and M , we can group together the terms of
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the above summation for which Y ∩X is a given subgroup W of Y ∩T . This
gives

uY,N =
∑

(T,S)∈M(P )

(T/S)@⊑L
M ⊴T

S≤M≤Φ(T )
W≤Y ∩T

( ∑
Φ(T )≤X≤T
X∩Y=W

µ(X,T )
) |W |
|Y |

µ⊴T (S,M) Indinf
Y/N

J1/J ′
1
Iso(ϕ1)vI1,I′1 .

Moreover
∑

Φ(T )≤X≤T
X∩Y=W

µ(X,T ) =
∑
X≤T

X∩(Y ∩T )=W

µ(X,T ), since µ(X,T ) = 0 unless

X ≥ Φ(T ), and the latter summation vanishes unless Y ∩T = T , by classical
combinatorial lemmas ([15] Corollary 3.9.3). This gives:

uY,N =
∑

(T,S)∈M(P )

(T/S)@⊑L
M ⊴T

S≤M≤Φ(T )≤W≤T≤Y

|W |
|Y |

µ(W,T )µ⊴T (S,M) Indinf
Y/N

J1/J ′
1
Iso(ϕ1)vI1,I′1 .

Moreover in this summation J1 = NW , J ′
1 = N(W ∩ M) = NM , I1 =

MW = W , I ′1 = M(N ∩W ) = MN ∩W . All these groups remain unchanged
if we replace M by M

(
N ∩ Φ(T )

)
, so for given T, S and W , we can group

together those terms for which M
(
N ∩Φ(T )

)
is a given normal subgroup U

of T with U ≤ Φ(T ). The sum
∑

S≤M ⊴T

M
(
N∩Φ(T )

)
=U

µ⊴T (S,M) is equal to 0 (by the

same above-mentioned classical combinatorial lemmas, applied to the normal
subgroup S

(
N ∩ Φ(T )

)
of T ) unless S

(
N ∩ Φ(T )) = S, i.e. N ∩ Φ(T ) ≤ S.

Hence

uY,N =
∑

(T,S)∈M(P )

(T/S)@⊑L
U ⊴T

N∩Φ(T )≤S≤U≤Φ(T )≤W≤T≤Y

|W |
|Y |

µ(W,T )µ⊴T (S, U) Indinf
Y/N

J1/J ′
1
Iso(ϕ1)vI1,I′1 ,

where J1 = NW , J ′
1 = NU , I1 = W , I ′1 = UN ∩W .

Now if N ∩ Φ(T ) ≤ S ≤ Φ(T ) ≤ T ≤ Y , then (TN/N)@ ⊑ (Y/N)@.
Moreover the normal subgroup (N ∩ T )/

(
N ∩Φ(T )

)
of T/

(
N ∩Φ(T )

)
inter-

sects trivially the Frattini subgroup

Φ
(
T/

(
N ∩ Φ(T )

))
= Φ(T )/

(
N ∩ Φ(T )

)
,

so
(
T/

(
N∩Φ(T )

))@ ∼= (T/(N∩T )@ ∼= (TN/N)@ by Proposition 6.6, applied

to the quotient map T/
(
N ∩ Φ(T )

)
→ T/(N ∩ T ).
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Then (T/S)@ ⊑
(
T/

(
N ∩ Φ(T )

))@

⊑ (TN/N)@ ⊑ (Y/N)@. Since

(Y/N)@ ⊑ L by assumption, it follows that

uY,N =
∑

S ⊴T≤Y
U ⊴T

N∩Φ(T )≤S≤U≤Φ(T )≤W≤T≤Y

|W |
|Y |

µ(W,T )µ⊴T (S, U) Indinf
Y/N

J1/J ′
1
Iso(ϕ1)vI1,I′1 .

Now the sum
∑

S ⊴T
N∩Φ(T )≤S≤U

µ⊴T (S, U) is equal to zero unless U = N ∩ Φ(T ).

Hence

uY,N =
∑

Φ(T )≤W≤T≤Y

|W |
|Y |

µ(W,T ) Indinf
Y/N

J1/J ′
1
Iso(ϕ1)vI1,I′1 .

