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Abstract

We introduce Green fields, as commutative Green biset functors with no non-

trivial ideals. We state some of their properties and give examples of known

Green biset functors which are Green fields. Among the properties, we prove

some criterions ensuring that a Green field is semisimple. Finally, we describe a

type of Green field for which its category of modules is equivalent to a category

of vector spaces over a field.
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1 Introduction

A Green biset functor can be defined as a ring object in the tensor category of biset
functors ([4] Section 8.5), so it is natural to extend the usual definitions for rings to
the realm of Green biset functors. In particular, we have a notion of left (or right,
or two-sided) ideal of a Green biset functor. In [6], we consider two analogues of the
center of a ring, and we consider commutative Green biset functors. For such functors,
the notions of left, right, and two-sided ideal coincide. In the present paper, we study
commutative Green biset functors with no non-trivial ideals, and we call these functors
Green fields (this terminology first appeared in [5] Remark 7.21). This definition allows
us to continue the search for ways of decomposing the modules over a Green biset
functor into simpler factors, following the spirit of what is done in Section 5 of [6], but
in a different fashion. In the case of a Green field A, the question is, naturally, if A-
modules behave as vector spaces over a field. As we will see in Section 3, the question
of whether a module over a Green field is always semisimple or not is a complex one
and we must, for the moment, leave it open. Nonetheless, we prove some criterions
given conditions for this to happen. On the other hand, in Section 4, we introduce
strict Green fields, as Green fields fulfilling one extra condition, and we prove that the
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category of modules over a strict Green field A is equivalent to a category of vector
spaces over the field A(1).

The paper is organized as follows: in Section 2, we recall the basic definitions on
Green biset functors and modules over them. In Section 3, we introduce Green fields,
state their first properties and enumerate some examples. We also introduce bilinear
forms which allow for a characterization of Green fields among all commutative Green
biset functors. Next, we give criterions ensuring that a Green field is semisimple.
Finally, in Section 4, we define strict Green fields, as those Green fields satisfying a list
of six equivalent conditions. We conclude with some examples of strict and non strict
Green fields.

2 Preliminaries

We assume that the reader is familiar with the definitions of biset category, biset
functor, Green biset functor and module over a Green biset functor. Examples and
some properties of Green biset functors and their modules can be found in sections 1.1
and 1.2 of [6]. As in that article, the Green biset functors we consider here are defined
on a class D of finite groups, closed under subquotients and direct products. The biset
category is defined over a commutative unital ring k. Unless otherwise stated, when
we write Green biset functor we will mean Green D-biset functor over k, for some D
and k. Similarly, when we speak of the evaluation A(G) of a Green biset functor at a
finite group G, it will be understood that G is in the class D. The Burnside functor
will be denoted by kB, as usual, and if F is a field of characteristic 0, the functor of
linear F-representations will be denoted by kRF.

The trivial group will be denoted by 1. For a finite group G, we denote by ∆(G)
the diagonal subgroup of G×G, that is ∆(G) = {(g, g) | g ∈ G}.

We recall the definition of the category PA, associated to the Green biset functor A.

Definition 2.1. Let A be a Green biset functor with identity element ε ∈ A(1). The
category PA is defined in the following way:

� The objects of PA are all finite groups in D.

� If G and H are groups in D, then HomPA
(H, G) = A(G×H).

� Let H, G and K be groups in D. The composition of β ∈ A(H × G) and
α ∈ A(G×K) in PA is the following:

β ◦ α = A
(
Def

H×∆(G)×K

H×K ◦ ResH×G×G×K
H×∆(G)×K

)
(β × α).
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� For a groupG inD, the identity morphism εG ofG in PA isA(IndG×G
∆(G)◦Inf

∆(G)
1

)(ε).

Recall that if A is a Green biset functor, then for any group G in D, the evaluation
A(G) is a ring for the “dot” product defined by

∀α, β ∈ A(G), α · β = A(IsoG∆(G))A(Res
G×G
∆(G))(α× β).

Remark 2.2. In the special case G = 1, after identifying G×G with G, we then have
three products A(G) × A(G) → A(G), namely (α, β) 7→ α × β, (α, β) 7→ α ◦ β, and
(α, β) 7→ α · β. One verifies easily that these products coincide.

For a morphism α ∈ A(H ×G) from G to H in the category PA, we denote by αop

the element of A(G×H) - i.e. the morphism from H to G - defined by

αop = A(IsoG×H
H×G)(α),

where IsoG×H
H×G is the group isomorphism H × G → G × H swapping the components.

The assignment sending a finite group to itself, and a morphism α to αop is not a
functor from PA to the opposite category in general, but it is if A is commutative.
A commutative Green biset functor is a Green biset functor A which is equal to its
commutant (Definition 21 in [6]). This is equivalent to saying that the product × of
A is commutative up to a corresponding isomorphism, and also equivalent to have a
commutative ring in each evaluation, A(G).

