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Abstract : Let k be a field of characteristic p > 0. Call a finite group G a poco group
over k if any finitely generated cohomological Mackey functor for G over k has polynomial
growth. The main result of this paper is that G is a poco group over k if and only if the
Sylow p-subgroups of G are cyclic, when p > 2, or have sectional rank at most 2, when
p=2.

A major step in the proof is the case where G is an elementary abelian p-group. In
particular, when p = 2, all the extension groups between simple functors can be determined
completely, using a presentation of the graded algebra of self extensions of the simple
functor S{', by explicit generators and relations.

AMS Subject Classification : 16P90, 18G10, 18G15, 20J05.

Keywords : Cohomological, Mackey functor, complexity, growth.

1. Introduction

This paper addresses the question of the cohomology and rate of growth of
cohomological Mackey functors for a finite group G over a field k. The three
main results are the following :

1.1. Theorem : Let G be a finite group and k be a field of positive
characteristic p. Then the following conditions are equivalent :

1. FEvery finitely generated cohomological Mackey functor for G over k has
a projective resolution with polynomial growth.

2. Let S be a Sylow p-subgroup of G. Then S is cyclic if p > 2, or S has
sectional 2-rank at most 2, if p = 2.

The key argument in the proof of this theorem is a reduction to the case
where G is an elementary abelian p-group. The case of elementary abelian
2-groups can be described quite completely :

1.2. Theorem : Let G = (C3)™ be an elementary abelian 2-group of
rank m, and k be a field of characteristic 2. Let M$(G) denote the category
of cohomological Mackey functors for G over k. Let S denote the simple



cohomological Mackey functor defined by

[k oifQ=1
VQ <G, ST(Q) = { {0} otherwise

Then the algebra Ext,’(,lz(G)(Sf,Sf) s finitely generated by elements of de-
gree 2, and its Poincaré series

P(t) = dimy Ext{,,z (57, 57)
jEN
18 equal to

1
(1—8)(1=32)(1 =7t ... (1= (271 = 1)1?)

P(t) =

1.3. Theorem : Let G = (C3)™ be an elementary abelian 2-group of rank m,
and k be a field of characteristic 2. Then the algebra € = Ext,f,lz(@(SlG, S
admits the following presentation :

o The generators v,, of degree 2, are indezed by the elements x of G—{0}.

o The relations are the following :

1. Whenever H is a subgroup of index 2 of G,

2%20.

x¢H
2. For any distinct elements x and y of G — {0},

[’7:5 + Vys ’YJJ-HJ] =0,

where [a,b] = ab+ ba denotes the commutator of two elements a

and b in £.

1.4. This paper is divided in two parts : the first one focuses on complexity,
and the second one on cohomology. Section 2 of Part I quickly recalls the
definitions and basic results on the rate of growth of a module for a finite
dimensional algebra over a field. In Section 3, the categories of cohomological
Mackey functors are introduced, from different points of view, which are
equivalent thanks to Yoshida’s theorem. Next some functors associated to



bisets between categories of cohomological Mackey functors are defined, with
nice adjunction properties. In Section 4, it is shown how to reduce the
question of complexity of cohomological Mackey functors for a finite group G
over a field of characteristic p to the same question for a Sylow p-subgroup
of G. Section 5 exposes a sketch of the proof of Theorem 1.1. In Sections 6, 7,
and 8, some simple cohomological functors and extensions between them
are discussed. In Section 9, the case of cyclic p-groups is recalled from Samy
Modeliar’s thesis ([7]). In Section 10, the case of elementary abelian p-groups
is settled, and Section 11 handles the case of 2-groups with sectional 2 rank
(at most) equal to 2.

The first section of Part II states further results on extensions of simple
cohomological functors for elementary abelian p-groups. This leads to the
proof of Theorem 1.3, in Section 13. In Section 14, a similar partial result
is stated, for p = 3, which is conjectured for any odd prime p. Finally, Sec-
tion 15 exposes some results on extensions of simple functors for an arbitrary
finite p-group G, which show in particular how to reduce the computation
of these extensions to the computation of self extensions for simple functors
indexed by the trivial subgroup of some subquotients of G.

Acknowledgments : I wish to thank the MSRI, where this work was com-
pleted during my stay there for the program on Representation Theory of
Finite Groups and Related Topics, in spring 2008. I also thank Dave Benson
for stimulating conversations about all this.

I - Complexity
2. Polynomial growth

2.1. Definition : Let A be a finite dimensional (unital) algebra over a
field k. A finitely generated A-module M s said to have polynomial growth
if there exists a resolution

P:+.—PFP —FP_ 4 - -—F—M-—70
of M by projective A-modules, and constants ¢, d and e such that

VneN, dimy P, <cn?+e .

The module M 1is said to have exponential growth if for any projective reso-



lution P, of M, there are constants c, d, and e, with ¢ > 0 and d > 1, such
that

VneN, dim, P, >cd" +e |,
The module M 1s said to have intermediate growth if M has neither polyno-
mial nor exponential growth.

2.2. Remark : If S is a generating set of M as an A-module, then there is a
surjective map of A-modules A°l — M. In particular, the projective cover
of M has dimension at most ddimy M, where d = dim, A. By induction,
this shows that there exists a projective resolution as above such that

dimy P, < (d —1)"'ddim, M .

In particular, this dimension is always bounded by some exponential function
of n.

2.3. Lemma : Let A be a finite dimensional algebra over a field k, and M
be a finitely generated A-module.

1. If

-— P, — P, —F—M-—0
15 a minimal projective resolution of M, then

Pn ~ @ Pglmk Ext" (M,S)/ dim;, End 4 (S) :
Selrr(A)

where Irr(A) is a set or representatives of isomorphism classes of simple
A-modules, and Ps denotes a projective cover of S.

2. In particular M has polynomial growth if and only if for any simple
A-module S, there exists constants ¢, d and e such that

Vn € N, dimg Ext%(M,S) <cn®+e .

Proof : Assertion 1 follows by décalage from the case n = 0, and from the
fact that the largest semisimple quotient of M is isomorphic to

® Gdimy Ext% (M,S)/ dimy, End 4 () .
Selrr(A)

Assertion 2 is a straightforward consequence of Assertion 1, since there are
finitely many simple A-modules, up to isomorphism. O



2.4. Remark : In particular, if M has polynomial growth, then any direct
summand of M has polynomial growth.

Conversely, the class of modules with polynomial growth is closed under
extensions. More precisely :

2.5. Lemma : Let A be a finite dimensional algebra over a field k.

1. If L M L N s an ezact sequence of finite dimensional k-vector

spaces, then
dimy M < dimy L 4+ dimy N ,

with equality if and only if f is injective and g is surjective.

2. Let
0—L—M-—N—0

be a short exact sequence of finitely generated A-modules. If two of the
modules L, M, and N have polynomial growth, so does the third.

Proof : For Assertion 1, there is a short exact sequence

00— Imf—M-—Img—0 ,
hence dimy M = dimy, Im f +dimy, Im g < dimy, L +dim; N. Equality holds if
and only if dim Im f = dimy L and dim Im g = dimy N, i.e. if f is injective
and g is surjective.

For Assertion 2, let S be a finitely generated A-module. Consider the
long exact sequence of Ext-groups

- — Ext’ (N, S) — BExt% (M, S) — Ext’y(L, S) — Ext’ (N, S) — ---
It follows from Assertion 1 that
dimy, Ext’} (M, S) < dimy Ext’, (N, S) + dimy Ext’y (L, S)
hence if L and N have polynomial growth, so does M. Similarly,
dimy, Ext’} (N, S) < dimy, Ext’} (M, S) + dim, Ext’y (L, S) ,
It follows that N has polynomial growth if L ands M have. Finally,
dimy, Ext’ (L, S) < dimy Ext’y(M, S) + dimy, Ext; ™ (N, S) |

hence L has polynomial growth if M and N do. a



2.6. Corollary : Let A be a finite dimensional algebra over a field k. The
following conditions are equivalent :

1. FEvery finitely generated A-module has polynomial growth.
2. Fvery simple A-module has polynomial growth.

Proof : Obviously Condition 1 implies Condition 2. The converse follows by
induction on the length of a finitely generated A-module. O

3. Cohomological Mackey functors

3.1. Definition. Let R denote an arbitrary commutative unital ring.
Recall that A Mackey functor M for G over R consists of the assignment
H +— M(H) of an R-module to each subgroup H of G, together with maps

of R-modules
tK . M(H) — M(K) ,

called transfer maps, and
P M) — M(H) |
called restriction maps, whenever H < K < ¢, and maps of R modules
Comt » M(H) — M(*H)

for each x € G, subject to a list of compatibility conditions, in particular
the Mackey formula (cf. [9] for details). A Mackey functor M is called
cohomological if the additional conditions

are fulfilled, for any H < K < G.

There is an obvious notion of morphism of (cohomological) Mackey func-
tors, and this yields the category M%(G) of cohomological Mackey functors
for G over R.

3.2. Example (fixed points functors) : In particular, when V is an RG-
module, then the fixed point functor F' Py is the Mackey functor defined by
FPy(H)=V*# ie. the set of elements of V which are invariant by H. When
H < K < H, the transfer map V¥ — VX is the relative trace map Trl,

defined by
TrH Z yv -,

z€[K/H|
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for any v € V# where [K/H] is a transversal of H in K. The restriction
map VE — VH is the inclusion map, and for # € G, the conjugation map
VH — V*H ig the map v — zv. The functor F Py is obviously cohomologi-
cal.

The correspondence V' — F Py is a functor from RG-Mod to M%(G). This
functor is fully faithful : if V' and W are RG-modules, then any morphism
¢ : FPy — FPy in Mj(G) is equal to F Py, where f is the morphism of
RG-modules from V' = FPy(1) to W = FPy (1) obtained by evaluating ¢
at the trivial subgroup of G.

3.3. The cohomological Mackey algebra. It was shown by Thévenaz
and Webb (cf. [9]) that M%(G) is equivalent to the category of modules over
the cohomological Mackey algebra cour(G) for G over R. More precisely,
if M is a cohomological Mackey functor for G over R, then the corresponding
copr(G)-module is equal to H6<9G M(H).

The algebra copr(G) is a finitely generated free R-module, so in particular
when R is a field, it is a finite dimensional R-algebra. In this case, there is
a natural notion of projective cover of a finitely generated cour(G)-module,
hence a natural notion of minimal projective resolution of a cohomological
Mackey functor.

3.4. Yoshida’s theorem. Let permy(G) denote the full subcategory of
the category RG-mod of finitely generated RG-modules, consisting of permu-
tation RG-modules, i.e. modules admitting a (globally) G-invariant R-basis.
It is an R-linear category, which is naturally equivalent to the opposite cate-
gory : indeed, the dual V* = Hompg(V, R) of a finitely generated permutation
RG-module is again a finitely generated permutation RG-module, and the
correspondence 0 : V' +— V* is an equivalence of categories from permg(G) to
perm;(G)°P, which is its own inverse (up to a slight abuse of notation).

When M is a cohomological Mackey functor for G over R, then the cor-
respondence

Vi HOmM%(G)(va, M)

is an R-linear contravariant functor M from perm,(G) to R-mod. This yields
in turn an R-linear functor M — M from M%(G) to Fung(G), where Fungz(G)
denotes the category of R-linear contravariant functors from permy(G) to
R-mod.

Conversely, if F'is such a functor, and H is a subgroup of G, one can define
F(H) = F(R(G/H)), where R(G/H) is the free R-module with basis the
G-set G/H of H-cosets in G. If H < K < G, then the projection map p% :
G/K — G/H gives a map of RG-modules Rp¥ : R(G/K) — R(G/H),
and taking image by F gives a transfer map t& = F(p¥) : F(H) — F(K).
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Similarly, applying first the equivalence § gives a map rf = F ((5(Rp§)) :
F(K) — F(H). Finally, if z € G, then the map ¢"H — gzH induce a
map R(G/*H) — R(G/H), whose image by F yields a conjugation map
ot - F(H) — F(*H). With these definitions ' becomes a cohomological
Mackey functor for G over R, and the correspondence F' +— F'is a functor
from Fung(G) to M%(G). The following theorem is essential :

3.5. Theorem : [Yoshida [10]] The functors M — M and F — F are
mutual inverse equivalences of categories between M%(G) and Fung(G).

3.6. Remark : One checks easily that if V' is an RG-module, then the
functor F'Py is mapped to the functor Hompgg(—, V) by this equivalence.
For this reason, this functor will also be denoted by F'P,,. More generally,
Yoshida’s equivalence allows for an identification of M%(G) with Fung(G),
that will be used freely throughout the rest of this paper.

3.7. Remark : In particular, if V' is a permutation RG-module, then the
Yoneda functor F'Py = Homperm () (—, V') is a projective object in Fung(G).
More precisely, if M is a cohomological Mackey functor for G over R, and H
is a subgroup of G, there is an isomorphism of R-modules

(38) HOHIM%(G)(FPR(G/H),M) = M(H) .

It follows more generally that if V' is a direct summand of a permutation RG-
module, then the functor F'Py is a projective object in M%(G). Thévenaz and
Webb (cf. [9]) have shown conversely that any projective object in M%(G)
is isomorphic to F' Py, where V is a direct summand of a permutation RG-
module.

