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Abstract: Let G be a finite group. In [6], Hambleton, Taylor and Williams have con-
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1. Introduction

1.1. This note is devoted to the frequently asked question of comparing
Mackey functors for a single finite group G (cf. [9]) with biset functors (cf. [3])
defined only on subgroups of G and left-right free bisets as morphisms. More
precisely, let F' be a biset functor defined on the category D of all finite
groups, where morphisms are given by Grothendieck groups of left-right free
bisets. Let moreover GG be a fixed finite group. Now:

e when H is a subgroup of G, set M(H) = F(H).
e when H < K are subgroups of GG, define a restriction map
rit M(K) — M(H)

by 7 = F(yKg), where gy K is the set K, viewed and an (H, K)-
biset by left and right multiplication, hence also as a morphism from
K to H in the category D.

e similarly, define a transfer map
th  M(H) — M(K)
by t = F(xKy), where g Ky is the set K, viewed as a (K, H)-biset.



e finally, when x € GG, and H < G, define a conjugation map
Comr - M(H) — M(“H)

by ¢z g = F(egaHpy), where -y xHy is the coset xH, wiewed as an
(*H, H)-biset.

One checks easily that this yields a Mackey functor M for G.

1.2. The question is now to characterize those Mackey functors for G for
which the restriction maps %, the transfer maps ¢&, and the conjugation
maps ¢, g only depend on the above bisets y K, x Ky, and « gy v Hp, respec-
tively. Equivalently, to characterize those Mackey functors for G which can
be viewed as additive functors on the (non full) subcategory of D consisting
of subgroups of GG, where morphisms from H to K are linear combinations of
isomorphism classes of (K, H)-bisets obtained by composition of the above
three types of bisets.

These bisets have been called conjugation bisets by Hambleton, Taylor
and Williams, who answered first the above question ([6]): the Mackey func-
tors in question are the conjugation invariant Mackey functors, namely the
Mackey functors M for GG such that for any subgroup H of GG, the centralizer
Ce(H) acts trivially on M(H). However, the proof of this characteriza-
tion given in [6] is rather computational and non canonical (in particular,
in Section 7, the definition of the functor j, requires the choice of sets of
representatives of orbits of any finite G-set).

The present paper makes a systematic use of Dress definition ([4]) and
Lindner definition ([7]) of Mackey functors, to avoid these non canonical
choices. This leads to the definition of the category of fused G-sets (Sec-
tion 3), and the category of fused Mackey functors (Section 4) for a finite
group GG, which is equivalent to the category of “conjugation invariant Mackey
functors” of [6]. This category is also equivalent to the category of modules
over the fused Mackey algebra, introduced in Section 5.

2. Conjugation bisets revisited

2.1. First a notation : when G is a finite group, and X is a finite G-set, let
G-set] x denote the category of (finite) G-sets over X: its objects are pairs
(Y, b) consisting of a finite G-set Y, and a morphism of G-sets b: Y — X. A
morphism f : (Y,b) = (Z,¢) in G-set|x is a morphism of G-sets f : Y — Z
such that co f = 0.

There is an obvious notion of disjoint union in G-set] y, and the corre-
sponding Grothendieck group is called the Burnside group over X. It will be
denoted by B(¢X), or B(X) when G is clear from the context.
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Similarly, when G and H are finite groups, and U is a (G, H)-biset, one
can define the category (G, H)-biset|y of (G, H)-bisets over U, and the Burn-
side group B(¢Upg) of (G, H)-bisets over U.

2.2. When H is a subgroup of GG, and Y is an H-set, induction from H-sets to
G-sets is an equivalence of categories from H-setly to G—setimd% v+ A quasi-

inverse equivalence is the functor sending the G-set (X, a) over Ind%Y to the
H-set a ' (1x;Y) (cf. [2] Lemma 2.4.1). In particular B(5Y) = B(5Ind%Y).

2.3. Now an observation: when H and K are subgroups of GG, the conju-
gation (K, H)-bisets defined in Section 6 of [6] are exactly those over the
biset xGp (the set G on which K and H act by multiplication), i.e. the
(K, H)-bisets U for which there exists a biset morphism U — xGp.

