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Abstract: Let R be a (unital) commutative ring, and G be a finite group
with order invertible in R. We introduce new idempotents e% g in the
double Burnside algebra RB(G, G) of G over R, indexed by conjugacy
classes of minimal sections (T, S) of G (i.e. sections such that S < ®(T)).
These idempotents are orthogonal, and their sum is equal to the identity.
It follows that for any biset functor F' over R, the evaluation F'(G) splits
as a direct sum of specific R-modules indexed by minimal sections of G,
up to conjugation.

The restriction of these constructions to the biset category of p-groups,
where p is a prime number invertible in R, leads to a decomposition of
the category of p-biset functors over R as a direct product of categories
Fr, indexed by atoric p-groups L up to isomorphism.

We next introduce the notions of L-enriched biset and L-enriched biset
functor for an arbitrary finite group L, and show that for an atoric p-
group L, the category Fp is equivalent to the category of L-enriched
biset functors defined over elementary abelian p-groups.

Finally, the notion of vertex of an indecomposable p-biset functor is in-
troduced (when p € R*), and when R is a field of characteristic different
from p, the objects of the category F, are characterized in terms of ver-
tices of their composition factors.
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1. Introduction

Let R denote throughout a commutative ring (with identity element). For
a finite group G, we consider the double Burnside algebra RB(G,G) of G
over R. In the case where the order of GG is invertible in R, we introduce
idempotents e% ¢ in RB(G, ), indexed by the set M(G) of minimal sections
of G, i.e. the set of pairs (7, .5) of subgroups of G with S <7 and S < &(7T),
where ®(7T') is the Frattini subgroup of 7" (such sections have been considered
in Section 5 of [9]). The idempotent €7 ¢ only depends on the conjugacy class
of (T,S) in G. Moreover, the idempotents €7 ¢, where (T',S) runs through a
set [M(G)] of representatives of orbits of G acting on M(G) by conjugation,
are orthogonal, and their sum is equal to the identity element of RB(G, G).



The idempotent eg’I plays a special role in our construction, and it is
denoted by ¢§. In particular, when F' is a biset functor over R (and the order
of G is invertible in R), we set o F'(G) = p§ F(G). We show that ds F(G)
consists of those elements u € F(G) such that Res$u = 0 whenever H is a
proper subgroup of G, and Defg /vt =0 whenever N is a non-trivial normal
subgroup of G contained in ®(G). This yields moreover a decomposition

F(G> = ( D 5¢F(T/S))G o) s 5¢F(T/S)NG(T’S)/T '
(T,5)eM(G) (T,5)E[M(G)]

In view of the fact that the Frattini subgroup is well behaved for p-groups,
it is natural to restrict these constructions to the biset category RC, of p-
groups with coefficients in R, where p is a prime invertible in R, and to
consider p-biset functors over R. Then we get orthogonal idempotents by,
in the center of RC,, indexed by atoric p-groups, i.e. finite p-groups which
cannot be split as a direct product C, x @, for some p-group (). We show
next that every finite p-group P admits a unique largest atoric quotient P,
well defined up to isomorphism, and that there exists an elementary abelian
p-subgroup E of P (non unique in general) such that P = E x P°. For a
given atoric p-group L, we introduce a category RCI”)L , defined as a quotient
of the subcategory of RC, consisting of p-groups P such that P® = L. This
leads to a decomposition of the category F, r of p-biset functors over R as a
direct product
For™ [] Fung(RCE, R-Mod)
Le[Aty]

of categories of representations of RCI%L over R, where L runs through a
set [At,] of isomorphism classes of atoric p-groups. Similar questions on
idempotents in double Burnside algebras and decomposition of biset functors
categories have been considered by L. Barker ([1]), R. Boltje and S. Danz
(2], [3]), R. Boltje and B. Kiilshammer ([4]), and P. Webb ([16]).

In particular, via the above decomposition, to any indecomposable p-
biset functor F' is associated a unique atoric p-group, called the vertex of F'.
We show that this vertex is isomorphic to Q®, for any p-group @ such that
F(Q) # {0} but F vanishes on any proper subquotient of Q.

Going back to arbitrary finite groups, we next introduce the notions of
L-enriched biset and L-enriched biset functor, and show that when L is an
atoric p-group, the abelian category Fun R(RCIQL, R—Mod) is equivalent to the
category of L-enriched biset functors from elementary abelian p-groups to
R-modules.

The paper is organized as follows: Section 2 is a review of definitions and
basic results on Burnside rings and biset functors. Section 3 is concerned



with the algebra £(G) obtained by “cutting” the double Burnside algebra

RB(G,G) of a finite group G by the idempotent €& corresponding to the
“top” idempotent e& of the Burnside algebra RB(G). Orthogonal idem-
potents ©§ of £(G) are introduced, indexed by normal subgroups N of G
contained in ®(G). It is shown moreover that if G is nilpotent, then § is
central in £(G). In Section 4, the idempotents €7 ¢ of RB(G, G) are intro-
duced, leading in Section 5 to the corresponding direct sum decomposition of
the evaluation at G of any biset functor over R. In Section 6, atoric p-groups
are introduced, and their main properties are stated. In Section 7, the biset
category of p-groups over R is considered, leading to a splitting of the cate-
gory JF, r of p-biset functors over R as a direct product of abelian categories
Fr, = Fung (RCf)L , R—Mod) indexed by atoric p-groups L up to isomorphism.
In Section 8, for an arbitrary finite group L, the notions of L-enriched biset
and L-enriched biset functor are introduced, and it is shown that when L is
an atoric p-group, the category Fp, is equivalent to the category of L-enriched
biset functors on elementary abelian p-groups. Finally, in Section 9, for a
given atoric p-group L, and when p is invertible in R, the structure of the
category JFp is considered, and the notion of vertex of an indecomposable
p-biset functor over R is introduced. In particular, when R is a field of char-
acteristic different from p, it is shown that the objects of F}, are those p-biset
functors all composition factors of which have vertex L.
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2. Review of Burnside rings and biset functors

This section recalls some basic definitions and notation on bisets, Burnside
rings, and biset functors. Details can be found in [7].

2.1. Let G be a finite group, let s denote the set of subgroups of G, let 55
denote the set of conjugacy classes of subgroups of G, and let [sg] denote a
set of representatives of 55.

Let B(G) denote the Burnside ring of G, i.e. the Grothendieck ring of the
category of finite G-sets. It is a commutative ring, with an identity element,
equal to the class of a G-set of cardinality 1. The additive group B(G) is a
free abelian group on the set {[G/H] | H € [s¢]} of isomorphism classes of
transitive G-sets.

2.2. e When GG and H are finite groups, and L is a subgroup of G x H, set

m(L) = {geG|3heH, (g.h) €L},
p(L) = {heH|3JgeG, (g,h) € L} ,
ki(L) = {9€G|(g,1) €L},
ko(L) {he H|(1,h) € L} .

Recall that k;(L) <p;(L), for i € {1,2}, that (ki(L) x ks(L)) <L, and that

there are canonical isomorphisms ([7], Proposition 2.3.21)
pi(L)/ky(L) = L/ (ky(L) x ka(L)) = pa(L) /ka(L)

Set moreover q(L) = L/(ki(L) x kao(L)).
e When 7 is a subgroup of G, set

AZ)={(z2)]|2€ 2} < (GxQG) .
When N is a normal subgroup of a subgroup H of G, set
An(H) ={(a,b) € G x G |a,be H, ab™" € N} .

It is a subgroup of G x G.
e When G, H, and K are groups, when L < (G x H) and M < (H x K), set

LxM={(g9,k) e (Gx K)|3heH, (g,h) € Land (h,k) € M} .

It is a subgroup of (G x K).
2.3. When G and H are finite groups, a (G, H)-biset U is a set endowed with
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a left action of G and a right action of H which commute. In other words U
is a G x H-set, where H is the opposite group of H. The opposite biset
U° is the (H, G)-biset equal to U as a set, with actions defined for h € H,
uweUand g€ Gby h-u-g (in UP) =g luh™! (in U).

The Burnside group B(G, H) is the Grothendieck group of the category
of finite (G, H)-bisets. It is a free abelian group on the set of isomorphism
classes [(G x H)/L], for L € [sgxu|, where the (G, H)-biset structure on
(G x H)/L is given by

Va,g € G,V¥b,h € H, a-(g,h)L-b= (ag,b"'h)L .
When G, H, and K are finite groups, there is a unique bilinear product
xg:B(G,H)x B(H,K) — B(G,K)

induced by the usual product (U,V) — U xg V = (U x V)/H of bisets,
where the right action of H on U x V is defined foru e U, v € Vand h € H
by (u,v)-h = (uh,h~v). As the group H is generally clear from the context,
this product will often simply be denoted (o, 8) — af.

This leads to the following definitions:

2.4. Definition: The biset category of finite groups C is defined as follows:
e The objects of C are the finite groups.
e When G and H are finite groups,

Hom¢(G,H) = B(H,G) .

o When G, H, and K are finite groups, the composition
o: Hom¢(H, K) x Home (G, H) — Home (G, K)
18 the product

xy: B(K,H) x B(H,G) - B(K,G) .

e The identity morphism of the group G is the class of the set G, viewed
as a (G, G)-biset by left and right multiplication.

A biset functor is an additive functor from C to the category of abelian groups.




When R is a commutative (unital) ring, the category RC is defined simi-
larly by extending coefficients to R, i.e. by setting

HOHch(G, H) = R@Z B(]‘I7 G) s

which will be simply denoted by RB(H,G). A biset functor over R is an R-
linear functor from RC to the category R-Mod of R-modules. The category
of biset functors over R (where morphisms are natural transformations of
functors) is denoted by Fg.

For simplicity, the composition of morphisms a« € RB(H,G) and 8 €
RB(K, H) in the category RC will generally be simply denoted by ( « instead
of B Xy a.

The correspondence sending a (G, H)-biset U to its opposite U extends
to an isomorphism of R-modules RB(G,H) — RB(H,G). These isomor-
phisms give an equivalence of R-linear categories from RC to its opposite
category, which is the identity on objects.

2.5. Let G and H be finite groups, and F' be a biset functor (with values
in R-Mod). For any finite (H,G)-biset U, the isomorphism class [U] of U
belongs to B(H,G), and it yields an R-linear map F([U]) : F'(G) — F(H),
simply denoted by F'(U), or even f € F(G) — U(f) € F(H). This is a very
convenient abuse of notation. In particular:

e When H is a subgroup of G, denote by Indg the set G, viewed as
a (G, H)-biset for left and right multiplication, and by Res$, the same
set, viewed as an (H, G)-biset. This gives a map Ind$, : F(H) — F(G),
called induction, and a map Res$ : F(G) — F(H), called restriction.
We observe that (Ind%)?” and Res% are isomorphic (H, G)-bisets (and
similarly (Res$) = Ind% as (G, H)-bisets).

e When N is a normal subgroup of G, let Infg /v denote the set G /N,
viewed as a (G, G/N)-biset for the left action of G, and right action of
G/N by multiplication. Also let Def& /v denote the set G/N, viewed
as a (G/N,G)-biset. This gives a map Infg/N : F(G/N) — F(G),
called inflation, and a map Defg/N : F(G) — F(G/N), called deflation.
We observe that (Inf& /n)°F and Def& /v are isomorphic (G /N, G)-bisets
(and similarly (Defg/N)Op = Infg/N as (G, G/N)-bisets).

e Finally, when f : G — G’ is a group isomorphism, denote by Iso(f) the
set G, viewed as a (G’, G)-biset for left multiplication in G’, and right
action of G given by multiplication by the image under f. This gives a

map Isog f): F(G) — F(G"), called transport by isomorphism. Clearly
(Iso(f))” = Iso(f!) as (G, G')-bisets.



The above bisets Ind$, Res%, InfG/N, Def§, /v and Iso(f) are called elementary
bisets, as they generate the biset category, in the following sense: when G
and H are finite groups, any (G, H)-biset is a disjoint union of transitive ones.
It follows that any element of B(G, H) is a linear combination of morphisms
of the form [(G x H)/L], where L € sgxu. Moreover, any such morphism
factors as

1 L 2 L
(2.6) [(G x H)/L] =IndS ;) Inf?"(7) | Tso(f) Def?(}) | Resf )
where f: po(L)/ko(L) — p1(L)/k1(L) is the canonical group isomorphism.

It follows that elementary bisets satisfy a (rather long) list of relations:
the composition of two of them, when it makes sense, can always be expressed
as a sum of compositions of the form Ind Inf Iso Def Res (in that order), given
explicitly by (2.6). These compatibility relations are listed in Section 1.1.3
of [7]. We will use them freely.

