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Abstract : In this note, I propose the following conjecture : a finite group G is
nilpotent if and only if its largest quotient B-group β(G) is nilpotent. I give a proof of
this conjecture under the additional assumption that G be solvable. I also show that this
conjecture is equivalent to the following : the kernel of restrictions to nilpotent subgroups
is a biset-subfunctor of the Burnside functor.
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1. Introduction

In the study of the lattice of biset-subfunctors of the Burnside functor KB
over a field K of characteristic 0 (cf. Section 7.2 of [2], or Chapter 5 of [3]),
a special class of finite groups, called B-groups (see Definition 2.2), plays an
important role : indeed, the simple subquotients of the biset functor KB are
exactly the functors SH,K, where H is such a B-group.

It was shown in particular in [2] Proposition 9 (see also [3] Theorem
5.4.11) that any finite group G admits a largest quotient in this class, well-
defined up to isomorphism, and denoted by β(G). A few properties of B-
groups were proved in [2], some of which will be recalled in this paper, but
almost no progress was made since, until the following theorem proved re-
cently by Mélanie Baumann ([1]) : when p is a prime number, recall that a
finite group G is called cyclic modulo p (or p-hypo-elementary) if the group
G/Op(G) is cyclic.

1.1. Theorem : [M. Baumann] Let p be a prime number, and G be a finite
group. Then G is cyclic modulo p if and only if β(G) is cyclic modulo p.

In this note I propose the following similar looking conjecture :

Conjecture A : Let G be a finite group. Then β(G) is nilpotent if and only
if G is nilpotent.

1.2. Remark : It was shown in [2] (Proposition 14) that the nilpotent
B-groups are the groups of the form Cn × Cn, where Cn is a cyclic group of
square free order n.
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After recalling the basic definitions and properties of B-groups, I will give
a proof of Conjecture A under the additional assumption that G be solvable.

2. B-groups

Let K be a field of characteristic 0. Let G be a finite group, let sG denote the
set of subgroups of G, and let [sG] be a set of representatives of G-conjugacy
classes on sG.

Denote by KB(G) the Burnside algebra of G over K. It is a split semisim-
ple commutative K-algebra, with two natural K-bases : the first one consists
of the isomorphism classes of transitive G-sets, i.e. the set {[G/H]|H ∈ [sG]}.
The second one consists of the primitive idempotents of KB(G), i.e. the set
{eGH | H ∈ [sG]}. The transition matrix from the first basis to the second one
has been described explicitly by Gluck ([4]) and Yoshida ([6]), as follows

eGH =
1

|NG(H)|
∑
X≤H

|X|µ(X,H) [G/X] ,

where µ is the Möbius function of the poset of subgroups of G.
The correspondence G 7→ KB(G) is a biset functor : when G and H are

finite groups, and U is a finite (H,G)-biset, the functor S 7→ U ×G S from
the category of finite G-sets to the category of finite H-sets induces a map
KB(U) : KB(G) → KB(H), which is well behaved with respect to disjoint
union and composition of bisets.

This involves in a single formalism the usual operations of restriction, in-
duction, inflation, and transport by isomorphism between the corresponding
Burnside groups. It also involves the less usual operation of deflation : when
N EG, the deflation homomorphism DefGG/N : B(G) → B(G/N) corresponds
to the (G/N,G)-biset G/N , and it induced by the functor S 7→ N\S from
G-sets to (G/N)-sets.

These elementary operations can be expressed explicitly in each of the
above bases. In particular ([3] Theorem 5.2.4), the effect of these operations
on the “top” idempotents eGG is given as follows :

2.1. Theorem : Let G be a finite group.

1. If H is a subgroup of G, then IndG
He

H
H = |NG(H) : H|eGH .

2. If H is a proper subgroup of G, then ResGHe
G
G = 0.
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3. If N EG, then

InfGG/Ne
G/N
G/N =

∑
X∈[sG]
XN=G

eGX .