3.9. Remark : It also follows that the category Fung(G) is equivalent to
the category of modules over the Hecke algebra

YR(G) == EndRG(HGSG R(G/H)) .

One can show easily that this algebra is actually isomorphic to the cohomo-
logical Mackey algebra coug(G) (cf. [4]). The Yg(G)-module corresponding
to the object F' of Fung(G) (resp. to the cohomological Mackey functor M
for G over R) under these equivalences, is equal to @& F(R(G/H)) (resp.
H<G
to @ M(H)). In particular F is finitely generated (resp. M is finitely gen-
H<G

erated) if and only if F'(WW) is a finitely generated R-module, for any finitely
generated permutation RG-module W (resp. M(H) is a finitely generated
R-module, for any H < G).



3.10. The dual of a Mackey functor. If M is a Mackey functor for GG
over R, then the dual Mackey functor M* is defined by

VH < G, M*(G)=Homgp(M(G),R) .
The transfer, restriction, and conjugation maps for M* are defined by
rﬁ = T(tg) ’ tg = T<T§) y Cg,H = 7—(Cafl,zH) )

forany H < K < GG and any x € GG, where the exponent 7 denotes transposed
maps.

If M is cohomological, then M* is also cohomological. Through the equiv-
alence given by Yoshida’s Theorem 3.5, this duality maps the functor F' of
Fung(G) to the functor F* defined as the composition

permy(G) —— permy(G)°? L R-Mod —> R-Mod” .

3.11. Remark : The correspondence M +— M* is a functor from M%(G)
to the opposite category. The canonical morphism from M to its bidual
(M*)* is functorial in M, and it is an isomorphism when R is a field k
and M is finitely generated. In other words, the correspondence M +— M*
induces an equivalence from the category of finitely generated cohomological
Mackey functors for G over k to the opposite category. Thus, for any finitely
generated cohomological Mackey functors M and N for G over k, there is a
natural isomorphism

HOIHME(G)(M, N) = HomMi(G)(N*, M*) .

The functor M is a finitely generated projective object in M (G) if and only
if M* is a finitely generated injective object in M¢(G), and the previous
isomorphism extends to natural isomorphisms

for any n € N.

3.12. Construction of functors. Let G and H be finite groups. If U is
a finite (H, G)-biset consider the R-linear functor

ty: V= RU QraV

from RG-mod to RH-mod maps permutation RG-modules to permutation
RH-modules. By composition, this induces a functor

LUIFI—>FOtU



from Fung(H) to Fung(G). Since the right adjoint to the functor ty is the
functor
hU W HOHIRH(RU, W) 5

it follows from standard results of category theory that the functor
RU cF— Fo hU

from Fung(G) to Fung(H), is right adjoint to L.

3.13. Remark : The functors Ly and Ry are a generalization of functors
considered by Tambara (see [8] Section 4).

3.14. Proposition :

1. Let G and H be finite groups, and U be a finite (H, G)-biset. Then the
functors Ry and Ly are exact.

2. Let G and H be finite groups. If U and U’ are isomorphic finite (H, G)-
bisets, then there are isomorphisms of functors Ly = Ly and Ry = Ryy.

3. Let G, H, and K be finite groups. Let U be a finite (H, G)-biset, and V'
be a finite (K, H)-biset. Then there are isomorphisms of functors

RvoRy =Ryy,u , Lvoly = Lyx,u -

4. Let G be a finite group, and let Idg denote the identity biset for G, i.e.
the set G for its (G, G)-biset structure given by multiplication. Then
the functor Lia, and Ry, are isomorphic to the identity functor.

5. Let G and H be finite groups. If U and U’ are finite (H,G)-bisets,
there are isomorphisms of functors

LUuUI g I_U @ I_Ul 5 RUuU( g RU @ RU/ .

6. Let G and H be finite groups, and U be a finite (H, G)-biset. Then for
any object F' of Fung(G), there is an isomorphism

Ruer(F)* & Ly (F7)

in Fung(H), which is functorial in F.

Proof : Assertion 1 is obvious, since the functors Ry and Ly are obtained by
pre-composition with some functor (in other words, they are both restriction
functors along a suitable functor).
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Assertion 2 is a consequence of the isomorphisms of functors ty = ty, and
hy = hyr, which both follow from the isomorphism RU = RU’ of (RH, RG)-
bimodules.

For Assertion 3, the associativity of tensor product gives an isomorphism
of functor

ty oty Etyu,u

which by adjunction, gives the isomorphism of functors

hy ohy = hyx,v -

The isomorphisms of Assertion 3 follow by composition.

Assertion 4 follows from the fact that the functors tig, and tiq, are both
isomorphic to the identity functor. Similarly, Assertion 5 follows from similar
additivity properties of the functors t;; and hy with respect to U.

For Assertion 6, let W be an object of permy(G). Then

Ruor (F)*(W) = Hompg(Ryer(F)(W”), R)

— Homp, (F (Hompe (RU, Homp(W, R)) ), R)
= Homp(F (Homp(RU @na W, R)), R)
= Lo(F)w)

and these isomorphisms are functorial with respect to W. O

3.15. Proposition : Let G and H be finite groups, and U be a finite
(H, G)-biset.

1. If V is an RH-module, then

I—U(FPV> = FPHOIHR,H(RU,V) :

In particular, the functor Ly maps projective objects to projective ob-
jects.

2. If G acts freely on U, then Ly = Ryor, where UP denotes the opposite
biset of U.

Proof : For Assertion 1, there is an isomorphism of functors
Hompe (—, Hompy (RU,V)) = Hompy (RU ®pe —, V) .

In other words FPV oty = FPHomRH(RU,V)'

11



The last part of Assertion 1 follows from the facts that if V is a per-
mutation RH-module, then Homgy (RU, V) = hy (V) is a permutation RG-
module. An alternative proof consists in observing that since L is left adjoint
to an exact functor, it maps projective objects to projective objects.

For Assertion 2, for any RG-module W there is an isomorphism of RH-
modules

RU ®@pg W — Hompgg(RUP, W) |

defined by sending u ® w, for u € U and w € W, to the map sending v € U
(recall that U = U as a set) to gw, if there exists an element g € G such
that v = ug~! (and in this case there is a unique such g, since G acts freely
on U), and to 0 otherwise. This isomorphism is obviously functorial in W,
and this completes the proof. 0

3.16. Proposition : Let G and H be finite groups, and U be a finite (H, G)-
biset. Then for any n € N, the adjunction of the pair (Ly,Ry) induces an
1somorphism of bifunctors

Extf o (Lo(=), =) = ExtE,, . on (= Ru(=)) -

Proof : This follows from the fact that Ly and Ry are both exact functors. O

3.17. Remark : In terms of Yoneda extensions, this isomorphism can be
viewed as follows : the adjunction of the pair (Ly, Ry) is equivalent to the
existence of natural transformation of functors

n:ld — Ryoly and e:LyoRy — Id |

called respectively the unit and counit of the adjunction, with the property
that for each object M in Fung(G) and each object N in Fung(H),

ELy(N) © Lu(nn) = Idy, vy and Ru(enm) o MRy (M) = Idry (ary -

The bijection HomFunR(G)(LU(N),M) — Hompyn,(m) (N, RU(M)) is given
by a +— Ry(a) o ny. The inverse bijection is given by [+ &), o L(/).

In other words, these bijections consist in taking images by one of the
functors, and then compose on the suitable side with unit or counit.

Now interpreting the extension group Extg,, (Ly(N), M) a the set of
equivalence classes of exact sequences in Fung(G) of the form

0 M Xno1 X1 Xo Ly(N) —0

12



the procedure is the same : first apply the functor Ry (—), to get an exact
sequence

0— RU(M) — RU(anl) > > RU(X1> - RU<X0) — RU o LU(N> —0 s

and then compose with the map ny, i.e. complete the cartesian square at
the right of the following diagram

OQRU(M)%RU ‘>‘>RUX1 ‘>RU<X)‘>RUOLU(N>‘>O
| i
0—Ry(M)—=Ry(X,—1) = —Ry(Xy) Yo N 0 .

The inverse bijection is obtained similarly by first applying the functor Ly,
and composing with the map €,;, i.e. completing a cocartesian square at the
left of the resulting diagram.

3.18. Remark : It follows easily that the isomorphisms of functors

A+ Extf ey (Lo (=), =) — Extinn (= Ru(-)) -

of Proposition 3.16, are compatible with the Yoneda product, in the following
sense : if P is an object of Fung(H), and if M and N are objects of Fung(G),
ife e ExtTFLunR(G)(LU(P), N) and f € Extf, ) (N, M), then

Amin(foe) =Ry(f)oay(e) € Extgfr:"(H) (P,Ry(M)) .

3.19. Example (induction and restriction) : Let G be a subgroup of H.
Set U = H, viewed as an (H, G)-biset by left and right multiplication. Then
the functor V +— RU ®pg V from RG-mod to RH-mod is isomorphic to the
induction functor V + IndZ V. Tt follows that the functor Ly is isomorphic
to the restriction functor Resd : M%(H) — M%(G) in this case.

In the same situation, the functor W +— Hompgy (RU, W) from RH-mod
to RG-mod is isomorphic to the restriction functor Ress. It follows that the
functor Ry is isomorphic to the induction functor Indg : M%(G) — M%(H).

3.20. Example (restriction and induction) : Suppose now that H is
a subgroup of G, and consider U = G as an (H, G)-biset by left and right
multiplication. Then the functor V — RU ®pgg V' from RG-mod to RH-mod
is isomorphic to the restriction functor V' + ResGV. It follows that the
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functor Ly is isomorphic to the induction functor Ind$ : M%(H) — M%(G)
in this case.

In the same situation, the functor W +— Hompgy (RU, W) from RH-mod
to RG-mod is isomorphic to the induction functor Resa. It follows that the
functor Ry is isomorphic to the induction functor Indg : M%(G) — M%(H).

This yields another proof of the well known fact that the induction and
restriction functors between categories of cohomological Mackey functors are
left and right adjoint to each other (cf. [9] for details).

3.21. Example (the functor pg/N) : Let H be a finite group, and N be
a normal subgroup of H, and set G = H/N. Also set U = @, viewed as an
(H, G)-biset in the obvious way. In this case, the functor ty is the inflation
functor from RG-mod to RH-mod. Using the equivalences of categories of
Theorem 3.5, the functor Ly; gives a functor denoted by pft N from M%(H)
to M%(H/N). One checks easily that if M is a cohomological Mackey functor
for H over R, then, denoting by x — Z the projection map H — H/N

(Pt (M) (K) = M(K) .

Similarly, the transfer, restriction, and conjugation maps for the functor
ol /N(M ) are obtained by just “removing the bars”, i.e.

L _ 4L L _ L _
t;?—tK T =Tk » Czk = CoK -

The right adjoint to pf /N 18 the functor Ry, hereafter denoted by jg N

Moreover Assertion 3 of Proposition 3.15 shows that the functor p& e
also equal to the functor Ryo.». In particular, the left adjoint to pg N is the
functor Lyor, hereafter denoted by zg N

3.22. Example (the functor & /) ¢ The left adjoint to the functor oS N
will be denoted by zg N It is obtained as follows : if M is a cohomological
Mackey functor for G/N, and K is a subgroup of G, then

(15 (M) (K) = M(KN/N) .

If K < L < @G, then the transfer, restriction, and conjugation maps for the
functor +§ (M) are given by

LN/N LN/N
t%:|LﬂNKﬂN|tKN//N s TIL(:TKN//N s CJ:,K:CxN,KN/N .
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3.23. Example (the functor jg/N) : The right adjoint to the functor pg/N
will be denoted by ]g IN- It is obtained as follows : if M is a cohomological
Mackey functor for G/N, and K is a subgroup of GG, then

(46/x(M))(K) = M(KN/N) .

If K < L <G, then the transfer, restriction, and conjugation maps for the
functor 7 /N(M ) are given by

LN/N LN/N
t%(:tKN//N ; rf(:\LﬂN:KﬂN]rKN//N s Cx K = CzN,KN/N -

3.24. Remark : The functors zg N and jg N should not be confused with

the inflation functor Inf% /v ¢ recall (cf. [9]) that if IV is a normal subgroup
of a finite group G, and M is a Mackey functor for G/N over R, then the
functor Infg /nM is the Mackey functor for G over R defined by

i = { MUY 12 Y

The transfer, restriction, and conjugation maps are the obvious ones. In
general, this inflation procedure does not preserve cohomological Mackey
functors : indeed, if M is cohomological, and if K < H are subgroups of GG
such that H > N but K ? N, then the composition

tHpt . (Inf§ M) (H) — (Infg/NM)(H)

is equal to 0, so it is not equal in general to the multiplication by |H : K].

However, if N is a p-group, for some prime number p, then p divides
|[KN : K| = |N : KN N|, hence p divides |H : K|. If moreover R has
characteristic p, then |H : K| = 0 in R in this situation, and one checks
then that Infg/NM is cohomological. In this case, the inflation functor
M%(G/N) — M%(G) corresponds via Yoshida’s equivalence of categories
to the functor Fung(G/N) — Fung(G) obtained by composition with the
Brauer quotient functor V +— V[N] from permy(G) to permz(G/N).