Lemma 2.3. Let A be a commutative Green biset functor, and H,K,L ∈ D. Then for

any β ∈ A(L×H) and α ∈ A(H ×K)

(β ◦ α)op = αop ◦ βop.

The assigment sending K ∈ D to itself and α ∈ A(H ×K) to αop ∈ A(K ×H) is an

equivalence of categories from PA to the opposite category.

Proof. We compute αop ◦ βop:

αop ◦ βop = A(Def
K∆(H)L
KL ResKHHL

K∆(H)L)(α
op × βop)

= A(Def
K∆(H)L
KL ResKHHL

K∆(H)L)
(
A(IsoKH

HK)(α)× A(IsoHL
LH)(β)

)

= A(Def
K∆(H)L
KL ResKHHL

K∆(H)LIso
KHHL
HKLH)(α× β),

where IsoKHHL
HKLH sends (h, k, l, h′) ∈ HKLH to (k, h, h′, l) ∈ KHHL. Moreover since A

is commutative, we have

α× β = A(IsoHKLH
LHHK)(β × α),
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where IsoHKLH
LHHK maps (l, h, h′, k) to (h′, k, l, h). It follows that

αop ◦ βop = A(Def
K∆(H)L
KL ResKHHL

K∆(H)LIso
KHHL
LHHK)(β × α),

where IsoKHHL
LHHK maps (l, h, h′, k) to (k, h′, h, l). Hence

αop ◦ βop = A(Def
K∆(H)L
KL Iso

K∆(H)L
L∆(H)KRes

LHHK
L∆(H)K)(β × α)

= A(IsoKL
LKDef

L∆(H)K
LK ResLHHK

L∆(H)K)(β × α)

= A(IsoKL
LK)(β ◦ α)

= (β ◦ α)op,

as was to be shown. The last assertion follows from the fact that, with a slight abuse of
language, the map α 7→ αop is obviously involutive, and sends the identity morphism
of any object to itself.

For a Green biset functor A, an A-module is defined as a biset functor M , together
with bilinear products A(G)×M(H) → M(G×H) that satisfy natural conditions of
associativity, identity element and functoriality. It is well known that this definition
is equivalent to defining an A-module as a k-linear functor from the category PA to
k-Mod. We denote the category of A-modules by A-Mod. Important objects in A-Mod

are the shifted functors (also called shifted modules) ML. If L is a fixed finite group,
the functor ML is defined as M(G×L) in a group G ∈ D and as M(α×L) in an arrow
α ∈ A(H × G), for more details see Definition 10 in [6]. Of course, AL is an example
of this construction but in this case we can say a little bit more. If L is a group in D
and D′ be a subclass of D possibly not containing L, the shifted functor AL is a Green
D′-biset functor.

When dealing with the simple objects of A-Mod, the following notions are crucial.

Definition 2.4. Let A be a Green biset functor. For a group H ∈ D, the essential

algebra, Â(H), of A on H, is the quotient of A(H × H) over the ideal generated by
elements of the form a ◦ b, where a is in A(H ×K), b is in A(K ×H) and K runs over
the groups in D of order smaller than |H|.

The following functors can be defined in more general settings, we recall the defi-
nitions in the context of A-modules.

Definition 2.5. Let A be a Green biset functor, H a group in D and V an A(H×H)-
module, the A-module LH,V is defined in G ∈ D as

LH,V (G) = A(G×H)⊗A(H×H) V,

and in an obvious way in arrows.
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If V is a simple A(H × H)-module, then LH,V has a unique maximal subfunctor
JH,V , which in each evaluation is equal to

JH,V (G) =

{
n∑

i=1

ai ⊗ vi ∈ LH,V (G) |
n∑

i=1

(b ◦ ai)vi = 0 ∀b ∈ A(H ×G)

}
.

The quotient SH,V = LH,V /JH,V is a simple A-module such that SH,V (H) = V .
On the other hand, if S is a simple A-module and H ∈ D is such that S(H) 6= {0},
then taking V = S(H) gives S ∼= SH,V .

Finally, we recall the following easy lemma, which will be used in Section 4.

Lemma 2.6. Let E → F be categories, let F1 and F2 be functors E → F , and let

Θ : F1 → F2 be a natural transformation. Let f : X → Y and g : Y → X be morphisms

in E such that f ◦ g = IdY . Then if ΘX : F1(X) → F2(X) is an isomorphism, so is

ΘY : F1(Y ) → F2(Y ).

3 Definitions and first properties

Definition 3.1. An A-module is called semisimple if it is the sum of its simple A-
submodules. A Green biset functor A is called semisimple if all A-modules are semisim-
ple.

Lemma 3.2. A Green biset functor A is semisimple if and only if for every group H,

the A-module AH is semisimple.

Proof. If A is semisimple, then in particular every A-module of the form AH is semisim-
ple. Conversely, suppose that every AH is semisimple. As these modules can be view
as the representable functors of the category PA, any A-module is a quotient of a direct
sum of functors of the form AH . Hence any A-module is semisimple.