For finite groups G, H, K, for L < (G x H) and M < (H x K), one has
that

(2.7) (G x H)/L] xp[(Hx K)/M] = Y. (GxK)/(L+™DM)

hepa (L)\H/p1(M)

in B(G, K).

2.8. Definition: When G is a finite group, a section (T,S) of G is a pair
of subgroups of G such that S T.

A group H s called a subquotient of G (notation H C G ) if there exists
a section (T,5) of G such that T/S = H.

When (T,5) is a section of G, we denote by Indme/S the set G/S,
viewed as a (G,T/S)-biset for the natural actions given by multiplication of
G and T/S. One checks easily that Indinf$ /s is isomorphic to the compo-
sition Indglnf:‘;/s as (G,T/S)-biset. Similarly, we denote by Defres%s the
set S\G viewed as a (7/S,G)-biset. It is isomorphic to the composition
DefT/SResT We observe that (Indme/S)"p = Defres%s as (T'/S, G)-bisets,
and that (DefresT/S)"p = Indme/S as (G, T/S)-bisets.

With this notation, (2.6) gives in particular

(2.9) (G xG)/As(T)] = Indinf%s Defres%s :

Two special cases are worth noticing, as they will be used intensively in the
sequel:

(2.10) for NG, [(Gx G)/An(G)] = Infg y Defg
7



(2.11) for H < G, [(G x G)/A(H)] =Ind% Res% .

2.12. When G is a finite group, the group B(G, G) is the ring of endomor-
phisms of GG in the category C. This ring is called the double Burnside ring
of G. It is a non-commutative ring (if G is non trivial), with identity element
equal to the class of the set G, viewed as a (G, G)-biset for left and right
multiplication.

There is a unitary ring homomorphism « — « from B(G) to B(G,G),
induced by the functor X ~— X from G-sets to (G, G)-bisets, where X =
G x X, with (G, G)-biset structure given by

Ya,b,g € G,Vx € X, a(g,2)b = (agh,b ') .
This construction has in particular the following properties (Corollary 2.5.12

of [7]):

2.13. Lemma: Let GG be a finite group.

1. If H is a subgroup of G, and X 1is a finite G-setl, then there is an
isomorphism of (G, H)-bisets

X x¢Ind% = Ind$ x g Res$X |

and an isomorphism of (H,GQ)-bisets

G v G G
Resy; g X = Resj X xg Resyy

where Res$ X denotes the set X, viewed as an H-set by restriction.

2. If H is a subgroup of G, and Y 1is a finite H-set, then there is an
isomorphism of (G, G)-bisets

Ind$ x4 Y xpy Res? = Ind%Y |

where nd$Y = G x5 Y is the G-set induced from Y.

3. If N is a normal subgroup of G, and X is a finite G/N-set, then there
is an isomorphism of (G/N, G)-bisets

e~

X xgn Def? )y 2 Defg y x¢ InfG v X




where Infg/NX denotes the set X, viewed as a G-set by inflation.

4. If N is a normal subgroup of G, and X 1is a finite G-set, then there is
an isomorphism of (G/N,G/N)-bisets

Deféy xa X x¢Infg,y = Defl v X |

where Defg/NX is the set N\ X of N-orbits on X, viewed as a G /N -set.

2.14. Remark: One checks easily from the definition that if Y = H/H, then
H is isomorphic to the identity (H, H)-biset. By Assertion 2 of Lemma 2.13,
it follows more generally that if H < G, then é/\l/{ is isomorphic to the
composition Ind$ Res$, as a (G, G)-biset. By (2.11), it is also isomorphic to
(G x G)/A(H). By linearity, it also follows that (X)” = X as (G, G)-biset,
for any G-set X.

2.15. Lemma: If f : G — H is a group isomorphism, and X is a finite
G-set, then there is an isomorphism of (H,G)-bisets

Iso(f) ¢ X X xm Iso(f)

where ' X is the set X, on which H acts by h.x = f~Y(h)x, for h € H and
reX.

Proof : This follows by linearity from the case X = G/K, for K < G. In
this case indeed

Iso(f) XG)?%’Iso(f)lnngesg%Ind?(K)Resf(K)Iso(f) =H/f(K)xglso(f) ,

and there is an obvious isomorphism of H-sets /(G/K) = H/f(K). u|

2.16. Let RB(G) denote the R-algebra R ®z B(G). Assume moreover that
the order of G is invertible in R. Then for H < G, let ¢% € RB(G) be
defined by

(2.17) 5 = m S° K (K, H) [G/K] |

K<H

where p is the Mobius function of the poset of subgroups of G. The elements
Sy, for H € [sg], are orthogonal idempotents of RB(G), and their sum is

equal to the identity element of RB(G). It follows that the elements €%,
for H € [s¢], are orthogonal idempotents of the R-algebra RB(G,G) =
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R ®7 B(G,G), and the sum of these idempotents is equal to the identity

element of RB(G,G). The idempotents €& play a special role, due to the
following lemma:

2.18. Lemma: Let R be a commutative ring, and G be a finite group with
order invertible in R.

1. Let H be a proper subgroup of G. Then
Res$ ¢S = 0 and eGInd% =0

2. When N QG, let mg .y € R be defined by

1
MeN = 1737 E [ X|p(X,G) .
Gl &
XN=G

Then

Defg/N eg Infg/N = queg% )

3. Let N <G, and suppose that N is contained in the Frattini subgroup
®(G) of G. Then
eg/N DefS ) = DefS )y e& and InfS,y /N = €& InfGy .

Proof : Assertion 1 follows from Lemma 2.13 and Assertion 1 of Theo-
rem 5.2.4. of [7].

Assertion 2 follows from Lemma 2.13 and Assertion 4 of Theorem 5.2.4.
of [7].

Finally the first part of Assertion 3 follows from Lemma 2.13 and Asser-
tion 3 of Theorem 5.2.4. of [7]: indeed InfS /Neg;% is equal to the sum of
the different idempotents e§ of RB(G) indexed by subgroups X such that
XN =G. If N < ®(G), then XN = G implies X®(G) = G, hence X = G.

The second part of Assertion 3 follows by taking opposite bisets, since & and

—_—~—

eg% are equal to their opposite bisets, and since (Defg /N)"p = Infg N a

2.19. Remark: For the same reason, if N < ®(G), then mg y = 1.

2.20. Remark: It follows from Assertion 1 and Equation 2.6 that if G and H
are finite groups and if L < (G x H), then €& [(G x H)/L] = 0 if p;(L) # G,
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and [(G x H)/Llefl =0 if ps(L) £ H.

3. Idempotents in £(G)

3.1. Notation: When G is a finite group with order invertible in R, denote
by E(G) the R-algebra defined by

£(G) = ¢S RB(G, G) ¢% .

Set
Y(G,G) ={L € sgxa | p1(L) = p2(L) = G},

and for L € sgxq, set

Y. =G [(G x G)/L) G € E(G) .

The R-algebra £(G) has been considered in [5], Section 9, in the case R
is a field of characteristic 0. The extension of the results proved there to the
case where R is a commutative ring in which the order of G is invertible is
straightforward. In particular:

3.2. Proposition: Let G be a finite group with order invertible in R.
1. If L € sgxqg — Z(G, G), then Y, = 0.

2. The elements Yy, for L in a set of representatives of (G X G)-conjugacy
classes on (G, G), form an R-basis of E(G).

3. For L, M € ¥(G,Q)

MG ko (LYK (M
YiYu = % Z | Z|u(Z,G) Yia(z)em
Z<@
Zka(L)=Zk1 (M)=G
szQ(L)mkl(M)

in E(G).

3.3. Corollary: Let L, M € 3(G,G). If one of the groups ko(L) or ki (M)
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is contained in ®(G), then

Y Y =Yoo -

Proof : Indeed if ky(L) < ®(G), then Zky(L) = G implies Z®(G) = G,
hence Z = G. Similarly, if k(M) < ®(G), then Zky(M) = G implies
7 = G. In each case, Proposition 3.2 then gives

YL Y = maroynk ) Yosnr

and moreover mg L)k () = 1 since ko(L) N k(M) < ®(G), by Re-
mark 2.19. O

3.4. Notation: For a normal subgroup N of G such that N < ®(G), set

ng = E ”SG(N’ M) YAM(G) )
MG
N<M<®(G)

where pag is the Mobius function of the poset of normal subgroups of G.

3.5. Proposition: Let N <G with N < ®(G). Then

G/N
SO% = Infg/N 901/ Defg/N .

Proof : Indeed if N < M QG, then puqg(N, M) = pag/n(1, M/N). Since
moreover N < &(G), setting G = G/N and M = M/N, we have by
Lemma 2.18

IfGy Ya_n Defey = Infgned [(Gx G

= G [(G x G)/Au(G)] G
= Yauw »

since Infg/N (G x G))/Ag(M)] Defg/N = (G x G)/An(G), by 2.10 and

transitivity of inflation. Moreover summing over normal subgroups M of G

contained in ®(G) amounts to summing over normal subgroups M of G with
N < M < ®(G). u|
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3.6. Proposition:
1. Let N QG, with N < ®(G). Then

o= @ Y eV MG x 6)/An(G)])

M<G
N<M<®(G)

. ( > ugG(N,M)[(GxG)/AM(G)Deg _
M<4G
N<M<(G)

2. In particular

1 .
of = |?| Z | X | (X, Gpuac(1, M) Indmf)G(/M Defresg;{/M .
X<G,M<AG
M<®(G)<X<G

3. Let N <G with N < ®(G), and f : G — H be a group isomorphism.
Then

Iso(f) o5 = @fi) Iso(f) -

Proof : For Assertion 1, by definition

#5 =2 nac(N, MGG x G)/An(G)] Y Blu(x, 6)[(G x G)/A(X)].
MG X<@G
N<M<®(G)

Moreover [(G x G)/An(G)] [(G x G)/A(X)] = [(G x G)/(Au(G) = A(X))],
by (2.7), and Ay (G) * A(X) = {(mz,z) | x € X,m € M}. The first
projection of this group is equal to M X, hence it is equal to G if and only
if X = @, since M < ®(G). The first equality of Assertion 1 follows, by
Remark 2.20, since moreover Ay (G) * A(G) = Ay (G). The second one
follows by taking opposite bisets, since €& and [(G x G)/Ay(G)] are equal
to their opposite, by (2.10) and Remark 2.14.

Assertion 2 follows in the special case where N = 1, expanding €& as

€= 157 2 XIX.C) (6 x G)/AMX)]

X<G

observing that u(X,G) = 0 unless X > ®(G), and that if X > &(G) > M
then

)

(G x G)/AX)] [(G x G)/Au(G)] = [(G x G)/Au(X)] ,
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which is equal to Indinf$ M Defres)G(/M by (2.9).
Now for Assertion 3

Iso(f) 5 Tso(f ) = Tso(f) e§ Tso(f ") Tso(f) STso(f) !

where X = Y paq(N, M) [(G x G)/An(G)]. Moreover
N<MEZd(0)

Iso(f) eG Iso(f ™) = el

by Lemma 2.15, since obviously /(e&) = ekf. Finally

Iso(f) S Iso(f) ! = Z pac(N, M) Iso(f) Infg/MDefg/M Iso(f~1)

M<G
N<M<d(G)

= E pac(N, M) Infg/f(M) Defg/f(M)
M<G
N<M<®(G)

= Z HaH (f(N)> M’) Iﬂfg/M/ Defg/M’
M <9H
F(IN)SM'<®(H)

where M’ = f(M) in the last summation. It follows that

Iso(f)eilso(f ) =efi Y nan(F(N), M') InfiaDefif g = ofny

as was to be shown. a

3.7. Corollary:
1. Let H < G. Then Res$ 0§ = 0 and ©§ Ind$ = 0.
2. Let M <G. If MN®(G) £ N, then Defg ,, oF = 0 and ©§ Infg ,, = 0.

Proof : The first part of Assertion 1 follows from Lemma 2.18, since
Res% ¢ = Resggggpg =0 .

The second part follows by taking opposite bisets.
For Assertion 2, let P = M N ®(G). Since Defg/M = Defgﬁ\; Defg/P, it
suffices to consider the case M = P, i.e. the case where M < ®(G). Then,
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since [(Gx G)/An(G)] = Infg/M Defg/M for any M <G, by 2.10, and since

Defg/M Infg/Q = InfgfﬁQ Defg;?m for any M, Q) <G, we have

DefG % = Defépny D nac(N, Q) Infg o Deff g e§
Q<G
N<Q<H(G)

. —
= Z pac(N,Q) Inf@?%@ Defg/MQ e§
Q<G
N<Q<o(G)

= > (Y hae(N.Q) Ity DefS G .