3.25. Example : group isomorphism : Let f : G — H be a group
isomorphism. Then the set U = H has a natural structure of (H, G)-biset,
for which h € H acts by left multiplication by h, and g € G acts by right
multiplication by f(g). It is clear in this case that the functor Ry is the
transport by isomorphism via f. This functor will be denoted by Iso(f). The
functor Ly is isomorphic to Iso(f~!), by Assertion 3 of Proposition 3.15.
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Recall that a section (B, A) of G is a pair of subgroups of G such that
A<B.

3.26. Lemma : Let G be a finite group, and (B, A) be a section of G.
Then there is an isomorphism

Indg Zg/A = I—A\G

of functors from M%G(B/A) to M%(G), where A\G is endowed with its natural
(B/A, G)-biset structure. Similarly, there is an isomorphism

piaRess = Laja

of functors from M%(G) to M%(B/A), where G/A is endowed with its natural
(G, B/A)-biset structure.

Proof : The functor Indg zg/A is equal to the composition of Indg = Ly,
where V' is the set G for its natural (B, G)-biset structure, and zg/A = Ly,
where U is the set B/A, for its natural (B/A, B)-biset structure. It follows
from Proposition 3.14 that Indgzg/A = Ly, where W = (B/A) x 5G is clearly
isomorphic to the (B/A, G)-biset A\G.

By adjunction, it follows that pg/AResg = Raq- But Ryvg = Lgya by
Assertion 3 of Proposition 3.15, since B/A acts freely on G/A. 0

3.27. Proposition : Let G be a finite group, and (B, A), (D,C) be two
sections of G. Then there is an isomorphism

D q G B ~ D Dy By B
ppsc Resp Indp g 4 = ge[DG\BG/B] Indj, e Iso(f,) PB /A, Resg

of functors from M(B/A) to M5.(D/C), where

D=D/C, D,=(Dn*B)C/C, C,=(DNA)C/C |

B=BJA, B,=(D'NB)AJA, A,=(CYNB)AJA

and where fg : EQ/ZQ — Dg/ég s the group isomorphism sending ng to
I2Cy, forx € DINB.

Proof : (see Proposition7.1 of [5] for details) By Lemma 3.26 and Proposi-
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tion 3.14, there are isomorphisms of functors

pB/CResgIndgzg/A = Lgicolac

Lavexea/c = Lag/e -

I

Now the (B/A, D/C)-biset A\G/C splits as a disjoint union of transitive
ones
AG/c= || ABg'D/C .
g€[D\G/B]
Moreover for each g € [D\G/B], with the above notation, there is an iso-
morphism of (B, D)-bisets

A\Bg_lD/O = (E/Eg) ng/gg ISO(fg) Xﬁg/ég (59\5) .

By Lemma 3.26 and Proposition 3.14 again, there is an isomorphism of func-

tors

~ D D, B B
Lasg—1p/B = Indgg © Zﬁj/ég oIso(fy) o pgz/gg © Resgg )

as was to be shown. O
4. Reduction to p-groups

4.1. Lemma : Let k be a field, let G and H be finite groups, and U be a
finite (H, G)-biset.

1. If F is an object of Funy(H), then

where Cy = Y |H\U/K]|.
K<@
2. If F is an object of Funi(H), and if F' has polynomial growth, then so
does Ly (F).

Proof : Let F' be an object of Fung(H). The copu(G)-module corresponding
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to Ly (F') is equal to @G Ly(F)(k(G/K)), by Remark 3.9. Thus
K<
dimg Ly(F) = ) dimy, F (kU @4 k(G/K))

= Zdlmk k(U/K))

K<G

— Z Z dimy, F’ (k?(H/HuK))a

K<G ue[H\U/K]

where H,x = {h € H | 3g € K, hu = ug}. Now for each K < G and each
u € [H\U/K]

dimy F(k(H/H,x)) < dim, F = > dimy F(k(H/L))

L<H

dimy, Ly (F) < (Z 3 1) dimy F |

K<G ue[H\U/K]

thus

showing Assertion 1.
Now if

--Pp— P, 44— —F —F—0

is a projective resolution with polynomial growth, there are constants ¢, d,
and e, such that dimy P, < en? + e, for all n € N. Now the complex

- Ly(P,) — Ly(Pyoy) — -+ — Ly(Py) — Ly(F) — 0

is a projective resolution Ly (F'), since Ly is exact and maps projective objects
to projective objects. Moreover

dimy Ly (P,) < Cy dimy, P, < Cyen + Cpe

so Ly (F') has polynomial growth. 0

4.2. Proposition : Let G be a finite group, and (B, A) be a section of G.
Let k be a field, and N be a cohomological Mackey functor for B/A over k.
Then the following conditions are equivalent :

1. The functor N has polynomial growth.
2. The functor Ind$, ZB/A(N) has polynomial growth.
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Proof : The functor Ind$ zg/A is isomorphic to Ly, where W is the (B/A, G)
biset A\G, by Lemma 3.26, so Condition 1 implies Condition 2, by Lemma 4.1.

Conversely, if Ly (N) has polynomial growth, then so does LyyoroLy (N) =
Liwxewor(N), by Lemma 4.1. But W xg W = A\G/A, as a (B/A, B/A)-
biset. In particular, it is the disjoint union of the identity biset Idg,4 = B/A
and some other (B/A, B/A)-biset. By Assertions 4 and 5 of Proposition 3.14,
it follows that the identity functor is a direct summand of Ly wer. In par-
ticular IV is isomorphic to a direct summand of Ly wer(N), and N has
polynomial growth, by Remark 2.4. Thus Condition 2 implies Condition 1. O

4.3. Lemma : Let G be a finite group and M be a cohomological Mackey
functor for G over R. Then for any subgroup H of G the composition

M — Ind§Res$ M — M

of the wunit and counit morphisms of the adjoint pairs of functors
(Res%,Ind$) and (Ind%, Res$) is equal to the multiplication by |G : H|.

Proof : This is because the same is true for the categories of RG-modules and
RH-modules, and the induction and restriction functors between them. 0O

4.4. Proposition : Let k be a field of positive characteristic p. Let G be a
finite group, and S be a subgroup of G, containing a Sylow p-subgroup of G.
Then for any cohomological Mackey functor M for G over k, the following
conditions are equivalent :

1. The functor M has polynomial growth.

2. The functor Reng has polynomial growth.

Proof : Condition 1 implies Condition 2, by Lemma 4.1. Conversely, if
Reng has polynomial growth, so does Inngeng , by Lemma 4.1 again.
Now Lemma 4.3 shows that M is a direct summand of Ind§Res$ M, since
|G : S| is non zero in k. Hence M has polynomial growth, by Remark 2.4. 0

4.5. Definition : Let k be a field. A finite group G is called a poco group
over k if every finitely generated cohomological Mackey functor for G over k
has polynomial growth.

4.6. Corollary : Let k be a field of characteristic p. Let G be a finite group,

19



and S be a Sylow p-subgroup of G. Then G is a poco group over k if and
only if S is a poco group over k.

Proof : Indeed, if GG is a poco group, and N is a cohomological Mackey func-
tor for S over k, then IndgN has polynomial growth, and N has polynomial
growth, by Proposition 4.2, applied to the section (S,1) of G. So S is a poco
group.

Conversely, if S is a poco group, and M is a cohomological Mackey functor
for G over k, the Res§M has polynomial growth, so M has polynomial
growth, by Proposition 4.4. 0

4.7. Proposition : Let k be a field, and G be a finite group. The following
conditions are equivalent :

1. The group G is a poco group over k.

2. For any finitely generated kG-module V', the functor F Py has a poly-
nomaial growth.

Proof : Obviously Condition 1 implies Condition 2. Conversely, observe that
since any morphism from F P, to F'Py, where L and N are kG-modules, is
determined by a morphism of kG-modules from L to N, for any cohomological
Mackey functor M for G over k, there is a short exact sequence

0— FPy — FP, — FPy — M — 0 ,

where L and N are permutation kG-modules, and V' is the kernel of a mor-
phism of kG-modules from L to N. Now if F'P, has polynomial growth, so
does M. O

5. Proof of Theorem 1.1

Corollary 4.6 shows that G is a poco group if and only if S is a poco group,
where S is a Sylow p-subgroup of G. Now by Proposition 4.2, if (B, A) is a
section of S, the factor group B/A is also a poco group.

It will be shown in Sections 9 and 10 that an elementary abelian p-group
is a poco group if and only if it has rank at most 1, when p > 2, or at most 2,
when p = 2. It will follow that if G is a poco group, then S has sectional
rank at most 1 if p > 2, which implies that S is cyclic, or at most 2 if p = 2.
In other words, Condition 1 of Theorem 1.1 implies Condition 2.

Conversely, it will be shown in Section 9 that cyclic p-groups are poco
groups. So Condition 2 of Theorem 1.1 implies Condition 1, when p > 2. The
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corresponding assertion for p = 2 will be stated in Section 11, completing
the proof of Theorem 1.1.

6. Simple cohomological functors for p-groups

Recall (see [9] for details) that if G is a p-group, the simple cohomologi-
cal Mackey functors for G over k, up to isomorphism, are in one to one
correspondence with the subgroups of GG, up to conjugation. The simple
functor Sg (also denoted by Sg if G is clear from context) corresponding to
the subgroup @ is defined by

koif T=¢Q

Gy
VI <G, SG(T) = { {0} otherwise.

The projective cover of the functor Sg is the fixed point functor FPq/q.
Moreover Endye () (S§) = k, and S§ is self dual (i.e. (S§)* = S§).

6.1. Lemma : Let k be a field of characteristic p, and G be a p-group.
There is a short exact sequence in ME(G)

0 — FPy, — FPyg — S — 0,

where Q¢ is the kernel of the augmentation map € : kG — k.
Proof : Consider the exact sequence of kG-modules
0— Qg — kG —k—0 .

Since fixed point functors are left exact, the inclusion (¢ C kG yields an
inclusion F'Po, C FPq. Let S denote the quotient functor. In particular
S(1) 2 k. And if Q is a non-trivial subgroup of G, then (kG)? = Tl (kG) C
Qg. Thus (26)? = (kG)?, and S(Q) = {0}. Hence S = S§. 0

6.2. Theorem : [Samy Modeliar [7]] Let k be a field of characteristic p,
and G be a finite p-group. Then

Extly; () (ST, 55) = Homs (G/ (2(G)I(G)), k)

where kT is the additive group of k, where ®(Q) is the Frattini subgroup of G,
and I(G) is the subgroup of G generated by elements of order 2 (so I(G) =1
ifp>2).
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Proof : By Lemma 6.1, there is an exact sequence
0—k—k— HomMz(G)(FPQG, Sf) — Ext,l\,lz(G)(SlG, SlG) — 0,

hence Extye ) (ST, ST) = Homwmg 6 (F Pag, ST)-

Now a morphism ¢ : F Py, — S{ is entirely determined by its evaluation
at the trivial group, which is a morphism of kG-modules from Qg to k.
Conversely, a morphism of kG-modules f : Q¢ — k is the evaluation at 1
of a morphism of Mackey functors from F Pq,, to S if and only if it maps
()9 = r¢F P, (Q) to r$S2(Q) = {0}, for any non-trivial subgroup Q
of G, or equivalently, for any subgroup @ of order p of G.

In other words f is a G-invariant linear form on the space

O/ Y TPkG |
Q<G
|Ql=p

i.e. a linear form on € such that

(6.3) f(hlg—1) = (g—1)) =0, Vg,heq ,
and
(6.4) fA+z+--+aP =0, Vz G, |z|=p .

Now ()¢ is generated as a k-vector space by the elements d, = g — 1, for
g € G, and the only relations between these generators are d; = 0. Hence a
linear form f on Qg is determined by the values u(g) = f(g — 1), subject to
u(l) = 0. Since dpy = (hd, — dy) + dy + d,, for any g, h € G, Equation 6.3 is
equivalent to

u(gh) = u(g) +u(h), Vg,h € G .

In other words u is a group homomorphism from G to k% (note that this
implies u(1) = 0, as required). Equivalently u factors through a group ho-
momorphism G/®(G) — k™.

Now if x is an element of order p of G

l+z+-4a" ' =di+dy+dpe+ - +dpr
so Equation 2 is equivalent to

u(1) +u(z) +u(z®) +---+u@ ) =0, Vo €qG, |z|=p .
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If u is a group homomorphism from G to k™, this is equivalent to

p

(O+1+42+--+(p—1)u(z) = (2

)u(az)zO, Vee G, |z|=p .

Now if p is odd, the integer (12’) is a multiple of p, so this condition is satisfied

whenever u is a group homomorphism to &*. And if p = 2, this condition is
equivalent to
ulx) =0, Ve e G, |z|=2 .

This shows finally that Homwe ) (F Pag, S§) is isomorphic to the group of
homomorphisms from G/(®(G)I(G)) to kT, and this completes the proof. 0

6.5. Lemma : Let G be a finite p-group, and Q) be a subgroup of G. Set
B = Ng(Q), and denote by A = ®(Q) the Frattini subgroup of Q). Then

~ B/AN ~ B/A
S6 = Indj Zg/A(SQ//A) = LA\G(SQ//A) 5

where A\G s viewed as a (B/A,G)-biset.