Definition 3.3. i) A Green biset functor is called simple if its only two-sided ideals
are itself and the zero ideal.

ii) A simple commutative Green biset functor is called a Green field.

Observe that a simple Green biset functor need not be semisimple. This can be
viewed by considering the case where D consists only of trivial groups. Then a Green
biset functor over D is just a ring, and there are well-known examples of simple rings
which are not semisimple (see e.g. [11], page 43, Example before Theorem 3.15).

Example 3.4. The following Green biset functors are Green fields.
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� If k is a field of characteristic 0, the functor kRQ. Clearly it is a commutative
Green biset functor and it is simple by Proposition 4.4.8 in [3].

� If k is a field, the functor kRC. It is clearly commutative, and it is easy to see
that the proof of Proposition 4.3 in [12], regarding the simplicity, holds for this
functor.

� Let k be a field of characteristic 0 and p be a prime number. For a finite p-
group K, let kB

(p)
K denote the Burnside functor shifted by K, defined on the

class D of finite p-groups. It follows from Theorem 45 of [6] that a decomposition

1 =
∑

i ei of the idendity element of kB
(p)
K (1) ∼= kB(K) as a sum of orthogonal

idempotents yields a corresponding decomposition of the category kB
(p)
K -Mod as a

product of categories of modules over smaller Green biset functors eikB
(p)
K . Now,

the primitive idempotents eKH of kB(K) are indexed by the subgroups H of K, up

to conjugation. In particular, for H = K, we get a Green biset functor eKKkB
(p)
K .

It is shown in Section 7 of [5] that when K is not cyclic, the functor eKKkB
(p)
K is

a Green field.

Remark 3.5. Let A be a commutative Green biset functor. Since in this case, two-sided
ideals coincide with left ideals, i.e. A-submodules of A, then A is a Green field if and
only if A is a simple A-module. Nevertheless, A may not be, up to isomorphism, the
unique simple A-module, as it is the case of A = kRQ for k a field of characteristic 0.

Lemma 3.6. Let A be a commutative Green biset functor. Then A is a Green field if

and only if for any finite group H ∈ D, and any a 6= 0 in A(H) = A(H × 1), there
exists b ∈ A(H) = A(1×H) such that b ◦ a = εA.

Proof. Suppose that A is a Green field. For a non zero element a of A(H), consider the
A-submodule 〈a〉 of A generated by a. Its evaluation at L ∈ D is equal to A(L×H)◦a,
i.e. the set of elements b ◦ a, for b ∈ A(L×H). Since 〈a〉 is non zero, we have 〈a〉 = A.
In particular 〈a〉(1) = A(1), so there exists b ∈ A(1×H) such that b ◦ a = εA, as was
to be shown.

For the converse, let I be a non zero ideal of A. Let H be a group such that
I(H) 6= 0 and take a 6= 0 in I(H). Since there exists b ∈ A(H) = A(1×H) such that
b◦a = εA, then εA ∈ I(1). So I contains the A-submodule of A generated by εA, which
is the whole of A. Hence I = A.

If A is a commutative Green biset functor, then A(1) is a commutative ring, and
in fact A can be viewed as a Green biset functor over A(1). This is because, more
generally, if M is an A-module and if α ∈ A(H × L) for some groups H,L ∈ D, then
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the map M(α) : M(L) → M(H) is A(1)-linear. This follows from the fact that, by
Proposition 39 of [6], the functor A maps into the Green biset functor ZA (the center

of A) when A is commutative, and that the evaluation ZA(1) is the endomorphism
algebra of the identity functor of the category A-Mod.

In the same vein, we have the following lemma:

Lemma 3.7. Let A be a commutative Green biset functor.

1. If A is a Green field, then A(1) is a field.

2. Conversely if A(1) is a field, then A has a unique maximal proper ideal. If in

addition A is a semisimple A-module, then A is a Green field.

Proof. Assertion 1 is a straightforward consequence of Lemma 3.6 and Remark 2.2.
Conversely, suppose that A is a commutative Green biset functor such that A(1) is

a field, and let I be an ideal of A. Then I(1) is an ideal of A(1), hence I(1) = A(1)
or I(1) = {0}. If I(1) = A(1), then I(1) contains the identity element εA of A. Hence
I = A in this case. Assume now that I(1) = {0}. Then for any H ∈ D, the evaluation
I(H) is contained in the k-submodule J(H) of A(H) defined by

J(H) = {u ∈ A(H) = A(H × 1) | ∀α ∈ A(1×H), α ◦ u = 0}.

It is easy to see that the assignment H 7→ J(H) defines an A-submodule of A, and
that J(1) = {0}. It follows that I ⊆ J , and that J is the unique maximal (proper)
ideal of A.

If in addition A is a semisimple A-module, there is an ideal J ′ of A such that
A = J ⊕ J ′. If J ′ 6= A, then J ′ ⊆ J , and then J = J + J ′ = A, a contradiction. Hence
J ′ = A, so J = J ∩ J ′ = 0. It follows that A has no non zero proper ideals, hence it is
a Green field.