PG QAG
NM<P<®(G) N<Q<LO(G)
QM=P

Now for a given P 4G with P < ®(G), the sum Yoo pae(V,Q) is
QG
N<Q<®(G)
QM=P
equal to zero unless NM = N, that is M < N, by classical properties
of the Mdbius function ([15] Corollary 3.9.3). This proves the first part of

Assertion 2, and the second part follows by taking opposite bisets. O

3.8. Theorem: Let G be a finite group with order invertible in R.
1. The elements oS, for N QG with N < ®(G), form a set of orthogonal
idempotents in the algebra £(G), and their sum is equal to the identity
element €% of £(G).

2. Let N <G with N < ®(G), and let H be a finite group.

(a) If L < (G x H), then ©§ [(G x H)/L] = 0 unless p;(L) = G and
k(L) N ®(G) < N.

(b) If L' < (H x@Q), then [(H x G)/L'| ¢§ = 0 unless po(L') = G and
ko(L')N®(G) < N.

Proof : For N 4G, set u§ = Ya (e Since Ay (G) * Ay (G) = Ayn(G) for
any normal subgroups N and M of G, it follows from Corollary 3.3 that if
either N or M is contained in ®(G), then u§ u§; = u§,,.

Now Assertion 1 follows from the following general procedure for building
orthogonal idempotents (see [13] Theorem 10.1 for details): we have a finite
lattice P (here P is the lattice of normal subgroups of G' contained in ®(G)),
and a set of elements g, of aring A, for z € P (here A = £(G) and gy = u§)),

with the property that g,g9, = g»v, for any z,y € P, and gy = 1, where 0
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is the smallest element of P (here this element is the trivial subgroup of G,
and uf = Ya,(q) = eG) Then the elements f, defined for x € P by

= ulzy)gy

yeP
Ty
where pu is the Mobius function of P, are orthogonal idempotents of A, and
their sum is equal to the identity element of A. This is exactly Assertion 1
(since f, = ¢% here, for v = N € P).
Let L < (G x H). Assertion (a) follows from (2.6) and Corollary 3.7,
since

O Ind Infpl(L)/kl(L) 0
unless py(L) = G and k(L) N @(G) < N. The proof of Assertion (b) is
similar. Alternatively, one can take opposite bisets in (a). O

3.9. Proposition: Let G be a finite group with order invertible in R.
1. Let L € ¥(G,G). Then

0y Y = E pac(l,N)YincL
NaG
N<3(G)

This is non zero if and only if k(L) N ®(G) = 1. Similarly

Yy § = Z pac(l,N)Yaxn)

N<G
N<®(G)

and Yy, ©§ # 0 if and only if ko(L) N ®(G) = 1.

2. The elements oYy (resp. Y, ¥ ), when L runs through a set of
representatives of conjugacy classes of elements of 3(G,G) such that
ki(L) N ®(G) =1 (resp. ko(L) N O(G) = 1), form an R-basis of the
right ideal ©§ E(G) (resp. the left ideal E(G) ¢§) of E(G).

Proof : Let L € 3(G, G). By Proposition 3.6, we have

GV =eq (D nac(LN[(G x G)/AN(G)]) [(G x G)/L] e
NG
N<®(G)

=i ( Y nae(lL MG x G)/(An(G) < 1)]) e
NEiG)
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=i ( > naa(LN)[(GxG)/(N < 1)L]) e§ .
NG
N<B(G)

Z NQG }/(NXI)

N<G
N<B(G)

Set M = ki(L) N ®(G). Then M <G, and (N x 1)L = (NM x 1)L for any
normal subgroup N of G contained in ®(G). Thus

(3.10) iYL= > ( > MS‘G(LN)> Yipxar -

PG NG
M<P<®(@) NM=P

IfM#l,then( 3 ;@G(l,N)> — 0 for any P <G with M < P < &(G),

NG
NM=P

again by [15], Corollary 3.9.3. Hence ¢{ Y7 = 0 in this case. And if M = 1,
Equation (3.10) reads

o7 YL = Z pac(1, P)Yipxayr -

PG

P<d(@)
The element Y{py1)r, is equal to Y7 if and only if (P x 1)L is conjugate to L.
This implies that ki ((P x 1)L) is conjugate to (hence equal to) ki(L). Thus
P <k ((Px1)L) < k:l( ), so P < k(L) ﬂ(D(G) =1, hence P = 1. So
the coefficient of Y7 in ¢ Y7 is equal to 1, hence ¢§ Y7, 7é 0. The remaining

statements of Assertion 1 follow by takmg opposite bisets.

Assertion 2 follows from Proposition 3.2, and from the fact that the co-
efficient of Y7, in o Y7 is equal to 1 when k(L) N ®(G) = 1. 0

3.11. Corollary: Let G be a finite group of order invertible in R. If every
minimal (non-trivial) normal subgroup of G is contained in ®(G), then p§
is central in E(G), and the algebra ©§ E(G) is isomorphic to ROut(G).

Proof : Indeed if L € ¥(L, L) and ¢§ Yy, # 0, then k(L) N ®(G) = 1. It
follows that ki(L) contains no minimal normal subgroup of G, and then

fa(L) = 1. Equivalently ¢(L) = py(L)/ki(L) = G 2= pa(L)/ky(L), i.
ko(L) = 1 also, or equivalently ko(L) N ®(G) = 1. Hence ¢§Y; # 0 1f
and only if Y7 # 0, and in this case, there exists an automorphism 6 of G

such that
L=2A7Ay(G) = {(Q(x),x) |z e G} .
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In this case for any normal subgroup N of G contained in ®(G)

(Nx1)L = {(a,b) € GxG|ad(b)™" € N}
= {(a,b) e Gx G |a'0(b) € N}
= L(1x67'(N)) .

Now N +— 67'(N) is a permutation of the set of normal subgroups of G
contained in ®(G). Moreover pqc(1,N) = pag(1,671(N)).

Summing over all N < ®(G), it follows that ¢ Y, = Y ¢f, so ¢f is
central in £(G). Moreover the map 6 € Aut(G) — ¢f Ya, (@) clearly induces
an algebra isomorphism ROut(G) — »§ £(G) (observe indeed that if 0 is an
inner automorphism of G, then Ay(G) is conjugate to A(G) in G x G, so

Yaye) = Ya@) = €6)- 0

3.12. Theorem: Let G be a finite group with order invertible in R. If G
is milpotent, then ©§ is a central idempotent of £(G).

Proof : Let L € 3(G, G). Setting QQ = q(L), there are two surjective group
homomorphisms s,¢ : G — @ such that L = {(x,y) € G x G | s(z) = t(y)}.
Then k(L) = Ker s and ko(L) = Kert. Now by Proposition 3.9

YL = Z pac(1,N)Yinsar

N<G
N<®(@)

and this is non zero if and only if Ker s N ®(G) = 1. Now s(®(G)) is equal
to ®(Q) since G is nilpotent: indeed G = [[ G, (resp. @ =[], Q) is
the direct product of its p-Sylow subgroups G, (resp. @,), and s induces
a surjective group homomorphism G, — @,, for any prime p. Moreover
(G) = [, (Gy) (resp. 2(Q) =[[, ®(Qy)). Finally ®(G,) is the subgroup
of G} generated by commutators and p-powers of elements of G, hence it
maps by s onto the subgroup of (), generated by commutators and p-powers
of elements of @, that is ®(Q,). Similarly t(®(G)) = ®(Q).

If Ker sN®(G) = 1, it follows that s induces an isomorphism from ®(G)
to ®(Q). Then the surjective homomorphism ®(G) — ®(Q) induced by t is
also an isomorphism, and in particular Kert N ®(G) = 1.

Let D = LN(®(G) x ®(G)). Then ky (D) C ki (L)N(G) = Ker sNd(G),
hence ki(D) = 1. Similarly ko(L) C ko(L) N @(G) = Kert N &(G) = 1,
hence k»(D) = 1. Since s(®(G)) = ®(Q) = t(®(G)), we have moreover
p1(D) = ©(G) = pa(D). It follows that there is an automorphism « of ®(G)
such that D = {(z,a(z)) | z € ®(G)}.
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Moreover for any y € G, there exists z € G such that (y, z) € L. It follows
that (2¢,a(z)?) € D for any = € ®(G), that is a(z¥) = a(z)?. In particular
if N is a normal subgroup of G contained in ®(G), then so is a(/V). Hence «
induces an automorphism of the poset of normal subgroups of G contained
in ®(G). In particular pac(1, N) = pac(1, a(N)).

Moreover for n € N and (y, z) € L, we have

(n, ) (y, 2) = (y,2)(n", 1) = (y, 2) (n*, a(n)) (1, a(n?) ") .

Since (n¥,a(n¥)) € D < L, we have (N x 1)L = L(1 x a(N)). It follows
that

oV = Y pac(N) Y= Y pac(l,N) Yiasawy
NG N<G
N<Z®(G) N<O(G)
= Z pac (1, a(N)) Yiaxany) = Z pac(1,N) Yiaxw
NG NG
N<2(G) N<®(@)
- YLSOfa
as was to be shown. a

3.13. Remark: When G is not nilpotent, it is not true in general that
¢§ is central in £(G). This is because t(®(G)) need not be equal to ®(Q)
for a surjective group homomorphism ¢ : G — ). For example, there is a
surjection t from the group G = Cy x (C5 x Cy) to Q = Cy with kernel
Cy x C5 containing ®(G) = Cy x 1, and another surjection s : G — @
with kernel 1 x (C5 x Cy) intersecting ®(G) trivially. In this case, the group
L ={(zx,y) € Gx G| s(x)=t(y)} isin X(G,G), and k(L) N P(G) = 1,
but k(L) N ®(G) = ®(G) # 1. By Proposition 3.9, we have ¢ Y7, # 0 and
Y, o =0, so ¢§ is not central in £(G).

4. Idempotents in RB(G,G)

Recall from Definition 2.8 that a section (T, S) of a finite group G is a pair of
subgroups of G such that S <T'. For such a section (7, .5) of G, recall that
Indinf%s € B(G,T/S) denotes (the isomorphism class of) the (G, T/S)-biset
G/S, and that DefresS: /s € B(T/S, G) denote (the isomorphism class of) the
(T'/S, G)-biset S\G.

The group G acts by conjugation on the set of its sections: if ¢ € G and
(T, S) is a section of G, then 9(T',S) = (97,95) is another section of G.
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4.1. Notation: Let G be a finite group, and let (T,S) be a section of G.

1. Let R be a commutative ring in which the order of G is invertible. Let
uf g € RB(G,T/S) be defined by

U%S = Indinf%s SO{/S )

and let v§ g € RB(T/S,G) be defined by

G _ T/s G
vrg =1’ Defresy g .

4.2. Remark: Observe that vfg = (uf¢): indeed (G/S)? = S\G, and
(02 )7 = @

4.3. Definition: A section (T,S) of a finite group G is called minimal
(cf. [9]) if S < ®(T). Let M(G) denote the set of minimal sections of G.

4.4. Remark: The terminology comes from the following observation: if
(T,S) is any section of G, and H is a subgroup of 7" minimal subject to
HS =T, then the section (H, H N .S) is such that H/(HNS) =2 T/S, and
it is moreover minimal in the sense of Definition 4.3 (for if K < H is such
that K(H NS) = H, then KS = HS = T, thus K = H, showing that
HNS < ®(H)). In other words a section (7,5) is minimal if and only if the
only subgroup H of T such that H/(H N S) = T/S is T itself.

4.5. Theorem: Let G be a finite group with order invertible in R.
1. If (T,5) and (1", 5") are minimal sections of G, then

'U?/’S/ ug7s =0

unless (T, S) and (T",5") are conjugate in G.
2. If (T, S) is a minimal section of G, then

S S
fsufs = (Y Tsole)) = (D Tsoleg))er’*

gENg(T,S)/T geNg(T,S)/T

where Ng(T,S) = Na(T)NNe(S), and ¢, is the automorphism of T/ S
induced by conjugation by g.
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Proof : Indeed (S'\G) x¢ (G/S) = S'\G/S as a (T"/S",T/S)-biset. Hence

U%,S'U%s = @f # ( Z S,\T/QT/S> 90{/5 :
geT'\G/T
For any g € G, the (17"/5',T/S)-biset S’\T"¢gT'/S is transitive, isomorphic to
((T"/8") x (T'/S)) /Ly, where

L,={({'S',tS) e (T'/S") x (T/S) | t'gt™" € S'gS} .
Then t'S” € p1(Ly) if and only if ¢ € S"- gTg~* NT". Hence
pi(Ly) =T NT")S')S" .
Similarly ps(Ly) = (T" NT)S/S. In particular pi(L,) = T7"/5" if and only if
TNTNS' =T, ie 9TNT =T, since 8" < ®(T"). Thus py(Ly) =T1"/5’
if and only if 7" < 97". Similarly ps(L,) = T'/S if and only if T < T"9. By
Theorem 3.8, it follows that gofl/S,(S’\T’gT/S)gof/S = 0 unless 7" = 97T.