4. When N EG, set

mG,N =
1

|G|
∑
X≤G
XN=G

|X|µ(X,G) .

Then DefGG/Ne
G
G = mG,Ne

G/N
G/N .

5. If ϕ : G → G′ is a group isomorphism, then Iso(ϕ)(eGG) = eG
′

G′.

This leads to the notion of B-group : the group G is a B-group if any
proper deflation of eGG is equal to 0. In other words :

2.2. Definition : The finite group G is called a B-group if mG,N = 0 for
any non-trivial normal subgroup N of G.

2.3. Notation : When G is a finite group, and N EG is maximal such
that mG,N 6= 0, set β(G) = G/N .

There may be several normal subgroups N with the required properties,
but the group G/N does not depend on the choice of N , up to isomorphism.
More precisely ([3] Theorem 5.4.11) :

2.4. Theorem : Let G be a finite group.

1. The group β(G) is a B-group.

2. If a B-group H is isomorphic to a quotient of G, then H is isomorphic
to a quotient of β(G).

3. Let M EG. The following conditions are equivalent :

(a) mG,M 6= 0.

(b) The group β(G) is isomorphic to a quotient of G/M .

(c) β(G) ∼= β(G/M).
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2.5. Proposition : Let G be a finite group.

1. The group G is a B-group if and only if mG,N = 0 for any minimal
(non-trivial) normal subgroup of G.

2. Let N be a minimal (non-trivial) normal subgroup of G. If N is abelian,
then

mG,N = 1− |KG(N)|
|N |

,

where KG(N) is the set of complements of N in G.

Proof : Assertion 1 follows from the transitivity of deflations. Assertion 2
is Proposition 5.6.4 of [3].

3. Proof of Conjecture A in the solvable case

3.1. Theorem : Let G be a solvable finite group. Then β(G) is nilpotent
if and only if G is nilpotent.

Proof : If G is nilpotent, then β(G) is nilpotent, for it is a quotient of G. The
converse follows from an induction argument on the order of G : assume that
if G′ is a finite solvable group of order |G′| < |G|, and if β(G′) is nilpotent,
then G′ is nilpotent. Assume that β(G) is nilpotent, and let N be a non-
trivial normal subgroup of G. Since β(G/N) is a quotient of β(G), it is
nilpotent. Hence G/N is nilpotent. In particular, if Z(G) 6= 1, then G/Z(G)
is nilpotent, hence G is nilpotent. So we can assume that Z(G) = 1.

Now suppose that M and N are non trivial normal subgroups of G, such
that M ∩ N = 1. Then G is nilpotent : indeed, the group G/(M ∩ N),
isomorphic to G, maps injectively into (G/M)× (G/N), which is nilpotent.

It follows that we can assume that G has a unique (non trivial) minimal
normal subgroup N . Since G is solvable, the group N is elementary abelian,
isomorphic to (Cp)

k, for some prime number p and some integer k ≥ 1. Let Q
be a Sylow p-subgroup of G. Then Q ≥ N . Since the group G/N is nilpotent,
and since Q/N is a Sylow p-subgroup of G/N , it follows that Q/N EG/N ,
i.e. QEG.

Now N is a non trivial normal subgroup of Q, thus N ∩ Z(Q) 6= 1. But
N ∩Z(Q) is a normal subgroup of G, and by minimality of N , it follows that
N ≤ Z(Q).

The group G splits as a semidirect product G = Q o H, where H is
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a (nilpotent) p′-subgroup of G. The group H acts on the p-group Q, thus
Q = CQ(H)[H,Q] (by [5] Theorem 3.5 Chapter 5).

Since G/N is nilpotent, it follows that G/N ∼= (Q/N) × H. It follows
that [H,Q] ≤ N . Thus Q = CQ(H)N . Now N ∩CQ(H) is centralized by H,
and by Q, since N ≤ Z(Q). Thus N ∩ CQ(H) ≤ Z(G) = 1, and it follows
that Q = N × CQ(H). Then CQ(H) is normalized by Q, and centralized
by H. Thus CQ(H)EG, and as N ∩CQ(H) = 1, it follows that CQ(H) = 1,
thus N = Q.