For a given subgroup W of Y , the sum
∑

Φ(T )≤W≤T≤Y

µ(W,T ) is equal to∑
W≤T≤Y

µ(W,T ) since µ(W,T ) = 0 unless W ≥ Φ(T ), and the latter is equal

to zero if W ̸= Y , and to 1 if W = Y . Thus

uY,N =
|Y |
|Y |

Indinf
Y/N

J1/J ′
1
Iso(ϕ1)vI1,I′1 ,

where J1 = NY = Y , J ′
1 = NU = N , I1 = Y , I ′1 = UN ∩ Y = N . Hence

I1 = J1 = Y and I ′1 = J ′
1 = N , so ϕ1 is equal to the identity. It follows that

uY,N = vY,N for any (Y,N) ∈ ΣL(P ), so ηP (u) = v. This proves that the map
ηP is surjective, hence an isomorphism, with inverse ιP . This completes the
proof of Theorem 7.12.

7.14. Definition: Let L be an atoric p-group, and let RC♯Lp be the following
category:

• The objects of RC♯Lp are the finite p-groups P such that P@ ∼= L.

• If P and Q are finite p-groups such that P@ ∼= Q@ ∼= L, then

HomRC♯L
p
(P,Q) = RB(Q,P )/

∑
L ̸⊑S

RB(Q,S)B(S, P )

is the quotient of RB(Q,P ) by the R-submodule generated by all mor-
phisms from P to Q in RCp which factor through a p-group S which
does not admit L as a subquotient.
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• The composition of morphisms in RC♯Lp is induced by the composition
of morphisms in RCp.

7.15. Remark: Morphisms in RCp which factor through a p-group S such
that L ̸⊑ S clearly generate a two-sided ideal, so the composition in RC♯Lp is

well defined. Moreover the categoryRC♯Lp isR-linear. Let FunR
(
RC♯Lp , R-Mod

)
denote the category of R-linear functors from RC♯Lp to the category R-Mod
of R-modules.

7.16. Lemma: Let p be a prime, and L be an atoric p-group. Let P and Q
be finite p-groups.

1. If P@ ∼= L or Q@ ∼= L, and if M ≤ (Q × P ), then q(M)@ ⊑ L.
Moreover q(M)@ ∼= L if and only if L ⊑ q(M).

2. If P@ ∼= Q@ ∼= L, then

HomRC♯L
p
(P,Q) = RB(Q,P )/

∑
S@⊏L

RB(Q,S)B(S, P )

is also the quotient of RB(Q,P ) by the R-submodule generated by all
morphisms from P to Q in RCp which factor through a p-group S such
that S@ is a proper subquotient of L.

3. If P@ ∼= Q@ ∼= L, then HomRC♯L
p
(P,Q) has an R-basis consisting of

the (images of the) transitive (Q,P )-bisets (Q× P )/M , where M is a
subgroup of (Q× P ) such that q(M)@ ∼= L (up to conjugation).

Proof : (1) Indeed q(M) is a subquotient of P , and a subquotient ofQ. Hence
q(M)@ is a subquotient of P@ and a subquotient of Q@, so q(M)@ ⊑ L@ ∼= L.
Now suppose that q(M)@ ∼= L. Then L is a quotient of q(M), so L ⊑ q(M).
Conversely, if L ⊑ q(M), then L ∼= L@ is a subquotient of q(M)@, which is a
subquotient of L. So q(M)@ ∼= L.

(2) First if S is a finite p-group with S@ ⊏ L, then L ̸⊑ S, for otherwise
L ⊑ S@ ⊏ L, a contradiction. Conversely, let S be a finite p-group such that
L ̸⊑ S, or equivalently L ̸⊑ S@. By (2.7), any element of RB(Q,S)B(S, P )
is a linear combination of (Q,P )-bisets of the form (Q × P )/(M ∗ N), for
M ≤ (Q × S) and N ≤ (S × P ). This biset (Q × P )/(M ∗ N) also factors
through T = q(M ∗ N), by 2.6. Moreover T is a subquotient of q(M) and
q(N), by Lemma 2.3.22 of [7], hence a subquotient of Q, S, and P . Hence
T@ ⊑ Q@ ∼= L, and T@ ≇ L, since L ̸⊑ S@. Hence T@ ⊏ L. We observe that
conversely, any transitive biset (Q×P )/N , with q(N)@ ⊏ L, factors through
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q(N), so it lies in the sum
∑

S@⊏L

RB(Q,S)B(S, P ). Hence this sum is equal

to the set of linear combinations of bisets (Q× P )/N , with q(N)@ ⊏ L.

(3) The (images of the) elements (Q × P )/M , where M is a subgroup
of (Q × P ) such that q(M)@ ∼= L (up to conjugation), clearly generate
HomRC♯L

p
(P,Q). Moreover, they are linearly independent, since the transitive

(Q,P )-bisets of the form (Q×P )/M , for q(M)@ ∼= L, generate a supplement
in RB(Q,P ) of the sum

∑
S@⊏L

RB(Q,S)B(S, P ), by the observation at the

end of the proof of Assertion 2.