Notation 3.8. Let A be a Green biset functor, M be an A-module and G, H and
K be groups in D. For a ∈ A(K × G) and m ∈ M(G × H), we denote by a ◦m the
element of M(K ×H) defined by

a ◦m = M
(
Def

K×∆(G)×H

K×H

)
M

(
ResK×G×G×H

K×∆(G)×H

)
(a×m).

Using Definition 10 in [6], one can see that a ◦m = M(a×H)(m), but we will not
use this fact. In the case M = A, this notation is consistent with the definition of the
composition in the category PA given in Definition 2.1. Moreover:
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Lemma 3.9. Let A be a Green biset functor and M be an A-module. Let moreover

G, H and K be finite groups in D. Then for any a ∈ A(K × G), α ∈ A(G) and

m ∈ M(H),
a ◦ (α×m) = (a ◦ α)×m

in M(K ×H).

Proof. Indeed

a ◦ (α×m) = M(Def
K×∆(G)×H

K×H )M(ResK×G×G×H
K×∆(G)×H

)(a× α×m)

= M(Def
K×∆(G)×H

K×H )
(
A(ResK×G×G

K×∆(G))(a× α)×m
)

=
(
A(Def

K×∆(G)
K )A(ResK×G×G

K×∆(G))(a× α)
)
×m

= (a ◦ α)×m,

as was to be shown.

Proposition 3.10. Let A be a Green field and M be an A-module. Then for any finite

groups G and H in D, the linear map

πG,H : A(G)⊗A(1) M(H) → M(G×H)

sending α⊗m to α×m is injective.

Proof. Let u be a non zero element of the kernel of πG,H , and n ≥ 1 be the smallest

integer such that u can be written u =
n∑

i=1

αi ⊗mi, for elements αi ∈ A(G) and mi ∈

M(H). Then all the elements αi and mi are non zero. In particular, by Lemma 3.6,
there exists a ∈ A(G) = A(1×G) such that a ◦ αn = εA. By Lemma 3.9, we get

0 = a ◦

n∑

i=1

(αi ×mi) =
n∑

i=1

a ◦ (αi ×mi)

=
n∑

i=1

(a ◦ αi)×mi =
( n−1∑

i=1

(a ◦ αi)×mi

)
+ (εA ×mn).
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It follows that mn = −
n−1∑
i=1

(a ◦ αi)×mi, so

u =
n−1∑

i=1

αi ⊗mi − αn ⊗
n−1∑

i=1

(
(a ◦ αi)×mi

)

=
n−1∑

i=1

αi ⊗mi −
n−1∑

i=1

αn ⊗
(
(a ◦ αi)×mi

)

=
n−1∑

i=1

αi ⊗mi −
n−1∑

i=1

(
αn × (a ◦ αi)

)
⊗mi, since a ◦ αi ∈ A(1),

=
n−1∑

i=1

(
αi −

(
αn × (a ◦ αi)

))
⊗mi.

This contradicts the minimality of n and completes the proof.

A relevant question is, of course, to know whether a Green field is always semisim-
ple. To address this question we introduce the following notation and results. Unfor-
tunately, as we will see in Example 3.19, a general answer seems difficult to find.

Notation 3.11. Let A be a Green biset functor. For a finite group L, we denote by
tL the linear map A(DefL

1
) : A(L) → A(1), and by 〈−,−〉L the bilinear map

(u, v) ∈ A(L)× A(L) 7→ tL(u · v) ∈ A(1).

When considering the bilinear map 〈−,−〉H×L, defined in A(H × L), for finite groups
H and L, we will write 〈−,−〉H,L instead of 〈−,−〉H×L.

Remark 3.12. If A is a commutative Green biset functor, the bilinear map 〈−,−〉L is
symmetric. This is clear since the ring

(
A(L), ·

)
is commutative.

Lemma 3.13. Let A be a Green biset functor and let L and H be groups in D. Then,

for any α, β ∈ A(H × L)

〈α, β〉H,L = A(Def
∆(L)
1

ResL×L
∆(L))(α

op ◦ β).

Proof. In the following computations, we will omit the × signs in the direct products
of groups, thus writing e.g. HLL instead of H × L× L.

Consider first A(Def
∆(L)
1

ResLL∆(L))(α
op ◦ β). This is equal to

A(Def
∆(L)
1

ResLL∆(L)Def
L∆(H)L
LL ResLHHL

L∆(H)L)(α
op × β).
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Now ResLL∆(L)Def
L∆(H)L
LL

∼= DefD∆(L)Res
L∆(H)L
D , with D = {(l, h, h, l) | h ∈ H, l ∈ L},

and αop × β = A(Iso(θ))(α × β), where θ : HLHL → LHHL swaps the first two
components. Hence

A(Def
∆(L)
1

ResLL∆(L))(α
op ◦ β) = A(Def

∆(L)
1

DefD∆(L)Res
L∆(H)L
D ResLHHL

L∆(H)LIso(θ))(α× β)

= A(DefHL
1

IsoDHLRes
LHHL
D Iso(θ))(α× β)

= A(DefHL
1

Iso
∆(HL)
HL ResHLHL

∆(HL))(α× β)

= A(DefHL
1

)(α · β) = tHL(α · β)

= 〈α, β〉H,L

as desired.

