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Abstract: Let G be a finite group. In [6], Hambleton, Taylor and Williams have con-
sidered the question of comparing Mackey functors for G and biset functors defined on
subgroups of G and bifree bisets as morphisms.
This paper proposes a different approach to this problem, from the point of view of various
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well as the category S(G) of spans in G-set. The fused Mackey functors for G over a
commutative ring R are defined as R-linear functors from RS(G) to R-modules. They

form an abelian subcategory MackfR(G) of the category of Mackey functors for G over R.

The category MackfZ(G) is equivalent to the category of conjugation Mackey functors of [6].
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1. Introduction

1.1. This note is devoted to the frequently asked question of comparing
Mackey functors for a single finite group G (cf. [9]) with biset functors (cf. [3])
defined only on subgroups of G and left-right free bisets as morphisms. More
precisely, let F be a biset functor defined on the category D of all finite
groups, where morphisms are given by Grothendieck groups of left-right free
bisets. Let moreover G be a fixed finite group. Now:

• when H is a subgroup of G, set M(H) = F (H).

• when H ≤ K are subgroups of G, define a restriction map

rKH : M(K) → M(H)

by rKH = F (HKK), where HKK is the set K, viewed and an (H,K)-
biset by left and right multiplication, hence also as a morphism from
K to H in the category D.

• similarly, define a transfer map

tKH : M(H) → M(K)

by tKH = F (KKH), where KKH is the set K, viewed as a (K,H)-biset.
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• finally, when x ∈ G, and H ≤ G, define a conjugation map

cx,H : M(H) → M(xH)

by cx,H = F (xH xHH), where xH xHH is the coset xH, wiewed as an
(xH,H)-biset.

One checks easily that this yields a Mackey functor M for G.

1.2. The question is now to characterize those Mackey functors for G for
which the restriction maps rKH , the transfer maps tKH , and the conjugation
maps cx,H only depend on the above bisets HKK , KKH , and xH xHH , respec-
tively. Equivalently, to characterize those Mackey functors for G which can
be viewed as additive functors on the (non full) subcategory of D consisting
of subgroups of G, where morphisms from H to K are linear combinations of
isomorphism classes of (K,H)-bisets obtained by composition of the above
three types of bisets.

These bisets have been called conjugation bisets by Hambleton, Taylor
and Williams, who answered first the above question ([6]): the Mackey func-
tors in question are the conjugation invariant Mackey functors, namely the
Mackey functors M for G such that for any subgroup H of G, the centralizer
CG(H) acts trivially on M(H). However, the proof of this characteriza-
tion given in [6] is rather computational and non canonical (in particular,
in Section 7, the definition of the functor j• requires the choice of sets of
representatives of orbits of any finite G-set).

The present paper makes a systematic use of Dress definition ([4]) and
Lindner definition ([7]) of Mackey functors, to avoid these non canonical
choices. This leads to the definition of the category of fused G-sets (Sec-
tion 3), and the category of fused Mackey functors (Section 4) for a finite
groupG, which is equivalent to the category of “conjugation invariant Mackey
functors” of [6]. This category is also equivalent to the category of modules
over the fused Mackey algebra, introduced in Section 5.

2. Conjugation bisets revisited

2.1. First a notation : when G is a finite group, and X is a finite G-set, let
G-set↓X denote the category of (finite) G-sets over X: its objects are pairs
(Y, b) consisting of a finite G-set Y , and a morphism of G-sets b : Y → X. A
morphism f : (Y, b) → (Z, c) in G-set↓X is a morphism of G-sets f : Y → Z
such that c ◦ f = b.

There is an obvious notion of disjoint union in G-set↓X , and the corre-
sponding Grothendieck group is called the Burnside group over X. It will be
denoted by B(GX), or B(X) when G is clear from the context.
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Similarly, when G and H are finite groups, and U is a (G,H)-biset, one
can define the category (G,H)-biset↓U of (G,H)-bisets over U , and the Burn-
side group B(GUH) of (G,H)-bisets over U .

2.2. WhenH is a subgroup ofG, and Y is anH-set, induction fromH-sets to
G-sets is an equivalence of categories from H-set↓Y to G-set↓IndGHY . A quasi-

inverse equivalence is the functor sending the G-set (X, a) over IndG
HY to the

H-set a−1(1×HY ) (cf. [2] Lemma 2.4.1). In particular B(HY ) ∼= B(GIndG
HY ).

2.3. Now an observation: when H and K are subgroups of G, the conju-
gation (K,H)-bisets defined in Section 6 of [6] are exactly those over the
biset KGH (the set G on which K and H act by multiplication), i.e. the
(K,H)-bisets U for which there exists a biset morphism U → KGH .