7.17. Remark: If G is an R-linear functor from RC♯Lp to the category R-Mod
of R-modules, we can extend G to an R-linear functor from RCLp to R-Mod
by setting G(P ) = {0} if P is a finite p-group such that P@ is a proper
subquotient of L. Conversely, an R-linear functor from RCLp to R-Mod which
vanishes on p-groups P such that P@ ≇ L can be viewed as an R-linear
functor from RC♯Lp to R-Mod. In the sequel, we will freely identify those two

types of functors, and consider FunR
(
RC♯Lp , R-Mod

)
as the full subcategory of

FunR
(
RCLp , R-Mod

)
consisting of functors which vanish on p-groups P such

that P@ ≇ L.

7.18. Theorem: [ p ∈ R×] Let L be an atoric p-group.

1. If F is a p-biset functor over R such that F = b̂LF , and P is a finite
p-group such that L ̸⊑ P , then F (P ) = {0}.

2. If G is an R-linear functor from RC♯Lp to R-Mod, then b̂LRYL
(G) =

RYL
(G).

3. The forgetful functor OYL
and its right adjoint RYL

restrict to quasi-
inverse equivalences of categories

b̂LFp,R

OYL // FunR
(
RC♯Lp , R-Mod

)
.

RYL

oo

Proof : (1) Since b̂LF = F , then in particular F (bPL)F (P ) = F (P ). If L ̸⊑ P ,
then there is no minimal section (T, S) of P with (T/S)@ ∼= L, thus bPL = 0,
and F (P ) = {0}.

(2) Let G be an R-linear functor from RC♯Lp to R-Mod, in other words an
R-linear functor from FCLp to R-Mod which vanishes on p-groups P such that

P@ is a proper subquotient of L. By Theorem 7.12, we have b̂+LRYL
(G) =
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RYL
(G). If H is an atoric p-group which is a proper subquotient of L, then

G vanishes over any subquotient Q of H, since Q@ ⊑ H ⊏ L if Q ⊑ H.
In particular bPH acts by 0 on RYL

(G)(P ), for any finite p-group P : indeed
bPH is a linear combination of terms of the form IndinfPX/MDefresPX/M , where
(X,M) is a section of P such that S ≤ M ≤ Φ(T ) ≤ X ≤ T , for some
section (T, S) of P with (T/S)@ ∼= H. For such a section (X,M) of P , we
have (X/M)@ ⊑ (T/S)@ ⊑ H, thus G vanishes on any subquotient of X/M ,
so RYL

(G)(X/M) = {0}, hence bPH acts by 0 on RYL
(G)(P ), as claimed. It

follows that b̂HRYL
(G) = 0, hence the equality b̂+LRYL

(G) = RYL
(G) reduces

to b̂LRYL
(G) = RYL

(G).

(3) This is a straightforward consequence of (1) and (2), by Theorem 7.12,
using Remark 7.17.

7.19. Corollary: [ p ∈ R×] The category Fp,R of p-biset functors over
R is equivalent to the direct product of the categories FunR

(
RC♯Lp , R-Mod

)
of

R-linear functors from RC♯Lp to R-Mod, for L ∈ [Atp].

Proof : This follows from Theorem 7.18, using Equivalence (7.6) of Corol-
lary 7.5.

8. L-enriched bisets

8.1. Notation: Let G and H be finite groups. If U is an (H,G)-biset, and
u ∈ U , let (H,G)u denote the stabilizer of u in (H ×G), i.e.

(H,G)u = {(h, g) ∈ (H ×G) | hu = ug} .

Let Hu = k1
(
(H,G)u

)
denote the stabilizer of u in H, and uG = k2

(
(H,G)u

)
denote the stabilizer of u in G. Set moreover

q(u) = q
(
(H,G)u

)
= (H,G)u/(Hu × uG) .

8.2. Definition: Let L be a finite group. For two finite groups G and H,
an L-enriched (H,G)-biset is an (H ×L,G×L)-biset U such that L ⊑ q(u),
for any u ∈ U . A morphism of L-enriched (H,G)-bisets is a morphism of
(H × L,G× L)-bisets.

The disjoint union of two L-enriched (H,G)-bisets is again an L-
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enriched (H,G)-biset. Let B[L](H,G) denote the Grothendieck group of fi-
nite L-enriched (H,G)-bisets for relations given by disjoint union decompo-
sitions. The group B[L](H,G) is called the Burnside group of L-enriched
(H,G)-bisets.

