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Categories

Category:

Objects +

Morphisms.

In fact, objects don’t matter much! More precisely:

The axioms of category theory can be formulated only in terms of
morphisms.
Equivalent categories may have completely different objects.
Conversely, some mathematical objects come equipped with a natural
notion of morphism, which is not always the only possible one, nor the
best one.

In some cases, it may be interesting to change the morphisms!

Category of finite groups and bisets.
Category of finite sets and correspondences (with Jacques Thévenaz).
Category of rings and bimodules.
Theory of motives, (Co)bordism and Topological Quantum Field
Theories, Categories of fractions, categories of spans, quotient
categories, localizations, derived categories, . . .
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Finite groups

The obvious candidates for morphisms in a category of finite groups
are group homomorphisms.

This leads to the Jordan-Hölder Theorem, and to a “decomposition”
of finite groups as a composition series of simple ones.

It has been a very hard task to classify the finite simple groups. . .

Moreover the knowledge of the simple constituents of a given finite
group G is not enough to describe G completely.

This category of finite groups is much more complicated than e.g. the
category of finite dimensional vector spaces over a field k : Not only
there is a unique simple k-vector space, but a vector space is entirely
determined by the length of any of its composition series (aka its
dimension).
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Group algebras

Let k be an algebraically closed field, of characteristic p ≥ 0. Let kG be
the group algebra of G over k, and kG -mod be the category of finite
dimensional kG -modules.

If p - |G |, the category kG -mod is semisimple: Any kG -module is a
direct sum of simple ones. These are characterized by their character.

If p||G |, this is no longer true: There are non simple indecomposable
kG -modules, and in general there are infinitely many such modules.
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Aim: Build a category of finite groups with other types of morphisms?

One could consider the category where objects are finite groups, and
morphisms are isomorphism classes of bimodules. We need to restrict
to more specific classes of bimodules.

For a finite group G , a permutation kG -module is a kG -module
admitting a G -invariant k-basis.

A p-permutation kG -module is a direct summand of a permutation
kG -module. There are finitely many indecomposable p-permutation
kG -modules.
Examples: Projective kG -modules, modules inflated from projective
k(G/N)-modules (N E G ), modules induced from p-permutation
kH-modules (H ≤ G ).
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Which morphisms?

Aim: Build a category of finite groups with other types of morphisms?

One could consider the category where objects are finite groups, and
morphisms are isomorphism classes of bimodules. We need to restrict
to more specific classes of bimodules.

For a finite group G , a permutation kG -module is a kG -module
admitting a G -invariant k-basis.

A p-permutation kG -module is a direct summand of a permutation
kG -module. There are finitely many indecomposable p-permutation
kG -modules (up to isomorphism).

Examples: Projective kG -modules, modules inflated from projective
k(G/N)-modules (N E G ), modules induced from p-permutation
kH-modules (H ≤ G ).
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morphisms are isomorphism classes of bimodules. We need to restrict
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p-permutation bimodules

kG is a permutation (kG , kG )-bimodule. Moreover, it is free as a left
kG -module and right kG -module.

If b is a central idempotent of kG , then kGb is a direct summand of
kG as (kG , kG )-bimodule, so it is a p-permutation bimodule.

Moreover, viewed as a left (or right) kG -module, it is a direct
summand of the free module kG , hence it is projective.

More generally for finite groups G and H, a diagonal p-permutation
(kH, kG )-bimodule is a p-permutation bimodule which is projective as
a left kH-module and right kG -module.

If G , H, K are finite groups,
if M is a diagonal p-permutation (kH, kG )-bimodule,
if N is a diagonal p-permutation (kK , kH)-bimodule,
then N ⊗kH M is a diagonal p-permutation (kK , kG )-bimodule.
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Diagonal p-permutation functors (joint with Deniz Yılmaz)

Let R be a commutative ring.
For finite groups G and H, let RT∆(H,G ) be the free R-module with basis the
set of isomorphism classes of indecomposable diagonal p-permutation
(kH, kG )-bimodules.
For finite groups G , H, K , there is a well defined bilinear map

◦ : RT∆(K ,H)× RT∆(H,G )→ RT∆(K ,G )
induced by ([N], [M]) 7→ [N ⊗kH M].

Definition

Let Rpp∆
k be the following category:

The objects of Rpp∆
k are the finite groups.

For finite groups G and H, let HomRpp∆
k

(G ,H) := RT∆(H,G ).

The composition in Rpp∆
k is the above map ◦.

The identity morphism of G is [kG ] ∈ RT∆(G ,G ).

A diagonal p-permutation functor over R is an R-linear functor from Rpp∆
k

to R-Mod. These functors form an abelian category F∆
Rppk

.
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Semisimplicity

Theorem

Let F be an algebraically closed field of characteristic 0. Then the category
F∆
Fppk of diagonal p-permutation functors over F is semisimple.

A D∆-pair (L, u) consists of a finite p-group L and a
p′-automorphism u of L acting faithfully on L.