Indeed, a conjugation (K,H)-biset U is a bifree (K,H)-biset isomorphic
to a disjoint union of bisets of the form (K ×H)/S, where S is a subgroup
of K ×H of the form

Sg,A = {(gx, x) | x ∈ A}

where A is a subgroup of H, and g is an element of G such that gA ≤ K.
For such a transitive biset (K ×H)/S, the map

∀(k, h)S ∈ (K ×H)/S, (k, h)S 7→ kgh−1

is a morphism of (K,H)-bisets.
Conversely, let U be a (K,H)-biset for which there exists a biset mor-

phism α : U → KGH . Then for any u ∈ U , the stabilizer Su of u in K ×H
is the subgroup

Su = {(k, h) ∈ K ×H | k · u · h−1 = u}

of K ×H. Then if (k, h) ∈ Su,

α(k · u) = kα(u) = α(u · h) = α(u)h .

Let Au denote the projection of Su into H, and set gu = α(u). It follows that
Su ⊆ Sgu,Au .

Conversely, if (k, h) ∈ Sgu,Au , then k = guh, and there exists some x ∈ K
such that (x, h) ∈ Su, since h ∈ Au. Thus x · u · h−1 = u, from which follows
that

α(x · u) = xgu = α(u · h) = guh ,

hence x = guh = k, and Su = Sgu,Au . Observation 2.3 follows.

2.4. In other words, conjugation (K,H)-bisets form a category ConjGK,H , and
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there is a forgetful functor Φ : (K,H)-biset↓
KGH

→ ConjGK,H sending (U, a)
to U . This functor preserves disjoint unions, and it induces a surjection on
the corresponding sets of isomorphism classes. This means that Φ induces
a surjective group homomorphism (still denoted by Φ) from B(KGH) to the
Grothendieck group BG

K,H of conjugation (K,H)-bisets.

2.5. If H, K and L are subgroups of G, if (U, a) is a (K,H)-biset over KGH

and (V, b) is an (L,K)-biset over LGK , the composition (V, b) ◦ (U, a) is the
(L,H)-biset over LGH defined by the following diagram:

V

b

��

U

a

��

V ×K U

b×Ka

��
◦ =

LGK KGH G×K G

µ
��

LGH

where µ is multiplication in G. This composition is associative, and additive
with respect to disjoint unions. Hence it induces a composition

◦̂ : B(LGK)× B(KGH) → B(LGH) .

Hence, one can define a category B̂(G) whose objects are the subgroups
of G, and such that HomB̂(G)(H,K) = B(KGH), for subgroups H and K

of G. Composition is given by ◦̂, and the identity morphism of the subgroup
H of G in the category B̂(G) is the class of the biset (HHH , iH), where
iH : HHH → HGH is the inclusion map from H to G.

Since the functor Φ maps the composition ◦̂ to the composition of bisets,
and the identity morphism of H in B̂(G) to the identity biset HHH , one

can extend Φ to a functor B̂(G) → B(G), which is the identity on objects,
where B(G) is the category introduced in Section 3 of [6]: its objects are the
subgroups of G, and HomB(G)(H,K) = BG

K,H for any subgroups H and K
of G, the composition of morphisms being given by linear extension of the
composition of bisets.

More precisely, the category B(G) is the quotient of the category B̂(G)
obtained by identifying morphisms which have the same image by Φ.

2.6. By the above Remark 2.2, when H and K are subgroups of G, there is
a group isomorphism

B(KGH) ∼= B
(
IndG×G

K×H(KGH)
)

,

(with the usual identification of (K,H)-bisets with (K ×H)-sets). Now the
biset KGH is actually the restriction to (K ×H) of the (G,G)-biset G. By
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Frobenius reciprocity, it follows that

IndG×G
K×H(KGH) ∼= IndG×G

K×HRes
G×G
K×H(GGG) ∼=

(
IndG×G

K×H •
)
× GGG ,

where • is a set of cardinality 1. Since IndG×G
K×H• ∼= (G/K)×(G/H), it follows

(after switching G/H and G) that

IndG×G
K×H(KGH) ∼= (G/K)×G× (G/H) ,

where the (G,G)-biset structure of the right hand side is given by

∀(a, b, x, y, g) ∈ G5, a · (xK, g, yH) · b = (axK, agb, b−1yH) .

2.7. It should now be clear that the additive completion B̂•(G) is equivalent
to the category whose objects are finiteG-sets, where for any two finite G-sets
X and Y

HomB̂•(G)(X, Y ) = B
(
G
(Y ×G×X

)
G
) ,

the (G,G)-biset structure on (Y ×G×X) being given as above by

∀(a, b, g, x, y) ∈ G3 ×X × Y, a · (y, g, x) · b = (ay, agb, b−1x) .