8.3. Lemma: Let G,H,L be finite groups, and U be an (H × L,G × L)-
biset. Let U ♯L denote the set of elements u ∈ U such that L ⊑ q(u). Then
U ♯L is the largest L-enriched (H,G)-sub-biset of U .

Proof : It suffices to show that U ♯L is a (H × L,G × L)-sub-biset of U ,
for then it is clearly the largest L-enriched (H,G)-sub-biset of U . And this
is straightforward, since for any (u, g, h, x, y) ∈ (U × G × H × L × L), if
v = (h, y)u(g, x), then

(H × L,G× L)v =
((h,y),(g,x)−1)(H × L,G× L)u ,

and this conjugation induces a group isomorphism q(v) ∼= q(u).

8.4. Lemma: Let G,H,L be finite groups.

1. Let U be an L-enriched (H,G)-biset. If V is an (H×L,G×L)-sub-biset
of U , then V is an L-enriched (H,G)-biset.

2. The group B[L](H,G) has a Z-basis consisting of the transitive bisets(
(H×L)× (G×L)

)
/M , where M is a subgroup of

(
(H×L)× (G×L)

)
(up to conjugation) such that L ⊑ q(M).

Proof : (1) This is straightforward.

(2) It follows from (1) that B[L](H,G) has a basis consisting of the isomor-
phism classes of L-enriched (H,G)-bisets which are transitive (H×L,G×L)-
bisets. These are of the form U =

(
(H×L)×(G×L)

)
/M , for some subgroup

M of
(
(H × L) × (G × L)

)
. Now if u is the element

(
(1, 1), (1, 1)

)
M of U ,

the group (H × L,G× L)u is equal to M , hence q(u) ∼= q(M).

8.5. Example: Let G,H,K,L be finite groups. The following can easily be
checked:

1. For an (H,G)-biset U , endow U × L with the (H × L,G × L)-biset
structure defined by

∀h ∈ H, ∀g ∈ G, ∀x, y, z ∈ L, ∀u ∈ U, (h, x)(u, y)(g, z) = (hug, xyz) .

Then U × L is an L-enriched (H,G)-biset.
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2. In particular, for any finite group G, the identity biset of G × L is an
L-enriched (G,G)-biset.

3. If U is an (H,G)-biset and V is a (K,H)-biset, then there is an iso-
morphism

(V × L)×(H×L) (U × L) ∼= (V ×H U)× L

of L-enriched (H,G)-bisets.

8.6. Notation: Let G,H,K,L be finite groups. If U is an L-enriched

(H,G)-biset and V is an L-enriched (K,H)-biset, let V
L

×HU denote the L-
enriched (K,G)-biset defined by

V
L

×HU =
(
V ×(H×L) U

)♯L
.

8.7. Remark: The set V
L

×HU is in general a proper subset of V ×(H×L) U :
for example if K = G = 1 and H = L, and if V =

(
(K × L)× (H × L)

)
/N

and U =
(
(H × L) × (G × L)

)
/M , where N =

{(
1, l), (l, 1)

)
| l ∈ L

}
and

M =
{(

1, l), (1, l)
)
| l ∈ L

}
, then p2(N) = L × 1 and k2(N) = 1 × 1, so

q(N) ∼= (L× L)/(L× 1) ∼= L. Similarly p1(M) = 1× L and k1(M) = 1× 1,
so q(M) ∼= L. However by 2.7, since p2(N)p1(M) = H × L,

V ×(H×L) U =
(
(K × L)× (G× L)

)
/(N ∗M) ,

and moreover N ∗M =
{(

1, l), (l, 1)
)
| l ∈ L

}
∗
{(

1, l), (1, l)
)
| l ∈ L

}
= 1×1,

so q(N ∗M) = 1. It follows that V
L

×HU = ∅ if L is non trivial.

8.8. Lemma: Let G,H, J,K, L be finite groups.

1. If V is a (K ×L,H ×L)-biset and U is an (H ×L,G×L)-biset, then

(V ×(H×L) U)♯L = V ♯L L

×HU
♯L .

In particular, if V and U are L-enriched bisets, so is V
L

×HU .

2. If U and U ′ are L-enriched (H,G)-bisets, if V, V ′ are L-enriched
(K,H)-bisets, then there are isomorphisms

V
L

×H(U ⊔ U ′) ∼= (V
L

×HU) ⊔ (V
L

×HU
′)
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(V ⊔ V ′)
L

×HU ∼= (V
L

×HU) ⊔ (V ′ L×HU)

of L-enriched (K,G)-bisets.