Assume now that 7" = 97. Then 'S’ € ki(L¢) if and only if ¢ lies in
S gSg ' NT'. Hence

ki(Ly) = (/SN T)S'/S

and similarly ko(L,) = (S NT)S/S. But since S < ®(T) and ST, it
follows that 95 <997 = T" and 95 < 99(T) = ®(7"). Hence 95 - 5'/S" is
contained in ky(Ly) N ®(71")/S". Moreover ®(1")/S" = ®(1"/5’), as

I/ = () (M) = [ (M/S)=(() M)/s'=&(T")/s",
S'<M'<T M/<T M/<T

where M’ runs through maximal subgroups of 7", which all contain S’ since

S' < (T).

It follows that if ki (L,) N®(17/S") =1, then 955" = S’ that is 95 < §".
Similarly if ky(L,) N ®(T/S) = 1, then S < S. By Theorem 3.8, it follows
that @f,/S/(S'\T’gT/S)wf/S = 0 unless 7" = 97 and S’ = 9S5. This proves
Assertion 1.

For Assertion 2, the same computation shows that

sufs= Y. @) (S\TgT/S) ey .
gENG(T,S)/T
But S\T'¢T/S = gT/S if g € Ng(T,S), and this (T'/S,T/S)-biset is isomor-

phic to Iso(c,). Assertion 2 follows, since moreover gpf commutes with any
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biset of the form Iso(#), where € is an automorphism of 7'/S, by Proposi-
tion 3.6. O
4.6. Notation: For a minimal section (T,5) of the group G, set

G G G -G T/S G
ET,S = WUT,SUT,S = WlndlnfT/sgpl/ DefreST/S & RB(G, G) .

Note that 6%5 = egGTﬂS for any g € GG, and that Eg,N = ¢§ when N <G
and N < ®(G), by Proposition 3.5.

4.7. Proposition: Let (T,S) be a minimal section of G. Then

1
G e Iel
= E X|u(X, T S, M) Indinf Def: .
1,5 N (T, )] | X| (X, T)par (S, M) Indin Xx/M DeIresy g
X<T,MAT
S<M<®(T)<X<T

Proof : This is a straightforward consequence of the above definition of €% g,
and of Assertion 2 of Proposition 3.6, using the transitivity of Defres and
Indinf involved. O

4.8. Theorem: Let G be a finite group with order invertible in R, let
IM(G)] be a set of representatives of conjugacy classes of minimal sec-
tions of G. Then the elements €74, for (T,S) € [M(G)], are orthogonal
idempotents of RB(G,G), and their sum is equal to the identity element of

RB(G,G).

Proof : Let (7,S) and (7",5") be distinct elements of [M(G)]. Then

G G 1 1 G G G [C
€75 €18 = [No 5 NG5y W1 Vs Urs Vrs = 0

since v% gu$ ¢ = 0 by Theorem 4.5. Moreover:

_ G _ 1 G ,a
Y= Z €r.s = Z [Ng(T,S):T| UT7S Ur.s
(T,8)eIM(G)] (T,S)eM(G)]
a ,a
- Z \G1:T| Ur,.sUrs
(T,8)eEM(G)
e T/S G
= Z ﬁlndmfwsgol/ Defresy,
(T,S)eM(G)
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Now for a given T' < G

Z IndlnfT/Sgpl Defres%s = IndG Z InfT/Sgof/SDefT/S)Resg

ST SaT

S<a(T) S<a(T)
= Ind{( Z ¢ )Res? = Ind{ e% Res%

Sar

S<®(T)

by Proposition 3.5 and Theorem 3.8.

Moreover Ind?g;Resg = |[Ng(T) : T ;a?, by (2.17) and Lemma 2.13.
Thus

Yoo b= Mg~ Z = [(Gx G)/A(G)] .

(T,5)eM(G)] T<G Te[sq]

So the sum ¥ is equal to the identity of RB(G,G). Since €f g% ¢ = 0 if
(T,S) and (1",5") are distinct elements of [M(G)], it follows that for any
(T, 5) € [M(G)]

6%5 = 6%52 = (6%5)2 )

which completes the proof of the theorem. a

5. Application to biset functors

5.1. Notation: Let F' be a biset functor over R. When G is a finite group
with order invertible in R, we set

00 F(G) = g7 F(G)

5.2. Proposition: Let F' be a biset functor over R. Then for any finite
group G with order invertible in R, the R-submodule ¢ F(G) of F'(G) is the
set of elements u € F(G) such that

Res$u=0 VH <G
Defgyu=0 YN<G, NN®(G) #1
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Proof : If u € 66 F(G) = ¢§ F(G), then Res&u = 0 for any proper subgroup
H of G, and Defg yu = 0 for any N <G such that N N ®(G) # 1, by
Corollary 3.7.

Conversely, if v € F(G) fulfills the two conditions of the proposition,
then efu = u, because eZ is equal to the identity element [(G x G)/A(G)}} of
RB(G, G), plus a linear combination of elements of the form [(GxG)/A(H)
Indg Resg, for proper subgroups H of . Similarly, it follows again from
Corollary 3.7 that Infg N Def$ /vt = 0 for any non-trivial normal subgroup
of G contained in ®(G), thus p§u = u. 0

5.3. Remark: Since Defg/N = Defg%\g Defg/M, where M = N N ®(G),
saying that Defg/Nu = 0 for any N <G with N N ®(G) # 1 is equivalent

to saying that Defg /vt = 0 for any non trivial normal subgroup N of G
contained in ®(G).

5.4. Theorem: Let F be a biset functor over R. Then for any finite group G
with order invertible in R, the maps

Ng(T,S)/T
(T,S)e[M(G)]
| |4 L .
v (;‘?5) Na(1,5)1] UT.s W

G U
> Upswrs <~—— @ wpg
(T,S) (T.,S)

are well defined isomorphisms of R-modules, inverse to one other.

Proof : We have first to check that if w € F(G), then the element v g w of
@{/SF(T/S) = 0 F(T/S) is invariant under the action of Ng(7T,5)/T. But
for any g € Ng(T/S)

Iso(c,) U%S = vfﬂgs Iso(cy) = U%S Iso(cy)

where Iso(cy) : F(G) — F(G) on the right hand side is conjugation by g,
that is an inner automorphism, hence the identity map, for g € G.
Now for w € F(G)

UV(w) = Z \NG(Tl,S):ﬂ uf g v g w
(T,9)eIM(G)]
= Z fsw=uw
(T,9)EIM(G)]
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so UV is the identity map of F(G).

Conversely, if wr g € (5¢.F(T/S))NG(T,S)/T’

for (T,5) € [M(G)], then by

Theorem 4.5
VU( D wTS) = S Z +UG UG/ r Wt s
) [Ng(T,S):T| “ 1,5 *1",S )
(T.5)eM(G)] (TSEMEN 7 s
_ 1 .G .G
™ (s etmi@ NS VT T TS
= D — Z Iso(c,) wr.g
|Na(T,S5):T)| g )
(T,5)e[M(G)] ¢ JENG(T.8)/T
= ¥ TS >
(T.5)eM(G)]
so VU is also equal to the identity map. O

6. Atoric p-groups

For the remainder of the paper, we denote by p a (fixed) prime number.

6.1. Notation and Definition:

o [f P is a finite p-group, let Q1 P denote the subgroup of P generated by
the elements of order p.

o A finite p-group P is called atoric if it does not admit any decomposition
P =F x @Q, where E is a non-trivial elementary abelian p-group. Let
At, denote the class of atoric p-groups, and let [At,] denote a set of
representatives of isomorphism classes in At,.

The terminology “atoric” is inspired by [14], where elementary abelian
p-groups are called p-tori. Atoric p-groups have been considered (without
naming them) in [6], Example 5.8.

6.2. Lemma: Let P be a finite p-group, and N be a normal subgroup of P.
The following conditions are equivalent:

1. NNeP) =1

2. N is elementary abelian and central in P, and admits a complement
n P.

3. N is elementary abelian and there exists a subgroup ) of P such that
P=N xQ.
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Proof : Let N <P with NN ®(P) = 1. Then N maps injectively
in the elementary abelian p-group P/®(P), so N is elementary abelian. Let
Q/®(P) be a complement of N®(P)/®(P) in P/®(P). Then @ > &(P) >
[P, P], so @ is normal in P. Moreover @) - N = P and Q N N®(P) =
(QNN)P(P) = ®(P), thus QNN < ®(P)NN = 1. Now N and Q are
normal subgroups of P which intersect trivially, hence they centralize each
other. It follows that P = N x Q.

m This is clear.

If P= N -Q@ for some subgroup @) of P, and if N is central in P,
then P = N x Q). Thus ®(P) =1 x ®(Q), as N is elementary abelian. Then
NN®P)<NNQ=1. u|

W6.3. Lemma: Let P be a finite p-group. The following conditions are
equivalent:

1. P s atoric.

2. If NIP and NN®(P)=1, then N = 1.

3. W Z(P) < ®(P).

Proof : Suppose that P is atoric. Let N <P with N N ®(P) = 1.
Then by Lemma 6.2, the group N is elementary abelian and there exists a
subgroup () of P such that P = N x (). Hence N = 1.

Suppose now that Assertion 2 holds. If x is a central element of
order p of P, then the subgroup N of P generated by z is normal in P, and
non trivial. Then N N®(P) # 1, hence N < &(P) since N has order p, thus
x € ®(P).

Finally, if Assertion 3 holds, and if P = E x ) for some subgroups
E and @ of P with E elementary abelian, then ®(P) = 1 x ®(Q). Moreover
E<MZ(P)<®(P)<Q,so E=FENE =1, and P is atoric. u|

6.4. Proposition: Let P be a finite p-group, and N be a mazimal normal
subgroup of P such that N N ®(P) = 1. Then:

1. The group N is elementary abelian and there exists a subgroup T of P
such that P =N x T.

2. The group P/N = T is atoric.

3. If Q s an atoric p-group and s : P — @ s a surjective group homo-
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M morphism, then s(T) = Q. In particular Q is isomorphic to a quotient
of T.

Proof : (1) This follows from Lemma 6.2.

(2) By (1), there exists T' < P such that P = N x T'. In particular P/N = T.
Now if T'= E x S, for some subgroups F and S of T'" with E elementary
abelian, then P = (N x E) x S, and N x E is an elementary abelian normal
subgroup of P which intersects trivially ®(P) = ®(S5). By maximality of IV,
it follows that £ =1, so T = P/N is atoric.

(3) Let s : P — @ be a surjective group homomorphism, where @ is atoric.
By (1), the group N is elementary abelian, and there exists a subgroup T'
of P such that P = N x T. Moreover s((ID(P)) = ®(Q) as P is a p-group,
as already shown in the proof of Theorem 3.12, and s(Z(P)) < Z(Q) as s
is surjective. It follows that s(N) < 01Z(Q), so s(N) < ®(Q) since Q is
atoric, by Lemma 6.3. Now s(P) = Q = s(N)s(T'), thus Q = ®(Q)s(T), and
s(T) = @, as was to be shown. 0

6.5. Notation: When P is a finite p-group, and N is a mazximal normal
subgroup of P such that N N ®(P) =1, we set P* = P/N.

By Proposition 6.4, the group P® does not depend on the choice of N,
up to isomorphism: it is the greatest atoric quotient of P, in the sense that
any atoric quotient of P is isomorphic to a quotient of P®. In particular P
is trivial if and only if P is elementary abelian.

6.6. Proposition: Let s: P — @ be a surjective group homomorphism.
Then P® =2 Q° if and only if Ker(s) N ®(P) = 1.

Proof: Let N = Ker(s). If NN®(P) = 1, then by Lemma 6.2, the group N is
elementary abelian, and there exists a subgroup 7" of P such that P = N xT'.
Moreover T' = (). So by Proposition 6.4, there exists an elementary abelian
subgroup E of T, and a subgroup S of T' with S = T© = Q@ such that
T=FExS. Then P=NxE xS, so P S, since S is atoric and N x F
is elementary abelian. Hence P® = Q©.

Conversely if P® 2 Q°, to prove that Ker(s) N ®(P) = 1, it suffices to
prove that Ker(mos)N®(P) = 1, where 7 is a surjective group homomorphism
Q — Q. Now there is an elementary abelian subgroup E of P and an atoric
subgroup T' = P® of P such that P = E x T. By Proposition 6.4, we have

(mos)(T) = Q® =T, so 7o s induces an isomorphism from 7' to Q°. In
particular Ker(r o s) NT =1, so Ker(m o s) N ®(P) =1 since ®(P) <T. O
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6.7. Proposition: Let P be a finite p-group, let N be a normal subgroup
of P such that P/N = P®, and let Q be a subgroup of P. The following are
equivalent:

1. Q= pP°.
2. QN = P.

3. There exists a central elementary abelian subgroup E of P such that

P =EQ.