Proof : The second isomorphism follows from Lemma 3.26. As for the
first one, recall (see [9]) that S§ = Ind%S5, so it suffices to show that

SS = zg/A(Sgﬁ), when Q <G. In this case, if H < G

184 (SG(H) = SgrA(HA/A)

Q/A T re/A
This is equal to k if HA = @), and to zero otherwise. But HA = @ if and
only if H = (), and this completes the proof. O

6.6. Corollary : With the same notation,
~ B/A\ ~ B/A
S§ = d§ 5 ,4(Sg/4) = Reya(Sera) -

Proof : This follows from Lemma 6.5, using Proposition 3.14, and the fact
that Sg is self dual. O

6.7. Lemma : Let G be a p-group, let Q be a subgroup of G, and (B, A)
be a section of G. Then

~ o GBJA
piaRes5(SG) = 39,5 ’//A ,
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where Q' runs through the set of G-conjugates of QQ which contain A and are
contained in B, modulo B-conjugation.

Proof : Let H/A be a subgroup of B/A. Then
(PB/aRes5(5G)) (H/A) = (Res§(SG)) (H) = Sg(H)

and this is equal to k if H is conjugate to @ in G, and to {0} otherwise. 0O
7. Some cohomological functors for p-groups
7.1. Notation : Let G be a finite group. A subset S of the set of subgroups

of G will be called convex if

VE<K<L<G, HLeS = KeS .

The set S will be called G-stable if it is invariant by G-conjugation.

The following is an extension of Assertion (ii) of Corollary 15.3 of [9] :

7.2. Proposition : Let k be a field of characteristic p, and G be a finite
group. The correspondence

M +~ Supp,(M) = {H <G | H is a p-group and M(H) # {0} }

induces a one to one correspondence between the set of isomorphism classes
of subquotients of the functor F'Py and the set of G-stable convex subsets of
the set of p-subgroups of G. The inverse bijection maps the G-stable convex
subset S of p-subgroups of G' to the class of the functor ks defined by

kEifH,eS

VH <G, ks(H) = { {0} otherwise ,

where H, denotes a Sylow p-subgroup of H.

When H < K < G, the restriction map i is equal to 0, except if H, € S
and K, € S, in which case r¥ = 1. The transfer map t% is multiplication by
|K : H| for all H < K < G. The conjugation map ¢, g is always the identity

map ks(H) — ks("H).

Proof : By Corollary 15.3 of [9], the correspondences
F+— Supp,(F) = {Q | Q is a p-subgroup of G and F(Q) # {0}}
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and
7T — kT = <FPk(Q)>Q€7

are mutual inverse bijections between the set of subfunctors of F'P, and the
set of G-stable subsets of the set s,(G) of p-subgroups of G, which are closed
under taking subgroups.
By Proposition 2.4 of [9], the value of kr at some subgroup H of G is
equal to
kr= Y |H:Qlk .

QeT
Q<H

This is equal to k if H, € 7, and to zero otherwise. The restriction maps
between non zero values of k7 are equal to the identity map of k. The transfer
map t¥ is multiplication by |K : H|, and the conjugation maps are identity
maps (possibly zero).

It follows that any subquotient M of F'Py is equal to kz/kz, where T
and 7" are G-stable subsets of s,(G), which are closed under taking sub-
groups, and such that 7/ C 7. With the notation of Proposition 7.2, this
means that M = kg, where S =7 — 7" is a G-stable convex subset of s,(G),
equal to Supp,(M).

Conversely, let S be a G-stable convex subset of s,(G). Set

T={Qes(G)|35€8, Q< 5)
T =T-{Qes,(G)|3ISeS, S<Q} .
Then 7 and 7" are G-stable, and closed under taking subgroups. Moreover
T-T ={Q¢€s,(G)]35,5 €S, <Q<S}.

Thus 7 — 7' = S, and ks = kr/k7 is a subquotient of FP.

These correspondences M + Supp,(M) and S — ks are clearly mutual
inverse bijections between the set of isomorphism classes of subquotients
of FP, and the set of G-stable convex subsets of s,(G). 0

7.3. Corollary : Let G be a finite p-group, and QQ < R be subgroups of .
Then, there exists a unique object g p of Mi(G) such that

Eoif Q<¢H<gR

G _
VH < G, EQ,R(H) _{ {0} otherwise .
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and such that

) < _
VH < K <G, t =0, 7’1{1(:{ I fQ<gHand K <¢g R

0 otherwise .

Moreover the socle of Zgﬁ. 15 1somorphic to SS, and the head of Zgﬁ 8
isomorphic to S§.

Proof : Let S ={S < G| Q <¢ S <¢ R}. Then S is a G-stable convex
set of subgroups of GG, and the corresponding functor kg fulfills the required
conditions, so the functor Eg, r exists. The uniqueness follows from the fact
that the values of Eg’ g are given, as well as the transfer and restriction
maps. The non zero conjugation maps ¢, are determined by elements of
HY(G, Indgk’x) =~ Homgz(Q, k), which is equal to zero since G is a p-group.
So the conjugation maps are all identity maps (possibly zero).

Now a morphism ¢ from X§ ; to some functor N is entirely determined
by its evaluation pp : X§ z(R) = k — N(R) : indeed, if S < G and
%G r(S) # {0}, then S9 < R for some g € G, and then the map ¢ = Cqu50T S,

is an isomorphism from X .(R) to G (5), such that ¢q = Cq.50T S PRY .
Hence the only simple quotient of Eg’ r is S, with multiplicity one.

By a similar argument, a morphism from N to Eg’ g is determined by its
value at @), so the only simple subfunctor of 287 R s SS , with multiplicity

one. .
7.4. Notation : Let G be a finite p-group. If () < R are subgroups of G
SG
such that |R : Q| = p, the functor ES,R will be denoted by (Sg)' The dual
. S§ ¢
functor (Eg’R) will be denoted by (Sg) With this notation, there are non
R
split exact sequences in MS.(G)
7 Dor:0— S5 S SH—0
(,5) Qr:0—55 — Sg — Sp — .
SG
(7.6) Dyp:0— S§— (sg) — S5 —0 .
R
In particular, if X is a subgroup of order p of G, set Dx = Dy x and
Dy = Dj x, and denote by 7§ (or vx if G is clear from the context) the

26



element of Ext; 2(G)(Sf, S$) represented by the exact sequence
G S5 St ¢
vt () () o

obtained by splicing the sequences Dx and D%.

8. Extensions of simple functors for p-groups

8.1. Lemma : Let G be a p-group, and Z be a central subgroup of order p
of G. Then there are isomorphisms

¢ (qGizy o (5% ¢ (qG/Zy ~ (ST
ZG/Z(‘SI ) = G| JG/Z(Sl ) = G
1 Z
in M$(G). In particular, there are non-split exact sequences in Ms.(G)
G (SG/Z

Dy O—>Sf—>zG/Z ) — 85 —0 .

Dy: 00— S§ — 3% ,(577) — ¢ —0 .

Proof : Let H be a subgroup of G. Then zg/Z(SlG/Z)(H) =SS (HZ/Z) is
equal to kif HZ = Z,i.e. it H < Z, and to zero otherwise. The conjugation
maps are all identity maps (possibly zero), the restriction map 77 is the

SG
identity map of k, and the transfer map ¢ is zero. Thus zg/Z(Sf/Z) o (Sg) :
1
The other isomorphism follows by duality, and the two exact sequences are
special cases of Sequences 7.5 and 7.6. O

8.2. Corollary : For any n € N, composition by Dy induces a group

1somorphism

EXt&%%@)(Sfa ST) = EXtTI\L/Iz(G)(Sg7 S7)

Proof : Indeed, for n € N,
S%

Ethz(G) ( (SIG) ) SIG) = Ethg(G/Z) (Sla/z» Pg/z(sg)) = {0}
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by Proposition 3.16 and Lemma 6.7. O

8.3. Corollary : Let k be a field of characteristic p, and G be a p-group.
If X is a subgroup of order p of G, then

Extye ) (5%, S7) 2 k = Extye ) (57, 5%) -

Proof : Indeed Ng(X) is equal to the centralizer C' of X, since |X| = p, and
S$¢ = IndSS$. Thus for any n € N

= EXt;\Z/Ii(C)(S)Cga S7)
= Ext&%%c)(Sf ,S9)

by Corollary 8.2, since X is a central subgroup of order p of C'. Corollary 8.3
follows, taking n = 1.

The isomorphism £ = Ext,l\,,z(g)(Sf ,S$) follows from Remark 3.11, since
the simple functors are self dual. O

8.4. Notation : If N is a normal subgroup of a group G, contained in the
subgroup H of G, denote by Ky(N) the set of complements of N in H, i.e.
the set of subgroups X of G such that NX = H and NN X =1.

Denote by [Ng(H)\Ky(N)] a set of representatives of Ng(H )-conjugacy
classes of subgroups in Kg(N).

The following proposition is a generalization of Lemma 8.1 :

8.5. Proposition : Let G be a p-group, let Q) be a subgroup of G, and Z be
a central subgroup of order p of G contained in (). Then there are non-split
exact sequences in M.(G)

0— &) G .8, (8917 — S8 —o0,
xetaiohro X 67 5asz) N
G/z
0— S§ —>]g/Z(SQ?Z) — ® S¢—0 .

Xe[Na(Q\Kq(2)]

Proof : Since the simple functors are self dual, the second sequence is ob-
tained from the first by applying duality, by definition of the functor ]g /7
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and Assertion 6 of Proposition 3.14. So it suffices to prove the existence of
the first one.

Denote by I the functor zg/Z(SgZ), and by R its radical. If H is a

subgroup of G, then I(H) = Sg//g(HZ/Z) is equal to k if HZ =¢ @, and
to zero otherwise. Moreover HZ = () if and only if H = Q, or H € Ko(2),
since Z has order p. Equation 3.8 shows that the composition factors of
are the functors S§ and the functors S¢, for X € [Ng(Q)\Kq(Z)], each with
multiplicity 1.

Moreover, if Y is any subgroup of G, consider

~ G/Z
Hy = HomMz(G) ([, S$) = HOHIM;(G/Z) (SQ//27 Pg/z(sig)) :

Now pg/Z(Sg) ={0}if Z LY, and pg/z(Sg) = Sg//ZZ, by Lemma 6.7. Thus
Hy = {0} unless Y =¢ @, and Hy = k in this case.

This means that I/R is simple, isomorphic to Sg . Moreover, if H is a
subgroup of G, then R(H) = {0} except if HZ =¢ Q and HNZ =1, i.e.
if H is conjugate to some element of Ko(Z) in G, and R(H) = k in this case.
Hence R is isomorphic to the direct sum of the simple functors S%, where H
runs in a set of representatives of G-conjugacy classes of such subgroups, i.e.

equivalently H € [Ng(Q)\Kq(Z)]. u|

8.6. Theorem : Let k be a field of characteristic p > 0, let G be a
finite p-group. Let QQ and R be subgroups of G, and let Z be a subgroup
of order p of QN RN Z(G). Set G = G/Z, Q = Q/Z, R = R/Z, and
K = Na(Q)\Ko(2)].

Then, for any n € N, there are short exact sequences of vector spaces

0— @ Ext&_z%G)(Sg, S — Extf,,z(G)(Sg, SE) ™ Ext?

L= (S€. 89 =0
Xek Mk(G)( B =

Q
where the map m, is induced by Pg/z-

Proof : Applying Homwme c)(—, S%) to the first exact sequence of Proposi-
tion 8.5 gives a long exact sequence

n—1 G QG n G QG\_™ n G oG

( n G oG ntl (oG gGy Tl
2 Extie () (9% Sk )—Extie ) (56, S5 )——

where the image of an extension u € Exty 2(G)(S’S ,S§) under the map m,, is
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obtained by first taking the image under the map

G/Z G/Z
(2 Zg/Z(SQ;Z) - SS € EXtRAg(G) (Zg/Z(SQ;Z)a 58) )

and then using the adjunction isomorphisms

n G G/Z G\ ~~ n G G G\\ ~ n G oG
EXtM;(G) (ZG/Z(SQ/Z>>SR) = EXtM;@ (S@Pc/z(SR)) = EXtMg@(S@Sﬁ) -
In other words, with the notation of Remark 3.18

(1) = an(u o ) = pGz (1) © ao(w) = pGyz(u)

since the map () : Sgg — pg/Z(Sg) = Sgg obtained from ¢ by adjunc-

tion is the identity map. This shows that m, is induced by pg 7
Now the inflation functor Infg/z : Fung(G/Z) — Fung(G) is an exact
functor such that pg 17 © Infg /z 1s isomorphic to the identity functor. Since

S% = Infg,,(Sg)7) and SE = Inf§ ,(S5/7), this inflation functor induces a
map

. G oG G oG
such that m, o 0, = Id. In particular 7, is surjective, so the long exact
sequence above splits as a series of short exact sequences. O

8.7. Proposition : Let k be a field of characteristic p > 0, let G be a
finite p-group, and H be a subgroup of index p in G. Set I = Inng{{, and
let R and S denote respectively the radical and the socle of I as an object of
M¢(G). Then I > R2 S D {0}. Moreover /R~ S =S¢ and

R/S¥Le @& S5,
XelG\Ke(H)]

where L is a functor all of whose composition factors are isomorphic to S¢,
with multiplicity p — 2.

Proof : Let ) be a subgroup of G. Then by Proposition 3.16
HOIHME(G)([, Sg) = HOIHME(H)(S{I, ResgSg) .

