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Abstract: Motivated by the theory of correspondence functors, we introduce

the notion of germ in a finite poset, and the notion of germ extension of a

poset. We show that any finite poset admits a largest germ extension called

its germ closure. We say that a subset U of a finite lattice T is germ extensible

in T if the germ closure of U naturally embeds in T . We show that any for

any subset S of a finite lattice T , there is a unique germ extensible subset U

of T such that U ⊆ S ⊆ G(U), where G(U) ⊆ T is the embedding of the germ

closure of U .
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1. Introduction

In a series of papers with Jacques Thévenaz ([1], [2], [5], [4], [3]), we develop
the theory of correspondence functors over a commutative ring k, i.e. linear
representations over k of the category of finite sets, where morphisms are
correspondences instead of maps. In this theory, finite lattices and finite
posets play a crucial role, at various places.

In particular, we show ([1], Theorem 4.7) that the simple correspondence
functors are parametrized by triples (E,R, V ), where E is a finite set, R is
a partial order relation on E - that is, (E,R) is a finite poset - and V is a
simple kAut(E,R)-module. Moreover, the evaluation at a finite set X of the
simple functor SE,R,V parametrized by the triple (E,R, V ) can be completely
described ([3], Theorem 6.6 and Theorem 7.9). It follows ([3], Theorem 8.2)
that when k is a field, the dimension of SE,R,V (X) is given by

(1.1) dimk SE,R,V (X) =
dimk V

|Aut(E,R)|

|E|∑

i=0

(−1)i
(
|E|

i

)(
|G| − i

)|X|
.

The main consequence of these results is a complete description of the simple
modules for the algebra over k of the monoid of all relations on X ([3],
Section 8).

Formula 1.1 is obtained by first choosing a finite lattice T such that the
poset Irr(T ) of join-irreducible elements of T is isomorphic to the opposite
poset (E,Rop), and then constructing a specific subset G = GT of T (see (4.1)
for a precise definition of GT ), which appears in the right hand side. Now
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for a given X, the left hand side of (1.1) only depends on the poset (E,R)
and the simple kAut(E,R)-module V , whereas the right hand side depends
in addition on the cardinality of the set G, which a priori depends on T , and
not just on (E,R). We have checked ([3] Corollary 6.7) that |G| indeed only
depends on (E,R). A natural question is then to ask if the subposet G of T
only depends on (E,R), up to isomorphism, and not really on T itself.

One of the aims of the present paper is to answer this question. In fact,
the main aim is to introduce various structural results on posets and lattices,
which appear to be new. The first notion we introduce is the notion of germ
of a finite poset. A germ of a finite poset S is an element of S with specific
properties (Definition 2.1).

A related notion is the following: When U is a subset of S, the poset S
is called a germ extension of U if any element of S − U is a germ of S. The
main result of the paper (Theorem 2.22) is that conversely, being given a
finite poset U , there is a (explicitly defined) finite poset G(U), containing U
as a full subposet, which is the largest germ extension of U , in the following
sense: First G(U) is a germ extension of U , and moreover, if S is a finite
poset containing U as a full subposet, and such that S is a germ extension
of U , then there is a unique full poset embedding S → G(U) which restricts
to the identity map of U . For this reason, the poset G(U) will be called the
germ closure of U .

This poset G(U) can be viewed as a structural answer to the above ques-
tion: In the case of a finite lattice T with poset (E,R) of join-irreducible
elements, we show (Theorem 4.2) that the poset set G identifies canonically
with G(E,R), and in particular, it only depends on the poset (E,R).

In Section 3, we consider germ extensible subsets of a finite lattice. For
any full subposet U of a finite lattice T , the inclusion map U →֒ T extends to
a canonical map of posets ν : G(U) → T . We say that U is germ extensible
in T if this map ν is injective, and in this case, we denote by G(U) ⊆ T
its image. We give a characterization of germ extensible subsets of a lattice
(Theorem 3.2), and then show (Theorem 3.4) that for any subset S of T , there
exists a unique germ extensible subset U of T such that U ⊆ S ⊆ G(U).

In other words, the poset of subsets of T is partitioned by the intervals
[U,G(U)], where U is a germ extensible subset of T . In a forthcoming pa-
per, we will show how this rather surprising result yields a natural filtration
of the correspondence functor FT associated to T ([2], Definition 4.1), by
fundamental functors indexed by germ extensible subsets of T .

The last section of the paper (Section 5) lists some examples of germs,
germ closures, and germ extensible subsets of lattices.
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2. Germs in a poset

Throughout the paper, we use the symbol ⊆ for inclusion of sets, and the
symbol ⊂ for proper inclusion. We denote by ⊔ the disjoint union of sets.

If (U,≤) is a poset, and u, v are elements of U , we set

[u, v]U = {w ∈ U | u ≤ w ≤ v}, [u, v[U = {w ∈ U | u ≤ w < v},

]u, v]U = {w ∈ U | u < w ≤ v}, ]u, v[U = {w ∈ U | u < w < v},

] . , v]U = {w ∈ U | w ≤ v}, ] . , v[U = {w ∈ U | w < v},

[v, . [U = {w ∈ U | w ≥ v}, ]v, . [U = {w ∈ U | w > v}.

When V is a subset of a poset U , we denote by SupUV the least upper bound
of V in U , when it exists. Similarly, we denote by InfUV the greatest lower
bound of V in U , when it exists. For u ∈ U , when we write u = SupUV
(resp. u = InfUV ), we mean that SupUV exists (resp. that InfUV exists)
and is equal to u.

2.1. Definition: Let (U,≤) be a finite poset. A germ of U is an element
u ∈ U such that there exists an element v ≥ u in U for which the following
properties hold:

1. u = SupU ] . , u[U and v = InfU ]v, . [U .

2. [u, . [U= [u, v]U ⊔ ]v, . [U and ] . , v]U = ] . , u[U ⊔ [u, v]U .

3. [u, v]U is totally ordered.

Before giving some examples of germs (Examples 2.5, 2.6, 2.7, Proposi-
tion 2.8 - see also Section 5), we prove the following lemma motivating the
subsequent definition of cogerm:

2.2. Lemma: Let (U,≤) be a finite poset, and u be a germ of U . Then
there exists a unique element v ≥ u in U with the properties of Definition 2.1.

Proof : Let v′ ≥ u be another element of U with the properties of the
element v of Definition 2.1. Then v′ ∈ [u, . [U= [u, v]U ⊔ ]v, . [U . In particular
u ≤ v′ ≤ v or v′ ≥ v. If v′ � v, then u ≤ v′ < v, and ]v′, . [U=]v′, v]⊔ ]v, . [U .
Moreover ]v′, v]U has a smallest element w, since [u, v]U is totally ordered.
Then w is also the smallest element of ]v′, . [U , thus w = InfU ]v

′, . [U 6= v′,
contradicting Property 1 of v′ in Definition 2.1. It follows that v′ ≥ v.
Exchanging the roles of v and v′ gives v ≥ v′, thus v = v′.
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2.3. Definition and Notation: Let (U,≤) be a finite poset.

1. Let u be a germ of U . The unique element v ≥ u of U with the prop-
erties of Definition 2.1 is called the cogerm of u in U .

2. The set of germs of U is denoted by Grm(U).

2.4. Remark: Clearly, if u is a germ of the poset U , then its cogerm v in U
is a germ in the opposite poset U op, and the cogerm of v in U op is u. The
correspondence u ↔ v is a bijection between the germs of U and the germs
of U op.