The bilinear map just defined allows us to prove the following characterization of a
Green field.

Proposition 3.14. Let A be a commutative Green biset functor. The following con-

ditions are equivalent:

1. A is a Green field.

2. A(1) is a field and the bilinear map 〈−,−〉H,1 is non degenerate, for any H ∈ D.

3. A(1) is a field and the bilinear map 〈−,−〉H,L is non degenerate, for any H,L ∈ D.

Proof. By Lemma 3.7 we know that if A is a Green field, then A(1) is a field.

1 ⇒ 2: Let a, b ∈ A(H × 1), we have 〈b, a〉H,1 = Def1
1
Res1×1

1
(bop ◦ a) = bop ◦ a. So if 1)

holds, by Lemma 3.6, the radical of 〈−,−〉H,1 has to be zero, and 2) holds.

2 ⇔ 3: Suppose 2) holds. By definition, for α, β ∈ A(H × L), we have

〈α, β〉H,L = tH×L(α · β) = 〈α, β〉H×L,1,

and the bilinear map 〈α, β〉H×L,1 is non degenerate. The converse is clear.

2 ⇒ 1: Suppose that 2) holds and let I be an ideal of A. Then I(1) is an ideal of the
field A(1), thus I(1) = A(1) or I(1) = {0}. If I(1) = A(1), then I(1) ∋ εA, so I = A
in this case. Now if I(1) = {0}, then for any H ∈ D, we have that A(1×H) ◦ I(H) ⊆
I(1) = {0}, so A(1 × H) ◦ I(H) = {0}. It follows that 〈A(H), I(H)〉H,1 = {0}, so
I(H) = {0} since 〈−,−〉H,1 is non degenerate. Hence I = 0 in this case, and A is a
Green field.

10



Remark 3.15. In the case A(H) is a finite dimensional A(1)-algebra, the condition 2
above means that tH is a symmetrizing form for this algebra, i.e. that the bilinear
form 〈−,−〉H yields an isomorphism of

(
A(1), A(1)

)
-bimodules between A(H) and

HomA(1)

(
A(H), A(1)

)
. In particular A(H) is a symmetric algebra in this case (see [9]

for details).

We have one last interesting property of the map 〈−,−〉H,L.

Lemma 3.16. Let A be a commutative Green biset functor, and H,K,L ∈ D. Then

for any α ∈ A(H ×K), β ∈ A(L×K) and γ ∈ A(L×H)

〈γ ◦ α, β〉L,K = 〈α, γop ◦ β〉H,K .

In particular, the assignment H 7→ Rad 〈−,−〉H defines an ideal of A.

Proof. By Lemma 3.13 and Lemma 2.3, we have

〈γ ◦ α, β〉L,K = tKK

(
(γ ◦ α)op ◦ β

)
= tKK

(
(αop ◦ γop) ◦ β)

)

= tKK

(
αop ◦ (γop ◦ β)

)
= 〈α, γop ◦ β〉H,K ,

as was to be shown.

In particular forK = 1, if α ∈ Rad〈−,−〉H and γ ∈ A(L×H), then γ◦α ∈ Rad〈−,−〉L.

The following result is Proposition 7 in [7], we include the proof here for the con-
venience of the reader. We obtain, as a corollary, a necessary and sufficient condition
for a Green field to be semisimple.

Proposition 3.17. Let A be a Green biset functor over k. Assume the following:

1. If L is a finite group in D, the algebra A(L× L) is semisimple.

2. If H is a finite group in D, the bilinear map

(α, β) ∈ A(H × L)2 7→ αop ◦ β ∈ A(L× L)

is non degenerate, i.e. if αop ◦ β = 0 for all α ∈ A(H × L), then β = 0.

Then A is a semisimple Green biset functor.

Proof. We will show that AL is a semisimple A-module, for each finite group L. Let
M be an A-submodule of AL.
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� First, M(L) is a left ideal of the algebra A(L×L), and we claim that if M(L) =
{0}, then M = 0. Indeed, if M(L) = {0}, then for any finite group H, the
k-vector space M(H) is contained in the set of elements β of AL(H) = A(H×L)
such that αop ◦ β = 0 for each α ∈ A(H × L) (since αop ◦ β ∈ M(L) = {0}). By
assumption 2, we have M(H) = {0}, as claimed.

� Now let Φ be the correspondence sending an A-submodule M of AL to the (left)
ideal M(L) of the algebra A(L × L). In the other direction, let Ψ be the cor-
respondence sending a left ideal V of A(L × L) to the A-submodule 〈V 〉 of AL

generated by V .

Clearly Φ ◦Ψ(V ) = V , since 〈V 〉(L) = A(L× L)(V ) = V .