Keeping track of the composition ◦̂ along the above isomorphism shows that
the composition in the category B̂•(G) can be defined by linearity from the
following: if X, Y , and Z are finite G-sets, if

V

f

����
��

��
��

�

e

��

d

��9
99

99
99

99
9 U

c

����
��

��
��

��

b

��

a

��9
99

99
99

99
9

and

Z G Y Y G X

are (G,G)-bisets over (Z × G × Y ) and (Y × G × X), respectively, their
composition is given by the following (G,G)-biset over (Z ×G×X)

(V ×d,c U)/G
γ

zzttt
ttt

ttt
β
��

α

$$JJ
JJJ

JJJ
J

Z G X

where V ×d,c U is the pullback of V and U over Y , i.e. the set of pairs
(v, u) ∈ V × U with d(v) = c(u), and (V ×d,c U)/G the set of orbits of G on
it for the action given by (v, u) · g = (vg, g−1u). This makes sense because
d(v · g) = g−1d(v) = g−1c(u) = c(g−1 · u) if d(v) = c(u). The map (γ, β, α) is
given by

(γ, β, α)
(
(v, u)G

)
=

(
f(v), e(v)b(u), a(u)

)
.

2.8. The functor Φ : B̂(G) → B(G) extends uniquely to an additive functor
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Φ• : B̂•(G) → B•(G), and the category B•(G) is the quotient of B̂•(G) ob-
tained by identifying morphisms which have the same image by Φ•. Clearly,
two morphisms f, g ∈ HomB̂•(G)(X,Y ) are identified if and only if f − g is in
the kernel of the group homomorphism

φ : B
(
G(Y ×G×X)G

)
→ B

(
G(Y ×X)G

)
induced by the correspondence

U

c

����
��

��
��

�

b

��

a

��;
;;

;;
;;

;;
U

c

����
��

��
��

�
a

��;
;;

;;
;;

;;

7→

Y G X Y X

on bisets. In other words, a morphism f in B̂•(G) gives the zero morphism
in B•(G) if and only if it belongs to Kerφ.

2.9. Now the (G,G)-biset GGG is isomorphic to IndG×G
∆(G)•, where ∆(G) is

the diagonal subgroup of G × G. It follows that there is an isomorphism of
(G,G)-bisets

Y ×G×X ∼= IndG×G
∆(G)(Y ×X) .

Hence, by Remark 2.2 again, since ∆(G) ∼= G,

B
(
G(Y ×G×X)G

) ∼= B
(
G(Y ×X)

)
,

where G(Y ×X) is the usual cartesian product with diagonal G-action. More
precisely, this isomorphism is induced by the correspondence

U

c

����
��

��
��

�

b

��

a

��:
::

::
::

::
b−1(1)

c

����
��

��
��

�
a

��9
99

99
99

99

7→

Y G X Y X

It is then easy to check that the composition of

V

f

����
��

��
��

�

e

��

d

��9
99

99
99

99
9 U

c

����
��

��
��

��

b

��

a

��9
99

99
99

99
9

and

Z G Y Y G X
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corresponds to the usual pullback diagram

e−1(1)×d,c b
−1(1)

����
��

��
��

��;
;;

;;
;;

;

e−1(1)
f

����
��

��
�� d

��=
==

==
==

= b−1(1)
c

����
��

��
�� a

��=
==

==
==

=

Z Y X

In other words, the category B̂•(G) is equivalent to the category S(G) whose
objects are the finite G-sets, where

HomS(G)(X, Y ) = B
(
G(Y ×X)

)
,

and composition is induced by pullback. It has been shown by Lindner ([7],
see also [2]) that the additive functors on this category are precisely the
Mackey functors for G.

2.10. With this equivalence of categories B̂•(G) ∼= S(G), the main result
of [6] can be viewed as a characterization of those Mackey functors for G,

wiewed as additive functors on B̂•(G), which factor through the functor

Φ• : B̂•(G) → B•(G).
This characterization amounts to a precise description of the identifica-

tions effected by Φ on morphisms: starting with f ∈ HomS(G)(X, Y ), one
can lift it to

f+ ∈ HomB̂•(G)(X, Y ) = B
(
G(Y ×G×X)G

)
,

and see when f+ lies in Kerφ. Now f is represented by a difference of two
G-sets over G(Y ×X) of the form

Z

b

����
��

��
��

�
a

��9
99

99
99

99
9 Z ′

b′

����
��

��
��

�
a′

��=
==

==
==

==
=

−

Y X Y X .