2.5. Example: In the poset with the following Hasse diagram

◦
✝✝
✝✝ ✽✽

✽✽ ◦
✝✝
✝✝ ✽✽

✽✽

◦ � ◦

◦

✝✝
✝ ✽✽
✽

◦ ◦

the black square element is the only germ. The white square above it is its
cogerm.

2.6. Example: Let u be an element of U such that u = SupU ] . , u[U and
u = InfU ]u, . [U . Then u is a germ of U , and u is its own cogerm in U . For
example, the black square in the following poset

◦
✽✽

✽ ◦
✝✝
✝

✝✝
✝ ✽✽
✽

◦ ◦

is the only germ, equal to its cogerm.

2.7. Example: Let U = T1× . . .×Tk be the direct product of k ≥ 2 totally
ordered sets Ti of cardinality at least 2. Then one can show that a germ
of U is always equal to its cogerm. Moreover, an element (t1, . . . , tk) of U ,
different from the smallest and the greatest element of U , is a germ of U if
and only if there are at least two indices i ∈ {1, . . . , k} such that ti 6= Inf(Ti),
and two indices j ∈ {1, . . . , k} such that tj 6= Sup(Tj). In particular:

� If U is the poset of subsets of a finite set of cardinality n ≥ 2, ordered
by inclusion of subsets, then Grm(U) is the set of subsets of cardinality
different from 1 and n− 1.
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� If U is the set of divisors of an integer n which is not a prime power,
ordered by divisibility, then Grm(U) is the union of {1, n} with the set
of divisors i of n such that i and n/i admit at least two distinct prime
divisors.

2.8. Proposition: Let (U,≤) be a finite poset.

1. If u is a minimal element of U which is also a germ of U , then u is
the smallest element of U . In particular, a finite set of cardinality at
least 2, ordered by the equality relation, admits no germs at all.

2. Conversely, suppose that U admits a smallest element u. Set u0 = u,
and define inductively a sequence u0 < u1 < . . . < un, where each ui

is the smallest element of ]ui−1, . [U , for i ≥ 1, and ]un, . [U has no
smallest element (possibly n = 0). Then u = u0 is a germ of U , with
cogerm un.

Proof : Assertion 1 follows from the fact that ] . , u[U= ∅ if u is minimal
in U . Then u = SupU(∅), as u is a germ of U , and for any poset U , if
SupU(∅) exists, it is the smallest element of U . Finally, in a set of cardinality
at least 2 ordered by equality, all the elements are minimal, but there is no
smallest element. So there are no germs.

For Assertion 2, we have first that u = SupU ] . , u[U , since ] . , u[U= ∅ and
SupU(∅) is the smallest element of U . Moreover if x ∈ U , then either x = ui

for some i, or x > un. And if x ≤ y for all y ∈]un, . [U , then x /∈]un, . [U , since
]un, . [U has no smallest element. Thus x ≤ un, hence un = InfU ]un, . [U . So
u is a germ of U , with cogerm un, as was to be shown.

2.9. Lemma: Let (U,≤) be a finite poset, let u and u′ be distinct germs
of U , with respective cogerms v and v′ in U .

1. If u′ > u, then v′ ≥ u′ > v ≥ u.

2. If u′ ≤ v, then u′ ≤ v′ < u ≤ v.

Proof : 1) If u′ > u, then u′ ∈]u, . [U=]u, v]U ⊔ ]v, . [U . Moreover if u′ ≤ v,
then ] . , u′[U= ] . , u[U ⊔ [u, u′[U , and [u, u′[U has a greatest element w since
[u, v]U is totally ordered. Then w is also the greatest element of ] . , u′[U , hence
w = SupU ] . , u′[U 6= u′, contradicting the first property of u′ in Definition 2.1.
It follows that u′ > v.

2) If u′ ≤ v, then either u′ ≤ u or u′ ∈ [u, v]U . If u′ ≤ u, then u′ < u since
u′ 6= u, and then u′ ≤ v′ < u ≤ v by Assertion 1 (exchanging the roles of
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(u, v) and (u′, v′)). Now if u′ ∈ [u, v]U , then u′ > u since u 6= u′, and then
u′ > v by Assertion 1, contradicting the assumption u′ ≤ v.

2.10. Definition and Notation: Let (S,≤) be a finite poset, and let U
be a subset of S. For B ⊆ S, set U≤B = {u ∈ U | u ≤ b ∀b ∈ B}, and for
s ∈ S, set U≤s = U≤{s} = ] . , s]S ∩ U .

1. U is said to detect S if

∀s, t ∈ S, s ≤ t ⇐⇒ U≤s ⊆ U≤t .

2. S is called a germ extension of U if S = U ∪ Grm(S).

2.11. Lemma: Let (S,≤) be a finite poset, and let U be a subset of S. If
S is a germ extension of U , then U detects S.

Proof : Clearly if s, t ∈ S and s ≤ t, then U≤s ⊆ U≤t. Conversely, for t ∈ S,
set

Ωt = {s ∈ S | U≤s ⊆ U≤t but s � t} .

If Ωt 6= ∅, let s be a minimal element of Ωt. If s ∈ U , then s ∈ U≤s, thus
s ∈ U≤t, hence s ≤ t, contradicting the assumption s ∈ Ωt. Hence s /∈ U ,
thus s ∈ Grm(S), and in particular s = SupS ] . , s[S. Now for x ∈ ] . , s[S,
we have U≤x = ] . , x]S ∩ U ⊆ ] . , s]S ∩ U = U≤s ⊆ U≤t, hence x ≤ t by
minimality of s. It follows that t ≥ SupS ] . , s[S= s, a contradiction. Hence
Ωt = ∅ for any t ∈ S, as was to be shown.

2.12. Theorem: Let (S,≤) be a finite poset, and let U be a full subposet
of S such that S is a germ extension of U . Let s ∈ S. Then one and only
one of the following holds:

1. there exists a subset B of U such that U≤s = U≤B.

2. there exists a germ r of U such that U≤s = ] . , r[U .

Proof : Let us first prove that one of the assertions 1 or 2 holds. If s ∈ U ,
then U≤s = ] . , s]U , so 1 holds for B = {s}. Now if s /∈ U , then s ∈ Grm(S).
Let ŝ be the cogerm of s in S. The totally ordered poset [s, ŝ] is of the form

[s, ŝ]S = {s = s0 < s1 < . . . < sn = ŝ} .

Consider first an element u ∈ U such that u ≤ u′ for any u′ ∈]ŝ, . [S ∩U .
Suppose that there exists t ∈ S such that ŝ < t but u � t, and let t be
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maximal with this property. Then in particular t /∈ U . Hence t ∈ Grm(S).
Moreover u ≤ x for any x ∈]t, . [S, by maximality of t. Let t̂ be the cogerm
of t in S.

If t = t̂, then u ≤ InfS]t, . [S= t, a contradiction. Thus t < t̂, and
[t, t̂] = {t = t0 < t1 < . . . < tm = t̂}, for some m ≥ 1. Then ti ∈ U for
i ≥ 1, for otherwise ti is a germ of S, and ti > t = t0, thus ti > t̂ = tm by
Lemma 2.9, a contradiction. In particular u ≤ t1. If u < t1, then u ≤ t0 = t,
a contradiction. Thus u = t1. It follows that t1 is the smallest element of
]ŝ, . [S ∩U . Since t is the greatest element of ] . , t1[S, it follows that t is
unique. In other words the set {x ∈ S | x > ŝ, u � x} has a unique maximal
element, i.e. it has a greatest element t < t1 = u. Thus

]ŝ, . [S=]ŝ, t]S ⊔ [u, . [S .