3. If moreover W is an L-enriched (J,K)-biset, then there is a canonical
isomorphism

(W
L

×KV )
L

×HU ∼= W
L

×K(V
L

×HU)

of L-enriched (J,G)-bisets.

Proof : (1) Denote by [v, u] the image in V×(H×L)U of a pair (v, u) ∈ (V×U).
By Lemma 2.3.20 of [7],

(K × L,G× L)[v,u] = (K × L,H × L)v ∗ (H × L,G× L)u ,

so by Lemma 2.3.22 of [7], the group q
(
[v, u]

)
is a subquotient of q(v) and

q(u). So if [v, u] ∈ (V ×(H×L)U)♯L, then L is a subquotient of q
(
[v, u]

)
, hence

it is a subquotient of q(v) and q(u), that is v ∈ V ♯L and u ∈ U ♯L. Hence

(V ×(H×L) U)♯L ⊆ (V ♯L ×(H×L) U
♯L)♯L = V ♯L L

×HU
♯L ,

and the reverse inclusion (V ♯L ×(H×L) U
♯L)♯L ⊆ (V ×(H×L) U)♯L is obvious.

Hence (V ×(H×L) U)♯L = V ♯L L

×HU
♯L. If V and U are L-enriched bisets, i.e.

if V = V ♯L and U = U ♯L, this gives (V ×(H×L) U)♯L = V
L

×HU , so V
L

×HU is
an L-enriched biset.

(2) This is straightforward.

(3) With the above notation, there is a canonical isomorphism

α : (W ×(K×L) V )×(H×L) U →W ×(K×L) (V ×(H×L) U)

sending
[
[w, v], u

]
to

[
w, [v, u]

]
. Hence

(W
L

×KV )
L

×HU =
(
(W

L

×KV )×(H×L) U
)♯L

=
(
(W ×(K×L) V )♯L ×(H×L) U

)♯L
=

(
(W ×(K×L) V )×(H×L) U

)♯L
[by (1)]

Similarly

W
L

×K(V
L

×HU) =
(
W ×(K×L) (V

L

×HU)
)♯L

=
(
W ×(K×L) (V ×(H×L) U)♯L

)♯L
=

(
W ×(K×L) (V ×(H×L) U)

)♯L
[by (1)] .
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Hence α induces an isomorphism (W
L

×KV )
L

×HU ∼= W
L

×K(V
L

×HU).

8.9. Definition: Let L be a finite group, and R be a commutative ring.
The L-enriched biset category RC[L] of finite groups over R is defined as
follows:

• The objects of RC[L] are the finite groups.

• For finite groups G and H,

HomRC[L](G,H) = R⊗Z B[L](H,G) = RB[L](H,G)

is the R-linear extension of the Burnside group of L-enriched (H,G)-
bisets.

• The composition in RC[L] is the R-linear extension of the product

(V, U) 7→ V
L

×HU defined in 8.6.

• The identity morphism of the group G is (the image in RB[L](G,G)
of) the identity biset of G× L, viewed as an L-enriched (G,G)-biset.

The category RC[L] is R-linear. An L-enriched biset functor over R is an
R-linear functor from RC[L] to R-Mod. The category of L-enriched biset
functors over R is denoted by FR[L]. It is an abelian R-linear category.

8.10. Theorem: Let p be a prime number, and R be a commutative ring.

1. If L is an atoric p-group, the category RC♯Lp of Definition 7.14 is equiv-
alent to the full subcategory RE lp[L] of RC[L] consisting of elementary
abelian p-groups.

2. If p ∈ R×, the category Fp,R of p-biset functors over R is equivalent to
the direct product of the categories FunR

(
RE lp[L], R-Mod

)
of R-linear

functors from RE lp[L] to R-Mod, for L ∈ [Atp].

Proof : (1) Let E be an elementary abelian p-group. Then (E × L)@ ∼= L,
so E×L is an object of RC♯Lp . Set I(E) = E×L. If E and F are elementary
abelian p-groups, and if U is a finite L-enriched (F,E)-biset, then U is in
particular an (F ×L,E×L)-biset, and we can consider its image I(U) in the
quotient HomRC♯L

p
(E ×L, F ×L) of RB(F ×L,E ×L). This yields a unique

R-linear map RB[L](F,E)→ HomRC♯L
p
(E × L, F × L), still denoted by I.