Conversely, let M be an A-submodule of AL. Then M(L) is a left ideal of
A(L×L), which is semisimple by assumption 1. Then there exists a left ideal W
of A(L× L) such that

M(L)⊕W = A(L× L).

Let P = M +Ψ(W ). The evaluation of P at L is

P (L) = M(L) +W = A(L× L).

Then P = AL, because AL is generated by AL(L) = A(L × L). Moreover, the
intersection I = M ∩Ψ(W ), evaluated at L, is equal to

I(L) = M(L) ∩W = {0}.

It follows that I = {0}, and then M ⊕Ψ(W ) = AL.

Now consider M ′ = Ψ ◦ Φ(M). This is an A-submodule of M , and the same
arguments show that M ′ ⊕Ψ(W ) = AL also. But we have

M ′ ≤ M ≤ M ′ ⊕Ψ(W ),

and then M = M ′ ⊕
(
M ∩Ψ(W )

)
= M ′ ⊕ I = M ′.

We have shown that Φ and Ψ are mutually inverse bijections between the poset of
A-submodules of AL and the poset of left ideals of A(L×L). It follows that AL is
a semisimple A-module, for each finite group L. By Lemma 3.2, A is semisimple.

Corollary 3.18. Let A be a Green field. Then A is semisimple if and only if the

algebra A(L× L) is semisimple for any L ∈ D.

12



Proof. Indeed if A is semisimple, then AL is a semisimple A-module for any L ∈ D,
so EndA-Mod(L) ∼= A(L× L) is a semisimple algebra. Conversely, by Lemma 3.13 and
Proposition 3.14, a Green field always fulfills condition 2 of Proposition 3.17. Hence
for a Green field, condition 1 alone implies semisimplicity.

Example 3.19. Let k be a field of characteristic p > 0. The Green ring functor ak is
the Green biset functor (over Z) sending a finite group G to the Grothendieck group
of the category of finitely generated kG-modules, for relations given by direct sum
decompositions. For finite groups G and H, the product × : A(G)×A(H) → A(G×H)
is induced by the usual external tensor product: if M is a kG-module and N is a kH-
module, then M ⊗k N has a natural structure of k(G×H)-module.

For three groups G, H, andK, the composition ak(K×H)×ak(H×G) → ak(K×G)
is induced by the tensor product of bimodules: a k(K ×H)-module N can be viewed
as a (kK, kH)-bimodule, and a k(H × G)-module M can be viewed as a (kH, kG)-
bimodule. Then the composition of (the class of) N and (the class of) M in ak(K×G)
is (the class of) N ⊗kH M .

Now let F be a field of characteristic 0 and Fak = F⊗ak be the Green biset functor
obtained by extending the coefficients to F. Then Fak(1) is the field F. Moreover, it
follows from Corollary 5.11.2 of [2] that the bilinear form 〈−,−〉H,1 is non degenerate,
for any finite group H. By Proposition 3.14, the functor Fak is a Green field. For
short, we could say that the Green ring is a Green field.

This example shows that the question of semisimplicity of Green fields is not that
simple: we don’t know if the algebra

(
Fak(G × G), ◦

)
is always semisimple, and we

leave this question open. We recall that, on the other hand, the commutative algebra(
ak(G), ·

)
is non reduced in general - that is, its nilradical is non zero (see Section 5.8

of [2] for details).

We finish the section with an application of the previous corollary.

Corollary 3.20. Let A be a Green field. Assume that dimA(1)A(L × L) < +∞ and

that the bilinear form 〈 , 〉L,L is anisotropic, for any L in D. Then the functor A is

semisimple.

Proof. By Corollary 3.18, it suffices to show that the algebra A(L× L) is semisimple,
for any L ∈ D. Let L ∈ D and I be a left ideal of A(L × L). Let J be the left
orthogonal of I in A(L× L), that is

J = {u ∈ A(L× L) | ∀v ∈ I, 〈u, v〉L,L = 0}.

Then J is a left ideal of A(L × L), by Lemma 3.16. Moreover I ∩ J = {0} since the
form 〈 , 〉L,L is anisotropic. In addition dimA(1) I +dimA(1) J = dimA(1) A(L×L) since
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the form 〈 , 〉L,L is non-degenerate. It follows that I ⊕ J = A(L × L), so the algebra
A(L× L) is semisimple, as was to be shown.

Example 3.21. Let A = QRQ. Then for any L ∈ D and any finite dimensional Q(L×L)-
modules M and N , one checks easily that 〈M,N〉L,L is equal to the dimension of the
space of co-invariants (M ⊗Q N)L×L of L × L on the tensor product M ⊗Q N . This
is also equal to the dimension of the space (M ⊗Q N)L×L, and thus can be computed
using the characters χM and χN of M and N , respectively, as

〈M,N〉L,L =
1

|L|2

∑

g,h∈L

χM(g, h)χN(g, h).