Indeed, a conjugation (K, H)-biset U is a bifree (K, H)-biset isomorphic
to a disjoint union of bisets of the form (K x H)/S, where S is a subgroup
of K x H of the form

Sga={(z,z) |z € A}

where A is a subgroup of H, and ¢ is an element of GG such that A4 < K.
For such a transitive biset (K x H)/S, the map

V(k,h)S € (K x H)/S, (k,h)S — kgh™

is a morphism of (K, H)-bisets.

Conversely, let U be a (K, H)-biset for which there exists a biset mor-
phism « : U — Gpg. Then for any u € U, the stabilizer S, of u in K x H
is the subgroup

Sy={(kh) €K x H|k-u-h"=u}
of K x H. Then if (k,h) € S,,,
alk-u) = ka(u) = alu-h) = a(u)h .

Let A, denote the projection of S, into H, and set g, = a(u). It follows that
Su € SguA,-

Conversely, if (k,h) € Sy, a,, then k = 9«h, and there exists some z € K
such that (z,h) € S,, since h € A,. Thus z-u-h~' = u, from which follows
that

a(xu) :xgu:oz(u-h) = guh
hence x = 9*h = k, and S, = S, 4,. Observation 2.3 follows.

2.4. In other words, conjugation (K, H)-bisets form a category Conj%H, and
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there is a forgetful functor ® : (K, H)-biset|, ¢, — Conj[GCH sending (U, a)
to U. This functor preserves disjoint unions, and it induces a surjection on
the corresponding sets of isomorphism classes. This means that & induces
a surjective group homomorphism (still denoted by ®) from B(xGp) to the
Grothendieck group B j; of conjugation (K, H)-bisets.

2.5. If H, K and L are subgroups of G, if (U, a) is a (K, H)-biset over xGg
and (V,b) is an (L, K)-biset over G, the composition (V,b) o (U, a) is the
(L, H)-biset over Gy defined by the following diagram:

%4 U VxgU
lb o ia = lbea
LGk kGu G xg G
|
1Gu

where p is multiplication in GG. This composition is associative, and additive
with respect to disjoint unions. Hence it induces a composition

o B(LGK) X B(KGH> — B(LGH) .

Hence, one can define a category ]§(G) whose objects are the subgroups
of G, and such that Homg g (H, K) = B(kGp), for subgroups H and K
of G. Composition is given by o, and the identity morphism of the subgroup
H of G in the category B(G) is the class of the biset (yHpy,iy), where
iy - gHy — yGy is the inclusion map from H to G.

Since the functor ® maps the composition o to the composition of bisets,
and the identity morphism of H in B(G) to the identity biset yHp, one
can extend ® to a functor B(G) — B(G), which is the identity on objects,
where B(G) is the category introduced in Section 3 of [6]: its objects are the
subgroups of G, and Hompe)(H, K) = B% g for any subgroups H and K
of GG, the composition of morphisms being given by linear extension of the
composition of bisets. N

More precisely, the category B(G) is the quotient of the category B(G)
obtained by identifying morphisms which have the same image by ®.

2.6. By the above Remark 2.2, when H and K are subgroups of GG, there is
a group isomorphism

B(xGr) = B(Ind% % (xGr))

(with the usual identification of (K, H)-bisets with (K x H)-sets). Now the
biset xGp is actually the restriction to (K x H) of the (G, G)-biset G. By

4



Frobenius reciprocity, it follows that
Ind$3% (kGr) =2 Ind G Res$2 G (6Ga) = (Ind?&% ¢) xcGe |
where o is a set of cardinality 1. Since Ind$ % e = (G/K) x (G/H), it follows
(after switching G/H and G) that
Ind% % (kGr) = (G/K) x G x (G/H)
where the (G, G)-biset structure of the right hand side is given by
V(a,b,2,y,9) € G°, a- (2K, g,yH) b= (axK, agh,b~'yH) .

2.7. It should now be clear that the additive completion ]§.(G) is equivalent
to the category whose objects are finite G-sets, where for any two finite G-sets
X and Y

Homg ) (X,Y) = B(G(Y x G % X)G) :

the (G, G)-biset structure on (Y x G x X) being given as above by
Y(a,b,g,7,y) €EG*x X xY, a-(y,g,7) b= (ay,agh,b'x) .