By induction from ∆(G) to G × G, the G-set on the left hand side lifts to
the following (G×G)-set over (G×G)(Y ×G×X)

G× Z
γ

{{ww
ww

ww
ww

w
β

��

α

##G
GG

GG
GG

GG

Y G X
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where the (G×G)-actions on G× Z and Y ×G×X are given respectively
by (s, t) · (g, z) = (sgt−1, tz) and (s, t) · (y, g, x) = (sy, sgt−1, tx), and where

(γ, β, α)(g, z) =
(
gb(z), g, a(z)

)
.

Similarly the G-set
(
Z ′, (b′, a′)

)
lifts to

(
G× Z ′, (γ′, β′, α′)

)
.

Now f+ is in Kerφ if and only if there is an isomorphism

G× Z

γ

����
��

��
��

��
��

α

��=
==

==
==

==
==

= G× Z ′

γ′

����
��

��
��

��
��

α′

  A
AA

AA
AA

AA
AA

A

θ−→

Y X Y X .

of (G× G)-sets over Y ×X. Since (g, z) = g · (1, z) for any (g, z) ∈ G× Z,
it follows that θ is a map from G× Z to G× Z ′ of the form

(g, z) 7→
(
gu(z), v(z)

)
,

where u is a map from Z to G and v is a map from Z to Z ′. Now for any
(s, t) ∈ G×G, the equality

θ
(
(s, t) · (g, z)

)
= (s, t) · θ

(
(g, z)

)
gives (

sgt−1u(tz), v(tz
)
=

(
sgu(z)t−1, tv(z)

)
.

This is equivalent to

u(tz) = tu(z) and v(tz) = tv(z) .

This means that u is a morphism of G-sets from Z to Gc, which is the set G
with G-action by conjugation, and v is a morphism of G-sets.

Moreover θ is a bijection if and only if v is.
Finally θ is a morphism of (G,G)-bisets over Y ×X if and only if α′◦θ = a

and γ′ ◦ θ = γ, i.e. equivalently if

a′ ◦ v = a and gu(z) · b′ ◦ v(z) = g · b(z)

for any (g, z) ∈ G× Z. In other words

a = a′ ◦ v and b = u ∗ (b′ ◦ v) ,

where, for any map w : Z → Y , the map u ∗ w : Z → Y is defined by
(u ∗ w)(z) = u(z) · w(z). The map u ∗ w is a map of G-sets if u : Z → Gc
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and w : Z → Y are. Note that w′ = u ∗ w if and only if w = ū ∗ w′, where
ū : Z → Gc is defined by ū(z) = u(z)−1.

It follows that f maps to the zero morphism in B(G) if and only if there
exists u : Z → Gc and an isomorphism v : Z → Z ′ such that

a′ ◦ v = a and b′ ◦ v = u ∗ b ,

But then v is an isomorphism

Z

b′◦v

����
��

��
��

��

a′◦v

��7
77

77
77

77
7 Z ′

b′

����
��

��
��

��
a′

��;
;;

;;
;;

;;
;;

v−→

Y X Y X .

of G-sets over Y ×X, and f is also represented by the difference

Z

b

����
��

��
��

��
a

��8
88

88
88

88
8 Z

u∗b

����
��

��
��

��
a

��<
<<

<<
<<

<<
<

−

Y X Y X ,

since a′ ◦ v = a and b′ ◦ v = u ∗ b. These are the morphisms in the category
S(G) that vanish in B•(G). In other words:

2.11. Theorem : Let G be a finite group. Let S(G) denote the quotient
category of S(G) defined by setting, for any two finite G-sets Y and Y

HomS(G)(X, Y ) = B
(
G
(Y ×X)

)
/K(Y,X) ,

where K(Y,X) is the subgroup generated by the differences

(2.12) Z

b

����
��

��
��

��
a

��8
88

88
88

88
8 Z

u∗b

����
��

��
��

��
a

��<
<<

<<
<<

<<
<

−

Y X Y X ,

where a : Z → X, b : Z → Y , and u : Z → Gc are morphisms of G-sets.
Then the functor Φ• induces an equivalence of categories S(G) ∼= B•(G).
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Since the difference 2.12 factors as

Z

b

����
��
��
��

Id

��.
..

..
..

.

◦

Y Z


Z

Id

� ���
��
��
��

Id

��-
--

--
--

-

−

Z Z

Z

u∗Id

����
��
��
��

Id

��+
++

++
++

+

Z Z


Z

Id

����
��
��
��

a

��.
..

..
..

.