Suppose that ]ŝ, t[S 6= ∅, and let t′ be a maximal element of that poset. Then
t′ /∈ U , for if t′ ∈ U , then t′ ≥ u > t, since t′ > ŝ. Thus t′ ∈ Grm(S), and
t′ < t. By Lemma 2.9, it follows that t′ ≤ t̂′ < t, where t̂′ is the cogerm
of t′ in S. Hence t′ = t̂′. But ]t′, . [S=]t′, t]S ⊔ [u, . [S= {t} ⊔ [u, . [S, and
t = InfS]t

′, . [S, a contradiction since t′ = t̂′ = InfS]t
′, . [S.

Thus ]ŝ, t[S= ∅. It follows that ]ŝ, . [S= {t} ⊔ [u, . [S, hence Inf]ŝ, . [S=
t 6= ŝ, a contradiction.

Therefore u ≤ t for any t ∈]ŝ, . [S, hence u ≤ ŝ = InfS]ŝ, . [S. This shows
that for u ∈ U

(2.13) u ≤ u′ ∀u′ ∈]ŝ, . [S ∩U ⇐⇒ u ≤ ŝ .

Now there are two cases:

� if s = ŝ, then by (2.13)

u ≤ s = ŝ ⇐⇒ u ≤ u′ ∀u′ ∈]s, . [S ∩U ,

so we are in Case 1 of the theorem, for B =]s, . [S ∩U .

� if s < ŝ, that is n ≥ 1. Then for i ∈ {1, . . . , n}, the element si is in U :
indeed if si /∈ U then si ∈ Grm(S), and si > s = s0. Hence si > ŝ = sn
by Lemma 2.9, a contradiction.

Now if u ∈ U , and u ≥ u′ for any u′ ∈ ] . , s1[U , then u ≥ u′ for any
u′ ∈ ] . , s0]S ∩ U , that is U≤s0 ⊆ U≤u, hence s0 ≤ u by Lemma 2.11.
Thus s0 < u, i.e. s1 ≤ u, showing that

(2.14) s1 = SupU ] . , s1[U .

7



Moreover
(2.15)
[s1, . [U= [s0, . [S ∩U =

(
[s0, ŝ]S ∩ U

)
⊔ ]ŝ, . [U= [s1, ŝ]U ⊔ ]ŝ, . [U .

Similarly

(2.16) ] . , ŝ]U =
(
] . , s0]S ∩ U

)
⊔

(
[s0, ŝ]S ∩ U

)
= ] . , s1[U ⊔ [s1, ŝ]U .

Finally, from (2.13), we have that

(2.17) ŝ = InfU ]ŝ, . [U .

Now it follows from (2.14), (2.15), (2.16) and (2.17) that s1 is a germ
of U , with cogerm ŝ. Moreover U≤s = {u ∈ U | u < s1}, so this is
Case 2 of the theorem.

It remains to see that the two cases of the theorem cannot occur simultane-
ously. So suppose that there exists s ∈ S, B ⊆ U , and r ∈ Grm(U) such
that for any u ∈ U

u ≤ s ⇐⇒ u ≤ b, ∀b ∈ B ⇐⇒ u < r .

Then for b ∈ B, we have b ≥ u for any u ∈ ] . , r[U , hence b ≥ SupU ] . , r[U= r.
Thus r ≤ b for any b ∈ B, hence r < r, a contradiction. This completes the
proof of Theorem 2.12.

2.18. Theorem: Let (S,≤) be a finite poset, and U be a full subposet of S.
Suppose that U detects S, and that for any s ∈ S, one of the following holds:

1. there exists a subset B of U such that U≤s = U≤B.

2. there exists a germ r of U such that U≤s = ] . , r[U .

Then S is a germ extension of U .

Proof : Let s ∈ S − U .

• Step 1: Let t ∈ S such that s′ ≤ t for all s′ ∈ ] . , s[S. If u ∈ U≤s, that is if
u ∈ U and u ≤ s, then u < s, and then u ≤ t. In other words U≤s ⊆ U≤t,
thus s ≤ t, since U detects S. This shows that s = SupS ] . , s[S.

• Step 2: Suppose first that there exists B ⊆ U such that U≤s = U≤B. Let
t ∈ S such that t ≤ s′, for all s′ ∈]s, . [S. If b ∈ B, then U≤s ⊆ U≤b, hence
s ≤ b, since U detects S, and s < b since s /∈ U . It follows that t ≤ b for all
b ∈ B. Hence U≤t ⊆ U≤s, so t ≤ s. This shows that s = InfS]s, . [S. Since
s = SupS ] . , s[S, it follows (see Example 2.6) that s is a germ of S, equal to
its cogerm in S.
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• Step 3: Suppose now that there exists a germ r of U such that U≤s = ] . , r[U .
In particular U≤s ⊂ ] . , r]U = U≤r, so s ≤ r, since U detects S, and s < r
since s /∈ U and r ∈ U .

Let t ∈]s, . [S. Let us show that r ≤ t. Suppose first that there exists
B ⊆ U such that U≤t = U≤B. Let u ∈ U with u < r, and let b ∈ B. Then
u ≤ s, hence u < t, thus u ≤ b. It follows that b ≥ SupU ] . , r[U= r. This
holds for any b ∈ B, so r ≤ t.

Assume now that there is a germ r′ of U such that U≤t = ] . , r′[U . Then
U≤s is strictly contained in U≤t since s < t and U detects S. Thus ] . , r[U⊂
] . , r′[U . In particular r′ ≥ u for any u ∈ ] . , r[U , hence r′ ≥ SupU ] . , r[U= r,
and r′ > r since ] . , r[U⊂ ] . , r′[U . Thus r ∈ ] . , r′[U= U≤t, i.e. r ≤ t again.

This shows that r is the smallest element of ]s, . [S. Let r̂ be the cogerm
of r in U . Then [r, r̂]U = {r = r0 < r1 < . . . < rn = r̂} (possibly n = 0 if
r = r̂).

• Step 4: Let t ∈ S with t > s, i.e. t ≥ r, and suppose that r̂ � t. Then
there exists an integer m ∈ {0, . . . n− 1} such that rm ≤ t but rm+1 � t.

Suppose first that there exists B ⊆ U such that U≤t = U≤B. Thus
rm ≤ b for all b ∈ B, but there exists b0 ∈ B such that rm+1 � b0. Hence
B ⊆ [rm, . [U= [rm, r̂]U ⊔ ]r̂, . [U . If rm /∈ B, then B ⊆ [rm+1, r̂]U ⊔ ]r̂, . [U , as
rm+1 is the smallest element of ]rm, . [U . This contradicts rm+1 � b0. Hence
rm ∈ B, and

U≤t ⊆ {u ∈ U | u ≤ rm} = U≤rm .

It follows that t ≤ rm, since U detects S. Therefore t = rm in this case, since
we had rm ≤ t.

Suppose now that there is a germ r′ of U such that U≤t = ] . , r′[U . Then
r < r′, since r ≤ t. Hence r̂ < r′ by Lemma 2.9. Then U≤r̂ ⊆ ] . , r′[U= U≤t,
and r̂ ≤ t since U detects S. This contradicts the assumption on t.