Keeping track of the compositionAS along the above isomorphism shows that
the composition in the category Bo(G) can be defined by linearity from the
following: if X, Y, and Z are finite G-sets, if

6&\ and /

are (G,G)-bisets over (Z x G x Y) and (Y x G x X), respectively, their
composition is given by the following (G, G)-biset over (Z x G x X)

(V x40 U)/G
PN
Z G X

where V' x4, U is the pullback of V and U over Y, i.e. the set of pairs
(v,u) € V x U with d(v) = ¢(u), and (V x4, U)/G the set of orbits of G on
it for the action given by (v,u) - g = (vg, g 'u). This makes sense because

dv-g) =g ') =g tce(u) =c(g~t-u) if d(v) = c(u). The map (v, 3, a) is
given by

(7, 8,0) ((v,u)G) = (f(v), e(v)b(u), au)) .
2.8. The functor ® : B(G) — B(G) extends uniquely to an additive functor
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@, : B.(G) — B.(G), and the category B.(G) is the quotient of B,(G) ob-
tained by identifying morphisms which have the same image by ®,. Clearly,
two morphisms f, g € Homg, 4, (X,Y) are identified if and only if f — g is in
the kernel of the group homomorphism

¢:B(a(Y x G x X)g) = B(a(Y x X)g)
induced by the correspondence

U

AN,

on bisets. In other words, a morphism f in ]§.(G) gives the zero morphism
in B,(G) if and only if it belongs to Ker ¢.
2.9. Now the (G, G)-biset oG is isomorphic to IndG(XGG;o, where A(G) is
the diagonal subgroup of G x G. It follows that there is an isomorphism of
(G, G)-bisets

Y x G x X 2Ind& (Y x X)

Hence, by Remark 2.2 again, since A(G) = G,
B(a(Y x G x X)g) 2 B(c(Y x X)) ,

where (Y x X) is the usual cartesian product with diagonal G-action. More
precisely, this isomorphism is induced by the correspondence

U b1(1)

VO NEEAY

It is then easy to check that the composition of

INC = N



corresponds to the usual pullback diagram

e (1) ><d<\
1) b1

/\/\

A
In other words, the category B.(G) is equivalent to the category S(G) whose
objects are the finite G-sets, where

Homg()(X,Y) = B(a(Y x X)) ,

and composition is induced by pullback. It has been shown by Lindner ([7],
see also [2]) that the additive functors on this category are precisely the
Mackey functors for G.
2.10. With this equivalence of categories Bo(G) = S(G), the main result
of [6] can be viewed as a characterization of those Mackey functors for G,
wiewed as additive functors on ]A3.(G), which factor through the functor
D, : B.(G) = B.(G).

This characterization amounts to a precise description of the identifica-
tions effected by ® on morphisms: starting with f € Homg(e)(X,Y), one
can lift it to

f* € Homg, () (X,Y) = B(c(Y x G x X)g) ,

and see when [T lies in Ker ¢. Now f is represented by a difference of two
G-sets over ¢(Y x X) of the form

A A
Y X Y X
By induction from A(G) to G x G, the G-set on the left hand side lifts to
the following (G x G)-set over (xq) (Y x G x X)
GxZ

Pl N

Y G X



where the (G x G)-actions on G x Z and Y x G x X are given respectively
by (s,t) - (g9,2) = (sgt™",tz) and (s,t) - (y, 9, ) = (sy,sgt™ ", tx), and where

(7, 8,0)(9, 2) = (9b(2), 9,a(2))

Similarly the G-set (Z’, v, a’)) lifts to (G x Z' (v, p, o/)).
Now f* is in Ker ¢ if and only if there is an isomorphism

GxZ Gx 7
—
Y X Y X .

of (G x G)-sets over Y x X. Since (g,2) = g- (1,2) for any (g,2) € G x Z,
it follows that 6 is a map from G x Z to G x Z’ of the form

(9.2) = (gu(z),v(2)) ,

where v is a map from Z to G and v is a map from Z to Z’. Now for any
(s,t) € G x G, the equality

0((s.t) - (9,2)) = (s.1) - 0((g.2))

gives
(sgt™ u(tz),v(tz) = (sgu(z)t ", tv(z)) .