◦

Z X

the morphisms vanishing in S(G) are generated in the category S(G) by the
morphisms of the form

Z

Id

����
��

��
��

�
Id

��8
88

88
88

88
Z

u∗Id

����
��

��
��

�
Id

��<
<<

<<
<<

<<
<

−

Z Z Z Z .

2.13. It follows that the additive functors from S(G) to the category of
abelian groups are exactly those Mackey functors (in the sense of Dress)
such that for any G-set Z and any u : Z → Gc, the morphism M∗(u ∗ Id) is
equal to the identity map of M(Z).

This condition is additive with respect to Z, since the map u ∗ IdZ maps
each G-orbit of Z to itself. Hence these functors are exactly the functors for
which the map M∗(u ∗ Id) is the identity map of M(G/H), for any subgroup
H of G and any u : G/H → Gc. Such a map is of the form gH 7→ gc, where
c ∈ CG(H). The map u ∗ Id : G/H → G/H is the map gH 7→ gcH.

Translated in terms of the usual definition of Mackey functors, this map
expresses the action of c on M(H) = M(G/H). This shows that additive
functors from S(G) to abelian groups are exactly the Mackey functors for the
group G such that, for any H ≤ G, the centralizer CG(H) acts trivially on
M(H). These are the “conjugation invariant Mackey functors” introduced
in [6].

2.14. Remark : In view of Paragraph 1.1, one might be tempted to be-
lieve that such a conjugation invariant Mackey functor for G can always be
obtained from a biset functor defined on all finite groups by the restriction
procedure to subgroups of G described in Paragraph 1.1, but this is not true:
for example, let G be an elementary abelian group of order 4, and let A, B,
and C denote its subgroups of order 2. The simple Mackey functorM = SA,F2

for G over the field with 2 elements has value F2 at A, and {0} elsewhere
(cf. [9] Lemma 15.1). The functor M is obviously a conjugation invariant
Mackey functor, but if it were the restriction of a biset functor defined over
all finite groups, then in particular its values at A, B, and C would be iso-
morphic to one other, as A, B and C are all isomorphic to C2.
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3. Fused G-sets

Let Z be any (finite) G-set. The multiplication (u, v) 7→ u∗ v endows the set
HomG-set(Z,G

c) with a group structure. Moreover, for any finite G-set X,
this group acts on the left on the set HomG-set(Z,X), via (u, f) 7→ u ∗ f .
This action is compatible with the composition of morphisms: if Y is a finite
G-set, if u : Z → Gc and v : Y → Gc are morphisms of G-sets, then for any
morphisms of G-sets f : Z → Y and g : Y → X, one checks easily that

(3.1) (v ∗ g) ◦ (u ∗ f) =
(
u ∗ (v ◦ f)

)
∗ (g ◦ f) .

3.2. Notation : Let G-set denote the category of fused G-sets: its objects
are finite G-sets, and for any finite G-sets Z and Y

HomG-set(Z, Y ) = HomG-set(Z,G
c)\HomG-set(Z, Y ) .

The composition of morphisms in G-set is induced by the composition of
morphisms in G-set.

3.3. Remark : For any G-set Y , set Y I = Y ×Gc. This notation is chosen
to evoke a path object in homotopy theory (cf. [5] Section 4.12). There is a
natural morphism p : Y I → Y × Y , defined by p(y, g) = (y, gy), for y ∈ Y
and g ∈ G, and a morphism i : Y → Y I defined by i(y) = (y, 1), for y ∈ Y .
The composition p ◦ i is equal to the diagonal map Y → Y × Y .

Two morphisms a, b : Z → Y in G-set are equal in the category G-set if
and only if the morphism (a, b) : Z → Y × Y factors as

Y I

p

��
Z

ϕ
;;xxxxxxxxx

(a,b)
// Y × Y

for some morphism of G-sets ϕ : Z → Y I .

3.4. Remark : It follows from 3.1 that the map u 7→ u ∗ IdZ is a group
antihomomorphism from HomG-set(Z,G

c) to the group of G-automorphisms
of Z. Hence a morphism f : Z → Y in the category G-set is an isomorphism
if and only if any of its representatives f : Z → Y in G-set is an isomorphism.