Now the map M 7→ χM from RQ(L × L) to the space cfQ(L × L) of class functions
L×L → Q extends to a linear injective map u 7→ χu from QRQ(L×L) to cfQ(L×L),
and for any u, v ∈ QRQ(L× L), we get that

〈u, v〉L,L =
1

|L|2

∑

g,h∈L

χu(g, h)χv(g, h).

In particular 〈u, u〉L,L ≥ 0, with equality if and only if χu = 0, that is u = 0. In other
words the bilinear form 〈 , 〉L,L is anisotropic, and Corollary 3.20 can be applied. This
gives another proof of the fact that the Green biset functor QRQ is semisimple - this
was first proved by L. Barker in [1]. Variations on this argument were used in [7], to
show that all the shifted functors (kRF)T are semisimple, when k and F are fields of
characteristic 0, and T is any finite group.

4 Strict Green fields

Recall that we have fixed a non-empty class D of finite groups, closed under subquo-
tients and direct products. In particular, the trivial group belongs to D. We denote
by A a Green biset functor defined on D, over a commutative unital ring k.

Theorem 4.1. The following conditions are equivalent:

1. If M is a non-zero A-module, then M(1) 6= {0}.

2. If S is a simple A-module, then S(1) 6= {0}.

3. If S is a simple A-module, then S ∼= S1,V , where V is a simple A(1)-module.
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4. For any finite group H in D, there exists a positive integer nH such that AH is a

direct summand of A⊕nH .

5. The evaluation functor, which sends an A-module M to M(1), is an equivalence

of categories between A-Mod and A(1)-Mod.

6. For any finite groups G and H in D, the product × : A(G)×A(H) → A(G×H)
induces an isomorphism of k-modules between A(G)⊗A(1) A(H) and A(G×H).

Proof. 1 ⇒ 2: This is trivial, since a simple A-module is non-zero by definition.

2 ⇒ 3: If S is a simple A-module and H is a finite group such that S(H) 6= {0}, then
V = S(H) is a simple A(H×H)-module, and S ∼= SH,V . If 2 holds, we can take H = 1,
and this gives 3.

3 ⇒ 4: Let H be a finite group such that Â(H) 6= {0}. Then we can take a simple

Â(H)-module V and construct the simple A-module SH,V , having H as a minimal

group. If H is non-trivial, it satisfies SH,V (1) = 0. So if 3 holds, we have Â(H) = {0}
for any non-trivial finite group H. Then, any element in A(H ×H) can be written as∑n

i=1 ai ◦ bi, where ai ∈ A(H ×Ki) and bi ∈ A(Ki ×H), for some Ki with |Ki| < |H|.
In particular, using the Yoneda Lemma, the identity IdAH

in EndA(AH) can be written
as

∑n

i=1 βi ◦αi, where αi : AH → AKi
and βi : AKi

→ AH , for some Ki with |Ki| < |H|.

Now the elements αi define a morphism α : AH →
nH

⊕
i=1

AKi
, and the elements βi define

a morphism
nH

⊕
i=1

AKi
→ AH . Saying that Id =

∑
i αi ◦ βi is equivalent to saying that

β ◦ α = IdAH
, so AH is a direct summand of

nH

⊕
i=1

AKi
. Applying this argument now to

each AKi
and then proceeding by induction on the order of H, it follows that AH is a

direct summand of a finite direct sum of copies of A1
∼= A. Hence 3 implies 4.

4 ⇒ 5: For an A-module M , the counit of the adjunction L1,− ⊣ ev1, at the group G
is the map A(G) ⊗A(1) M(1) → M(G) induced by the product × on M . If M = A,
this map is an isomorphism. Hence it is an isomorphism if M is a direct summand of
a direct sum of a finite number of copies of A, by Lemma 2.6. In particular, if 4 holds,
this map is an isomorphism for any M = AH . Hence, it is an isomorphism if M is a
projective A-module.

If M is an arbitrary A-module, there is a resolution Q → P → M → 0 by pro-
jective A-modules P and Q, and as the functor M 7→ L1,M(1) is right exact, we get a
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commutative diagram

L1,Q(1)

∼=
��

// L1,P (1)

∼=
��

// L1,M(1)

��

// 0

Q // P // M // 0

with exact rows. The two left vertical arrows are isomorphims, so the right verti-
cal arrow is an isomorphism. Hence the counit of the adjunction L1,− ⊣ ev1 is an
isomorphism. Since ev1(L1,V ) = L1,V (1) ∼= V for any A(1)-module V , the unit of
the adjunction L1,− ⊣ ev1 is also an isomorphism. So the functors ev1 and L1,− are
quasi-inverse equivalences of categories, and 5 holds.

5 ⇒ 6: Let M = AH . If 5 holds, the counit L1,M(1) → M is an isomorphism. At the
trivial group, this is precisely the map A(G)⊗A(1) A(H) → A(G×H) of assertion 6.

6 ⇒ 5: If 6 holds, then the counit L1,M(1) → M is an isomorphism for any A-module
of the form AH . Hence it is an isomorphism for any projective A-module, hence for
any A-module, as above. It follows that ev1 and L1,− are quasi-inverse equivalences of
categories, so 5 holds.