4. There exists an elementary abelian subgroup E of P such that P =
ExQ.

Proof : Suppose Q¢ = P®. We have N N ®(P) = 1, by Proposi-
tion 6.6. Moreover ®(Q) < ®(P), as P is a p-group. Setting M = NNQ, we
have M N ®(Q) =1, so (Q/M)® = Q° = P®. But Q = Q/M = QN/N is
a subgroup of P/N = P® and moreover there exists an elementary abelian
subgroup E of @ such that Q = E x @@ ~ F x P® Hence E = 1 and
Q= QN/N = P/N, so QN = P, as was to be shown.

We have N N ®(P) =1, by Proposition 6.6. Hence N is elementary
abelian, and central in P, and 2 implies 3.

Let E be an elementary abelian central subgroup of P such that
P = EQ. Let F be a complement of £ N Q in E. Then F is elementary
abelian and central in P. Moreover QF = QF = P, and (Q N F = 1. Hence
P=FxqQ.

If P=FE x @ and E is elementary abelian, then ®(P) =1 x ®(Q).
Thus EN®(P) =1, so (P/E)® = P® by Proposition 6.6, and Q¢ = P®. g

6.8. Proposition: Let P be a finite p-group, and Q) be a subquotient of P.
Then Q© is a subquotient of P®.

f:

Proof : Let (V,U) be a section of P such that V/U = Q. Then Q® is
isomorphic to a quotient of V©, by Proposition 6.4. Hence it suffices to
prove that V© is a subquotient of P®.

Let F be a maximal normal subgroup of P such that £EN®(P) = 1, and
T = P° be a subgroup of P such that P = E x T. Let W = EV. Then
W€ =~ V@ by Proposition 6.7. Moreover E < W < ExT,so W =E x S,
where S = W NT. Then V@ = W= 5% and S is a quotient of S, hence
a subquotient of T2 P®. This completes the proof. O
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7. Splitting the biset category of p-groups, when p € R~

7.1. Notation and Definition: Let C, (resp. RC,) denote the full sub-
category of the biset category C (resp. RC) consisting of finite p-groups. A
p-biset functor over R is an R-linear functor from RC, to the category of
R-modules. Let F, g denote the category of p-biset functors over R.

In the statements below, we indicate by [ p € R*] the assumption that
p is invertible in R.

7.2. Theorem: [p € R*] Let P and Q be finite p-groups, let (T, S) be a
minimal section of P, and (V,U) be a minimal section of Q). Then

€2y RB(Q,P) g # {0} = (V/U)* =(T/S)® .

Proof : If eg’U RB(Q, P) €} ¢ # {0}, there exists a € RB(Q, P) such that
ec‘iU a 65’5 = Indinf%U go‘l//U Defresg/U a IndianTD/S golT/S Defresi/s #0 ,

and in particular the element b = Defresg/UaIndinfg/S of RB(V/U,T/S)

is such that 90;// v bgpf/ s # 0. It follows that there is a subgroup L of the

product (V/U) x (T/S) such that

oYU ((V/U) x (T/8)) /L] 1/ #0 .

Then Theorem 3.8 implies that py(L) = V/U, ki(L)N®(V/U) =1, po(L) =
T/S, and k(L) N ®(T/S) = 1. By Proposition 6.6, it follows that

(VIU)Y® = (py(L) /R (L)) 2 (po(L) /Ra(L))® = (T/9)
as was to be shown. 0

7.3. Notation: [ p € R*] Let L be an atoric p-group. If P is a finite
p-group, we denote by bt the element of RB(P, P) defined by

bf - Z 6575 .
(T,5)e[M(P)]
(T/S)°=~L
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Recall that the center Z(D) of an essentially small category D is by
definition the set of natural transformations from the identity functor Idp
to itself. Thus an element 6 of Z(D) assigns to each object D of D an
endomorphism 6p of D, in such a way that for any morphism f : D — D’
in D, the diagram

DgD

ol

D’ Opr D’
is commutative. The center Z(D) is in general a monoid for the composition
of natural transformations. If D is R-linear (for some commutative ring R),

then Z (D) becomes an R-algebra in a natural way (the R-module structure
is given by R-linear combination of natural transformations).

7.4. Theorem: |[p e R*|

1. Let L be an atoric p-group, and P be a finite p-group. Then bY # 0 if
and only if L T P©.

2. Let L and M be atoric p-groups, and let P and Q) be finite p-groups. If
bY RB(Q, P)bF +# {0}, then M = L.

3. Let L be an atoric p-group, and let P and Q) be finite p-groups. Then
for any a € RB(Q, P)
b% a=abl .

4. The family of elements bY € RB(P,P), for finite p-groups P, is an
idempotent endomorphism by, of the identity functor of the category
RC, (i.e. an idempotent of the center of RC,). The idempotents by,
for L € [At,], are orthogonal, and their sum is equal to the identity
element of the center of RC,.

5. For a giwen finite p-group P, the elements bT, for L € [At,] such that
L T P®, are non zero orthogonal central idempotents of RB(P, P), and
their sum is equal to the identity of RB(P, P).

6. For given finite p-groups P and @, and a given atoric p-group L, let
S be a set of representatives of conjugacy classes of subgroups Y of
Q x P such that q(Y)® = L. Then the elements b [(Q x P)/Y] =
[(Q x P))Y]bE, for Y €S, form an R-basis of bY RB(Q, P).

Proof : (1) The idempotent b is non zero if and only if there exists a minimal
section (T, S) of P such that (T//S)® = L. Then L C P®, by Proposition 6.8.
Conversely, if L © P®, then L T P, and by Remark 4.4, there exists a
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minimal section (T, S) of P such that T/S = L. Then (T/S)® = L® =~ [,
s0 €} ¢ appears in the sum defining b7, thus by # 0.

(2) If b9 RB(Q, P) b¥ +# {0}, then there exist a minimal section (V,U) of Q
with (V/U)® = M and a minimal section (T',.S) of P with (T'/S)® = L such
that ec‘%U RB(Q,P)efg # 0. Then (V/U)® = (T/S)® by Theorem 7.2, that
is M = L.

(3) By Theorem 4.8, the identity element of RB(P, P) is equal to the sum of
the idempotents e} g, for (T, S) € [M(P)]. Grouping those idempotents €.
for which (7'/S5)® is isomorphic to a given L € [At,] shows that the identity
element of RB(P, P) is equal to the sum of the idempotents b%, for L € [At,)]
(and there are finitely many non zero b%, by (1)). It follows that

bha = bfa > by = > biaby
Le[Atp] Le[Atp]

= biraby [y (2)]

= Y bPaby [by (2)]
Le[Atp]

P
- abM y

since 3 b9 is the identity element of RB(Q, Q).
Le[Atp]

(4) Tt follows that the family b7, where P runs over finite p-groups, is an
element by, of the center of RC,. Clearly b2 = by, and if L and M are non
isomorphic atoric p-groups, then b.by, = 0, by (2). Moreover the infinite

sum Y by is actually locally finite, i.e. for each finite p-group P, the sum
Le[Atp]

5= bP has only finitely many non zero terms. The sum > by is clearly
Le[Aty] Le[Aty]
equal to the identity endomorphism of the identity functor of RC,.

(5) This is a straightforward consequence of (1) and (3).

(6) Let Y be any subgroup of @ x P. By 2.6, we can factorize [(Q x P)/Y]
as [(Q x P)/Y]| = ab, where a € RB(Q,q(Y)) and b € RB(q(Y),P). If
bf [(@xP)/Y]isnon zero, then bga, equal to ab%(y) by Assertion 3, is also non
zero, hence b £ 0, so L C ¢(Y) by Assertion 1. Thus L = L T ¢(Y)®.
But on the other hand b% is the sum of the distinct idempotents E%S
corresponding to minimal sections (T, S) of @ such that (T/S)® = L. By
Proposition 4.7, together with (2.9), it follows that bf is a linear combination
of terms of the form [(Q x Q)/Ax(X)], where (X, M) is a section of @ such
that S < M < ®(T) < X < T for one of these minimal sections (7, .S) of Q.
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Now the composition b$ [(Q x P)/Y] is a linear combination of terms of
the form [(Qx Q)/An(X)] [(Qx P)/Y], that is by (2.7), a linear combination
of terms [(Q x P)/ (A (X)+®VY)], for some z € Q. By Lemma 2.3.22 of [7],
the group ¢(Ay (X)*®VY) is a subquotient of ¢(Ay/(X)) = X/M, hence it
is a subquotient of T'/S. Tt follows that b5 [(Q x P)/Y] is a linear combination
of terms of the form [(Q x P)/Z], where q(Z) C T'/S for some minimal section
(T, S) of Q with (T/S)® = L. In particular ¢(2)® C (T/S)® = L.

But then, composing with b9, we get that b [(Q x P)/Y] is a linear
combination of terms of the form b¢ [(Q x P)/Z], where ¢(Z)® C L. On the
other hand, we have seen that b% [(Qx P)/Z] = 0 unless L C ¢(Z)®. Tt follows
that the elements b [(Q x P)/Z], for ¢(Z)® = L, generate b¢ RB(Q, P).

Allowing L to run through all atoric p-groups, we see that the elements
qu(Z)@ [(@x P)/Z], when Z runs through subgroups of @ x P up to conjugation,
generate RB(Q, P). In other words the linear endomorphism (8 of RB(Q, P)
sending [(Q x P)/Z] to qu(Z)@[(Q x P)/Z] is surjective. As RB(Q, P) is a free
R-module, the linear map # must be split surjective, and there is a linear
endomorphism v of RB(Q, P) such that 8y = Id. This can be viewed as
a product of square matrices with coefficients in R. Taking determinants
(which makes sense since R is commutative), we get that 5 and ~ are both
isomorphisms, and in particular the elements qu(Z)@[(Q x P)/Z], for Z in
a set of representatives of conjugacy classes of subgroups of @@ x P, are
linearly independent. In particular, for a fixed atoric p-group L, the elements
b2 [(Q x P)/Z], for Z € S, are linearly independent. This completes the
proof. O

7.5. Corollary: [ p € R*]

1. Let L be an atoric p-group. For a p-biset functor F', the family of maps
F(bE) : F(P) — F(P), for finite p-groups P, is an endomorphism of F,
denoted by F(br).

2. If 0 : F — G is a natural transformation of p-biset functors, the dia-

gram
2 F(br) F
6

G G(br) G

>

is commutative. Hence the family of maps F(bY) : F(P) — F(P), for
p-groups P and p-biset functors F, is an idempotent of the center of
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the category F, r, denoted by ZL.

3. The idempotents EL, for L € [At,], are orthogonal idempotents of the
center of Fp r, and their sum is the identity.

4. If F is a p-biset functor over R, let ELF denote the image of the endo-

morphism F(by) of F. Then F = & byF.
Le[Atp]

5. Let BL‘FP,R denote the full subcategory of F, r consisting of functors I

such that F' = brF'. Then bpF, r is an abelian subcategory of Fp r.
Moreover the functor

(7.6) FeFor 0uF)eia) € [ buFor
Le[Atp]

is an equivalence of categories.

Proof : All assertions are straightforward consequences of Theorem 7.4. O

In order to study the categories appearing in the above decomposition
(7.6) of F, g, it will be convenient to consider first the product of those
categories /b\H}_n r obtained when H runs through atoric subquotients of a
given atoric p-group L. This motivates the following notation:

7.7. Notation: For an atoric p-group L, let RC; denote the full subcategory
of RC, consisting of the class Yy, of finite p-groups P such that P® C L.
When p € R*, let moreover

br= > by

He[Atp]
HCL

be the sum of the idempotents by corresponding to atoric subquotients of L,

up to isomorphism. When P is any finite p-group, we get a corresponding
central idempotent of RB(P, P), defined by

b= ) b
He[Aty]
HCL

-

HE[Aty)]
HCL

Similarly, we denote by
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the central idempotent of F, g corresponding to b . For any finite p-group P
and any p-biset functor F, we get a linear map

Fj")y= Y F(by): F(P) = F(P) .