3.5. Weak pullbacks of fused G-sets. Disjoint union of G-sets is a
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coproduct in G-set. There is also a weak version of pullback in G-set : let

T
c

~~~~
~~

~~
~~ d

��@
@@

@@
@@

X

a
  @

@@
@@

@@
Y

b��~~
~~

~~
~

Z

be a commutative diagram in G-set, where underlines denote the images in
G-set of morphisms in G-set. This means that a ◦ c = b ◦ d, i.e. that there
exists u ∈ HomG-set(T,G

c) such that

b ◦ d = u ∗ (a ◦ c) .

But u ∗ (a ◦ c) = a ◦ (u ∗ c). It follows that there is a unique morphism
e ∈ HomG-set(T,X ×a,b Y ) such that the diagram

T

u∗c

����
��

��
��

��
��

��
��

�
e

���
�
�

d

��6
66

66
66

66
66

66
66

66

X ×a,b Y

p
zzuuuuuuuuu

q
$$II

III
III

II

X

a
%%JJJJJJJJJJJ Y

b
zzttttttttttt

Z

is commutative in G-set, where p : X ×a,b Y → X and q : X ×a,b Y → Y are
the canonical morphisms from the pullback X ×a,b Y . In other words, the
diagram

(3.6) T

c

����
��

��
��

��
��

��
��

�
e

��
d

��6
66

66
66

66
66

66
66

66

X ×a,b Y

p
zzuuuuuuuuu

q
$$II

III
III

II

X

a
%%JJJJJJJJJJJ Y

b
zzttttttttttt

Z

is commutative in G-set.

12



But still (X ×a,b Y, p, q) need not be a pullback in G-set, since the mor-
phism e making Diagram 3.6 commutative is generally not unique, as e it-
self depends on the choice of u. Moreover, the lifts a and b of a and b to
G-set are not unique : it should be noted however that if a′ = v ∗ a and
b′ = w ∗ b are other lifts of a and b, respectively, where v ∈ HomG-set(X,Gc)
and w ∈ HomG-set(Y,G

c), then the map f : (x, y) 7→
(
v(x)x,w(y)y

)
is an

isomorphism of G-sets from X ×a′,b′ Y to X ×a,b Y , such that the diagram

X ×a′,b′ Y

p′

zzvvv
vv

vv
vv

v
q′

##H
HH

HH
HH

HH
H

f

++VVVVVVVVVVVVVVVVVVVVVV

X

a′ $$I
IIIIIIIIII

v∗Id ++WWWWWWWWWWWWWWWWWWWWWWWWWWWWW Y

uuu
uuu
b′

zzuuuu
WWWWWWWWWWWWW

w∗Id ++WWWWWWWWWWWWWWWW

X ×a,b Y

p
zzuuuuuuuuu

q

$$II
III

III
II

Z

Id
++WWWWWWWWWWWWWWWWWWWWWWWWWWWWWW X

a

%%JJJJJJJJJJJ Y

b
zzttttttttttt

Z

is commutative in G-set. Since a′ = a, b′ = b, v ∗ Id = Id, and w ∗ Id = Id,
this yields a commutative diagram

X ×a′,b′ Y
f

//

p′

yytttttttttt XXXXXX

q′

++XXXXXXXXXXXXXXXXXXXXXX
X ×a,b Y

p

ssffffffffffffffffffffffffffffff
q

$$II
III

III
II

X

a

**UUUUUUUUUUUUUUUUUUUUUUU Y

b
ttjjjjjjjjjjjjjjjjjjjjjj

Z

in G-set, and f is an isomorphism. This shows that the weak pullback X×a,b

Y only depends on a and b in the category G-set. For this reason, it may be
denoted by X ×a,b Y .

3.7. Spans of fused G-sets. Recall (cf. [10], [1] for the general definition)
that if X and Y are finite G-sets, then a span ΛZ,a,b over X and Y in the
category G-set is a diagram of the form

Z
a

~~~~
~~

~~
~ b

��@
@@

@@
@@

X Y

where Z is a finite G-set and a, b are morphisms in the category G-set. Two

13



spans ΛZ,a,b and ΛZ′,a′,b′ over X and Y are equivalent if there exists an iso-
morphism f : Z → Z ′ in G-set such that the diagram