Moreover, by Lemma 6.7, the functor ResgSg is isomorphic to the direct
sum of functors Sg,, where @’ runs through a set of H-conjugacy classes of
G-conjugates of () which are contained in H.

Thus Home (1, S§) = {0} if Q # 1, and Homwe (g (1, SY) = k. This
shows that I/R = S§.
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A similar argument shows that HomMz(G)(Sg, I) is equal to {0} if @ # 1,
and isomorphic to k if Q = 1. Thus S = S¢.

Let X be a subgroup of G. Then

I(X)2 @ S{HHN*X) .
zeG/HX

This is isomorphic to kP if X = 1, to k if X is non trivial and HN X =1
(which implies that HX = G), and to {0} otherwise. In particular I # S
(since I(1) = kP # k= S(1)),s0 S C R.

Moreover, the short exact sequence

0—R—1I—-S8—0

shows that Ext"z(G)(S)(g,R) =~ Ext&_zzg)(Sgg‘,SlG)) for any n € N, since
Ext’,\‘,,z(c)(S)G(,I) =~ Ext”z(H)(ResgS)Cé,SfI), and since Res%S§¢ = {0}. In
particular Ext,l\ﬂi(G)(Sg, R) = Homye () (5%, SF) = {0}.

Now the short exact sequence

0—S8¢ —R—-R/S—0
yields a long exact sequence of ExtMi(G)(S)Cg, —) groups starting with
0 — 0 — 0 — Hom(Sx, R/S) — Ext'(Sx, S1) — Ext'(Sx, R) = {0} .

It follows that Hom(Sx, R/S) = k, by Corollary 8.3. Moreover [ is self dual,
since S¥ is self dual and Ind$ commutes with duality, by Proposition 3.14.
Thus

Hom(R/S,Sx) = Hom(Sx,R/S) =k ,

by Remark 3.11, since Sx is also self dual.

In particular, there exists an injection i : Sy — R/S and a surjection
s:R/S — Sx. If soi =0, then (R/S)(X) has dimension at least equal
to 2. But (R/S)(X) =2 I(X) = k, so soi # 0. Hence s o1 is invertible, and
Sx is a direct summand of R/S.

It follows that D 5S¢ is also a direct summand of R/S, for it is a
Xe[G\Kg(H)]

direct sum of non isomorphic simple summands of R/S. Hence there exists
a subfunctor L of R/S such that

R/S= L@ © S§.
X€e[G\Kg(H)]
Now if @ is a subgroup of G, then (R/S)(Q) is equal to {0}, unless ) =1
or @ is a complement of H in G, in which case (R/S)(Q) = k. It follows
that L(Q) is equal to {0}, except if @ = 1 (and L(1) has dimension p — 2
over k). This completes the proof. O
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9. The case of cyclic p-groups

9.1. It has been shown by M. Samy Modeliar ([7]) that cyclic p-groups
are poco groups over a field k£ of characteristic p. This result relies on the
construction of periodic projective resolutions for the fixed points functors,
which can be seen has follows : if GG is cyclic of order p™, then the group
algebra kG is isomorphic to a truncated polynomial algebra A = k[X]/(X*"),
via the map sending X € A to g —1 € kG, where g is some chosen generator
of G.

The indecomposable A-modules are the modules E; = k[X]/(X%), for
1 <d < p™, so Ey, where the chosen generator g of G' acts by multiplication
by 1+ X, is the unique indecomposable kG-module of dimension d, up to
isomorphism. The indecomposable permutation kG-modules have dimension
equal to a power of p, so they are the modules E,;, for 0 < 57 < m.

This means that the functors FPEN. are the projective indecomposable
objects, in M¢(G), and they are their own projective resolution.

Now if 1 < d < p™ and d is not a power of p, there exists a unique
integer h in {0,--- ,m — 1} such that p" < d < p"**. Let

€q: Eph @D Eph+1 — Fy
denote the morphism of A-modules induced by the map
(Q,R) € k[X] x k[X] — X" Q+Re E, .

This map is well defined, and surjective, and it is a morphism of kG-modules.

The unique subgroup G; of G of index p', where 0 < | < m, is the
subgroup generated by gpl. If W is a kG-module, then the subspace W&
of W on which G| acts trivially is equal to

WG ={weW|Fw=wy={weW|(g—1)"w=0} .
So viewing W as an A-module, the space W& is equal to the kernel of xr
on W. In particular, for any j € {1,---,m}, the space (FE;)¢ is equal to
k[X]X"/(X7), where r = max(j — p,0). This shows that
ed((Eph o Eph+1)Gl) _ (k[X]deph+max(07ph,pl) i k[X]XmaX(O’th*pl))/(Xd) ]

If | < h, this is equal to k[X]X%? /(X%), and if [ > h, this is equal to
k[X]/(X?). In other words

ea((Ep ® Eppin)t) = k[ X)X ™= j(xd) = (B,)%
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It follows that the restriction of the map e, to the spaces of fixed points by
any subgroup of G is surjective : in the terminology of Samy Modeliar ([7]),
the map ey is supersurjective. Equivalently, it induces a surjection

FP,, :FPg, ®FPg,  — FPg,

in M¢(G).
Now the kernel of eq consists of the images in E,» @ Ejn+1 of the pairs
(Q, R) € k[X] x k[X] such that X4 ?"Q + R is a multiple of X%, i.e. of the

pairs (=T, X47"T), for T € k[X]. Hence the map
T € Eppyppir_g— (=T, Xd’phT) € Kerey

is well defined (note that p" < p"+ph*tl —d < p*1), and it is an isomorphism
of A-modules. This yields a short exact sequence

ed
0— Eph+ph+1_d — Eph b Eph+1 — Ed — 0

of kG-modules, leading to a short exact sequence

FP,
O—>FPEph+ph+1,d —>FPEph EBFPEph+1 —(>1 FPEd —>0

in M¢(G). This shows in particular that F'Pg, has a projective resolution in
M¢(G), which is periodic of period 2, of the form

FPa, FPy, FPa, FP.,
’ FPEphEBEph+1 FPEph@Eph+1 FPEphEBEth FPEd 0

where oy and (35 are the endomorphisms of En © E,ni1 given by

(@, R) = (=X"""Q - R X" Q4+ X' R)
/Bd(@’ R) _ (_Xdith . R’ Xph+17th + XphJﬁlidR) '

Hence all the functors F' Py, where V is an indecomposable kG-module, have
a periodic resolution. In particular G is a poco group, by Proposition 4.7.

9.2. If p™ > 3, this applies to the case d = p™ — 1 (which is not a power
of p), and h = m — 1, consequently. In this case Fy = Qg, and Ejn = kG,
Splicing the above resolution with the short exact sequence

0— FPg,. , — FPg, — S —0

of Lemma 6.1 gives a projective resolution of S{ of the form

FP@ FPa FPA/ G
: FPEpmfléBEpm FPEpmfl@Epm FPEpm S]_ 0 9
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where « and (3 are the above maps ag and (4, for d = p™ —1 (and h = m—1),
and 7 : Eym-1 ® Eyn — Eym is the map defined by

YQ,R)=X"""""Q+XR .

Now F' PEpmfl@ Em = F PEPW1 @ FPEpm. Moreover, by Equation 3.8,

Homg () (F P, ,,57) = ST (Gypm-1) = {0}

m—17

and
Hompye () (F P, S7) =2 S (Gpm) = ST(1) =k

More precisely, a morphism F'Pg,, — S¢ is determined by its evaluation
at the trivial subgroup, which is a scalar multiple of the augmentation mor-
phism e¢.

It follows easily that the groups Ext}?,,z(G)(Sf ,S§) are the cohomology
groups of the complex whose terms are all isomorphic to k, with zero differ-
entials. Thus Ext’,\‘,'z(g)(Sf, S¢Y =k, for n € N.

9.3. Proposition : Let k be a field of characteristic p, and G be a cyclic
p-group. Then :

ko if|Gl =3

Ve N - {0}, Extiy(S5, 57) = { {0} iflc| <2

Proof : The case |G| > 3 follows from the above discussion. The case
|G| < 2 follows essentially from the fact that in this case, any kG-module is
a permutation module : if G is trivial, there is nothing to prove. And if G
has order 2, then S§ has a projective resolution

0 — FP, — FPyg — SY — 0,

and moreover Hompe ) (F Pe, SY') = {0}, by Equation 3.8. 0
10. The case of elementary abelian p-groups

10.1. Proposition : Let k be a field of characteristic p, and G be an
elementary abelian p-group. Let H be a subgroup of index p in G, and
T € Kg(H). Then the functor I = Ind$.SH of M$(G) has a subfunctor J
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isomorphic to Lg/T(Sf/T). Moreover J s contained in the radical R of I,

and there is an isomorphism

R/J=Le & 5%,

XeKg(H)—{T}

where L is a functor all of whose composition factors are isomorphic to S¢,
with multiplicity p — 2.

Proof : Let S be the socle of I. By Proposition 8.7, there is a filtration
IDRDS>D{0},and I/R= S =S¥, Moreover

(10.2) R/IS2¥Le & S¢,
XeKg(H)

where L is a functor all of whose composition factors are isomorphic to S§,
with multiplicity p — 2.

By Lemma 8.2, the functor J = zg/T(Sf/T) has simple socle, equal to its
radical, and isomorphic to S, and simple top, isomorphic to S&. Moreover

HOIIIME(G)(J, [) = HomMz(H)(ReSg‘]a S{{) =k )

since Res%J =2 S| for the only non zero evaluation of this functor is at the
trivial group, where it is equal to k.

Hence there is a non zero morphism f : J — I. If f is not injective, then
its image is isomorphic to S%, since this is the only proper non zero quotient
of J. But S¥ is not isomorphic to a subfunctor of I, since the socle of I is
simple and isomorphic to S¢.

It follows that f is injective, and one can identify J with a subfunctor
of I, containing S, and J/S = S&. Moreover J is a proper subfunctor of I,
since S¢ is not a quotient of J. Hence J C R, and

R/J~Le & 5§,

XeKg(H)-{T}

by (10.2). O

10.3. Corollary : With the same notation, there is a long exact sequence
of extension groups

C—Lln-1)® & Egln—2)— Eg(n) Ex(n) )

Xex
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where Eg(n) = Extf,,z(g)(SlG, S¢Y), Eg(n) = Ext’,\ﬁlz(H)(Sf, SHY L(n) =
Extye @) (L, S, and X = Kg(H) — {T'}.
Proof : There is a short exact sequence

0—J—1—1/J]—0

. c : n ~ n G/T _

in Mi(G). Since Extye g (J, S¢) =~ Extye @/m) (Sl/ ,pg/T(Sf)) = {0} for
any n € N, by Proposition 3.16 and Lemma 6.7, and since ResgSf = SH it
follows that

Extie @) (I/7,S7) 2= Extiye (1, ST) = Extiye i) (ST, 1) = En(n) .
Now by Proposition 10.1, there is a short exact sequence
0—R/J—1/]— S —0,
and R/J = L & &) S$. Applying the functor Hompme (g (—, SY)

XeKq(H)—{T}
gives the long exact sequence of extension groups in Mg (G)

0 — Hom(S¢, S§) Hom(1/J,S¢) Hom(R/J, S§) >

<—> Ext'(S¢, S¢) —— Ext'(1/J, S¥)

.
. Ext"(S¢, 5¢)

C_) Eth+1(S:lG, SIG) - Extn-ﬁ-l([/J’ S]_G) - Eth+1(R/=], Sf) ce

Eth(R/J, Sf) >

)

Eth(R/J, SIG) >

Ext™(I/J, S¢)

Now

I

Ext™(R/J, SY) Ext"(L,SS) @ P Ext"(S%, S¢)

I

Ext"(L, SO ® @  Ext"(S¢,5¢)

XeKg(H)—{T}
= Ln)® & Eg(n—1) ,
ex
by Corollary 8.2. This completes the proof. O

36



10.4. The case p > 2.

10.5. Theorem : Let k be a field of odd characteristic p. Let G be an
elementary abelian p-group of rank 2. Then the simple functor S§ of M$(Q)
has exponential growth.

Proof : Let H be a subgroup of index p in GG, and consider the long exact
sequence of Corollary 10.3. The set K (H) consists of p subgroups of order p
in H, so X has cardinality p — 1. Moreover

Ep(n) = EXt:\L/Iz(H)(SZ{{’ S =2k,
by Proposition 9.3, since H is cyclic of order p > 3.

This yields a long exact sequence of the form
coi—k—=L(n)®Egn—1P"' = Eg(n+1)—k—Ln+1)®Eqn)? ' —- ..
In particular, by Lemma 2.5, this shows that

dimy, (L(n) ® Eg(n — 1)P7") < 14 dimy, Eg(n + 1) ,

thus dimg Eg(n+1) > (p— 1) dimy Eg(n — 1) — 1, for any n > 1. Hence, by
induction on n,

9

dimy, Eg(2n) — I% > (p— 1)"(dimy Eg(0) — 1 ) = (p—1)"(p—3)

p—2 p—2
. 1 . 1 (p—1)"(2p —5)
d Eo(2n+1)—— > (p—1)"(d Eq(1)— =
img Eg(2n+1) p_2_(p )" (dimy, Eg(1) p—2) - ,

since dimy Eg(1) = 2 by Lemma 6.2. Thus S{ has exponential growth if
p > 3.