This is equivalent to
u(tz) = 'u(z) and v(tz) = tv(z) .

This means that u is a morphism of G-sets from Z to GG¢, which is the set GG
with G-action by conjugation, and v is a morphism of G-sets.

Moreover 6 is a bijection if and only if v is.

Finally 6 is a morphism of (G, G)-bisets over Y x X if and only if o/0f = a
and 7' o § =, i.e. equivalently if

aov=a and gu(z)-b ov(z)=g-b(2)
for any (g,z2) € G x Z. In other words
a=dov and b=ux (b ov) ,

where, for any map w : Z — Y, the map uxw : Z — Y is defined by
(uxw)(z) =u(z) - w(z). The map u * w is a map of G-sets if u : Z — G°
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and w : Z — Y are. Note that w' = u x w if and only if w = @ * w’, where
u: Z — G¢ is defined by u(z) = u(z)"'.

It follows that f maps to the zero morphism in B(G) if and only if there
exists u : Z — G and an isomorphism v : Z — Z’ such that

adov=a and Vov=uxb ,

But then v is an isomorphism

A A4
7N = N
—

Y X Y X .

of G-sets over Y x X, and f is also represented by the difference

Z Z
SN TN
Y X Y X,
since @’ ov = a and O o v = u x b. These are the morphisms in the category

S(G) that vanish in B4(G). In other words:

2.11. Theorem : Let G be a finite group. Let S(G) denote the quotient
category of S(G) defined by setting, for any two finite G-sets Y and Y

Homgc)(X,Y) = B(,(Y x X))/K(Y,X) ,

where K(Y, X) is the subgroup generated by the differences

Z Z
SN TN
Y X Y X,

wherea : Z — X, b: Z =Y, and u : Z — G° are morphisms of G-sets.
Then the functor ®, induces an equivalence of categories S(G) = Bo(G).

(2.12)




Since the difference 2.12 factors as

Z Z Z Z
/ xd . 1% xd _ M% xd . I% \
Y Z A A Z Z Z X
the morphisms vanishing in S(G) are generated in the category S(G) by the
morphisms of the form

Z

A
SN N
A A Z Z .

2.13. It follows that the additive functors from S(G) to the category of
abelian groups are exactly those Mackey functors (in the sense of Dress)
such that for any G-set Z and any u : Z — G¢, the morphism M, (u  Id) is
equal to the identity map of M (7).

This condition is additive with respect to Z, since the map u * Idz maps
each G-orbit of Z to itself. Hence these functors are exactly the functors for
which the map M, (u * Id) is the identity map of M (G/H), for any subgroup
H of G and any w: G/H — G°. Such a map is of the form gH — 9¢, where
c€ Cg(H). The map ux1Id: G/H — G/H is the map gH + gcH.

Translated in terms of the usual definition of Mackey functors, this map
expresses the action of ¢ on M(H) = M(G/H). This shows that additive
functors from S(G) to abelian groups are exactly the Mackey functors for the
group G such that, for any H < G, the centralizer Cg(H) acts trivially on
M(H). These are the “conjugation invariant Mackey functors” introduced
in [6].

2.14. Remark : In view of Paragraph 1.1, one might be tempted to be-
lieve that such a conjugation invariant Mackey functor for G' can always be
obtained from a biset functor defined on all finite groups by the restriction
procedure to subgroups of GG described in Paragraph 1.1, but this is not true:
for example, let G be an elementary abelian group of order 4, and let A, B,
and C' denote its subgroups of order 2. The simple Mackey functor M = S r,
for G over the field with 2 elements has value Fy at A, and {0} elsewhere
(cf. [9] Lemma 15.1). The functor M is obviously a conjugation invariant
Mackey functor, but if it were the restriction of a biset functor defined over
all finite groups, then in particular its values at A, B, and C would be iso-
morphic to one other, as A, B and C' are all isomorphic to Cj.
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3. Fused (G-sets

Let Z be any (finite) G-set. The multiplication (u,v) — u*v endows the set
Homg-set(Z, G°) with a group structure. Moreover, for any finite G-set X,
this group acts on the left on the set Homg-set(Z, X), via (u, f) — u x f.
This action is compatible with the composition of morphisms: if Y is a finite
G-set,if u: Z — G° and v : Y — (G° are morphisms of G-sets, then for any
morphisms of G-sets f: Z — Y and g : Y — X, one checks easily that

(3.1) (veg)o(usf)=(ux(of))*(gof) .