Z

f

��

a

~~~~
~~

~~
~ b

��@
@@

@@
@@

X Y

Z
a′

``@@@@@@@ b′

??~~~~~~~

is commutative. The set of equivalence classes of spans of fused G-sets
over X and Y is an additive monoid, where the addition is defined by dis-
joint union (i.e. ΛZ1,a1,b1

+ ΛZ2,a2,b2
= ΛZ1tZ2,a1ta2,b1tb2). The corresponding

Grothendieck group is isomorphic to HomS(G)(Y,X).
It should be noted that even if there is no pullback construction in the cat-

egory G-set, the isomorphism classes of spans in G-set can still be composed
by weak pullback, and this induces the composition of morphisms in S(G).

4. Fused Mackey functors

4.1. Definition : Let R be a commutative ring. Let RS(G) (resp. RS(G))
denote the R-linear extension of the category S(G) (resp. S(G)), defined as
follows:

• The objects of RS(G) and RS(G) are finite G-sets.

• For finite G sets X and Y ,

HomRS(G)(X, Y ) = R⊗Z HomS(G)(X, Y ) ,

HomRS(G)(X, Y ) = R⊗Z HomS(G)(X, Y ) .

• Composition of morphisms is induced by the pullback in G-set (resp.
the weak pullback in G-set).

A Mackey functor for G over R in the sense of Lindner ([7]) is an R-linear
functor from RS(G) to the category R-Mod of R-modules.

Similarly, a fused Mackey functor for G over R is an R-linear functor
from RS(G) to R-Mod. A morphism of fused Mackey functors is a natural
transformation of functors. Fused Mackey functors for G over R form a
category denoted by MackfR(G).

14



The following is an equivalent definition of fused Mackey functors, à la
Dress:

4.2. Definition : Let R be a commutative ring. A fused Mackey functor
for the group G over R is a bivariant R-linear functor M = (M∗,M∗) from
G-set to R-Mod such that:

1. For any finite G-sets X and Y , the maps

M(X)⊕M(Y )
(M∗(iX),M∗(iY ) //

M(X t Y )
(M∗(iX),M∗(iY )

oo

induced by the canonical inclusions iX : X → XtY and iY : Y → XtY
are mutual inverse isomorphisms.

2. If
X ×a,b Y

p
zzuuuuuuuuu

q
$$II

III
III

II

X

a
%%JJJJJJJJJJJ Y

b
zzttttttttttt

Z

is a weak pullback diagram in G-set, then M∗(a)M∗(b) = M∗(p)M
∗(q).

A morphism of fused Mackey functors is a natural transformation of bivariant
functors.

The category MackfR(G) can be viewed as a full subcategory of the cat-
egory MackR(G) of Mackey functors for G over R. In the case R = Z,
this category is equivalent to the category of conjugation invariant Mackey
functors introduced in [6].

The inclusion functor MackfR(G) ↪→ MackR(G) has a left adjoint:

4.3. Definition : Let M be a Mackey functor for G over R, in the sense
of Lindner, i.e. an R-linear functor RS(G) → R-Mod. When X is a finite
G-set, set

M f (X) = M(X)/
∑
Z,a,u

Im
(
M(Λa,IdZ )−M(Λu∗a,IdZ )

)
,

where the summation runs through triples (Z, a, u) consisting of a finite G-
set Z, and morphisms of G-sets a : Z → X and u : Z → Gc, and Λa,IdZ

15



denotes the span

Z
a

����
��

��
�

IdZ
66

66
66

66
66

66

X Z

of G-sets.

4.4. Proposition : Let R be a commutative ring, and G be a finite group.

1. Let M be a Mackey functor for G over R. The correspondence

X 7→ M f (X)

is a fused functor M f for G over R.

2. The correspondence F : M 7→ M f is a functor from MackR(G) to
MackfR(G), which is left adjoint to the inclusion functor

I : MackfR(G) ↪→ MackR(G) .

Moreover F ◦ I is isomorphic to the identity functor of MackfR(G).

Proof : For Assertion 1, to prove that M f is a Mackey functor, observe that
if ΛZ,a,b is a span of finite G-sets of the form

Z
a

����
��

��
�

b

��7
77

77
77

X Y

and u : Z → Gc is a morphism of G-sets, then

ΛZ,a,b − ΛZ,u∗a,b = (ΛZ,a,IdZ − ΛZ,u∗a,IdZ ) ◦ ΛZ,IdZ ,b .

It follows that the R-module∑
Z,a,u

Im
(
M(Λa,IdZ )−M(Λu∗a,IdZ )

)
is equal to the sum ∑

Z,a,b,u

Im
(
M(Λa,b)−M(Λu∗a,b)

)
.
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In other words, it is equal to the image by M of the R-submodule KR(X, Y )
of HomRS(G)(Y,X) generated by the morphisms Λa,b − Λu∗a,b, i.e. to the
kernel of the quotient morphism

HomRS(G)(Y,X) → HomRS(G)(Y,X) .

This shows that KR is an ideal in the category RS(G). So if M is an R-linear
functor RS(G) → R-Mod, the correspondence