Now if p = 3, the functor L is simple, and isomorphic to S{, by Proposi-
tion 10.1. It follows that in this case

dimk Eg(n) + (p - 1) dlmk E(;(n — 1) —1 < dlmk Eg<n + 1) .

In particular dimy F¢(2) > 2+2—1 = 3, since dimy, F¢(1) = 2 by Lemma 6.2.
Since dimy Eg(n + 1) > 2dimg Eg(n — 1) — 1, it follows that

dimy, Eg(2n) — 1 > 2" (dimy, Eg(2) — 1) > 2",
dimy Ec(2n +1) — 1 > 2"(dimy, Eg(1) — 1) > 2",

hence S§ has exponential growth in this case also. O
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10.6. The case p = 2.

10.7. Theorem : Let k be a field of characteristic 2, and G be an elemen-
tary abelian 2-group. Then

Vj €N, Extye (ST, S7) = {0} .

Proof : By induction on the rank m of G, starting with m =0, i.e. G =1,
where the result is trivial. Suppose m > 0, and that the result holds for all
elementary abelian 2-groups of rank smaller than m. Choose a subgroup H
of index p in G, and a complement T' € K (H), and consider the long exact
sequence of Corollary 10.3.

In this case by Proposition 10.1, since p —2 = 0, the functor L is equal to
zero. Thus L(n) = {0} for any n € N. Moreover Ext,{ﬂz(G)(Sf, S¢) = {0}, by
Theorem 6.2, since G is generated by involutions. This starts an induction
argument on j : suppose that Ext,gv’l”&g)(SlG,Sf) = {0}, for 0 < r < j. The
exact sequence of Corollary 10.3 becomes

(10.8) e —>X%( Eg(n —2)—= Ec(n) Eu(n) >

Y

[—> ® Eqn—1)—=Ec(n+1)—=Ex(n+1)---

XeXx

where Eg(n) = Extr,\L,lz(G)(SIG, S¢) and Eg(n) = Extfﬂi(H)(Sfl, SH) and
X = Ka(H) —{T}.
Set n =275 + 1 in this sequence. By induction hypothesis on m

Ey(n) = Ey(2j + 1) = Exty 4 (517, 51) = {0},

since H is elementary abelian of rank m — 1. Also
Ec(n —2) = Eg(2j — 1) = Extylc ¢, (7, 57) = {0} .

by induction hypothesis on j.
It follows that Eg(n) = Ext*™(S§¢, S¢) = {0}, and this completes the
inductive step on 7, hence the inductive step on m. a

10.9. Theorem : Let k be a field of characteristic 2. Let G be an
elementary abelian 2-group, and H be a subgroup of index 2 of G. Choose
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T e Kg(H), and set S = Kg(H) —{T}.
Then for any j € N, there is a short exact sequence of extension groups

. - rG -
0— @ Ext¥2(5¢ 8¢ L Ext¥(S¢, 8¢ & Ext¥ (S, sy — 0
XeS

where 7% is induced by restriction to H, and v is the direct sum of the maps

induced by the Yoneda product with the element vx of Ext*(S¢,S$), for
Xes.

Proof : This follows from the exact sequence 10.8, in which all the terms
E¢(2j — 1), Eg(2j 4+ 1), and Ey(2j + 1) are equal to zero. The exact se-
quence 10.8 splits as a series of short exact sequences

0— @ Ext¥2(s¢ %) 2 Ext¥ (5§, 5¢) 5 Ext¥ (S, 58y — 0 |
XeS

for each j € N. It remains to show that the morphisms v and r are as stated
in Theorem 10.9.
First, with the notation of Proposition 10.1, the morphism

t:Ext¥(R/J,S¢) — Ext¥(S¢, SY)
is the transition morphism associated to the short exact sequence
T: 0—R/J—1I/]— 5S¢ —0,

so it it given by Yoneda product with 7.

Via the isomorphism R/J = & S¢, the morphism ¢ can be viewed as
XeS

the direct sum of morphisms tx : Ext¥~'(S¢, S¢) — Ext* (S, S¢), where
tx is given by composition with the sequence Tx obtained from T' by the
projection 7x to the summand S¢, i.e. by completing the diagram

T : 00— S§ I/J S¢ 0
XeS
o
Tx: 0 S§ Y S¢ 0 .

Now f is surjective, since mx and Idge are. Since S¢ is not a quotient of /.7,
it follows that Y is a non-split extension of S¢ by S§. Thus Y =2 ]g/X(Sf/X),
by Lemma 8.3. More precisely T'x is isomorphic to the sequence D% of

Lemma 8.1.
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Moreover, by Corollary 8.2, the isomorphism
Ext¥~2(S¥, SY) = Ext¥ (5§, S¥)

is given by Yoneda composition with Dyx. Hence the component index by
X € S of the morphism

v @ BExt¥ (ST, S7) — Ext¥ (ST, 57)
XeS
is given by composition with I'xy = Dx oD%, i.e. by Yoneda product with vx,
as claimed. ' '

Now the morphism ¢ : Exti,lji(G)(SlG, S¢) — Extiﬂjz(H)(Sf, S is com-
posed of two steps : first, taking the image by the projection map ¢ : I — S¢,
i.e. taking the Yoneda product with ¢ € Extf\)ﬂc(G)(Inngf,Sf), and then
using the adjunction (Ind%, Res% ), which gives a map

Ext?

Mg(G)(L SY) = EXtiAjz(H)(S{{7ReSgS1G> = EXtiAjz(H)<S{{= St

In other words, with the notation of Remark 3.18, for u € ExtiAjC(G)(Sf, S
k

rf(u) = ag;(u o q) = Resg (u) o ag(q) = Res(u) |

since the map ag(q) : ST — Res$S¢ = SH obtained by adjunction is the

identity map. Hence r$ is induced by Resg, and this completes the proof. O

The following corollary is Theorem 1.2 of Section 1 :

10.10. Corollary : Let G be an elementary abelian 2-group of rank m.
Then the algebra Ext’,(,lz(G)(SlG, S is finitely generated by the elements vy,
where X is a subgroup of order 2 of G. Its Poincaré series

P(t) = Zdimk Ext{AZ(G)(Sf, S ¢
jEN
15 equal to

1
(1—)(1 =32 (1 =72 ... (1— (27 = 1)?)

P(t) =

Proof : By induction on m, the case m = 0 being trivial. In Theorem 10.9,
one can assume that the algebra Ext*(S},SJ7) is generated by the ele-
ments v, where X is a subgroup of order 2 of H. This means that for
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n € N, any element in Ext**(SH, SI) is a k-linear combination of products
of the form

7;(117)}({2 T IYAI);I" )
where X7,..., X, are subgroups of order 2 of H.
Denote by I' the k-linear subspace of Ext**(S{,S{) generated by the
similar products v¢ 7§, -+ 7%. -
Now for X < H, by Proposition 3.14, there are isomorphisms of functors

Res o Zg/x = lgola/x = Laxga/x)

where G is viewed as an (H,G)-biset and G/X as a (G, G/X)-biset. Now
G xe(G/X)=(H/X) xpg/x (G/X) as (H,G/X)-bisets, thus

G ,,G o~ H G/X
Resp o 1¢)x = 1y x © Resy//

S¢ Sy S¢ SE
It follows that Res% ( Sg) = ( S)é) Similarly Res$; ( Sé) = ( S}{) Thus
1 1 X X
r57§ = v%, because Res$ respects the Yoneda composition.
It follows that

VK VK, = THORR, %)
thus Ext®"(S{, S¢) =T + Kerr%. But

Kerr) = 7 (Ext? (5§, 59)) = 3 Bxt™ (55, 55) 01§ |
XeS

and by induction on n, this shows that T' = Ext*(S¢, S¢).

Denote by P,,(t) the Poincaré series of the algebra ExtKAZ(G)(SlG,Sf),
where GG is an elementary abelian 2-group of rank m. The short exact se-
quence of Theorem 10.9 gives the relation

Pu(t) = S|P Py (t) + Pu-a(t)
and moreover |S| = 2™~! — 1. Thus

1
1— (@21 —1)2

Po(t) = Po_y(t) -

and the claimed formula follows by induction on m. O
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10.11. Theorem : Let k be a field of characteristic 2, and G be an
elementary abelian 2-group of rank m.

1. [Samy Modeliar [7]] If m < 2, the group G is a poco group over k.

2. If m > 3, the group G is not a poco group over k. More precisely, the
simple functor S¢ of M$(G) has exponential growth.

For Assertion 2, observe that

1 m—1 00 ‘ n o,
(1—)(1=32)... (1- (21 = 1)) 43 njzo(Zj - ’
Thus
m—1
dimy, Ext®(5¢, 5¢) = > o J[@-vm
ni+-+nm—1=n j=1
> (™t -1 .

By Corollary 8.2, since moreover Ext***1 (8¢ S¢) = Ext* (5S¢, S§) as sim-
ple functors are self dual, it follows that

dimy, Ext*" (8¢, S9) > (2™~ — 1) |

thus S has exponential growth, by Lemma 2.3, if 2! — 1 > 1, ie. if
m > 3. a

Assertion 1 is trivial if m = 0. It is straightforward if m = 1 : since every
kG-module for a group G of order 2 is a permutation module, it follows that
all the fixed points functors are projective in this case, so M{(G) has finite
projective dimension in this case.

For m = 2, M. Samy Modeliar has described explicit eventually peri-
odic resolutions of the fixed points functors F' Py, for all indecomposable kG-
modules V. An alternative proof can be sketched as follows : the Poincaré se-
ries of Ext*(S{, SY') is equal to = in this case. It follows that Ext"(S{, ST)
is equal to {0} if n is odd, and one dimensional if n is even. If @) is a non
trivial subgroup of GG, then there is an exact sequence

10.12 0— @ 8¢—49,(89%) — 8% —0,
( ) XeRa(2) X G/Z( Q/Z) Q

where Z is a subgroup of order 2 of (). Moreover zg /Z(Sgg) has finite

projective dimension, since G/Z has order 2, and since zg /7 18 exact and
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preserves projectives. It follows easily by induction on |@Q| that there exists
a constant cg such that dimy Ext/(S§, S¥) < ¢ for any j € N.

Thus dimy, Ext’(S¢,S%) < cg for any j € N, and any R < G. Using
again the exact sequence 10.12, one can show by induction on |@Q| that for
any , R < G, there is a constant cg r such that dimy Extj(Sg, S¢) < cor
for any 5 € N. By Lemma 2.3 and Corollary 2.6, the group G is a poco
group. 0

11. The case of 2-groups of sectional rank at
most 2

11.1. Proposition : Let k be a field of characteristic 2, let G be a 2-
group, and let H be a subgroup of index 2 of G. If the functor SH (over k)
has polynomial growth, and if the functor S)C(G(X) has polynomial growth, for
any X € Kq(H), then the functor S¢ has polynomial growth.

Proof : Consider the functor I = Ind%S¥. By Proposition 8.7, there is a
filtration
IDRDSD>{0} ,

where R is the radical and S is the socle of I, such that I/R = S = S¢ and
R/S = @ S§. This gives two short exact sequences in M¢(G)

X€[G\Kg (H)]

(11.2) 0— 5S¢ —R— o S§{—0
X€[G\Kg (H)]

(11.3) 0—R—1-—5/—0.

Let M be a finitely generated cohomological Mackey functor for G over k.
Applying the functor Hompme ) (—, M) to the sequence (11.2) gives the fol-
lowing long exact sequence of Ext groups in M¢(G)

F— ®  Ext"(S¢, M) — Ext"(R, M) — Ext"(SY, M) — ---
X€[G\Kg (H)]

By Lemma 2.5, this gives

Tn S €n + Z €xXmn
X€[G\K¢(H)]

where r, = dimy, Ext"(R, M), ex, = dimy, Ext"(S¢, M), for X € Kg(H),
and e, = dimy, Ext™ (S, M).
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Now applying the functor Hompye ) (—, M) to the sequence (11.3) gives
the following long exact sequence of Ext groups in Mg (G)

- — Ext"(R, M) — BExt"™(S¢, M) — Ext™™ (I, M) — - -
By Lemma 2.5, this gives
€n+1 S Tn + Z-nJrl )

where i, = dimy Ext"(I, M'). Thus

(11.4) et Sent (D> exn)ting
Xe[G\Kq(H)]

Now S§ = IndgG(X)S)C(G(X), for any X € K¢ (H), thus

. n Ca(X G
Hence if S)C(G(X) has polynomial growth, there are constants cx, dx, and ey,
such that

VneN, ex, < exn®™ +ex .

Thus
Vn € N, Z eX,ngCnD—l—E ,
Xe[G\Kg(H)]
where C = > cx, D = max dx, and E = > ex.
Xe[G\Kq (H)] XelG\Ka(H)] X€e[G\Kq (H)]
Similarly,

i = dimy, Extnz(H)(Sf, Res% M) |
so if SH has polynomial growth, there are constants ¢, d, and e such that
VneN, i, <enl+te .
Thus
VneN, i <cn+1)?=1+cte<c2n)+cte=c2n’+cte .
Inequality 11.4 now gives
VneN, e < en—l—’yn5+e
where v = 2¢ + C, § = max(D,d), and ¢ = E = ¢ = e. By induction, it
follows that

Vn € N, enSWZJ6+ne+60§7n5+1+ne+eo§(7—|—e)n5+1+eo :
j=1
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so S{ has polynomial growth. O

11.5. Theorem : Let k be a field of characteristic 2, and G be a 2-group
of sectional 2-rank at most 2. Then G is a poco group over k.