He[Aty]
HCL

The class Yy, is closed under taking subquotients, by Proposition 6.8. It
follows that we can apply the results of Section 6 (Appendix) of [12]: if F is
a p-biset functor over R, we can restrict F' to an R-linear functor from RC;
to R-Mod. This yields a forgetful functor Oy, : Fpr — FunR(Rclg7 R-Mod).
The right adjoint Ry, of this functor is described in full detail in Section 6
of [12], as follows: if G is an R-linear functor from RC} to R-Mod, and P is
a finite p-group, set
(7.8) Ry (G)(P) = Jim  G(X/M)

(X, M)exL(P)
the inverse limit of modules G(X/M) on the set X (P) of sections (X, M)
of P such that (X/M)® C L, i.e. the set of sequences (Ix ar)(x,m)es, (p) With
the following properties:

(1. if (X, M) € X1(P), then Iy € G(X/M).
2. (X, M), (Y,N) € ¥ (P)and M < N <Y < X, then

Defresi,(//]]\‘,/llX,M = ZY,N .

3. ifx € Pand (X, M) € £,(P), then *lx s = lox=u-

\

7.10. Remark: Observe that in Condition 2, there is no need to assume
that (Y, N) € X1(P): indeed if M < N <Y < X and if (X, M) € X(P),
then Y/N is a subquotient of X/M, so (Y/N)® is a subquotient of L, by
Proposition 6.8, that is (Y, N) € X1 (P).

Recall now that for finite groups P and @, and for a finite (Q), P)-biset U,
for a subgroup T of ) and an element u of U, the subgroup T" of P is defined
by T ={x € P| 3t € T tu = uzr}. By Lemma 6.4 of [12], if (T, S) is a
section of @, then (7%, S") is a section of P, and T"/S" is a subquotient of
T/S.

With this notation, when P and () are finite p-groups, when U is a fi-
nite (Q, P)-biset, and I = (Ixar)(x,m)ex, (p) is an element of Ry, (G)(P), we

34



denote by Ul the sequence indexed by ¥.(Q) defined by

Ulyw =Y.  (N\Yu)(lyunu)

uelY\U/P]L

where [Y\U/P] is a set of representatives of (Y x P)-orbits on U, and N\Yu
is viewed as a (Y/N,Y"/N")-biset. It is shown in Section 6 of [12] that
Ul € Ry, (G)(Q), and that Ry, (G) becomes a p-biset functor in this way.
Moreover!:

7.11. Theorem: [[12] Theorem 6.15] The assignment G — Ry, (G) is an R-
linear functor Ry, from Fu nR(RCIf, R—I\/lod) to Fp r, which is right adjoint to

the forgetful functor Oy, . Moreover the composition Oy, o'Ry, is isomorphic
to the identity functor of FunR(RCIf, R-Mod).

7.12. Theorem: [ p € R*| For an atoric p-group L, let /I;JLF}"RR be the

full subcategory of F, g consisting of functors F' such that BJLFF = F. Then
the forgetful functor Oy, and its right adjoint Ry, restrict to quasi-inverse
equivalences of categories

o

~ Y
bi Fon % Fung(RCE, R-Mod) .
L

Proof : First step: The first thing to check is that the image of the functor

Ry, is contained in /b\JL“fp, r- We first prove that if H is an atoric p-group,

it I € Fpr, and if Oy, (EHF) # 0, then H C L: indeed in that case, there

exists P € Yy, such that b5, F(P) # 0. In particular b, # 0, hence H C P®,

by Theorem 7.4. Since P® C L as P € ), it follows that H C L, as claimed.
In particular

Oy, (F) =0y, ( > buF) =0y, (b F

HelAr)
HC

Set GI' = Fung(RCL, R-Mod), and let G € G Let H be an atoric p-group
such that H Z L, and let F € F, z. Then Oy, (byF) = {0} by the above

In Theorem 6.15 of [12], only the case R = Z is considered, but the proofs extend
trivially to the case of an arbitrary commutative ring R
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claim. Moreover

HomfnR(F,@HRyL(G)) = Homfp,R@HF,ZHRyL(G))
= Homy, ,, (b F, Ry, (G))
Homg. (0y, @HF), G) = {0} .

I

So the functor F +— Hompg, , (F ,/Z?\HR))L(G)) is the zero functor, and it fol-
lows from Yoneda’s lemma that byRy, (G) = 0 if H Z L. In other words
Ry, (G) = bRy, (G), as was to be shown.

Second step: The first step shows that we have adjoint functors

~ Oy
b Fpr % Fung(RCE, R-Mod) = G .
L

Moreover, the composition Oy, o Ry, is isomorphic to the identity functor,
by Theorem 7.11. All we have to show is that the unit of the adjunction is
also an isomorphism, in other words, that for any F € b F, r and any finite
p-group P, the natural map

(7'13) np - F(P) - RyLOyL(F)(P) = (hﬁ F(X/M>
(X,M)eXL(P)

s;nding u € F(P) to the sequence (Defres§/Mu) (X.Myex,(p) 1S AN isomor-

phism.

The map np is injective: indeed, if u € F(P), then u = Y. bhu, as
He[Atp)
HCL

F = BJLFF If Defresi/Mu = 0 for any section (X, M) of P with (X/M)® C L,
then F(efg)(u) = 0 for any section (7', 5) of P such that (7/S)® C L, by
Proposition 4.7 and Proposition 6.8. In particular b5u = 0 for any atoric
subquotient H of L, hence u = 0.

To prove that np is also surjective, we generalize the construction of
Theorem A.2 of [11] (which is the case L = 1), and we define, for an element
v = (vx,m)(x,m)ex, () i Ry, Oy, (F)(P), an element u = ¢tp(v) of F(P) by

1 .
u= Y > | X (X, T)par (S, M)Indinf¥ ) vx s -

| l(T,S)eM(P) X<T,M<4T
(T/8)eCL S<M<Q(T)<XLT

This yields an R-linear map tp : Ry, Oy, (F)(P) — F(P).
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For (Y,N) € X1(P), set uyy = Defresg/Nu. Then:

RY :
Uy N = Z Z ?u(X, T)par(S, M)Defres{i/NIndmfi/MUXM.

(T,8)eM(P) X<T,MJT ’ ’
(T/S)@EL SSMS‘I)(T)gXST

Moreover, by Proposition A.1 of [11]

Defres{i/N Indinfi/MvXVM = Z Indinf?]/g/j\;é Iso(¢,) Defresjg)%zMgvXW :
ge[Y\P/X]

where J, = N(Y N9X), J, = N(Y N9M), I, = “M(Y N9X), T, = IM(N N
9X), and @, is the isomorphism I, /I — J,/J, sending I}, to xJ;, for x €
Y N9X. Moreover DefresjﬁézMgvx,N = V1,11 by Conditions 2 and 3 in the
definition (7.9) of the inverse limit on X1,(P), since moreover (I, I}) € ¥,(P)
by Remark 7.10. Hence

Defresg/N Indinfi/vajM = Z Indinf}/g/%/ Iso(¢g)vr, 1,
g9
ge[Y\P/X]
Y NIX|_ . N
= ZWIndmeg/Jé ISO(QZﬁg)”U[g’[!/] .
geP
Thus
Y n9X| . CY/N
uyn = Y WM(X’ T)par(S, M) Indinf)/ ORCCALIS
(T,S)eM(P)
(T/S)°CL
X<T,M<T
S<M<®(T)<X<T
geP

Now u(X,T) = pu(?X,9T) and par(S, M) = pqer(9S,9M), so summing over
(97,95,9X,9M) instead of (T, S, X, M) we get

YNX .
wy= Y ||y| |M(X7T)M§T(S,M)Indlnf?;l/%{ Iso(¢1)vr, 1
(T.5)eM(P)
(T/S)®CL

X<T,M<T
S<M<®(T)<X<T

Setting W = Y N X, we have J; = NW, J, = NW N M), I, = MW,
Il = M(N NnW), and these four groups only depend on W, once M and N
are given. Hence, for given T',.S and M, we can group together the terms of
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the above summation for which Y N X is a given subgroup W of Y NT'. This
gives

Z w

Uy,N = ( E M(X7T))||Y|’/JJ<]T(S M) InlefJ /J! ISO(le)UIl I
(T,8)eM(P) @(T)<XLT
(T/$)°cL’  XnY=W

MaT
S<MZ®(T)
w<ynT
Moreover >  w(X,T) = > (X, T), since u(X,T) = 0 unless
O(T)<X<T X<T
XNy=w XN(YnT)=w

X > ®(T), and the latter summation vanishes unless Y N7 = T, by classical
combinatorial lemmas ([15] Corollary 3.9.3). This gives:

W

. Y/N
uy,N = Z 7|M(W, T) s (S, M) Indinf}’ 7, Iso(¢1)vr, 17 -
(T,5)eM(P)
(T/S)°EL
MaT

S<M<P(T)<SWLTLY

Moreover in this summation J; = NW, JJ = NW NM) = NM, I, =
MW =W, I} = M(NNW) = MNNW. All these groups remain unchanged
if we replace M by M(N N <I>(T)), so for given T, S and W, we can group
together those terms for which M (N No(T )) is a given normal subgroup U

of T with U < ®(T"). The sum > par(S, M) is equal to 0 (by the
S<M AT

M(NWD(T)):U
same above-mentioned classical combinatorial lemmas, applied to the normal
subgroup S(N N ®(T)) of T) unless S(NN®(T)) = S, i.e. NN®(T) < S.

Hence

W
Uy = Z IYI (W, T par(S,U) Indme 1y Is0(n)v 1y,
(T,8)EM(P)
(T/S)°CL
udaT
NN®(T)KS<KULP(T)KWLTLY

where J1 = NW, J| =NU, =W, [ =UNNW.

Now if NN®(T) < S < ®(T) <T <Y, then (TN/N)® C (Y/N)®.
Moreover the normal subgroup (N NT)/(NN®(T)) of T/(NN®(T)) inter-
sects trivially the Frattini subgroup

<I><T/(N N @(T))) = o(T)/(NNa(T)) ,

Q
50 (T/ (chb(T))) ~ (T/(NNT)® = (TN/N) by Proposition 6.6, applied
to the quotient map T/(N Ne(T ) /(NNT).



Q
Then (T/S)® C (T/ (N N @(T))) C (IN/N)® T (Y/N)®. Since
(Y/N)® C L by assumption, it follows that

W Y/N
Uy, N = E WM(VV, T)uar(S,U) Indlnfjl/J{ Iso(é1)vr, 17
SAT<Y
U<aT
NNS(T)<S<ULP(T)<W<T<Y

Now the sum > par(S,U) is equal to zero unless U = N N &(7T).

S<aT
NN®(T)<S<U

Hence
- |[W| . (Y/N
Uy N = E —u(W,T) Indinf Iso(1)vr, 17

Y|
O(T)SWLTLY

For a given subgroup W of Y, the sum > uw(W,T) is equal to
O(T)<WT<Y

> u(W,T) since u(W,T) = 0 unless W > &(T), and the latter is equal
W<T<Y

to zero if W #Y and to 1 if W =Y. Thus
Y

uy N = :7| Indinfi/%i Iso(é1)vr, 17,
where J1 = NY =Y, J]=NU=N,I,=Y,I; =UNNY = N. Hence
I =Ji =Y and I] = J] = N, so ¢, is equal to the identity. It follows that
uy,y = vy forany (Y, N) € ¥,(P), so np(u) = v. This proves that the map
np is surjective, hence an isomorphism, with inverse ¢p. This completes the
proof of Theorem 7.12. O

7.14. Definition: Let L be an atoric p-group, and let RC}iL be the following
category:
o The objects of RCf)L are the finite p-groups P such that P® = L.
o If P and Q are finite p-groups such that P® = Q® = L, then

Hom e (P, Q) = RB(Q, P)/ > RB(Q,S)B(S, P)
LZS

is the quotient of RB(Q, P) by the R-submodule generated by all mor-
phisms from P to @ in RC, which factor through a p-group S which
does not admit L as a subquotient.

39



o The composition of morphisms in RCZEL 15 1nduced by the composition
of morphisms in RC,,.

7.15. Remark: Morphisms in RC, which factor through a p-group S such
that L [Z S clearly generate a two-sided ideal, so the composition in RCIEL is
well defined. Moreover the category RCf,L is R-linear. Let Fung (RCI”)L , R—Mod)
denote the category of R-linear functors from RCI%L to the category R-Mod
of R-modules.

7.16. Lemma: Let p be a prime, and L be an atoric p-group. Let P and Q)
be finite p-groups.
1. IfP® 2 L orQ® =L, and if M < (Q x P), then q(M)® C L.
Moreover q(M)® = L if and only if L C q(M).
2. If P = Q%= L, then

Hom er (P, Q) = RB(Q, P)/ > RB(Q,S)B(S, P)

SecL

is also the quotient of RB(Q, P) by the R-submodule generated by all
morphisms from P to Q) in RC, which factor through a p-group S such
that S® is a proper subquotient of L.

3. If P® =~ Q° = L, then HochgL(P, Q) has an R-basis consisting of
the (images of the) transitive (Q, P)-bisets (QQ x P)/M, where M is a
subgroup of (Q x P) such that ¢(M)® = L (up to conjugation).