This shows that if t ∈ S and t ≥ s, then t ∈ {s < r = r0, . . . , rn = r̂} or
t > r̂.

• Step 5: Let t ∈ S with t ≤ r̂. Then U≤t ⊆ ] . , r̂]U = ] . , r[U ⊔ [r, r̂]U . If
U≤t ⊆ ] . , r[U= U≤s, then t ≤ s since U detects S. Otherwise U≤t has a
greatest element rm ∈ {r = r0, r1, . . . , rn = r̂}, and U≤t = U≤rm , thus t = rm.

Hence if t ∈ S and t ≤ r̂, then t < s or t ∈ {s < r = r0, . . . , rn = r̂}.

• Step 6: Let t ∈ S such that t ≤ u for all u ∈ U with u > r̂. If u′ ∈ U≤t,
then u′ ≤ u for all u ∈ U with u > r̂, hence u′ ≤ InfU ]r̂, . [U= r̂. It follows
that U≤t ⊆ ] . , r̂]U = U≤r̂, hence t ≤ r̂, as U detects S.

This shows a fortiori that if t ∈ S and t ≤ s′ for all s′ ∈]r̂, . [S, then t ≤ r̂,
that is r̂ = InfS]r̂, . [S.
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• Step 7: The conclusion of Steps 1, 4, 5 and 6 above show that s is a germ
of S under the assumption of Step 3, with cogerm r̂ in S. Together with
Step 2, this shows that S − U ⊆ Grm(S), in other words, that S is a germ
extension of U .

2.19. Corollary: Let (S,≤) be a finite poset, and U ⊆ S. If S is a germ
extension of U , so is any full subposet R of S containing U .

Proof : Let R be a full subposet of S containing U . Then U detects S
by Lemma 2.11, so U detects R ⊆ S. Moreover, by Theorem 2.12, for any
x ∈ R, the set U≤x is equal to ] . , r[U for some germ r of the (full) subposet U
of S (which is also a full subposet of R), or there exists a subset B of U such
that U≤x = U≤B. By Theorem 2.18, it follows that R is a germ extension of
U .

2.20. Definition and Notation: Let (U,≤) be a finite poset. Set

Λ(U) = {s ⊆ U | ∃B ⊆ U, s = U≤B},

Ĝ(U) = {s ⊆ U | ∃r ∈ Grm(U), s = ] . , r[U} .

Let G(U) = Λ(U) ∪ Ĝ(U), considered as a full subposet of the poset I↓(U)
of lower-subsets of U (ordered by inclusion of subsets of U). The poset G(U)
is called the germ closure of U .

2.21. Remark: The sets Λ(U) and Ĝ(U) are special cases, in the case
of the lattice I↓(U) of lower-subsets of U , of constructions one can define
in an arbitrary finite lattice. The set Λ(U) is the set of intersections (i.e.
meets) of lower intervals of U , i.e. join-irreducible elements of I↓(U), since
U≤B =

∧
b∈B

] . , b]U (see Section 4 for details).

The terminology germ closure is motivated by the following:

2.22. Theorem: Let (U,≤) be a finite poset.

1. The map u ∈ U 7→ u = ] . , u]U is an isomorphism from U onto a full
subposet U of G(U).

2. If S is a full subposet of G(U) containing U , then S is a germ extension
of U . In particular G(U) is a germ extension of U .

3. Let (S,≤) be a poset containing U as a full subposet. If S is a germ
extension of U , then there exists a unique isomorphism of posets j :
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S → S ′ onto a full subposet S ′ of G(U) such that j(u) = u for all
u ∈ U .

Proof : For Assertion 1, observe that ] . , u]U = {u′ ∈ U | u′ ≤ u}, so ] . , u]U
indeed belongs toG(U). Moreover for u, v ∈ U , the inclusion ] . , u]U ⊆ ] . , v]U
is equivalent to u ≤ v.

For Assertion 2, by Corollary 2.19, it suffices to consider the case S = G(U).
First it is clear that U detects G(U): indeed if s ∈ G(U) and u ∈ U , then
u ⊆ s if and only if u ∈ s, because s is a lower subset. In other words
U≤s = {u | u ∈ s}.

If there exists a subset B of U such that s = U≤B, then

U≤s = {u | u ≤ b ∀b ∈ B} = {u ∈ U | u ⊆ b ∀b ∈ B} ,

where B = {b | b ∈ B} ⊆ U .
Otherwise there exists a germ r of U such that s = ] . , r[U . Clearly in this

case
U≤s = {u | u < r} = {u ∈ U | u ⊂ r} ,

and r is a germ of U since u 7→ u is an isomorphism of posets from U to U .
Now the assumptions of Theorem 2.18 are fulfilled. It follows that G(U)

is a germ extension of U , as was to be shown.

For Assertion 3, let (S,≤) be a finite poset containing U as a full sub-
poset, and assume that S is a germ extension of U . Then U detects S
by Lemma 2.11, and moreover, for any s ∈ S, the set U≤s belongs to G(U),
by Theorem 2.12.

For s ∈ S, set j(s) = U≤s ∈ G(U), and S ′ = j(S). Then S ′ is a full
subposet of G(U) (because U detects S), and j is an isomorphism of posets
S → S ′. Moreover j(u) = U≤u = u for u ∈ U , so S ′ contains U . This shows
the existence of S ′ and j in Assertion 3.

For the uniqueness, let j′ : S → S ′′ be an isomorphism of posets from S
to a full subposet S ′′ of G(U), such that j′(u) = u for all u ∈ U . Then for
s ∈ S and u ∈ U

u = j′(u) ⊆ j′(s) ⇐⇒ u ≤ s ⇐⇒ j(u) = u ⊆ j(s) .

In other words U≤j′(s) = U≤j(s). Since U detects G(U) by Assertion 2 and
Lemma 2.11, it follows that j(s) = j′(s), hence j = j′ and S ′ = S ′′.

2.23. Proposition: Let (U,≤) be a finite poset.

1. The poset G(U) is the disjoint union of Λ(U) and Ĝ(U).
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2. If s, t ∈ G(U), then s ∩ t ∈ G(U). More precisely, if s * t and t * s,
then s ∩ t ∈ Λ(U).

3. The subsets ∅ and U belong to G(U). Thus G(U) is a lattice: for
s, t ∈ G(U), the infimum s∧ t of {s, t} in G(U) is s ∩ t, and the
supremum s∨ t is the intersection of all x ∈ G(U) such that x ⊇ s ∪ t.

Proof : By Definition 2.20, the poset G(U) is the union of Λ(U) and Ĝ(U),
and by Theorem 2.12, this union is disjoint. Assertion 1 follows.

If A and B are subsets of U , then U≤A ∩ U≤B = U≤(A∪B). Moreover, if
r is a germ of U , and if r ∈ U≤A, then ] . , r[U⊂ U≤A. And if r /∈ U≤A,
then U≤A ∩ ] . , r[U= U≤A ∩ ] . , r]U = U≤(A∪{r}). Finally, if r

′ is another germ
of U , and if r ≤ r′, then ] . , r[U⊆ ] . , r′[U . And if r � r′ and r′ � r, then
] . , r[U ∩ ] . , r′[U= ] . , r]U ∩ ] . , r′]U = U≤{r,r′}. Assertion 2 follows.