Proof : By induction on the order of (G, one may assume that for any section
(B,A) # (G, 1), the group B/A is a poco group. By Corollary 2.6, proving
that G is a poco group is equivalent to proving that for any subgroup @) of GG,
the simple functor Sg has polynomial growth. First consider the case where
Q=1

Let H be a subgroup of index 2 of G. Then H is a poco group by induction
hypothesis. Similarly, if X € K¢ (H) and Cg(X) # G, then Cg(X) is a poco
group. Thus, if H has no central complement in G, by Proposition 11.1,
the functor S has polynomial growth. This holds in particular if H has no
complement at all in G, i.e. if H contains all involutions of G. Thus, if G
is not generated by involutions, then S§' has polynomial growth. So one can
assume that G is generated by involutions.

Now if H has some central complement X in GG, then G = H x X. Since G
has sectional 2-rank at most 2, the group H has sectional 2-rank at most 1,
hence it is cyclic. Thus G is abelian, and generated by involutions, hence
elementary abelian, and of sectional 2-rank at most 2. So the group G is
elementary abelian of rank at most 2, and the results of Section 10 show that
S¢ has polynomial growth.

In any case S{ has polynomial growth. By induction on the order of Q,
it follows that Sg has polynomial growth, for any subgroup @ of G : indeed,
setting B = Ng(Q) and A = ®(Q), Lemma 6.5 shows that

S = Lu(S54) .

where U is the set A\G, for its natural structure of (B/A, G)-biset struc-

ture. If (B, A) # (G, 1), then Sg//: has polynomial growth, hence S§ has
polynomial growth, by Lemma 4.1.

So it remains to consider the case where (B, A) = (Q,1), i.e. the case
where @ is a non trivial normal elementary abelian subgroup of G. Let Z be
a subgroup of order 2 of Q@ N Z(G).

By Proposition 8.5, there is a short exact sequence

0— & S¢ — zg/Z(Sg//g

) — SS —0 .
X€e[G\Kq(2)]

By the induction hypothesis, all the functors S, for X € Kg(Z), have poly-

nomial growth. Moreover, the functor zg /Z(Sgg) has polynomial growth,
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by Lemma 4.1. Hence Sg has polynomial growth, by Lemma 2.5, and this
completes the proof. O

11.6. Remark : The 2-groups of sectional rank at most 1 are the cyclic 2-
groups. In a recent preprint, Andersen, Oliver and Ventura have shown that
the 2-groups of sectional rank 2 are the metacyclic 2-groups (see Lemma 10.2
of [1]). For 2-groups of order at least 32, this also follows from a theorem of
Blackburn (see [2], or Satz 11.13 in [6]).

II - Cohomology

12. Extension of simple functors for elemen-
tary abelian p-groups

In this section k is a field of characteristic p, the group G = (C,)™ is an

elementary abelian p-group of rank m, in additive notation, and all the co-

homological Mackey functors have values in k-vector spaces.

Recall from Notation 7.4 that vx € Extﬁﬂz(g)(SIG,SIG) is the element
represented by the 2-fold extension
a
(SI ) — 8¢ —0 .

G S
0 — ST — SIG — S)C(’Y

12.1. Notation : IfG = (C,)™ and z € G — {0}, set v, = v%,~. Thus
7. € Ext*(S¢, S%).

12.2. Lemma : Let A be a ring. If L O M O N 2 {0} is a filtration of
an A-module L, then the exact sequence

0—N-—M-—L/N— L/M —0

obtained by splicing the short exact sequences

0—>N—>M L/N —=L/M —>0
N e
M/N
0/ Sy

represents the zero class of Ext(L/M, N).
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Proof : There is a commutative diagram

0 N M L/IN—Y—~L/M 0
[
(,0) (1)
0 N L L/N @ L/M L/M 0

where ¢ is the inclusion map, and p, ¢ are projection maps. Moreover, the
bottom sequence represents zero in Ext%(L/M, N), since the map (1?1) is split
surjective. a

12.3. Lemma : Let G be an elementary abelian p-group. If X and 'Y are
distinct subgroups of order p of G, set Q = XY . Then the sequences

G SY Sy G
0— Sy — S)(? — Sf — Sy — 0

and

SG

s¢ .
5§ ( )HS’”%O

G
SQ
represent opposite elements of Ext: E(G)(S}g, S%).

Proof : Indeed, the sum of the corresponding elements in Ext; C(G)(Sg ,S9)
k
is represented by the sequence

S¢ 8§ SG
124 — 8¢ 1R Y — 86
a2a) 0ot (Oef) = (gr'sg) —F 0

G oG
where the functor Lx = (515549) is the Mackey functor for G' over k whose

values at 1, X and () are eqﬁal to k, and other values are zero. The con-
jugation maps for this functor are all identity maps (possibly zero), and the
possibly non zero transfer and restriction maps are given in the following
diagram

LX(Q) =k
r2=1| §t2:0
\
Lx(X)=k
rf{:(){ ?tf:l
N/
Lx(1) =



It follows in particular that S§ is isomorphic to a subfunctor of Ly, and this
yields an exact sequence

S¢ S8
(12.5) 0—>S)G(—>( lsGQ)—>SlG@SS—>O
X
in M$(G).
G oG
The functor ( S;ig) is isomorphic to the dual L} of Ly = (Slsgcz) : its

non zero values are at 1, Y and (), and they are equal to k. The conjugation
maps for L} are all identity maps (possibly zero), and the possibly non zero
transfer and restriction maps are given in the following diagram

Ly (Q) = k
rQ:O{ §
TN
Ly(Y)=k
[ A
ry=1{ |#7=0
N/
Ly(1) =k

Q_
=1

There is an exact sequence

SG

G G Y

in M$(G), and the exact sequence 12.4 is obtained by splicing the exact
sequences 12.5 and 12.6.

Let Myy denote the functor defined for H < G by Mxy(H) = k if
He{1,X,Y,Q}, and by Mxy(H) = {0} otherwise. The conjugation maps
for Mxy are all identity maps (possibly zero), and the possibly non zero
transfer and restriction maps for Mx y are given in the following diagram

Mxy(Q) =k
=0 r$=0
(12.7) Mxy(X)=k MY)=k
t=1 ry =1
Mxy(1) =k

One checks easily that Mx y is a cohomological Mackey functor for G over £,
that Ly is a subfunctor of Mx y (represented by the left half of diagram 12.7),
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and that L} is a quotient functor of My y (represented by the right half
of 12.7). Hence there is a filtration

M)@yDLxDS)G(D{O} ,

such that Myy/Lx = S¢ and Mxy/S¢ = Li. Now Lemma 12.2 shows
that the exact sequence 12.4 represents zero in Extfﬂi(G)(Sg ,S5$), and this
completes the proof. a

12.8. Lemma : Let G be an elementary abelian p-group, and let QQ < R
be subgroups of G such that |R : Q| = p*. Let M denote the functor ngR of
Corollary 7.3. Then there is a filtration M D J D S D {0}, where J is the
radical of M and S is its socle. Moreover

MjJ=Sg , S=S5, JM= o S§.

Q<X<R

Proof : Recall that Zg} g is the subquotient of F'P, whose value at H < G
is equal to k if Q < H < R, and to zero otherwise. By Corollary 7.3, the
head of 287  is simple, isomorphic to S%, and its socle is simple, isomorphic
to S§. In particular S < .J. Moreover, if H < G, then (J/S)(H) is equal to
zero, except if Q < H < R, and in this case (J/S)(H) = k. It follows that

JM~ & S§,
/ Q<X<R X

as was to be shown. a

12.9. Proposition : Let G be an elementary abelian p-group, and Q) be a
subgroup of order p* of G. Then for any subgroup Y of order p of Q

[ Z vx, ] =0,

1<X<Q
n ExtﬁAE(G)(SIG, S, where [a,b] = ab — ba, for a,b € ExtﬁAi(G)(Sf, SEY.

Proof : Recall that if X is a subgroup of order p of GG, the element yx of
Ext,zvlz () (ST, 57 is represented by the sequence

SG SG
st = () = () —sr—o.
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It follows that if Y is another subgroup of order p of G, the Yoneda product

vx7yy is represented by the sequence
SG SG SG SG
ot = () = () — () = () = =0

SY
This sequence is obtained by splicing the following three exacts sequences :

S%

O—>Sf—>(56,
1

G
(12.10) 0— S¢ — (Sl) —

SG
5 (Y)ﬁsgﬁo

SY
G
0—>S$—><§é>—>516—>0.
1

By Lemma 12.3, if XY = @, i.e. if X and Y are distinct subgroups of order p
of @, the sequence 12.10 and the sequence

SG
(12.11) 0— S — ( Q) —

s¢ .
5§ ( )HSY%O

56

represent opposite elements of Extﬁ,li(g)(ng ,S$). Tt follows that for a given
subgroup Y of order p of )

( Z Yx)1y = —( Z f;?,y)w 5

1<X<Q 1<X<Q
X#£Y X#Y

where f)?’y is the element represented by the sequence

G G G G
st () = () — () = () = =0
S S5 S¢

ST
This in turn is the splice of the following two exact sequences

Q G S§ S6 e
vy : 0— S5 — e — s¢ — 55 —0
S¢ S¢
Qyx . e Y G
(Uy)* - O—)SQ_>(SS)_)<S%)_)S1_>O'
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The sum of the elements u?( of Extﬁ,lz(g)(SG,SlG ) represented by the se-

quences U)Cg, for 1 < X < @), is represented by the sequence

EG SG
O———»Sf——e ( Q)——e»<22) ——»58«——90
Q

S
NG
where <S1g) has simple socle isomorphic to S, and head isomorphic to
el NG
Eg = 1<§1{9<Q S¢, and (210> is isomorphic to the dual of (Slg> . By Lemma 12.2

and Lemma 12.8, it follows that

Z ugz().

1<X<Q
Hence ) u% = —u¥ so
1<X<Q
XAY

(Y w)w =udw -
1<X<Q
X2y

This is represented by the sequence

G G G
O-——»Sf——a (SY) ——><Sg> __}(5%) —
SY SQ

SY
which is obviously self dual. It follows that

(> 7x)7y:<( > 7X)7Y>*:7Y( > ).

1<X<Q 1<X<Q 1<X<Q
X#Y X#Y X#Y

(51(;) e
o — ST —0
Sy

Adding 7% to both side, this shows that 7y and Y. ~x commute, which
1<X<Q
completes the proof. O

13. The algebra ExtKAz(G)(SlG, S¢) for G = (Cy)™

In this section k is a field of characteristic 2, the group G = (Cy)™ is an
elementary abelian 2-group of rank m, in additive notation, and all the co-
homological Mackey functors have values in k-vector spaces.
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By Corollary 10.10 and Notation 12.1, the algebra Ext’,(ﬂi(g)(SlG,Sf) is
generated by the elements 7, of Ext*(S{, S¢), for x € G — {0}.

13.1. Proposition : Let H be a subgroup of index 2 of G. Then

c¢H

Proof : By Proposition 10.1, there is a filtration I D R D S D {0}, where
I =1Ind%SH, such that S = /R =S¢, and i

R/S S¢
/ XGEBICX7

where £ = K¢(H). By Lemma 12.2; the sequence
0—S8¢ —>R—1/S— 5% —0

represents 0 in Ext*(S§, S¢).
For each X € K, the functors pg/x(l), pg/X(R), and pg/X(I/S) are all

isomorphic to SlG / X, since their non zero evaluation is at the trivial subgroup,
where it is isomorphic to k. By adjunction, this gives morphisms

56 56
Px | o) 7 Rand gx:1/S— | o) -
S S%

This gives a commutative diagram with exact lines

G S)Cé Sf G
1

Xek Xek Xek \O¥ Xek
: p
0 S¢ R = (Sg> — @ S{—s0
xex \S% XeK
b
0 S¢ R I/S S¢ 0,

where p is the sum of the maps px and ¢ is the sum of the maps ¢y, for
X € K, where ¥ is the summation map, and A the diagonal inclusion. The
top line of this diagram is the direct sum of the sequences I'x, for X € K
(see Notation 7.4).
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One checks easily that the top left square in this diagram is cocartesian,
and that the bottom right square is cartesian. It follows that the bottom line
represents the sum in Ext®(S{, S§) of the 2-fold extensions in the top line,

i.e. the sum > ~vx.
XeK
Hence this sum is equal to 0, i.e. equivalently > v, = 0. a
x¢H

13.2. Proof of Theorem 1.3. Let G = (C3)™ be an elementary abelian
2-group of rank m, in additive notation, and k be a field of characteristic 2.
Denote by £ the graded algebra EXtKA;(G)(Sfa SE.

e By Corollary 10.10 and Notation 12.1, the algebra &£ is generated by the
elements v,, for x € G — {0}, where 7, has degree 2.