Proof: (1) Indeed ¢(M) is a subquotient of P, and a subquotient of (). Hence
q(M)® is a subquotient of P® and a subquotient of Q©, so ¢(M)® C L® = L.
Now suppose that ¢(M)® =2 L. Then L is a quotient of ¢(M), so L C q(M).
Conversely, if L C q(M), then L = L® is a subquotient of ¢(M)®, which is a
subquotient of L. So ¢(M)® = L.

(2) First if S is a finite p-group with S® C L, then L Z S, for otherwise
L C S° C L, a contradiction. Conversely, let S be a finite p-group such that
L Z S, or equivalently L Z S®. By (2.7), any element of RB(Q, S)B(S, P)
is a linear combination of (Q, P)-bisets of the form () x P)/(M * N), for
M < (@ xS)and N < (S x P). This biset (Q x P)/(M % N) also factors
through 7' = ¢(M % N), by 2.6. Moreover T is a subquotient of ¢(M) and
q(N), by Lemma 2.3.22 of [7], hence a subquotient of @, S, and P. Hence
T®C Q®=L,and T® 22 L, since L IZ S®. Hence T® = L. We observe that
conversely, any transitive biset (Q x P)/N, with ¢(N)® C L, factors through
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q(N), so it lies in the sum > RB(Q,S)B(S, P). Hence this sum is equal
secL
to the set of linear combinations of bisets (Q x P)/N, with ¢(N)® C L.

(3) The (images of the) elements (Q x P)/M, where M is a subgroup

of (Q x P) such that ¢(M)® = L (up to conjugation), clearly generate
Hom iz (P, Q). Moreover, they are linearly independent, since the transitive

(Q, P)-bisets of the form (Q x P)/M, for q(M)® = L, generate a supplement
in RB(Q, P) of the sum >, RB(Q,S)B(S,P), by the observation at the

SerL
end of the proof of Assertion 2. 0

7.17. Remark: If GG is an R-linear functor from RC;‘)L to the category R-Mod
of R-modules, we can extend G to an R-linear functor from RCIf to R-Mod
by setting G(P) = {0} if P is a finite p-group such that P® is a proper
subquotient of L. Conversely, an R-linear functor from RC; to R-Mod which
vanishes on p-groups P such that P® 2 L can be viewed as an R-linear
functor from RCf,L to R-Mod. In the sequel, we will freely identify those two
types of functors, and consider Fung (RCIEL, R-I\/lod) as the full subcategory of

Fun R(RCPL , R—Mod) consisting of functors which vanish on p-groups P such
that P® 2 L.

7.18. Theorem: [ p € R*| Let L be an atoric p-group.

1. If F' is a p-biset functor over R such that F = /I;LF, and P is a finite
p-group such that L IZ P, then F(P) = {0}.

2. If G is an R-linear functor from RCIEL to R-Mod, then /ELR);L(G) =
RyL (G)

3. The forgetful functor Oy, and its right adjoint Ry, restrict to quasi-
inverse equivalences of categories

Oy

b1Fpn == Fung(RCE", R-Mod) .
YL

Proof : (1) Since b, F = F, then in particular F(b2)F(P) = F(P). If L Z P,
then there is no minimal section (7', S) of P with (T/S)® = L, thus b¥ =0,
and F'(P) = {0}.

(2) Let G be an R-linear functor from RC}?,L to R-Mod, in other words an
R-linear functor from F le to R-Mod which vanishes on p-groups P such that
P? is a proper subquotient of L. By Theorem 7.12, we have /b\zRyL (G) =
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Ry, (G). If H is an atoric p-group which is a proper subquotient of L, then
G vanishes over any subquotient @) of H, since Q° T H C Lif Q C H.
In particular bk acts by 0 on Ry, (G)(P), for any finite p-group P: indeed
bE is a linear combination of terms of the form Indinfi/MDefresi /m» Where
(X, M) is a section of P such that S < M < ®(T) < X < T, for some
section (T, S) of P with (T//S)® = H. For such a section (X, M) of P, we
have (X/M)® C (T/S)® C H, thus G vanishes on any subquotient of X /M,
so Ry, (G)(X/M) = {0}, hence bL acts by 0 on Ry, (G)(P), as claimed. It
follows that /b\HRyL (G) = 0, hence the equality /b\zRyL(G) = Ry, (G) reduces
to bLR)}L (G) = RyL (G)

(3) This is a straightforward consequence of (1) and (2), by Theorem 7.12,
using Remark 7.17. O

7.19. Corollary: [p € R*] The category F,r of p-biset functors over
R is equivalent to the direct product of the categories Fung (RCIEL, R—I\/lod) of
R-linear functors from RCI%L to R-Mod, for L € [At,].

Proof : This follows from Theorem 7.18, using Equivalence (7.6) of Corol-
lary 7.5. O

8. L-enriched bisets

8.1. Notation: Let G and H be finite groups. If U is an (H, G)-biset, and
ue U, let (H,G), denote the stabilizer of u in (H x G), i.e.

(H,G)u ={(h,9) € (H X G) | hu=ug} .

Let H, = k; ((H, G)u) denote the stabilizer of u in H, and ,G = kQ((H, G)u)
denote the stabilizer of u in G. Set moreover

q(u) = q((H,G)u) = (H,G)u/(Hy x uG)

8.2. Definition: Let L be a finite group. For two finite groups G and H,
an L-enriched (H, G)-biset is an (H x L,G x L)-biset U such that L C q(u),
for any uw € U. A morphism of L-enriched (H,G)-bisets is a morphism of
(H x L,G x L)-bisets.

The disjoint union of two L-enriched (H,G)-bisets is again an L-
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enriched (H,G)-biset. Let B[L|(H,G) denote the Grothendieck group of fi-
nite L-enriched (H,G)-bisets for relations given by disjoint union decompo-
sitions. The group B[L](H,G) is called the Burnside group of L-enriched
(H, G)-bisets.

8.3. Lemma: Let G, H, L be finite groups, and U be an (H x L,G x L)-
biset. Let UL denote the set of elements u € U such that L T q(u). Then
UL s the largest L-enriched (H,G)-sub-biset of U.

Proof : It suffices to show that U** is a (H x L,G x L)-sub-biset of U,
for then it is clearly the largest L-enriched (H, G)-sub-biset of U. And this
is straightforward, since for any (u,g,h,z,y) € (U X G x H x L x L), if
v = (h,y)u(g, z), then

(Hx L,G x L), = (90697) (] x [ G x L), |

~Y

and this conjugation induces a group isomorphism ¢(v) = q(u). 0

8.4. Lemma: Let G, H, L be finite groups.
1. Let U be an L-enriched (H, G)-biset. IfV is an (H x L, G x L)-sub-biset
of U, then V is an L-enriched (H,G)-biset.

2. The group B[L|(H,G) has a Z-basis consisting of the transitive bisets
((Hx L)x (GxL))/M, where M is a subgroup of ((H x L) x (G x L))
(up to conjugation) such that L T q(M).

Proof : (1) This is straightforward.

(2) It follows from (1) that B[L|(H, G) has a basis consisting of the isomor-
phism classes of L-enriched (H, G)-bisets which are transitive (H x L, G x L)-
bisets. These are of the form U = ((H x L) x (G x L)) /M, for some subgroup
M of ((H x L) x (G x L)). Now if u is the element ((1,1),(1,1))M of U,
the group (H x L,G x L), is equal to M, hence q(u) = q(M). 0

8.5. Example: Let G, H, K, L be finite groups. The following can easily be
checked:

1. For an (H,G)-biset U, endow U x L with the (H x L,G x L)-biset
structure defined by

Vh € H Vg € G,Vx,y,z € L,Yu e U, (h,z)(u,y)(g,z) = (hug,zyz) .

Then U x L is an L-enriched (H, G)-biset.
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2. In particular, for any finite group G, the identity biset of G x L is an
L-enriched (G, G)-biset.

3. If U is an (H,G)-biset and V is a (K, H)-biset, then there is an iso-
morphism

(V<X L) Xuxry (UxL)=(VxgU)xL
of L-enriched (H, G)-bisets.

8.6. Notation: Let G,H,K,L be finite groups. If U is an L-enriched

(H,G)-biset and V is an L-enriched (K, H)-biset, let V%yU denote the L-
enriched (K, G)-biset defined by

V>L<HU = (V X(HxL) U)ﬁL .

8.7. Remark: The set V>L<HU is in general a proper subset of V' X (g1 U:
for example if K =G =1and H =L, and if V = ((K x L) x (H x L)) /N
and U = ((H x L) x (G x L))/M, where N = {(1,1),(1,1)) | l € L} and
M = {(1,1),(1,1)) | I € L}, then py(N) = L x 1 and ky(N) = 1 x 1, so
q(N)= (L xL)/(Lx1)= L. Similarly p;(M) =1 x L and k(M) =1 x 1,
so (M) = L. However by 2.7, since po(N)p1 (M) = H x L,

V X(uxry U = ((K x L) x (G x L)) /(N « M) ,
and moreover N+ M = {(1,1),(1,1)) |l € L}*{(1,1),(1,1)) |l € L} = 1x1,

so (N x M) = 1. Tt follows that VU = 0 if L is non trivial.

8.8. Lemma: Let G, H,J, K, L be finite groups.
1. If Vis a (K x L,H x L)-biset and U is an (H x L,G x L)-biset, then

(V X(HXL) U)uL = VﬁL>L<HUﬁL .

In particular, if V and U are L-enriched bisets, so is V>L<HU.
2. If U and U’ are L-enriched (H,G)-bisets, if V.V’ are L-enriched

(K, H)-bisets, then there are isomorphisms

Vxg(UUU') = (VxgU)u(VxgU')
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(VUuVYxugU = (VxgU)u(V')yU)

of L-enriched (K, G)-bisets.

3. If moreover W is an L-enriched (J, K)-biset, then there is a canonical
1somorphism

(WX V)X U 2 Wk (V5 g U)
of L-enriched (J, G)-bisets.

Proof : (1) Denote by [v, u] the image in V' X (1)U of a pair (v, u) € (VxU).
By Lemma 2.3.20 of [7],
(K % L, G L)jpuy = (K % L, H x L), * (H x L,G x L), |

so by Lemma 2.3.22 of [7], the group ¢([v,u]) is a subquotient of ¢(v) and
q(u). Soif [v,u] € (V X (xry U)*¥, then L is a subquotient of ¢([v,u]), hence
it is a subquotient of ¢(v) and ¢(u), that is v € V* and u € U**. Hence

(V X(mxry U C (VI ey UREYEE = VEL S URE
and the reverse inclusion (V*F X (HxL) UYL C (V X (HxL) U)PE is obvious.
Hence (V' X (mxr) U = VﬂL>L<HUﬁL. If V and U are L-enriched bisets, i.e.

if V = V# and U = U*, this gives (V X(rx1p) U)ﬁL = V>L<HU, SO V>L<HU is
an L-enriched biset.

(2) This is straightforward.

(3) With the above notation, there is a canonical isomorphism

o (W X (KxL) V) X(HxL) U—->W X(KXL) (V X(HXL) U)

sending [[w, v],u] to [w, [v,u]]. Hence
(WXKV)XHU = ( WXKV X(HXL) U)ﬁL
= (W xxny VI Xy U)
= (W Xy V) Xty U)oy (1)
Similarly

Wf(K(V;J(HU) = (W X(KXL) (V>L<HU))ﬂL
= (W X(KxL) (V X(HxL) U)ﬁL)
= (W xgexny (V Xy D)™ by (1)] -

4L
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Hence « induces an isomorphism (W>L<KV)>L<HU = W>L<K(V>L<HU). 0

8.9. Definition: Let L be a finite group, and R be a commutative ring.
The L-enriched biset category RC[L] of finite groups over R is defined as
follows:

e The objects of RC[L] are the finite groups.
e For finite groups G and H,
Hompe) (G, H) = R ®z B[L|(H,G) = RB[L|(H,G)
is the R-linear extension of the Burnside group of L-enriched (H,G)-
bisets.
e The composition in RC[L] is the R-linear extension of the product
(V,U) = VxxU defined in 8.6.

e The identity morphism of the group G is (the image in RB[L](G,G)
of ) the identity biset of G x L, viewed as an L-enriched (G, G)-biset.

The category RC[L] is R-linear. An L-enriched biset functor over R is an
R-linear functor from RC[L| to R-Mod. The category of L-enriched biset
functors over R is denoted by Fgr[L|. It is an abelian R-linear category.

8.10. Theorem: Let p be a prime number, and R be a commutative ring.

1. If L is an atoric p-group, the category RCZ%L of Definition 7.1} is equiv-

alent to the full subcategory REL,[L] of RC[L] consisting of elementary
abelian p-groups.