But now G = N o H, where N ∼= (Cp)
k, and H is a p′-group. Since N

is minimal normal in G, it follows that H acts irreducibly on N , and that H
is a maximal subgroup of G. Since H is not normal in G (as N is the only
minimal normal subgroup of G, and N � H), it follows that NG(H) = H.
Finally, since H is a p′-group, all the complements of N in G are conjugate,
hence |KG(N)| = |G : NG(H)| = |N |. Thus mG,N = 1− |KG(N)|

|N | = 0. Hence

G is a B-group, thus G ∼= β(G) is nilpotent.

3.2. Remark : Actually, in the situation of the end of the proof, the group
G is trivial : indeed, it is a nilpotent B-group, hence isomorphic to Cn ×Cn,
where n is a square free integer. As G has a unique minimal normal subgroup
by assumption, the only possibility is n = 1.

4. Comments

The following conjecture doesn’t mention B-groups :

Conjecture B : For any group G, let νG denote the restriction map

νG =
∏

H∈N (G)

ResGH : B(G) →
∏

H∈N (G)

B(H) ,

where N (G) is the set of nilpotent subgroups of G.
Then the correspondence G 7→ L(G) = Ker νG is a biset subfunctor of B.

Still :

4.1. Theorem : Conjecture B is equivalent to Conjecture A.

Proof : Since B(G) is a free Z-module, it maps injectively in KB(G). Let
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u ∈ B(G). Then u can be written

u =
∑

H∈[sG]

|uH |eGH

in KB(G). Thus u ∈ L(G) if and only if |uH | = 0 for any H ∈ N (G).
Suppose that Conjecture A holds. Proving Conjecture B amounts to prov-

ing that L is invariant under the elementary biset operations of induction,
restriction, inflation, deflation, and transport by isomorphism.

The latter case is clear : if ϕ : G → G′ is a group isomorphism, then
Iso(ϕ)

(
L(G)

)
≤ L(G′).

Now let G be a group, and let K be a subgroup of G. As nilpotent
subgroups of K are nilpotent subgroups of G, the transitivity of restrictions
implies that ResGKL(G) ⊆ L(K). Conversely, if u ∈ L(K) and H ∈ N (G),
then by the Mackey formula

ResGHInd
G
Ku =

∑
g∈[H\G/K]

IndH
H∩gKcgRes

K
Hg∩Ku = 0 ,

(where cg denote conjugation by G), since Hg ∩K ∈ N (K). It follows that
IndG

KL(K) ⊆ L(G).
Suppose now thatN EG, and that u ∈ L(G/N). Then for anyH ∈ N (G)

ResGHInf
G
G/Nu = InfHH/H∩N Iso

H/H∩N
HN/N Res

G/N
HN/Nu = 0 ,

since HN/N ∈ N (G/N). Hence InfGG/NL(G/N) ⊆ L(G).
Finally, in the same situation, let v ∈ L(G), and K/N ∈ N (G/N). Then

Res
G/N
K/NDef

G
G/Nv = DefKK/NRes

G
Kv .

Moreover
ResGKv =

∑
X∈[sK ]

|vX |eKX ,

and |vX | = 0 for X ∈ N (X). Since moreover (Theorem 2.1)

eKX =
1

|NK(X) : X|
IndK

Xe
X
X ,
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it follows that

Res
G/N
K/NDef

G
G/Nv =

∑
X∈[sK ]

|vX |
|NK(X) : X|

DefKK/N Ind
K
Xe

X
X

=
∑

X∈[sK ]

|vX |
|NK(X) : X|

Ind
K/N
XN/N Iso

XN/N
X/X∩NDef

X
X/X∩Ne

X
X

=
∑

X∈[sK ]

|vX |
|NK(X) : X|

mX,X∩N Ind
K/N
XN/N Iso

XN/N
X/X∩Ne

X/X∩N
X/X∩N

=
∑

X∈[sK ]

|vX |
|NK(X) : X|

mX,X∩N Ind
K/N
XN/Ne

XN/N
XN/N .