We claim that these assignments define a functor I from RE lp[L] to RC♯Lp :
indeed, the identity (E × L,E × L)-biset is clearly mapped to the identity
morphism of I(E). Moreover, if G is an elementary abelian p-group, if V
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is an L-enriched (G,F )-biset and U is an L-enriched (F,E)-biset, it is clear
that

I
(
V

L

×FU) = I(V ) ◦ I(U) ,

where the right hand side composition is in the category RC♯Lp : indeed, the

transitive bisets
(
(G× L)× (E × L)

)
/M with q(M)@ ⊏ L appearing in the

product V ×(F×L)U are exactly those vanishing in HomRC♯L
p

(
I(E), I(F )

)
, by

Lemma 7.16. Hence I induces an isomorphism

I : RB[L](F,E)→ HomRC♯L
p

(
I(E), I(F )

)
.

In other words I is a fully faithful functor from RE lp[L] to RC♯Lp . Moreover,
by Proposition 6.7, if P is a finite p-group with P@ ∼= L, there exists an
elementary abelian p-group E such that P is isomorphic to E × L, hence P
is isomorphic to E × L in the category RC♯Lp .

It follows that the functor I is fully faithful and essentially surjective, so
it is an equivalence of categories.

(2) This is a straightforward consequence of (1), Assertion 5 of Corollary 7.5,
and Assertion 3 of Theorem 7.18.

8.11. Remark: Let E and F be elementary abelian p-groups. In view of
Theorem 8.10, it is interesting to give some detail on the hom set from E
to F in the category RE lp[L], in other words to describe the subgroups M
of (F × L) × (E × L) such that q(M)@ ∼= L. One can show that they are
exactly those subgroups M such that

p1,2(M) = p2,2(M) = L and k1,2(M) = k2,2(M) = 1 ,

where p1,2 and p2,2 are the morphisms from
(
(H×L)× (G×L)

)
to L defined

by p1,2
(
(h, x), (g, y)

)
= x and p2,2

(
(h, x), (g, y)

)
= y, and

k1,2(M) = {x ∈ L |
(
(1, x), (1, 1)

)
∈M} ,

k2,2(M) = {x ∈ L |
(
(1, 1), (1, x)

)
∈M} .

9. The category b̂LFp,R, for an atoric p-group L (p ∈ R×)

Let L be a fixed atoric p-group. In this section, we give some detail on
the structure of the category b̂LFp,R of p-biset functors invariant by the

idempotent b̂L. We return to the initial definition of this category given
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in Assertion 5 of Corollary 7.5, and we do not use the equivalent category
FunR

(
RE lp[L], R-Mod

)
of Theorem 8.10.

We start by straightforward consequences of Theorem 7.18. For a finite
p-group P , we denote by Σ♯L(P ) the subset of ΣL(P ) consisting of sections
(X,M) of P such that (X/M)@ ∼= L. When G is an R-linear functor from
RC♯Lp to R-Mod, we first extend it to a functor defined on RCLp by setting
G(P ) = {0} if P@ ⊏ L, as in Remark 7.17. Then we compute RYL

(G) at P
by restricting the inverse limit of 7.8 to the subset Σ♯L(P ), i.e. by

RYL
(G)(P ) = lim←−

(X,M)∈Σ♯L(P )

G(X/M) .

9.1. Proposition: [ p ∈ R×] Let L be an atoric p-group. If F is a p-biset

functor in b̂LFp,R, and P is a finite p-group, then

F (P ) ∼= lim←−
(X,M)∈Σ♯L(P )

F (X/M) ,

∼= ⊕
(T,S)∈[M(P )]

(T/S)@∼=L

δΦF (T/S)NP (T,S)/T .

Proof : The isomorphism F (P ) ∼= lim←−
(X,M)∈Σ♯L(P )

F (X/M) is Assertion 3 of

Theorem 7.18. The second isomorphism follows from Theorem 5.4, which
implies that for (T, S) ∈M(P )

δΦF (T/S)NP (T,S)/T ∼= F (ϵPT,S)
(
F (P )

)
.

Moreover F (bPL)F (P ) = F (P ) since F ∈ b̂LFp,R, and

F (ϵPT,S)F (bPL) = F (ϵPT,Sb
P
L) = 0

unless (T/S)@ ∼= L. Thus δΦF (T/S)NP (T,S)/T = {0} unless (T/S)@ ∼= L,
which completes the proof.