3.2. Notation : Let G-set denote the category of fused G-sets: its objects
are finite G-sets, and for any finite G-sets Z and 'Y

Homg-set(Z,Y) = Homg-set(Z, G°)\Homg-set(Z,Y) .

The composition of morphisms in G-set is induced by the composition of
morphisms in G-set.

3.3. Remark : For any G-set Y, set Y/ =Y x G¢. This notation is chosen
to evoke a path object in homotopy theory (cf. [5] Section 4.12). There is a
natural morphism p : Y/ — Y x Y, defined by p(y,9) = (y,gy), for y € Y
and g € G, and a morphism i : Y — Y7 defined by i(y) = (y,1), for y € Y.
The composition p o is equal to the diagonal map Y — Y x Y.

Two morphisms a,b: Z — Y in G-set are equal in the category G-set if
and only if the morphism (a,b) : Z — Y x Y factors as

YI

b
ZWYXY

for some morphism of G-sets ¢ : Z — Y.

3.4. Remark : It follows from 3.1 that the map u +— wu *x Idz is a group
antihomomorphism from Homg-set(Z, G¢) to the group of G-automorphisms
of Z. Hence a morphism f : Z — Y in the category G-set is an isomorphism
if and only if any of its representatives f : Z — Y in G-set is an isomorphism.

3.5. Weak pullbacks of fused G-sets. Disjoint union of G-sets is a
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coproduct in G-set. There is also a weak version of pullback in G-set : let

X/TYY
N, A

be a commutative diagram in G-set, where underlines denote the images in
G-set of morphisms in G-set. This means that a oc = bo d, i.e. that there
exists u € Homg-get (T, G¢) such that

bod=ux(aoc) .

But u* (aoc) = ao(uxc). It follows that there is a unique morphism
e € Homg-set (T, X X4 Y) such that the diagram

is commutative in G-set, where p: X X, Y — X and ¢: X x4, Y = Y are
the canonical morphisms from the pullback X x,; Y. In other words, the
diagram

(3.6)

is commutative in GG-set.
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But still (X X, Y,p, ¢) need not be a pullback in G-set, since the mor-
phism e making Diagram 3.6 commutative is generally not unique, as e it-
self depends on the choice of u. Moreover, the lifts a and b of @ and b to
G-set are not unique : it should be noted however that if ¢’ = v * ¢ and
b' = w * b are other lifts of a and b, respectively, where v € Homg-get (X, G)
and w € Homgset(Y, G¢), then the map f : (z,y) — (v(z)z,w(y)y) is an
isomorphism of G-sets from X X, Y to X X, Y, such that the diagram

X Xal b Y

/
kN

\

is commutative in G-set. Since @’ = a, 0 = b, vxId = Id, and w *x Id = Id,
this yields a commutative diagram

[~

X Xal b Y X Xab Y
v - \
p q
X Y
\ /
Z

in G-set, and f is an isomorphism. This shows that the weak pullback X X,
Y only depends on a and b in the category G-set. For this reason, it may be
denoted by X xg; Y.

3.7. Spans of fused G-sets. Recall (cf. [10], [1] for the general definition)
that if X and Y are finite G-sets, then a span Az, over X and Y in the
category G-set is a diagram of the form

Z
2N
X Y
where Z is a finite G-set and a, b are morphisms in the category G-set. Two
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spans Az,p and Ay oy over X and Y are equivalent if there exists an iso-
morphism f : Z — Z’ in G-set such that the diagram

is commutative. The set of equivalence classes of spans of fused G-sets
over X and Y is an additive monoid, where the addition is defined by dis-
joint union (i.e. Az a5, + Azpapb, = A2i0Zs,0,0a,6,08,)- The corresponding
Grothendieck group is isomorphic to Homgg) (Y, X).

It should be noted that even if there is no pullback construction in the cat-
egory (G-set, the isomorphism classes of spans in G-set can still be composed
by weak pullback, and this induces the composition of morphisms in S(G).