2. If p € R*, the category F, r of p-biset functors over R is equivalent to
the direct product of the categories FunR(Ré’lp[L},R—Mod) of R-linear
functors from REL,[L] to R-Mod, for L € [At,].

Proof : (1) Let E be an elementary abelian p-group. Then (E x L)® & [,
so E x L is an object of RCE. Set I(E) = E x L. If E and F are elementary
abelian p-groups, and if U is a finite L-enriched (F, E)-biset, then U is in
particular an (F' x L, E x L)-biset, and we can consider its image Z(U) in the
quotient Hom oz (ExL,FxL)of RB(F x L,E x L). This yields a unique
R-linear map RB[L|(F,E) — HochgL(E x L, F x L), still denoted by Z.
We claim that these assignments define a functor Z from REL,[L] to RCE::
indeed, the identity (F x L, E x L)-biset is clearly mapped to the identity
morphism of Z(E). Moreover, if G is an elementary abelian p-group, if V
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is an L-enriched (G, F')-biset and U is an L-enriched (F, E)-biset, it is clear
that

I(VxpU) =Z(V) o Z(U) ,
where the right hand side composition is in the category RC}EL : indeed, the
transitive bisets ((G x L) x (E x L))/M with ¢(M)® C L appearing in the
product V x gy 1) U are exactly those vanishing in Hom ... (Z(E),Z(F)), by
Lemma 7.16. Hence Z induces an isomorphism ’

T : RBL|(F, E) — Hom o (Z(E), I(F)) .

In other words Z is a fully faithful functor from REL,[L] to RCE. Moreover,
by Proposition 6.7, if P is a finite p-group with P® = L, there exists an
elementary abelian p-group E such that P is isomorphic to F x L, hence P
is isomorphic to £ x L in the category RC]%L.

It follows that the functor Z is fully faithful and essentially surjective, so
it is an equivalence of categories.

(2) This is a straightforward consequence of (1), Assertion 5 of Corollary 7.5,
and Assertion 3 of Theorem 7.18. 0

8.11. Remark: Let E and F be elementary abelian p-groups. In view of
Theorem 8.10, it is interesting to give some detail on the hom set from F
to F' in the category REL,[L], in other words to describe the subgroups M
of (F x L) x (E x L) such that ¢(M)® = L. One can show that they are
exactly those subgroups M such that

pro2(M) =poo(M) =L and kio(M)=koo(M)=1,

where p; » and ps 5 are the morphisms from ((H x L) x (G x L)) to L defined
by p12((h, 2),(9,y)) = = and p2((h, ), (9,)) =y, and

kio(M) = {zeL|((1z),(1,1) €M},
koo(M) = {zeL]|((1,1),(1,2)) € M} .

9. The category /I;L]-"pﬁ, for an atoric p-group L (p € R*)

Let L be a fixed atoric p-group. In this section, we give some detail on
the structure of the category bpF, r of p-biset functors invariant by the

idempotent BL. We return to the initial definition of this category given
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in Assertion 5 of Corollary 7.5, and we do not use the equivalent category
Fung (REL,[L], R-Mod) of Theorem 8.10.

We start by straightforward consequences of Theorem 7.18. For a finite
p-group P, we denote by Xy, (P) the subset of ¥ (P) consisting of sections
(X, M) of P such that (X/M)® = L. When G is an R-linear functor from
RCE' to R-Mod, we first extend it to a functor defined on RC} by setting
G(P) = {0} if P® C L, as in Remark 7.17. Then we compute Ry, (G) at P
by restricting the inverse limit of 7.8 to the subset Xy, (P), i.e. by

Ry, (G)(P) = li G(X/M) .

P anininind
(X,M)eXy(P)

9.1. Proposition: [ p € R*| Let L be an atoric p-group. If F is a p-biset
functor in by F, g, and P is a finite p-group, then

F(P) = lim  F(X/M) ,

)e
o~ ®  SeF(T)S)NeTSH/T
(T,5)e[M(P)]
(T/S)®=L

Proof : The isomorphism F(P) F(X/M) is Assertion 3 of

I3

(X,M EEuL(P)
Theorem 7.18. The second isomorphism follows from Theorem 5.4, which
implies that for (7,5) € M(P)

~—

0o F(T/S)Nr T/ = F(ef ) (F(P)) -
Moreover F(bY)F(P) = F(P) since F € by F, z, and
P F(T) = F(gbf) =0

unless (7/5)® = L. Thus §F(T/S)NeTH/T = {0} unless (T/5)® = L,
which completes the proof. 0

The decomposition of the category F, r of p-biset functors stated in Corol-
lary 7.5 leads to the following natural definition:

9.2. Definition: [ p € R*| Let F be an indecomposable p-biset functor

over R. There exists a unique atoric p-group L (up to isomorphism) such
that F' = b F. The group L s called the vertex of F.

48



9.3. Remark:

1. It follows in particular from this definition that if F' and F’ are inde-
composable p-biset functors over R with non-isomorphic vertices, then
Ext}pR(F, F") ={0}.

2. It may happen that an indecomposable p-biset functor F' with vertex L
vanishes at L (see e.g. the case of a simple functor F' = Sgy of
Corollary 9.5, when Q 2% Q).

9.4. Theorem: [p € R*| Let F be an indecomposable p-biset functor over R
and let L be a vertex of F. If Q is a finite p-group such that F(Q) # {0},
but F vanishes on any proper subquotient of Q, then L = Q°.

Proof : Let @ be a finite p-group such that F(Q) # {0} and F(Q') = {0} for
any proper subquotient @’ of ). By Proposition 4.7, if (T',.S) is a minimal
section of @), then

1 .
E%S: No(T.9)| E | X (X, T ppar (S, M) Indlnf?(/M Defresg/M .
X<T,M AT

S<M<®(T)<X<T

Now if X/M is a proper subquotient of @, i.e. if X # @Q or M # 1, then
F(X/M) = {0}, and F(Indinf ,, Defres? ) = 0. Hence F(€7 ¢) = 0 unless
T =@ and S = 1, and moreover

_ L
1@l

Since by F = F , then in particular F’ (bf) is equal to the identity map of F'(Q).
This can only occur if the idempotent 6871 appears in the sum defining bf,
in other words if (Q/1)® & L, ie. Q® = L. 0
We assume from now on that R = k is a field. Recall ([7] Chapter 4) that
the simple p-biset functors Sp - over k are indexed by pairs (@, V') consisting
of a p-group @ and a simple kOut(@Q)-module V. Also recall that if P is a
finite p-group and if ) £ P, then S v (P) = {0}. Moreover Sg v (Q) = V.

F(ed1) = 1571Q11(Q. Q)pag(1, 1)F (Indinfg , Defresg ,) = 1dr(g) -

9.5. Corollary: Let k be a field of characteristic different from p.

1. If Q is a finite p-group, and V is a simple kOut(Q)-module, then the
vertex of the simple p-biset functor Sqyv is isomorphic to Q®.
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2. Let Q (resp. Q') be a finite p-group, and V' (resp. V') be a simple
kOut(Q)-module (resp. a simple kOut(Q')-module). If Q¢ % Q'®,
then EXt}_—p’k(SQ,V, SQ/J/I) = {0}

Proof : (1) Indeed @ is a minimal group for Sg v, so Sov(Q) # {0}, but
Sg.v vanishes on any proper subquotient of ().

(2) Follows from (1) and Remark 9.3. 0

9.6. Definition: Let F' be a p-biset functor. A non zero functor S is a
subquotient of F' (notation S T F) if there exist subfunctors Fy < F} < F
such that Fy/Fy, = S. A composition factor of F' is a simple subquotient

of F.

9.7. Lemma: Let k be a field, and F' be a p-biset functor over k.
1. If F' is non zero, then F' admits a composition factor.

2. If § is a family of simple p-biset functors over k, there exists a greatest
subfunctor of F' all composition factors of which belong to S.

Proof : (1) Let P be a finite p-group such that F'(P) # {0}. Then F(P) is
a kB(P, P)-module. Choose m € F(P) — {0}, and consider the kB(P, P)-
submodule M of F(P) generated by m. Since kB(P, P) is finite dimensional
over k, the module M is also finite dimensional over k, hence it contains
a simple submodule V. By Proposition 3.1 of [8], there exists a simple p-
biset functor S such that S(P) = V as kB(P, P)-module. Then S(P) is a
subquotient of F(P), so by Proposition 3.5 of [8], there exists a subquotient
of F' isomorphic to S.

(2) Observe first that if M, N are subfunctors of F', then any composition
factor of M + N is a composition factor of M or a composition factor of N:
indeed, if S is a composition factor of M + N, let I, < F} < M + N with
S = F,/F, and consider the images F] and F} of F} and Fy, respectively, in
the quotient (M + N)/N = M/(M N N). If F| # Fj, that is if F; + N #
Fy + N, then F//F} = (Fy + N)/(Fo + N) = F|/F, = S is a subquotient
of (M +N)/N = M/(M N N), hence S is a subquotient of M. Otherwise
F1+N = F2+N, SO F1 = FQ—I—(FlﬂN), hence S & Fl/FQ = (FlmN)/(FgﬂN)
is a subquotient of N. It follows by induction that any composition factor S
of a finite sum ) M of subfunctors of F' is a composition factor of some

Mez
Mel.
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The latter also holds when Z is infinite: let ¥ = ) M be an arbitrary
MeT
sum of subfunctors of F', and S be a composition factor of . Let F, < Fj be

subfunctors of ¥ such that S = Fy/F,. If P is a p-group such that S(P) =
F\(P)/Fy(P) # 0, let U be a finite subset of F}(P) such that Fy(P)/Fy(P)
is generated as a kB(P, P)-module by the images of the elements of U (such
a set exists because S(P) is finite dimensional over k, for any P). If V' is the
kB(P, P)-submodule of F;(P) generated by U, then V' maps surjectively on
the module Fy(P)/F»(P), so there is a kB(P, P)-submodule W of V such that
V/W = S(P). Now since U is finite, there exists a finite subset J of Z such

that U C > M(P). Setting 1 = > M, it follows that V/W = S(P) is a
MeJ MeJ
subquotient of ¥ (P), so by Proposition 3.5 of [8], there exists a subquotient

of ¥; isomorphic to S. By the observation above S is a subquotient of some
MeJgCI.
Now let Z be the set of subfunctors M of F' such that all the composition

factors of M belong to S, and N = > M. The above discussion shows that
Mez
N €7, so N is the greatest element of Z. O

9.8. Theorem: Let k be a field of characteristic different from p, and L
be an atoric p-group. Let F,  [L] be the full subcategory of F, consisting of
functors whose composition factors all have vertex L, i.e. are all isomorphic

to Spy, for some p-group P such that P® = L, and some simple kOut(P)-
module V.

1. If F 1s a p-biset functor, then ELF 15 the greatest subfunctor of F' which
belongs to F, x[L].

2. In particular /BL'Fp,k = FpilL].

Proof : (1) Let F' be a p-biset functor over k, and let F} = b F. If S
is a composition factor of Fj, then S = /b\LS, as S is a subquotient of Fj.
Hence S has vertex L, by Definition 9.2. It follows that F} is contained in
the greatest subfunctor F, of F' which belongs to F, x[L] (such a subfunctor
exists by Lemma 9.7).

Conversely, we know that Fp, = & /b\QFQ. For @ € [At,], any com-
QE[Atp]

position factor S of /b\QFg has vertex @), by Definition 9.2. But S is also a
composition factor of Fy, so Q = L. It follows that if ) 2 L, then BQFQ
has no composition factor, so EQFQ = {0}, by Lemma 9.7. In other words
Fy, = BLFQ, hence Fy < Fi, and F, = F}, as was to be shown.

o1



(2) Let F be a p-biset functor. Then F € ZL}"p,k if and only if F' = /I;LF, ie.
by (1) if and only if all the composition factors of F' have vertex L. 0

9.9. Example: the Burnside functor. Let k be a field of characteristic
q# p (¢ >0). It was shown in [10] Theorem 8.2 (see also [7] 5.6.9) that the
Burnside functor kB restricted to the class of p-groups (hence an object of
Fp.k) is uniserial, hence indecomposable. As kB(1) # 0, the vertex of kB is
the trivial group, by Theorem 9.4, thus kB is an object Of?b\l]:p,k = Fprl]. It
means that all the composition factors of kB have to be of form Sg 1/, where
Q® =1, ie. Q is elementary abelian. And indeed by [10] Theorem 8.2, the
composition factors of kB are all of the form Sg j, where () runs through a
specific set of elementary abelian p-groups which depends on the order of p
modulo ¢ (suitably interpreted when ¢ = 0).
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