An isomorphism of D∆-pairs ϕ : (L, u)→ (M, v) is a group
isomorphism ϕ : Lo 〈u〉 → M o 〈v〉 such that ϕ(u) is conjugate to v .

We denote by Aut(L, u) the automorphism group of a D∆-pair (L, u),
and we set Out(L, u) = Aut(L, u)/Inn(Lo 〈u〉).

Theorem

The simple diagonal p-permutation functors over F are parametrized by
isomorphism classes of triples (L, u,V ), where (L, u) is a D∆-pair, and V
is a simple FOut(L, u)-module. Notation: (L, u,V ) 7→ SL,u,V .
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Blocks as idempotents

Let G be a finite group and b be a central idempotent of kG . Then
[kGb] ∈ RT∆(G ,G ) is an endomorphism of G in Rpp∆

k .

Moreover, one checks easily that u ⊗ v 7→ uv extends to an
isomorphism of (kG , kG )-bimodules kGb ⊗kG kGb ∼= kGb.

In other words [kGb] ◦ [kGb] = [kGb] in RT∆(G ,G ), so [kGb] is an
idempotent endomorphism of G in Rpp∆

k .

If b and b′ are orthogonal central idempotents of kG , then
kGb ⊗kG kGb′ = {0}, so the corresponding idempotent
endomorphisms [kGb] and [kGb′] of G are orthogonal.

If b1, . . . , bn are the block idempotents of kG , we get an orthogonal
decomposition [kG ] = [kGb1] + . . .+ [kGbn] of the identity element of
RT∆(G ,G ) = EndRpp∆

k
(G ,G ).
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Blocks as functors

For a pair (G , b) of a finite group G and a central idempotent b of kG , we
denote by RT∆

G ,b or RT∆(−,G )b the diagonal p-permutation functor

H 7→ RT∆(H,G ) ◦ [kGb].

RT∆(−,G ) ∼= RT∆
G ,b ⊕ RT∆

G ,1−b in F∆
Rppk

. The functor RT∆
G ,b is a projective

object of F∆
Rppk

. If b1, . . . , bn are the block idempotents of kG , then

RT∆
G
∼= RT∆

G ,b1
⊕ . . .⊕ RT∆

G ,bn
in F∆

Rppk
.

Definition

Let G and H be finite groups, let b be a block idempotent of kG , and c
be a block idempotent of kH. We say that (G , b) and (H, c) are
functorially equivalent over R if the functors RT∆

G ,b and RT∆
H,c are

isomorphic in F∆
Rppk

.

This is equivalent to saying that there exists σ ∈ cRT∆(H,G )b and

τ ∈ bRT∆(G ,H)c such that σ ◦ τ = [kHc] and τ ◦ σ = [kGb].
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Decomposition of blocks

Let F be as before. If (G , b) is a pair of a finite group G and a block
idempotent b of kG , the functor FT∆

G ,b splits as a direct sum of simple

functors SL,u,V in the category F∆
Fppk . How? We get three formulas for the

multiplicity of SL,u,V as a summand of FT∆
G ,b:

1 One in terms of fixed points of some subgroups of Out(L, u) on V .
2 One in terms of “u-invariant” (G , b)-Brauer pairs (P, e).
3 One in terms of the “u-invariant” local pointed groups Pγ on kGb.

Theorem

Let b a block idempotent of kG with defect group D. The following are
equivalent:

1 The block b is nilpotent.

2 If SL,u,V is a simple summand of FT∆
G ,b, then u = 1.

3 If SL,u,F is a simple summand of FT∆
G ,b, then u = 1.

4 (G , b) is functorially equivalent to (D, 1) over F.
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Equivalences of blocks

Functorial equivalence over Z implies functorial equivalence over
any R.

There are other types of equivalences of blocks. Functorial
equivalence (over Z) is the weakest in the chain

Splendid Rickard equivalence
⇓

p-permutation equivalence
⇓

functorial equivalence over Z

Proposition

Let (G , b) and (H, c) be functorially equivalent over F. Then:

1 b and c have isomorphic defect groups.

2 kGb and kHc have the same number of simple modules (up to
isomorphism), and the same number of irreducible ordinary characters.
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A finiteness theorem

Recall the

Conjecture (Donovan)

Let D be a finite p-group. Then there is only a finite number of
equivalence classes of module categories of block algebras over k with
defect groups isomorphic to D.

Theorem

Let D be a finite p-group. Then there is only a finite number of pairs
(G , b), where G is a finite group and a b is block idempotent of kG with
defect groups isomorphic to D, up to functorial equivalence over F.
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Additional results

[Yılmaz] Isotypic blocks are functorially equivalent over F.

Hochschild homology is invariant under functorial equivalence over k .

Let Rpp∆
k be the quotient category of Rpp∆

k by morphisms which
factor through the trivial group. A stable diagonal p-permutation

functor over R is an R-linear functor Rpp∆
k → R-Mod.