The set U is equal to U≤∅, so U ∈ G(U). If U has no smallest element, then
∅ = U≤U , so ∅ ∈ G(U). And if U has a smallest element u, then u is a germ
of U by Proposition 2.8, so ] . , u[U= ∅ ∈ G(U) in this case also. The last
part of Assertion 3 now follows from Assertion 2, since G(U) has a greatest
element U .

2.24. Theorem: Let (S,≤) be a finite poset, let U be a full subposet of S,
and assume that S is a germ extension of U . Then:

1. If s is a germ of S and if s ∈ U , then s is a germ of U . In other words
U ∩ Grm(S) ⊆ Grm(U).

2. Let r be a germ of U , with cogerm r̂ ∈ U . Then [r, r̂]S = [r, r̂]U , and
one of the following holds:

(a) r = SupS ] . , r[S, and then r is a germ of S, with cogerm r̂ in S.

(b) ] . , r[S has a greatest element s. Then r is the smallest element
of ]s, . [S, and s ∈ S − U is a germ of S, with cogerm r̂ in S. In
particular r is not a germ of S.

Proof : For Assertion 1, let s ∈ U ∩ Grm(S). If u ∈ U is such that u ≥ v
for any v ∈ ] . , s[U , let t ∈ ] . , s[S be minimal such that t � u. Then t /∈ U ,
hence t ∈ Grm(S). In particular t = SupS ] . , t[S. Moreover t′ ≤ u for any
t′ ∈ ] . , t[S, by minimality of t. Hence SupS ] . , t[S= t ≤ u, a contradiction,
which proves that t ≤ u for any t ∈ ] . , s[S. But then SupS ] . , s[S= s ≤ u.
This shows that

(2.25) s = SupU ] . , s[U .
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Now let ŝ be the cogerm of s in S. There is an integer n ∈ N and elements
si ∈ S, for 0 ≤ i ≤ n, such that

[s, ŝ]S = {s = s0 < s1 < . . . < sn = ŝ} .

If si /∈ U for some i ∈ {1, . . . , n}, then si ∈ Grm(S), and si > s. By
Lemma 2.9 si > ŝ = sn, a contradiction. Thus si ∈ U for any i ∈ {0, . . . , , n},
i.e. [s, ŝ]S = [s, ŝ]U .

Now if u ∈ U and u ≥ s then u ∈ [s, ŝ]S = [s, ŝ]U , or u ≥ ŝ. Similarly if
u ≤ ŝ, then u ∈ [s, ŝ]S = [s, ŝ]U or u ≤ s. Thus

(2.26) [s, . [U= [s, ŝ]U ⊔ ]ŝ, . [U and ] . , ŝ]U = ] . , s[U ⊔ [s, ŝ]U .

Now let u ∈ U such that u ≤ v for any v ∈]ŝ, . [U . Suppose that there exists
t ∈]ŝ, . [S such that u � t, and choose a maximal such t. Then t /∈ U , hence
t ∈ Grm(S). Let t̂ be the cogerm of t in S. If t = t̂, then by maximality
of t, we have that u ≤ x for any x ∈]t, . [S=]t̂, . [S, so u ≤ InfS]t̂, . [S= t̂ = t,
contradicting our assumption on t. Hence t̂ > t, so there is an integer
m ∈ N− {0} and elements ti ∈ S, for 0 ≤ i ≤ m, such that

[ t, t̂ ]S = { t = t0 < t1 . . . < tm = t̂ } .

If ti /∈ U for some i ∈ {1, . . . ,m}, then ti ∈ Grm(S), and ti > t. By
Lemma 2.9 ti > t̂ = tm, a contradiction. Thus ti ∈ U for any i ∈ {1, . . . ,m}.
In particular u ≤ t1. If u < t1, then u ≤ t, since t = t0 is the greatest element
of ] . , t1[S. This contradiction shows that u = t1 is the smallest element of
]ŝ, . [U . Then t is the greatest element of ] ., t1[S= ] ., u[S. It follows that t
is unique, that is, there is a unique element t of ]ŝ, . [S maximal subject to
u � t. In other words

]ŝ, . [S=]ŝ, t]S ⊔ [u, . [S ,

and t < u = t1.
If ]ŝ, t[S 6= ∅, let t′ be a maximal element of this poset. Then t /∈ U , for

otherwise t′ ≥ u > t, since t′ > ŝ. So t′ ∈ GrmS, and t′ < t. By Lemma 2.9,
it follows that t′ ≤ t̂′ < t, where t̂′ is the cogerm of t′ in S. Hence t′ = t̂′ by
maximality of t′. But then

]t′, . [S= {t} ⊔ [u, . [S ,

hence InfS]t
′, . [S= t 6= t′, contradicting t′ ∈ Grm(S).

It follows that ]ŝ, t[S= ∅, thus ]ŝ, . [S= {t} ⊔ [u, . [S. Then InfS]ŝ, . [S=
t 6= s, contradicting s ∈ Grm(S).
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This shows finally that u ≤ t for any t ∈]ŝ, . [S, thus u ≤ ŝ = InfS]ŝ, . [S.
Hence

(2.27) ŝ = InfU ]ŝ, . [U .

Now s is a germ of U , by (2.25), (2.26), and (2.27). This completes the
proof of Assertion 1.

For Assertion 2, let r be a germ of U , and let r̂ be its cogerm in U . Let t ∈ S
such that t ≤ x for any x ∈]r̂, . [S. Then for any u ∈ U with u ≤ t, we have
u ≤ v for any v ∈]r̂, . [U . Hence u ≤ InfU ]r̂, . [U= r̂. Thus U≤t ⊆ U≤r̂, thus
t ≤ r̂ since U detects S by Lemma 2.11. This shows that

(2.28) r̂ = InfS]r̂, . [S .

Now let t ∈ S with t ≤ r̂. Then U≤t ⊆ ] . , r̂]U = ] . , r[U ⊔ [r, r̂]U , and there
are two cases: either U≤t ⊆ ] . , r[U , and then U≤t ⊂ U≤r = ] . , r]U , thus t < r
as U detects S. Or U≤t has a greatest element u ∈ [r, r̂]U . In this case
U≤t = ] . , u]U = U≤u, thus t = u. In other words

(2.29) ] . , r̂]S = ] . , r[S ⊔ [r, r̂]U ,

and in particular [r, r̂]S = [r, r̂]U .
Now let t ∈ S with t ≥ r. By Theorem 2.12, there are two cases: In

the first case there exists B ⊆ U such that U≤t = U≤B. Then in particular
r ∈ U≤B, that is B ⊆ [r, . [U= [r, r̂]U ⊔ ]r̂, . [U . If B ⊆]r̂, . [U , then r̂ ∈ U≤B =
U≤t, thus r̂ ≤ t. Otherwise the set B has a smallest element u ∈ [r, r̂]U , and
in this case U≤B = U≤u = U≤t, hence t = u ∈ [r, r̂]U .

The other case is when there exists a germ r′ of U such that U≤t = ] . , r′[U .
Then r < r′ since r ∈ U≤t, and r̂ < r′ by Lemma 2.9. It follows that
U≤r̂ ⊆ U≤t, so r̂ ≤ t in this case also. We get finally that

(2.30) [r, . [S= [r, r̂]U ⊔ ]r̂, . [S .

It follows from (2.28), (2.29) and (2.30) that r is a germ of S if and only if
r = SupS ] . , r[S, and in this case r̂ is the cogerm of r in S. This is Case (a)
of Assertion 2.