The decomposition of the category Fp,R of p-biset functors stated in Corol-
lary 7.5 leads to the following natural definition:

9.2. Definition: [ p ∈ R×] Let F be an indecomposable p-biset functor
over R. There exists a unique atoric p-group L (up to isomorphism) such

that F = b̂LF . The group L is called the vertex of F .
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9.3. Remark:

1. It follows in particular from this definition that if F and F ′ are inde-
composable p-biset functors over R with non-isomorphic vertices, then
Ext∗Fp,R

(F, F ′) = {0}.
2. It may happen that an indecomposable p-biset functor F with vertex L

vanishes at L (see e.g. the case of a simple functor F = SQ,V of
Corollary 9.5, when Q ≇ Q@).

9.4. Theorem: [ p ∈ R×] Let F be an indecomposable p-biset functor over R
and let L be a vertex of F . If Q is a finite p-group such that F (Q) ̸= {0},
but F vanishes on any proper subquotient of Q, then L ∼= Q@.

Proof : Let Q be a finite p-group such that F (Q) ̸= {0} and F (Q′) = {0} for
any proper subquotient Q′ of Q. By Proposition 4.7, if (T, S) is a minimal
section of Q, then

ϵQT,S=
1

|NQ(T, S)|
∑

X≤T,M ⊴T

S≤M≤Φ(T )≤X≤T

|X|µ(X,T )µ⊴T (S,M) IndinfQX/M DefresQX/M .

Now if X/M is a proper subquotient of Q, i.e. if X ̸= Q or M ̸= 1, then
F (X/M) = {0}, and F (IndinfQX/M DefresQX/M) = 0. Hence F (ϵQT,S) = 0 unless
T = Q and S = 1, and moreover

F (ϵQQ,1) =
1

|Q|
|Q|µ(Q,Q)µ⊴Q(1,1)F (IndinfQQ/1Defres

Q
Q/1) = IdF (Q) .

Since b̂LF = F , then in particular F (bQL ) is equal to the identity map of F (Q).
This can only occur if the idempotent ϵQQ,1 appears in the sum defining bQL ,

in other words if (Q/1)@ ∼= L, i.e. Q@ ∼= L.

We assume from now on that R = k is a field. Recall ([7] Chapter 4) that
the simple p-biset functors SQ,V over k are indexed by pairs (Q, V ) consisting
of a p-group Q and a simple kOut(Q)-module V . Also recall that if P is a
finite p-group and if Q ̸⊑ P , then SQ,V (P ) = {0}. Moreover SQ,V (Q) ∼= V .

9.5. Corollary: Let k be a field of characteristic different from p.

1. If Q is a finite p-group, and V is a simple kOut(Q)-module, then the
vertex of the simple p-biset functor SQ,V is isomorphic to Q@.

49



2. Let Q (resp. Q′) be a finite p-group, and V (resp. V ′) be a simple
kOut(Q)-module (resp. a simple kOut(Q′)-module). If Q@ ≇ Q′@,
then Ext∗Fp,k

(SQ,V , SQ′,V ′) = {0}.

Proof : (1) Indeed Q is a minimal group for SQ,V , so SQ,V (Q) ̸= {0}, but
SQ,V vanishes on any proper subquotient of Q.

(2) Follows from (1) and Remark 9.3.

9.6. Definition: Let F be a p-biset functor. A non zero functor S is a
subquotient of F (notation S ⊑ F ) if there exist subfunctors F2 < F1 ≤ F
such that F1/F2

∼= S. A composition factor of F is a simple subquotient
of F .

9.7. Lemma: Let k be a field, and F be a p-biset functor over k.

1. If F is non zero, then F admits a composition factor.

2. If S is a family of simple p-biset functors over k, there exists a greatest
subfunctor of F all composition factors of which belong to S.

Proof : (1) Let P be a finite p-group such that F (P ) ̸= {0}. Then F (P ) is
a kB(P, P )-module. Choose m ∈ F (P ) − {0}, and consider the kB(P, P )-
submodule M of F (P ) generated by m. Since kB(P, P ) is finite dimensional
over k, the module M is also finite dimensional over k, hence it contains
a simple submodule V . By Proposition 3.1 of [8], there exists a simple p-
biset functor S such that S(P ) ∼= V as kB(P, P )-module. Then S(P ) is a
subquotient of F (P ), so by Proposition 3.5 of [8], there exists a subquotient
of F isomorphic to S.