4. Fused Mackey functors

4.1. Definition : Let R be a commutative ring. Let RS(G) (resp. RS(G))
denote the R-linear extension of the category S(G) (resp. S(G)), defined as
follows:

e The objects of RS(G) and RS(G) are finite G-sets.
o [or finite G sets X and Y,

Hompg)(X,Y) = R®z Homg()(X,Y)
Hompg)(X,Y) = R®z Homg()(X,Y) .

e Composition of morphisms is induced by the pullback in G-set (resp.
the weak pullback in G-set).

A Mackey functor for G over R in the sense of Lindner ([7]) is an R-linear
functor from RS(G) to the category R-Mod of R-modules.

Similarly, o fused Mackey functor for G over R is an R-linear functor
from RS(G) to R-Mod. A morphism of fused Mackey functors is a natural
transformation of functors. Fused Mackey functors for G over R form a
category denoted by I\/lacké(G).
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The following is an equivalent definition of fused Mackey functors, a la
Dress:

4.2. Definition : Let R be a commutative ring. A fused Mackey functor
for the group G over R is a bivariant R-linear functor M = (M*, M,) from
G-set to R-Mod such that:

1. For any finite G-sets X and Y, the maps
(M (ix ), M- (iy)

M(X) @ M(Y) M(XUY)
(M (i), M (iy)

nduced by the canonical inclusionsix : X — XUY andiy : Y — XUY
are mutual inverse isomorphisms.

2. If
X Xab Y

X/ xY
S A

is a weak pullback diagram in G-set, then M*(a)M.(b) = M.(p)M*(q).

A morphism of fused Mackey functors is a natural transformation of bivariant
functors.

The category Macké(G) can be viewed as a full subcategory of the cat-
egory Mackg(G) of Mackey functors for G over R. In the case R = Z,
this category is equivalent to the category of conjugation invariant Mackey
functors introduced in [6].

The inclusion functor Mack},(G) < Mackg(G) has a left adjoint:

4.3. Definition : Let M be a Mackey functor for G over R, in the sense
of Lindner, i.e. an R-linear functor RS(G) — R-Mod. When X is a finite
G-set, set

MY (X) = M(X)/ > Im(M(Aga,) = M(Auaray))

Z,a,u

where the summation runs through triples (Z,a,u) consisting of a finite G-
set Z, and morphisms of G-sets a : Z — X and u : Z — G°, and Ay 14,
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denotes the span

7

of G-sets.

4.4. Proposition : Let R be a commutative ring, and G be a finite group.

1. Let M be a Mackey functor for G over R. The correspondence
X = M/ (X)

is a fused functor MY for G over R.

2. The correspondence F : M + M7 is a functor from Mackg(G) to
Mackg(G), which is left adjoint to the inclusion functor

7 : Mack}(G) < Mackg(G) .

Moreover F o L 1is isomorphic to the identity functor of Mack{%(G).

Proof : For Assertion 1, to prove that M/ is a Mackey functor, observe that
if Az, is a span of finite G-sets of the form

Z
AN
X Y
and v : Z — G is a morphism of G-sets, then

Azap — Azurap = (Azatd, — Mzusatdy) © Nz1a,p -

It follows that the R-module

3" Im(M(Aga,) — M(Auagay)

Z,a,u

is equal to the sum

> Im(M(Agp) = M(Aysas)) -

Z,a,b,u
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In other words, it is equal to the image by M of the R-submodule Kg(X,Y)
of Hompg(e) (Y, X) generated by the morphisms Aqp — Ayuayp, i€ to the
kernel of the quotient morphism

HOIHRS(G)(K X) — Hong(G)(Y, X) .