And if r 6= SupS ] . , r[S, there exists s ∈ S such that s ≥ x for any
x ∈ ] . , r[S, but s � r. In particular ] . , r[U⊆ U≤s.

If there exists a subset B of U such that U≤s = U≤B, then ] . , r[U⊆ U≤b,
for any b ∈ B, thus b ≥ SupU ] . , r[U= r. Hence r ∈ U≤B, that is r ∈ U≤s,
contradicting s � r.

So there is a germ r′ of U such that U≤s = ] . , r′[U . It follows that ] . , r[U⊆
] . , r′[U⊆ ] . , r′]U , so r′ ≥ SupU ] . , r[U= r. If r′ > r, then r ∈ ] . , r′[U= U≤s, so
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r ≤ s, a contradiction. Hence r′ = r, and U≤s = ] . , r[U⊂ U≤r, so s < r. If
t ∈ ] . , r[S, then U≤t ⊆ ] . , r[U= U≤s, so t ≤ s. It follows that s is the greatest
element of ] . , r[S, so SupS ] . , r[S= s < r, and r is not a germ of S. Moreover
s /∈ U since SupU ] . , r[U= r. Finally, the previous discussion shows that s
is the only element of S such that s ≥ x for any x ∈ ] . , r[S, but s � r. In
particular r is the smallest element of ]s, . [S. Now (2.28), (2.29) and (2.30)
show that s is a germ of S, with cogerm r̂ in S. This is case (b) of Assertion 2,
and completes the proof of Theorem 2.24.

2.31. Corollary:

1. Let T be a finite lattice. Set U = T − Grm(T ), considered as a full
subposet of T . Then T ∼= G(U).

2. Let U be a finite poset, and let U denote its isomorphic image in its
germ closure T = G(U). Then U = T −Grm(T ).

3. Let U and V be finite posets. Let ϕ : G(U) → G(V ) be an isomorphism
of posets. Then ϕ(U) = V , and in particular U and V are isomorphic.

4. In particular, the restriction ϕ 7→ ϕ|U induces a group isomorphism
Aut

(
G(U)

)
∼= Aut(U).

Proof : For Assertion 1, the poset T is clearly a germ extension of U =
T −Grm(T ). By Theorem 2.22, the map j : t ∈ T 7→ U≤t ∈ G(U) is a poset
isomorphism from T to a full subposet of G(U) containing U . All we have
to show is that this map is surjective. Clearly for B ⊆ U , we have j( ∧

b∈B
b) =

U≤B, so Λ(U) is contained in the image of j. Now if r ∈ Grm(U), then
r /∈ Grm(T ) (since r ∈ U), hence ] . , r[T has a greatest element s ∈ T − U ,

by Theorem 2.24. Then ] . , r[U= U≤s = j(s). Hence Ĝ(U) is contained in
the image of j, completing the proof of Assertion 1.

For Assertion 2, by Theorem 2.22, the poset T = G(U) is a germ exten-
sion of U . Hence T = U ∪ Grm(T ). So all we have to show is that
U ∩ Grm(T ) = ∅. Let s ∈ U ∩ Grm(T ). Then s = ] . , u]U , for some
u ∈ U , and by Theorem 2.24, the element u is a germ of U . This means that
] . , u[U∈ G(U). Since any lower-subset of U properly contained in ] . , u]U is
contained in ] . , u[U , it follows that ] . , s[T has a greatest element t = ] . , u[U .
So SupT ] . , s[T= t < s, so s is not a germ of T , and Assertion 2 follows by
contradiction.

Assertion 3 follows as well: if ϕ : G(U) → G(V ) is an isomorphism of posets,
then since U = G(U)−Grm

(
G(U)

)
and V = G(V )−Grm

(
G(V )

)
, it follows

that ϕ(U) = V . Hence U and V are isomorphic.
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In the case U = V , this shows that ϕ(U) = U for any automorphism ϕ
of the poset G(U). By Theorem 2.22, the resulting group homomorphism
Aut

(
G(U)

)
→ Aut(U) → Aut(U) is injective. It is also surjective, since

any automorphism α of U extends to an automorphism of G(U): indeed
α(U≤B) = U≤α(B), for B ⊆ U , and moreover α

(
] . , r[U

)
= ] . , α(r)[U for any

r ∈ U , and α
(
Grm(U)

)
= Grm(U). This completes the proof.

3. Germ extensible subsets of a lattice

3.1. Definition and Notation: Let T be a finite lattice. A full subposet U
of T is called germ extensible in T if the natural map

ν : s ∈ G(U) 7→ ∨
u∈s

u ∈ T

is injective. We denote by G(U) the image of ν.

3.2. Theorem: Let T be a finite lattice, and U be a full subposet of T .
Then U is germ extensible in T if and only if

(3.3) ∀r ∈ Grm(U), r > ∨
u∈U
u<r

u in T .

In this case, the map t ∈ G(U) 7→ {u ∈ U | u ≤ t} is inverse to the bijection
ν : G(U) → G(U).

Proof : If U is germ extensible in T , let r ∈ Grm(U). Then ] . , r[U and
] . , r]U are distinct elements of G(U). Thus ν

(
] . , r]U

)
= r > ν

(
] . , r[U

)
=

∨
u∈U
u<r

u. So Condition 3.3 is necessary.

Conversely, let B ⊆ U , and set s = U≤B ∈ G(U) and ∧B = ∧
b∈B

b ∈ T .

Then ν(s) = ∨
u∈U≤B

u ≤ ∧B, and for any v ∈ U

(v ≤ ∧B) =⇒
(
v ∈ U≤B

)
=⇒

(
v ≤ ν(U≤B) = ν(s)

)
=⇒

(
v ≤ ∧B

)
.

Thus s = {v ∈ U | v ≤ ν(s)}.
Now let r be a germ of U , set s = ] . , r[U∈ G(U). If r > ∨

u∈U
u<r

u = ν(s),

then for any v ∈ U

(
v ∈ s

)
=⇒

(
v < r

)
=⇒

(
v ≤ ∨

u∈U
u<r

u = ν(s)
)

=⇒
(
v < r

)
=⇒

(
v ∈ s

)
,
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so s = {v ∈ U | v ≤ ν(s)} in this case also.

3.4. Theorem: Let T be a finite lattice, and let S be a subset of T . Then
there exists a unique germ extensible subset U of T such that U ⊆ S ⊆ G(U),
namely

U = S − {s ∈ Grm(S) | s = ∨
t∈S
t<s

t} .

In other words, the lattice of subsets of T is the disjoint union of the intervals
[U,G(U)], when U runs through all germ extensible subsets of T .

Proof : Let S ⊆ T , and suppose that U is a germ extensible subset of T
such that U ⊆ S ⊆ G(U). Since S ⊆ G(U), any element t of S is a join of
elements of U , that is t = ∨

u∈U
u≤t

u. It follows that for any s ∈ S

∨
t∈S
t<s

t = ∨
u∈U
u<s

u .

Let s ∈ Grm(S). If s ∈ U , then s ∈ Grm(U) by Theorem 2.24, hence
s > ∨

u∈U
u<s

u by Theorem 3.2. In other words if s = ∨
t∈S
t<s

t, then s /∈ U . Thus

U ⊆ S − {s ∈ Grm(S) | s = ∨
t∈S
t<s

t} .

Conversely, let V = S − {s ∈ Grm(S) | s = ∨
t∈S
t<s

t}. Then S is a germ

extension of V , so by Theorem 2.22, there is an isomorphism of S onto a full
subposet S ′ of G(V ) such that V ⊆ S ′ ⊆ G(V ).