(2) Observe first that if M,N are subfunctors of F , then any composition
factor of M +N is a composition factor of M or a composition factor of N :
indeed, if S is a composition factor of M + N , let F2 < F1 ≤ M + N with
S ∼= F2/F1, and consider the images F ′

1 and F ′
2 of F1 and F2, respectively, in

the quotient (M + N)/N ∼= M/(M ∩ N). If F ′
1 ̸= F ′

2, that is if F1 + N ̸=
F2 + N , then F ′

1/F
′
2
∼= (F1 + N)/(F2 + N) ∼= F1/F2

∼= S is a subquotient
of (M + N)/N ∼= M/(M ∩ N), hence S is a subquotient of M . Otherwise
F1+N = F2+N , so F1 = F2+(F1∩N), hence S ∼= F1/F2

∼= (F1∩N)/(F2∩N)
is a subquotient of N . It follows by induction that any composition factor S
of a finite sum

∑
M∈I

M of subfunctors of F is a composition factor of some

M ∈ I.
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The latter also holds when I is infinite: let Σ =
∑
M∈I

M be an arbitrary

sum of subfunctors of F , and S be a composition factor of Σ. Let F2 < F1 be
subfunctors of Σ such that S ∼= F1/F2. If P is a p-group such that S(P ) ∼=
F1(P )/F2(P ) ̸= 0, let U be a finite subset of F1(P ) such that F1(P )/F2(P )
is generated as a kB(P, P )-module by the images of the elements of U (such
a set exists because S(P ) is finite dimensional over k, for any P ). If V is the
kB(P, P )-submodule of F1(P ) generated by U , then V maps surjectively on
the module F1(P )/F2(P ), so there is a kB(P, P )-submoduleW of V such that
V/W ∼= S(P ). Now since U is finite, there exists a finite subset J of I such
that U ⊆

∑
M∈J

M(P ). Setting Σ1 =
∑

M∈J
M , it follows that V/W ∼= S(P ) is a

subquotient of Σ1(P ), so by Proposition 3.5 of [8], there exists a subquotient
of Σ1 isomorphic to S. By the observation above S is a subquotient of some
M ∈ J ⊆ I.

Now let I be the set of subfunctors M of F such that all the composition
factors of M belong to S, and N =

∑
M∈I

M . The above discussion shows that

N ∈ I, so N is the greatest element of I.

9.8. Theorem: Let k be a field of characteristic different from p, and L
be an atoric p-group. Let Fp,k[L] be the full subcategory of Fp,k consisting of
functors whose composition factors all have vertex L, i.e. are all isomorphic
to SP,V , for some p-group P such that P@ ∼= L, and some simple kOut(P )-
module V .

1. If F is a p-biset functor, then b̂LF is the greatest subfunctor of F which
belongs to Fp,k[L].

2. In particular b̂LFp,k = Fp,k[L].

Proof : (1) Let F be a p-biset functor over k, and let F1 = b̂LF . If S

is a composition factor of F1, then S = b̂LS, as S is a subquotient of F1.
Hence S has vertex L, by Definition 9.2. It follows that F1 is contained in
the greatest subfunctor F2 of F which belongs to Fp,k[L] (such a subfunctor
exists by Lemma 9.7).

Conversely, we know that F2 = ⊕
Q∈[Atp]

b̂QF2. For Q ∈ [Atp], any com-

position factor S of b̂QF2 has vertex Q, by Definition 9.2. But S is also a

composition factor of F2, so Q ∼= L. It follows that if Q ≇ L, then b̂QF2

has no composition factor, so b̂QF2 = {0}, by Lemma 9.7. In other words

F2 = b̂LF2, hence F2 ≤ F1, and F2 = F1, as was to be shown.
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(2) Let F be a p-biset functor. Then F ∈ b̂LFp,k if and only if F = b̂LF , i.e.
by (1) if and only if all the composition factors of F have vertex L.

9.9. Example: the Burnside functor. Let k be a field of characteristic
q ̸= p (q ≥ 0). It was shown in [10] Theorem 8.2 (see also [7] 5.6.9) that the
Burnside functor kB restricted to the class of p-groups (hence an object of
Fp,k) is uniserial, hence indecomposable. As kB(1) ̸= 0, the vertex of kB is

the trivial group, by Theorem 9.4, thus kB is an object of b̂1Fp,k = Fp,k[1]. It
means that all the composition factors of kB have to be of form SQ,V , where
Q@ = 1, i.e. Q is elementary abelian. And indeed by [10] Theorem 8.2, the
composition factors of kB are all of the form SQ,k, where Q runs through a
specific set of elementary abelian p-groups which depends on the order of p
modulo q (suitably interpreted when q = 0).
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[8] S. Bouc, R. Stancu, and J. Thévenaz. Simple biset functors and double
Burnside ring. Journal of Pure and Applied Algebra, 217:546–566, 2013.

52
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