X 7→ M f (X) = M(X)/
∑

f∈KR(X,Y )

ImM(f)

is an R-linear functor from the quotient category RS(G) to R-Mod.
Assertion 2 is straightforward: first it is clear that F ◦ I is isomorphic to

the identity functor, since N f = N when N is a fused Mackey functor. This
isomorphism F ◦ I ∼= IdMackfR(G) provides the counit of the adjunction. Next

for any Mackey functor M , there is a projection morphism M → IF(M),
and this yields the unit of the adjunction.

4.5. Remark : Assertion 2 shows that MackfR(G) is a reflective subcategory
of MackR(G) (cf. [8], Chapter IV, Section3).

4.6. Remark : If the Mackey functor M is given in the sense of Dress, then
for any finite G-set X

M f (X) = M(X)/
∑

a:Z→X
u:Z→Gc

Im
(
M∗(a)−M∗(u ∗ a)

)
,

where Z is a finite G-set, and a, u are morphisms of G-sets.

4.7. Corollary :

1. If P is a projective Mackey functor, then P f is projective in the category
MackfR(G).

2. The category MackfR(G) has enough projective objects. More precisely,
if N is a fused Mackey functor, and θ : P → I(N) is an epimorphism
in MackR(G) from a projective Mackey functor P , then F(θ) : P f → N
is an epimorphism in MackfR(G).

Proof : Assertion 1 follows from the fact that F is left adjoint to the exact
functor I. Assertion 2 is then straightforward.
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5. The fused Mackey algebra

When G is a finite group, set ΩG = t
H≤G

G/H, and let RBΩG
denote the Dress

construction for the Burnside functor RB over the ring R. Recall that RBΩG
,

as a Mackey functor in the sense of Dress, is obtained by precomposition of
RB with the endofunctor X 7→ X × ΩG of G-set.

Also recall (cf. [2] Lemma 7.3.2 and Proposition 4.5.1) that the functor
RBΩG

is a progenerator of the category MackR(G), and that the algebra
EndMackR(G)(BΩG

) ∼= B(Ω2
G) is isomorphic to the Mackey algebra µR(G) of G

over R, introduced by Thévenaz and Webb ([9]).
It follows from Corollary 4.7 that the functor (RBΩG

)f is a progenerator
in the category MackfR(G). Hence this category is equivalent to the category
of modules over the algebra EndMackfR(G)

(
(RBΩG

)f
)
.

5.1. Definition : The fused Mackey algebra of G over R is the algebra

µf
R(G) = EndMackfR(G)

(
(RBΩG

)f
)

.

5.2. Lemma : Let X be a finite G-set. Then (RBX)
f is isomorphic to

the Yoneda functor HomRS(G)(X,−).

Proof : Denote by YX the Yoneda functor HomRS(G)(X,−). For any fused
Mackey functor N for G over R

HomMackfR(G)

(
(RBX)

f , N) ∼= HomMackR(G)

(
RBX , I(N)

)
∼= I(N)(X) ∼= N(X)
∼= HomMackfR(G)(YX , N) .

The lemma follows, since all these isomorphisms are natural.

5.3. Theorem : The fused Mackey algebra µf
R(G) is isomorphic to the

quotient of the algebra RB(Ω2
G)

∼= µR(G) by the R-module generated by dif-

18



ferences of the form

Z

b

����
��
��
��
�

a

��3
33

33
33

33
Z

u∗b

����
��
��
��
�

a

��6
66

66
66

66

−

ΩG ΩG ΩG ΩG ,

where a, b : Z → ΩG and u : Z → Gc are morphisms of G-sets.

Proof : This follows from Lemma 5.2, since the quotient in the theorem is
precisely EndRS(G)(ΩG).

5.4. Remark : One can deduce from this theorem that the fused Mackey
algebra µf

R(G) is always free of finite rank as an R-module, and this rank
does not depend on the commutative ring R. More precisely, Thévenaz and
Webb have shown ([9] Proposition 3.2) that the Mackey algebra µR(G) has
an R-basis consisting of elements of the form

tHK cg,K rLKg ,

where (H,L, g,K) runs through a set of representatives of 4-tuples consisting
of two subgroups H and L of G, and element g of G, and a subgroup K of
H ∩ gL, for the equivalence relation ≡ given by

(H,L, g,K) ≡ (H ′, L′, g′, K ′) ⇔


H = H ′, L = L′,
and
∃h ∈ H, ∃l ∈ L, g′ = hgl, K ′ = hK .

Similarly, the quotient algebra µf
R(G) of µR(G) has a basis consisting of the

images of the elements tHK cg,K rLKg , where (H,L, g,K) runs through a set of
representatives of 4-tuples as above, modulo the relation ≡f defined by

(H,L, g,K) ≡f (H ′, L′, g′, K ′) ⇔


H = H ′, L = L′,
and
∃h ∈ H, ∃l ∈ L, ∃x ∈ CG(K),
g′ = hxgl, K ′ = hK .
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