If v ∈ Grm(V ), there are two cases. First if v ∈ Grm(S), then v > ∨
t∈S
t<v

t

by definition of V . Then a fortiori v > ∨
w∈V
w<v

w. Now if v /∈ Grm(S), then

v = ] . , v]V /∈ Grm(S ′), so ] . , v[S′ has a greatest element s′ by Theorem 2.24.
Thus ] . , v[S has a greatest element s, and then ∨

w∈V
w<v

w ≤ s < v in this case

also.
It follows from Theorem 3.2 that V is a germ extensible subposet of T .

The inclusions V ⊆ S ′ ⊆ G(V ) now read V ⊆ S ⊆ G(V ) in T , and we have

U ⊆ V ⊆ S ⊆ G(U) ∩ G(V ) ⊆ T .
If v ∈ V − U , then v ∈ Grm(V ) by Theorem 2.22, so v > ∨

w∈V
w<v

w. But

on the other hand v ∈ G(U), so v = ∨
u∈U
u≤v

u = ∨
u∈U
u<v

u. Hence ∨
u∈U
u<v

u > ∨
w∈V
w<v

w,
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a contradiction, since any element w of V is the join of the elements u ≤ w
of U . It follows that U = V , as was to be shown.

4. Germs and lattices

4.1. Let T be a finite lattice, and let E = Irr(T ) be the set of join-irreducible
elements of T . The following constructions are introduced in [3] (Notation
2.3 and 2.6). First, we denote by

ΛE = {t ∈ T | t = ∧
e∈E
e≥t

e}

the set of elements of T which are equal to a meet of join-irreducible elements
of T . Moreover, for in T, we set

r(t) = ∨
e∈E
e<t

e and σ(t) = ∧
e∈E
e>t

e .

So r(t) ≤ t, with equality if and only if t /∈ E. And if t ∈ E, then r(t) is the
largest element of ] . , t[T . In particular, it follows from Theorem 3.2 that E
is a germ extensible subset of T .

On the other hand σ(t) ≥ t with equality and only if either t ∈ ΛE − E,
or t ∈ E and t is equal to the meet of the elements of E ∩ ]t, . [T .

For any t ∈ T , we denote by r∞(t) the limit of the decreasing sequence
t ≥ r(t) ≥ r2(t) ≥ . . ., and by σ∞(t) the limit of the increasing sequence
t ≤ σ(t) ≤ σ2(t) ≤ . . ..

Finally ([3] Notation 2.10), we set

G♯
T = {t ∈ T | t = r∞σ∞(t)},

ĜT = G♯ − ΛE,(4.1)

GT = E ⊔G♯
T = E ⊔ (ΛE − E) ⊔ ĜT = ΛE ⊔ ĜT .

We just saw that E is a germ extensible subset of T . The following theorem
shows that the corresponding set G(E) is equal to the set GT introduced
above. In particular, it only depends on the poset E.

4.2. Theorem: Let T be a finite lattice, and E the full subposet of join-
irreducible elements of T . Then E is germ extensible in T , and moreover
G(E) = GT .

Proof : For t ∈ T , we set α(t) = {e ∈ E | e ≤ t}.
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We have GT = ΛE ⊔ ĜT . So if t ∈ GT , then either t ∈ ΛE, that is
t = ∧

e∈E
e≥t

e, and α(t) = E≤B, where B = {e ∈ E | e ≥ t}. Hence α(t) ∈ G(E)

in this case.
Otherwise t ∈ ĜT . Then t /∈ ΛE, so we have a sequence

t < σ(t) < σ2(t) < . . . < σn(t) = σ∞(t) .

All the terms different from t of this sequence are in E: indeed, if σi(t) /∈ E
for i ≥ 1, then rσi(t) = σi(t), so

t = r∞σ∞(t) ≥ r∞σi(t) = σi(t) ,

contradicting t < σi(t). So σi−1(t) ≤ rσi(t) < σi(t) for i ≥ 1. Moreover if
σi−1(t) < rσi(t), then there are two cases: either rσi(t) /∈ E, and then

t ≤ σi−1(t) < rσi(t) = r∞σi(t) ≤ r∞σ∞(t) = t ,

a contradiction. Or rσi(t) ∈ E, and then rσi(t) ≥ σ
(
σi−1(t)

)
= σi(t),

contradicting rσi(t) < σi(t). Hence rσi(t) = σi−1(t) for any i ∈ {1, . . . , n}.

We set γ = σ(t) > t. Then γ ∈ E, and γ is a germ of E. Indeed:

� The element t is the greatest element of ] . , γ[T , so

] . , γ[E= {f ∈ E | f < γ} = {f ∈ E | f ≤ t} = α(t) .

Hence if f ∈ E and f ≥ g for any g ∈ ] . , γ[E, then f ≥ ∨
e∈E
e≤t

e = t,

hence f > t and f ≥ γ. Thus γ = SupE ] . , γ[E.

� Let ei = σi(t), for i ≥ 1. If e ∈ E and e ≥ γ = e1, and either e > en, or
there exists a largest integer i ∈ {1, . . . , n} such that ei ≤ e. If ei < e,
then σ(ei) = ei+1 ≤ e, contradicting the definition of i. Hence ei = e
for some i ∈ {1, . . . , n}, or e > en. Similarly, since ei = r(ei+1) for
i ∈ {0, . . . , n − 1}, if e ∈ E and e ≤ en, then e is equal to ei for some
i ∈ {1, . . . , n}, or e < γ.

� Finally en = σ(en) = ∧
e∈E
e>en

e. Thus if f ∈ E and f ≤ e for all e ∈]en, . [E,

then f ≤ en. In other words en = InfE]en, . [E.

This shows that γ is a germ of E, with cogerm en. Now α(t) = ] . , γ[E , so
α(t) ∈ G(E) in this case also. It follows that α(t) ∈ G(E) for any t ∈ GT .

Conversely, for s ∈ G(E), set ν(s) = ∨
e∈s

e. Then ν(s) ∈ GT : indeed,

either s = E≤B for some B ⊆ E, and then ν(s) = ∧
b∈B

b ∈ ΛE. Or s = ] . , g[E ,
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for g ∈ Grm(E). In this case t = ν(s) = r(g) ∈ ĜT : indeed, if ĝ is the
cogerm of g in E, and if [g, ĝ]E = {g = e0 < e1 < . . . < en = ĝ}, then clearly
ei = σi+1(t) for 0 ≤ i ≤ n. Moreover σ(ĝ) = ĝ, since σ(ĝ) = ∧

f∈E
f>ĝ

f is equal

to the join of all elements e ∈ E such that e ≤ f for all f ∈]ĝ, . [E, and
InfE]ĝ, . [E= ĝ. Then clearly again r(ei) = ei−1 for 1 ≤ i ≤ n, and t = r(g).

So we have the maps α and ν

GT

α
// G(E) ,

ν
oo

which are obviously maps of posets. Moreover ν ◦ α(t) = t for any t ∈ GT ,
since t = ∨

e∈E
e≤t

e for any t ∈ T . Similarly, if s ∈ G(E), then α ◦ ν(s) = s:

indeed either s = E≤B for some B ≤ U , and then ν(s) = ∧
b∈B

b. In this case

e ≤ ν(s) for e ∈ E if and only if e ∈ E≤B = s, so α ◦ ν(s) = s. Or s = ] . , g[E
for some g ∈ Grm(E), and then ν(s) = r(g), so that e ≤ ν(s) for e ∈ E
if and only if e < g, that is α ◦ ν(s) = s in this case also. This completes
the proof of Theorem 4.2, since by Definition 3.1, the image of ν is equal to
G(E).