This shows that Kp is an ideal in the category R S(G). So if M is an R-linear
functor RS(G) — R-Mod, the correspondence

XM (X)=MX)/ Y ImM(f)

FEKR(X)Y)

is an R-linear functor from the quotient category RS(G) to R-Mod.
Assertion 2 is straightforward: first it is clear that F o Z is isomorphic to

the identity functor, since N/ = N when N is a fused Mackey functor. This

isomorphism F oZ = IdMaCk{?C @) provides the counit of the adjunction. Next

for any Mackey functor M, there is a projection morphism M — ZF (M),
and this yields the unit of the adjunction. O

4.5. Remark : Assertion 2 shows that Macké(G) is a reflective subcategory
of Mackg(G) (cf. [8], Chapter IV, Section3).

4.6. Remark : If the Mackey functor M is given in the sense of Dress, then
for any finite G-set X

MI(X) = M(X)/ 3 n(M.(a) - Ma(uxa) |

a:Z—X
u:Z—G°

where Z is a finite G-set, and a, u are morphisms of G-sets.

| 4.7. Corollary :

1. If P is a projective Mackey functor, then P is projective in the category
Macks, (G).

2. The category Mack{%(G) has enough projective objects. More precisely,
if N is a fused Mackey functor, and 6 : P — Z(N) is an epimorphism

in Mackz(G) from a projective Mackey functor P, then F(0) : PT — N
is an epimorphism in Mackl,(G).

Proof : Assertion 1 follows from the fact that F is left adjoint to the exact
functor Z. Assertion 2 is then straightforward. a
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5. The fused Mackey algebra

When G is a finite group, set (g = HEG G/H, and let RBgq,, denote the Dress

construction for the Burnside functor RB over the ring R. Recall that RBq,,,
as a Mackey functor in the sense of Dress, is obtained by precomposition of
RB with the endofunctor X — X x Qg of G-set.

Also recall (cf. [2] Lemma 7.3.2 and Proposition 4.5.1) that the functor
RBq,, is a progenerator of the category Mackg(G), and that the algebra
Endmackp(c)(Bag) = B(QZ) is isomorphic to the Mackey algebra pgr(G) of G
over R, introduced by Thévenaz and Webb ([9]).

It follows from Corollary 4.7 that the functor (RBgq,)’ is a progenerator
in the category Mackf;(G). Hence this category is equivalent to the category
of modules over the algebra EndMacké @) ((RBq,)’).

5.1. Definition : The fused Mackey algebra of G over R is the algebra

M{%(G) = EndMacké(G)(<RBQG)f) :

5.2. Lemma : Let X be a finite G-set. Then (RBx)’ is isomorphic to
the Yoneda functor Hompga) (X, —).

Proof : Denote by Yx the Yoneda functor Hompgg(g)(X, —). For any fused
Mackey functor N for G over R

Homy. o/ @) ((RBx)',N) = Hommackn(c)(RBx,Z(N))
Z(N)(X) = N(X)
HomMack{%(G) (yX? N) :

1%

2

The lemma follows, since all these isomorphisms are natural. a

5.3. Theorem : The fused Mackey algebra /ﬂl;(G) s 1somorphic to the
quotient of the algebra RB(Q%) = ur(G) by the R-module generated by dif-
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ferences of the form

A A
A7
Qg Qg Qg Q¢ ,

where a,b: Z — Qg and u : Z — G are morphisms of G-sets.

Proof : This follows from Lemma 5.2, since the quotient in the theorem is
precisely Endgge)(Qa). 0

5.4. Remark : One can deduce from this theorem that the fused Mackey
algebra ,ué(G) is always free of finite rank as an R-module, and this rank
does not depend on the commutative ring R. More precisely, Thévenaz and
Webb have shown (][9] Proposition 3.2) that the Mackey algebra ugr(G) has
an R-basis consisting of elements of the form

tg Cq. K TIL(Q ,
where (H, L, g, K) runs through a set of representatives of 4-tuples consisting

of two subgroups H and L of GG, and element ¢ of G, and a subgroup K of
H NYL, for the equivalence relation = given by

H=H L=1
(H,L,g,K)=(H',L',¢',K') & { and
JheH JleLl, ¢ =hgl, KK ="K .

Similarly, the quotient algebra ,ué(G) of ur(G) has a basis consisting of the
images of the elements t4 c, - rk,, where (H, L, g, K) runs through a set of
representatives of 4-tuples as above, modulo the relation =/ defined by

H=H 6 L=1I,

and

Jdhe H, Jl€ L, Iz € Cg(K),
¢ = hxgl, K' ="K .

(H,L,g.K)=/ (H,L',¢,K') &
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