If X ≤ K is such that mX,X∩N 6= 0, then β(X) ∼= β(X/X ∩N) ∼= β(XN/N).
The group XN/N is a subgroup of K/N , hence it is nilpotent, hence β(X) ∼=
β(XN/N) is nilpotent. If Conjecture A is true, then X is nilpotent, hence

|vX | = 0. It follows that Res
G/N
K/NDef

G
G/Nv = 0, hence DefGG/NL(G) ≤ L(G/N).

Observe that one can still conclude that Res
G/N
K/NDef

G
G/Nv = 0 without

assuming Conjecture A, in the case where N is solvable : indeed in this case,
the group K is solvable (as N is solvable and K/N is nilpotent), so X is
solvable, and one can conclude by Theorem 3.1.

Conversely, assume that Conjecture B holds, and let G be a finite group.
Then |G|eGG is an element of B(G), whose restrictions to all proper subgroups
of G are 0. If G is not nilpotent, then |G|eGG ∈ L(G). Hence for any normal
subgroup N of G, the element

DefGG/N |G|eGG = mG,N |G|eG/N
G/N

is in L(G/N). If G/N ∼= β(G), then mG,N 6= 0, hence |G|eG/N
G/N ∈ L(G/N).

Since it is a non-zero element, it follows that G/N /∈ N (G/N), i.e. that
G/N ∼= β(G) is not nilpotent. Hence Conjecture A holds.

4.2. Remark : The above proof shows that the correspondence G 7→ L(G)
is a biset functor on the full subcategory of the biset category consisting
of solvable groups. Actually, it proves a little more : the correspondence
G 7→ L(G) is a biset functor on the category of all finite groups, if we only
allow as morphisms those bisets for which left stabilizers are solvable (or
equivalently, if we only allow deflations by solvable normal subgroups).

4.3. Remark : Let G be a minimal counterexample to Conjecture A. Then
G is non solvable, and as above G has a unique minimal normal subgroup
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N , non-central in G. Thus N ∼= Sk, where S is a non-abelian simple group,
and CG(N) = 1. The group H = G/N is nilpotent, and it is the largest
solvable quotient of G. In particular β(G) is a quotient of H, hence of β(H).
Since β(G) cannot be a p-group (for otherwise G would be cyclic modulo p,
by Theorem 1.1, hence solvable, hence nilpotent by Theorem 3.1), it follows
that H is not p-elementary for any prime p (that is, there are at least two
different primes p such that the Sylow p-subgroups of H are non cyclic) :
indeed, if P is a p-group, then β(P ) = 1 if P is cyclic, and β(P ) = Cp × Cp

otherwise (cf. Remark 1.2).
Since the Frattini subgroup Φ(G) is nilpotent, it follows that Φ(G) = 1.

Let X be a minimal subgroup of G such that XN = G. Then X ∩ N ≤
Φ(X), thus mX,X∩N = 1. Hence β(X) ∼= β(X/X ∩ N) ∼= β(G) is nilpotent.
Moreover X < G (as N � Φ(G) = 1), so X is nilpotent.

4.4. Remark : In view of Conjecture A and Theorem 3.1, Jacques Thévenaz
has proposed the following :

Conjecture : Let G be a finite group. Then β(G) is solvable if and only if
G is solvable.

This conjecture implies Conjecture A, by Theorem 3.1. A straightfor-
ward modification of the proof of Theorem 4.1 shows that this conjecture is
equivalent to saying that the correspondence sending a finite group G to the
kernel of the restriction map

ρG =
∏

H∈R(G)

ResGH : B(G) →
∏

H∈R(G)

B(H) ,

where R(G) is the set of solvable subgroups of G, is a biset functor.
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