4.3. Let U be a finite poset, and I↓(U) be the lattice of lower-subsets of U .
The irreducible elements of I↓(U) are the subsets of the form ] . , u]U , for
u ∈ U , so we can identify Irr

(
I↓(U)

)
with U . We will now show that G(U)

is equal to the subset GI↓(U) of the lattice I↓(U) introduced in (4.1).
First let B be a subset of U . Then

⋂
b∈B

] . , b]U = U≤B. In other words the

set ΛU of intersections of irreducible elements of I↓(U) is equal to the set
Λ(U) of Definition 2.20.

Now let S ∈ ĜI↓(U). Then S is not a meet of join-irreducible elements of
I↓(U), so S 6= U≤B, for any B ⊆ U . Now in the proof of Theorem 4.2, we
saw that in the sequence

S < σ(S) < σ2(S) < . . . < σn(S) = σ∞(S) ,

all the terms different from S are join-irreducible in I↓(U). Moreover rσi(S) =
σi−1(S) for i ≥ 1.

It follows that there is a sequence u1, . . . , un of elements of U such that
σi(U) =] . , ui]U , for i ≥ 1. In particular u1 < u2 < . . . < un. Moreover
since r

(
] . , u]U

)
=] . , u[U for any u ∈ U , we have S =] . , u1[U , and ] . , ui[U=

] . , ui−1]U for i ≥ 2. In other words S =] . , u1[U , and ui−1 is the largest
element of ] . , ui[U , for i ≥ 2.
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Now σ(S) =] . , u1]U =
⋂
u∈U

S⊂] . ,u]U

] . , u]U . Since S is not irreducible in I↓(U),

saying that S ⊂ ] . , u]U is equivalent to saying that S ⊆ ] . , u]U , that is, u
is an upper bound of S. Thus u1 is the smallest upper bound of S, i.e.
u1 = SupU ] . , u1[U . Similarly for 1 ≤ i < n, saying that σ

(
] . , ui]U

)
=

] . , ui+1]U amounts to saying that ui+1 is the smallest element of ]ui, . [U .
Since moreover rσi(S) = σi−1(S) for i ≥ 1, it follows that ] . , ui[U=] . , ui−1]U
for i ≥ 2, i.e. ui−1 is the largest element of ] . , ui]U , for i ≥ 2. Finally saying
that ] . , un]U = σ

(
] . , un]U

)
=

⋂
u∈U
u>un

] . , u]U amounts to saying that un is the

greatest lower bound of ]un, . [U , i.e. un = InfU ]un, . [U .
This discussion shows that u1 is a germ of U , with cogerm un. Hence

S =] . , u1[U belongs to the set Ĝ(U) of Definition 2.20. Conversely, if u1

is a germ of U , with cogerm un, it is straightforward to reverse the above
arguments and check that S =] . , u1[U belongs to ĜI↓(U), as defined in 4.1,
with σ∞(S) =] . , un]U . This shows that Notation 2.20 is consistent with
Notation 4.1.

5. Examples

5.1. The empty subset of a finite (non empty) lattice T is germ extensible (by
Theorem 3.2, since the emptyset has no germs at all). Moreover G(∅) = {0},
where 0 is the smallest element of T .

5.2. Let U = {u1 < u2 < . . . < un} be a totally ordered poset of cardinality
n > 0. Then the only germ of U is u1, with cogerm un. The poset G(U) is
equal to {V0 ⊂ V1 ⊂ . . . ⊂ Vn}, where Vi = {u1, . . . , ui} for 0 ≤ i ≤ n (so
V0 = ∅). If U is a subposet of a finite lattice T , then U is germ extensible in
T if and only if u1 is not equal to the smallest element 0 of T . In this case
G(U) = {0} ⊔ U .

5.3. Let U = {u1, . . . , un} be a discrete poset of cardinality n ≥ 2. Then U
has no germs (see Proposition 2.8), and G(U) = {∅} ⊔

{
{u} | u ∈ U

}
⊔ {U}.

If U is a full subposet of a finite lattice T , then U is germ extensible in T ,
and G(U) = {0} ⊔ U ⊔ {v}, where where 0 is the smallest element of T and
v = u1 ∨ u2 ∨ . . .∨ un in T .

5.4. Let U = {a < c > b} be a connected poset of cardinality 3 with two min-
imal elements. Then Grm(U)={c}, andG(U)=

{
∅, {a}, {b}, {a, b}, {a, b, c}

}
.

If U is a full subposet of a finite lattice T , then U is germ extensible in T if
and only if c > a∨ b in T . In this case G(U) = {0, a, b, a∨ b, c}.

5.5. Let V = U op = {a > c < b} be the opposite poset of the previous
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example. Then Grm(V ) = {c}, and G(V ) =
{
∅, {c}, {b, c}, {a, c}, {a, b, c}

}
.

If V is a full subposet of a finite lattice T , then V is germ extensible in T
if and only if c is not equal to the smallest element 0 of T . In this case
G(V ) = {0, c, a, b, a∨ b}.

5.6. In the previous two examples, there is an isomorphism of posets
G(U op) ∼= G(U)op. This is a general phenomenon, that will be established in
a joint forthcoming paper with Jacques Thévenaz ([6]).

5.7. In all the previous examples, the poset of join-irreducible elements of
the lattice G(U) is isomorphic to U , but this need not be true in general.
For example

if U =
◦

✝✝
✝✝ ✽✽

✽✽ ◦
✝✝
✝✝

◦ ◦
, then G(U) =

◦
✝✝
✝✝ ✽✽

✽✽

◦
✝✝
✝✝ ✽✽

✽✽ •
✝✝
✝✝

•
✽✽
✽✽ •

✝✝
✝✝

◦

where the irreducible elements of G(U) are the black ones.

5.8. An example of a lattice T , its germs (�), the poset U of its irreducible
elements (•), and the germ closure G(U) with its germs (�):

T =

�

✽✽
✽

✝✝
✝

• •

◦
✽✽
✽✽

ttt
ttt

◦
❏❏❏

❏❏❏

✝✝
✝✝

• • •

�

✽✽
✽

✝✝
✝

•
✽✽

✽ •
✝✝
✝

�

U =

•

✳✳
✳✳
✳

✂✂
✂✂
✂✂
✂ •

❁❁
❁❁

❁❁
❁

✏✏
✏✏
✏

• •

✏✏
✏✏
✏

✳✳
✳✳
✳ •

• •

G(U) =

�

✽✽
✽

✝✝
✝

•

✳✳
✳✳
✳

✂✂
✂✂
✂✂
✂ •

❁❁
❁❁

❁❁
❁

✏✏
✏✏
✏

• • •

�

✽✽
✽

✝✝
✝

•
✽✽

✽ •
✝✝
✝

�

5.9. Let T be a finite lattice, and let s ∈ Grm(T ). Then s = SupT ] . , s[T ,
hence s = ∨

t∈T
t<s

t. By Theorem 3.4, it follows that the set U = T −Grm(T ) is

germ extensible in T , and such that G(U) = T . Moreover this set U is the
only germ extensible subset of T with this property. This yields in particular
another proof of Assertion 1 of Corollary 2.31.
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