The pairs (G , b) and (H, c) are stably functorially equivalent over R if

the associated stable diagonal p-permutation functors RT∆
G ,b and

RT∆
H,c are isomorphic.

If (G , b) and (H, c) are stably functorially equivalent over F, then b
and c have isomorphic defect groups. Moreover

k(kGb)− l(kGb) = k(kHc)− l(kHc).
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THANK YOU!
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Which objects?

The following example shows that the objects of two equivalent categories
may be completely different (“the objects of a category don’t matter”).

Example

Let K be a field, and C the following category:

The objects are non negative integers.

Inside C, a morphism from the integer i to the integer j is a matrix
j × i with coefficients in K .

Composition inside C is given by the product of matrices.

The identity morphism of the integer i is the identity matrix i × i .

The category C is equivalent to the category of finite dimensional K -vector
spaces.

←
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Evaluations

For a finite group G , let QG ,p denote the set of pairs (P, s), where P
is a p-subgroup of G and s is a p′-element of NG (P). Let [QG ,p] be a
set of representatives of G\QG ,p. For (P, s) ∈ QG ,p, let (P̃, s̃) denote
the D∆-pair (PC/C , sC/C ), where C = C〈s〉(P).

Let moreover (L, u) be a D∆-pair. If (P̃, s̃) ∼= (L, u), then there exists

ϕ : P
∼=→ L such that the square

P
ϕ //

is ��
L
iu��

P ϕ
// L

is commutative.

This induces a group homomorphism NG (P, s)→ Aut(L, u).

Proposition

Let (L, u) be a D∆-pair and V be a simple FOut(L, u)-module. Then for a
finite group G

SL,u,V (G ) ∼=
⊕

(P,s)∈[QG ,p ]

(P̃,s̃)∼=(L,u)

VNG (P,s)

←
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Multiplicity formula 1

Let Y = Y(G , L, u) be the set of triples (P, π,F ) where

P is a p-subgroup of G .

π : L→ P is a group isomorphism such that there exists a p′-element s ∈ G
with π(u l) = sπ(l) for all l ∈ L.

F is an u-invariant projective indecomposable kBrP(b)CG (P)-module.

The group G × L〈u〉 acts on Y by (g , t) · (P, π,F ) := (gP, igπit−1 , gF ) for

(g , t) ∈ G × L〈u〉 and (P, π,F ) ∈ Y. Here gF is the kCG (gP)-module equal to F

as a k-vector space and on which c ∈ CG (gP) acts by c · g f := cg f .

Theorem

The multiplicity of SL,u,V in FT∆
G ,b is the dimension of⊕

(P,π,F )∈U
V

Aut(L,u)
(P,π,F ) ,

where U = [(G × L〈u〉) \Y(G , L, u)/Aut(L, u)], and Aut(L, u)(P,π,F ) is the

stabilizer of (G × L〈u〉)(P, π,F ) in Aut(L, u).

←
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Multiplicity formula 2

Let Fb denote the fusion system of kGb with respect to a maximal b-Brauer pair
(D, eD). For each subgroup P ≤ D, let eP denote the unique block of kCG (P)
with (P, eP) ≤ (D, eD).
For (P, eP) ∈ Fb, let P(P,eP )(L, u) denote the set of group isomorphisms
π : L→ P with πiuπ

−1 ∈ AutFb
(P, eP). The set P(P,eP )(L, u) is an

(NG (P, eP),Aut(L, u))-biset via g · π · ϕ = igπϕ, for g ∈ NG (P, eP),
π ∈ P(P,eP )(L, u) and ϕ ∈ Aut(L, u). Let [P(P,eP )(L, u)] denote a set of
representatives of orbits.

Theorem

The multiplicity of SL,u,V in FT∆
G ,b is the dimension of⊕

(P,eP)∈[Fb]

⊕
π∈[P(P,eP )(L,u)]

FProj(kePCG (P), u)⊗Aut(L,u)
(P,eP ,π)

V ,

where Proj(kePCG (P), u) ≤ Proj(kePCG (P)) is generated by u-invariant
indecomposable modules, and

Aut(L, u)(P,eP ,π) = {ϕ ∈ Aut(L, u) | ∃g ∈ NG (P, eP), πϕπ−1 = ig}.

←
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Multiplicity formula 3

Let Lb(G , L, u) denote the set of pairs (Pγ , π) where

Pγ is a local pointed point group on kGb,

π : L→ P is a group isomorphism such that πiuπ
−1 = Res(is) for some

s ∈ NG (Pγ).

The set Lb(G , L, u) is a (G ,Aut(L, u))-biset via g · (Pγ , π) ·ϕ = (gP gγ , igπϕ), for
g ∈ G and ϕ ∈ Aut(L, u). Let [Lb(G , L, u)] be a set of representatives of orbits.
For (Pγ , π) ∈ Lb(G , L, u), we set

Aut(L, u)(Pγ ,π) = {ϕ ∈ Aut(L, u) | ∃g ∈ NG (Pγ), πϕπ−1 = Res(ig )}.
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