5 ⇒ 1: If 5 holds, then M ∼= L1,M(1) for any A-module M . Hence M(1) 6= {0} if
M 6= {0}.

Corollary 4.2. Let A be a Green biset functor, and suppose that A is a simple A-
module. The following are equivalent:

1. The only simple A-module, up to isomorphism, is A.

2. For any finite group H, there exists a positive integer nH such that AH
∼= A⊕nH .

3. A(1) is a division ring, and the evaluation functor ev1 defines an equivalence of

categories between A-Mod and A(1)-Vect.

Proof. 1 ⇒ 2: If 1 holds, then S(1) 6= {0} for any simple A-module S. So, condition 2
of Theorem 4.1 is fulfilled. In particular, the functor AH is a direct summand of some
finite direct sum A⊕mH . Since A is simple, it follows that AH is isomorphic to a finite
direct sum of copies of A.

2 ⇒ 3: If 2 holds, then condition 5 of Theorem 4.1 is fulfilled. In particular, the
evaluation functor ev1 is an equivalence of categories. The image of the simple A-
module A by this equivalence is the A(1)-module A(1), so A(1) is a simple A(1)-
module. If follows that A(1) is a division ring, and 3 holds.
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3 ⇒ 1: If 3 holds, then condition 6 of Theorem 4.1 is fulfilled. In particular any
simple A-module is of the form S1,V , where V is a simple A(1)-module. Since A(1) is
a division ring, the only simple A(1)-module is V = A(1). Hence S1,A(1) is the only
simple A-module, isomorphic to A since A is a simple A-module.

Definition 4.3. Green fields fulfilling any of the conditions of Corollary 4.2 will be
called strict Green fields.

Remark 4.4. It follows from Corollary 4.2 that a strict Green field is semisimple.

Examples

1) Our first example of Theorem 4.1 is the case where A is the functor (RC)K of
complex characters, shifted by a finite group K. It is easy to see that Proposition 4.2 in
Garćıa [10] holds for A = (RC)K , showing that A satisfies condition 6 of Theorem 4.1.
Since A(1) is isomorphic to the ring RC(K), it follows that the evaluation functor
ev1 : M 7→ M(1) is an equivalence of categories between A-Mod and RC(K)-Mod.

More generally, for any commutative ring k, we get an equivalence of categories
between k(RC)K-Mod and kRC(K)-Mod. In particular, when k is a field whose char-
acteristic does not divide the order of K, the category k(RC)K-Mod is semisimple. If
in addition to this we take K = 1, then kRC(1) = k. Hence kRC satisfies condition 3
of Corollary 4.2 and it is a strict Green field.

It is worth saying that the fact that CRC satisfies condition 1 of Corollary 4.2 was
first shown in Proposition 4.3 of [12]. Also, the equivalence by evaluation at 1 between
C(RC)K-Mod and CRC(K)-Mod was first given in Proposition 4.3 of [10].

Remark 4.5. The ring A(1) may indeed be a division ring, for example by taking k as
the quaternion algebra over Q and A = kRC. As we have defined Green biset functors
only over commutative rings, in this case, we must consider A as a Green functor
over Q.

2) Let k be a field of prime characteristic q. Assume that the class D consists of finite
groups whose orders are products of primes all congruent to 1 mod q. Then there exists
a biset functor k, defined on D, such that k(G) = k for any G ∈ D, and k(U) : k → k
is multiplication by |H\U | for any G, H in D and any finite (H,G)-biset U : indeed
for any finite G-set X, the cardinality of each orbit Gx on X is congruent to 1 mod q,
so |G\X| ≡ |X| (mod q). It follows that if K is a group in D, and V is a finite
(K,H)-biset, then

|K\(V ×H U)| ≡ |V ×H U | ≡ |V × U | ≡ |K\V ||H\U | (mod q),
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so k is indeed a biset functor over k, defined on D. In the case where D consists of
finite p-groups, for a fixed prime number p congruent to 1 mod q, the functor k has
been considered in [8], Corollary 8.4.

Now it is clear that the multiplication in the field k induces a Green functor struc-
ture on k, and condition 6 of Theorem 4.1 holds. Again Corollary 4.2 also holds and k
is a strict Green field.

3) Let p be a prime, and K be a non-cyclic p-group. The Green biset functor A =

eKKkB
(p)
K considered in Example 3.4 is a non strict Green field, because it does not satisfy

Condition 6 of Theorem 4.1. Indeed, for a p-group G, the dimension of A(G) is equal
to the number of conjugacy classes of subgroups of G × K which map surjectively
to K by the second projection G × K → K (see Section 5.2.2 of [6]). In the case
K = Cp × Cp and G = Cp, an easy computation shows that dimk A(G) = p2 + 1,
whereas dimk A(G×G) = p4 + p3 + p2 + 1. Since

(p4 + p3 + p2 + 1)− (p2 + 1)2 = p2(p− 1) > 0,

the functor A does not satisfy Condition 6 of Theorem 4.1.
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