Let z and y be distinct elements in G — {0}. Then x and y generate a
subgroup @ of order 4 of GG, and the non zero elements of () are x, y, and
x +y. By Proposition 12.9, the commutator

[%c + Yy + Yoty %n—&-y]

in £ is equal to 0. Equivalently

(13.3) Ve + Yy Yoty = 0

Now if H is a subgroup of index 2 of GG, Proposition 13.1 shows that
(13.4) > %=0

¢ H
in £.

e Conversely, let € denote the graded associative k-algebra with generators 7,
in degree 2, for x € G — {0}, subject to the relations

{VHgG, |G : H| =2, Z%—o

Ve, y € G — {0}, #y, [%c+7y,%-+y] =0 .

Then there is a unique surjective homomorphism s : & — & of graded k-
algebras such that s(%,) = 7,, for all x € G — {0}. Thus showing that s
is an isomorphism is equivalent to showing that for any integer n € N, the
restriction s, of s to the subspace &, of elements of degree n in € is an
isomorphism onto the corresponding subspace &, of £. Since s, is surjective,
this amounts to showing that dimy E, < dimy &,.
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13.5. Lemma : Let B be an Fy-basis of G. Then the set

{3 |z € G—(BU{0})}

1s a k-basis of E, and sy is an isomorphism.
Proof : By Corollary 10.10
dimp & =2' - 1)+ (22 -1+ + 2" ' =1)=2"-m—1 .

Thus dimy, 52 > 2™ —m — 1, since sy is surjective. As 2™ —m — 1 is precisely
equal to the cardinality of G — (B U {0}), it is enough to show that the
subspace & of & generated by the elements 7., for z € G' — (B U {0}), is

equal to &s.
Let b € B, and denote by H the subgroup of G' generated by B — {b}.
Then |G : H| = 2, so
> =0

ot H
Since G — H = H + b, the only element of G — H which is also in B is b itself.

This gives
o= Aoty
yeH—{0}

SO Y € gé Since this holds for any b € B, and since &, is the set of k-linear
combinations of elements 7., for x € G — {0}, it follows that £ = &, as was
to be shown. 0

13.6. Notation : Fizx a linear ordering by < by < --- < by, on B. If
x € G — {0}, let dg(x) denote the least integer i € {1,...,m} such that
S <b1,...,bi>.

Then dg(z) =i if and only if x = y + b;, for some y € <by,..., b;_1>.

13.7. Definition : Letn € N. If M = 7, ey .-z, € €~2n, where
x; € G—A{0} for 1 < i < n, set w(M) = > dg(z;). The monomial M
=1

is called special if z; € G — (B L {0}), forzl < i < n, and ordered if
dp(x;) < dp(xitq), for 1 <i<n.

13.8. Lemma : Let xy,...,x, be elements of G— (BU{0}). Then for any
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ie{l,...,n—1} such that dg(z;) # dp(ziy1), the sum

;}’/Z1 e '7:51-_15/%'?:5#1'7:5“2 te ’S’xn + ;;/d,j te ﬁl‘i-lﬁﬂfi+1i¢i’?ﬂ?i+2 s /?xn

is a linear combination of special monomials M' with w(M') > w(M).

Proof : Since the assertion is symmetric in z; and x;.1, one can assume
that r = dg(x;) > dg(r;y1) = s. In this case x; = u + b,, where u €
<bi,...,b._1>— {0}, and x;.1 = v + by, where v € <by,...,bs_1> — {0}.
Let t = o; + w341 = (v + bs + u) + by, so dp(t) = r. Now the relation
[’:)v/xwrl + ':)v/ta ;)v/m] =0 gives

’?a?i’?xpr:l + ’S/xprf?xi - %’%1 + ’?J:Z;?t 5
so the sum in the lemma is equal to
(13.9) S = - oo s Ve VeVwiso - Vo + Va1 - Voo Vo Ve wirn - - - Von -

If ¢t ¢ B, this is a sum of two special monomials M’ with w(M') > w(M),
for dp(t) = dg(x;) > dp(x;11). And if t € B, then t = b,, so

(13.10) Fe= > Abtu -
ueH—{0}

where H is the subgroup of index 2 of G generated by B — {b.}. But
dp(b. +u) > r, for any u € H. Replacing 4; in 13.9 by the right hand side
of 13.10 gives an expression of S as a sum of special monomials M’ with

w(M") > w(M). 0
13.11. Proposition : The set of special ordered monomials is a k-basis
of £, and the map s is an isomorphism.

Proof : This is equivalent to saying that for any n € N, the set of special
ordered monomials of degree 2n is a k-basis of ggn, and that the map s, is
an isomorphism.

The first step consists in showing that the special ordered monomials of
degree 2n generate &,,. In other words, using (13.10), any special monomial

M = 5/:1:1%62 . ’yrn

should be equal to a linear combination of special ordered monomials of
degree 2n.

For such an arbitrary monomial w(M) < nm, and this allows for a proof
by induction on j = nm —w(M) : if j =0, then dg(x;) = m, for 1 <i < n,
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and the monomial M is a special ordered monomial, so there is nothing to
prove.

Otherwise, if M is not ordered, there is a least integer ¢ € {1,...,n— 1}
such that dp(z;) > dp(x;41). By Lemma 13.8, the monomial M is equal to
the monomial obtained by exchanging 7., and 7., ,, up to a linear combi-
nation of monomials M’ with w(M') > w(M), which are equal to a linear
combination of special ordered monomials, by induction hypothesis.

By repeated application of this procedure, the term 7,, , can be moved
to the left, until it sits between 7, and 7,,,, such that

dg(zj) < dp(ziy1) < dp(vjp1)

(possibly j = 0, in which case 7,,,, is moved to the first place on the left),
and the monomial M is equal to the monomial

,3/561;5/:52 s ’NYa:j'S/le'S’xjH . '/?xiflr?l‘i;?xprz s ;}(/Clin

up to a linear combination of special ordered monomials. In this monomial,
the 7 + 1 first values

dB<.CEl), dB(xz), cey dB(xj), dB(.CEi_H), dB(,CEj_H)..., dB(x’i—l)y dB(Z'l)

are linearly ordered. By induction on n — ¢, this monomial is is equal to a
linear combination of special ordered monomials. This shows that the special
ordered monomials of degree 2n generate &,.

The second step consists in counting the special ordered monomials : such
a monomial is a product

Vg - '%lej%jﬁl o Vegagy o Vg et 41 VT et
Vo Vo "
dB({L'Z‘)Zl dB(xi)=2 dB(xL):m

of j; elements 7, with z € G — (B U {0}) and dp(z) = 1, followed by
Jo elements v, with z € G — (B U {0}) and dg(z) = 2, and so on, up
to a product of j,, elements 7, with + € G — (B U {0}) and dg(z) = m,
where j; + jo + -+ + Jm = n. An element x of G — (B U {0}) such that
dp(z) =i is an element of the form y + b;, where y is a non zero element of
<by,...,bi_1>—{0}. It follows that the number of special ordered monomials
of degree 2n is equal to

> e -y

et im=n i=1
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The only element z in G — {0} with dg(z) = 11is b; € B, and this forces
j1 = 0. So the number of ordered monomials of degree 2n is equal to

> Jle -

li+l++lpm—1=n i=1

where [; = j;41, for 1 <i < m—1. But this is precisely equal to the coefficient
of the term of degree 2n in the Poincaré series for £, by Corollary 10.10. It
follows that dimy &, < dimy, Ean, hence dimy, & = dimy, &sn, and the map
Sop, 18 an isomorphism. This completes the proof of Corollary 13.11, and also
the proof of Theorem 1.3. a

14. Partial results for G = (C,)", p > 2

Let G = (C,)™ be an odd order elementary abelian p-group. The main
difference with the case p = 2 is that Theorem 10.7 no longer holds, as can
be seen from Theorem 6.2 : if ¢ : G — k™ is a group homomorphism, let Eg
denote the kG-module k & k, where the G-action is defined by

Vg € G, Y(z,y) €K, glz,y) = (z+ye(9),y) ,

and let TS denote the unique Mackey functor for G over k such that T,(H)
is equal to zero if 1 # H < G, and such that T,(1) = E,. Then T is a
cohomological Mackey functor, and there is a non split exact sequence

O—>51G—>Tf—>SlG—>O,

whose class is an element 75 € Ext,{ﬂz(g)(SlG , S¢).
If X is a subgroup of order p of GG, recall that there is a 2-fold extension
7§ € Exty c (G)(SlG , S represented by the short exact sequence

G S8 Sy G
O—)Sl — (SG> — <SG> —)Sl — 0 .
1 X
In this case, I propose the following conjecture :

14.1. Conjecture: Letk be a field of odd characteristic p, and G = (C,)™.
Then :

1. The algebra € = Ext}'{ﬂz(g)(Sf, SY) is generated by the elements 7S in

degree 1, for ¢ € Homgz(G, k"), and by the elements ~§ in degree 2,
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for X < G with | X| = p.
2. The Poincaré series for £ is equal to

1
I-t)1—t—(p-12)(1—t—@>*-1)2) ... (1=t — (p'=1)?)

14.2. Theorem : Conjecture 14.1 is true for p = 3.

Proof : If G = 1, i.e. if m = 0, there is nothing to prove. By induction
on m, one can assume that the result holds for any elementary abelian p-
group of rank smaller than m. Let H be a subgroup of index p of G, let T’
be a complement of H in G, and set X = Kg(H) — {T'}. By Corollary 10.3,
there is a long exact sequence in M (G) of the form

(14.3)
N HL(” - 1) D XGGBX E(;(n — 2)4> Eg<n) n EH(n) >
<—>L(”)@ ® Eg(n—1) Eon+1) % Ey(n4+1)—---,

XeXx

where Eg(n) = Ext’,\‘,lz(G)(SlG, S, Eg(n) = Extnz(H)(Sf, SHY L(n) =
Extye @) (L, S¢), and X = Kg(H) — {T}. Recall from Proposition 8.7 that
L is a functor all of whose composition factors are isomorphic to S, with
multiplicity p — 2. Thus if p = 3, the functor L is isomorphic to S, and it
follows that L(n) = Eg(n), for any n € N.
It is easy to see that the map L(n—1) — Eg(n) in Sequence 14.3 consists
in taking Yoneda product with the sequence

(14.4) 0—L—M-— 8¢ —0
obtained by taking the image of the sequence
0—R/J—1/]—S¢—0

of Proposition 10.1 under the split surjection R/J — L.

On the other hand, the map Eg(n —2) — Eg(n) from the component
indexed by X € X is equal to the Yoneda product by 7§, by the argument
given in the proof Theorem 10.9.

The map r, in Sequence 14.3 is induced by restriction from G to H,
also by the argument used in the proof of Theorem 10.9. In particular, it is
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compatible with the Yoneda product. By induction hypothesis, any element
in Eg(n) is a linear combination of Yoneda products of elements 7,/ and
elements !, where 1 € Homz(H, k™) and Y < H with |Y| = p.

To show that r, is surjective, it suffices to show that for any such v, there
exists ¢ € Homg(G, k") such that 7/ = r(75), and that for any such Y,
there exists X < G with | X| = p, such that 'y}éf: r9(v%). For the latter, the
argument of the proof of Corollary 10.10 applies, and one can take X =Y.
Now if ¢ € Homg(H, k™), there exists ¢ € Homy(G, k™) whose restriction
to H is equal to 1, and it is straightforward to check that the restriction
to H of the extension Tf defining Tg is isomorphic to Tf . It follows that
rl(Tg ) = Tf , SO 1, is surjective, for any n € N. Actually this proves more :
the submodule E,(n) of Eg(n) generated by products of elements 75" and 7§
maps surjectively by r, on Eg(n). Thus Ep(n) + Kerr, = Eg(n).

Finally, in the case p = 3, the long exact sequence 14.3 splits as a series
of short ones
(145) 0— Eg(n—1)® XGEBX Eg(n —2) — Eg(n) ™ Eg(n) — 0 .

The image of each component Eg(n — 2) in Eg(n) is obtained by taking
Yoneda product with some 7§, and the image of Eg(n — 1) is obtained by
taking the Yoneda product with the sequence 14.4, which for p = 3, is of the
form

0—S¢Y —M-—5%—0.

It follows easily that it is isomorphic to a sequence T,,, where ¢ € Homy (G, k™)
has kernel H. So the image of Eg(n — 1) in Eg(n) is obtained by taking
Yoneda product with Tg .

An easy induction argument now shows that the kernel of r,, is contained
in E(n), so E(n) = Eg(n), completing the inductive step for Assertion 1
of Conjecture 14.1.

Assertion 2 now follows from Sequence 14.5 : this sequence shows that
if P,,(t) denotes the Poincaré series for the algebra Exty. (G)(SIG , S, where
G = (Cp)™, then

P (t) = tP,(t) + | X |t P (t) + Pu(t) -

Thus P ;
P, (t) = mo1(f) ,
1—t— (pn =1
and Assertion 2 follows easily by induction. O

14.6. Remark : The main reason for proposing Conjecture 14.1, apart
from Theorem 14.2, is a computer calculation for p =5 or p = 7, using GAP
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software (http://www.gap-system.org), showing that the terms of lower
degree of the Poincaré series for the algebra Exty. ¢ (8§, S$) (up to degree 5
for p = 5 and m = 2) are as predicted by Assertion 2 of Conjecture 14.1.

15. More on extension of simple functors

15.1. Proposition : Let k be a field of characteristic p, and G be a finite
p-group. Let Q and R be normal subgroups of G, and set N = [Q, R|. Then
for each n € N, the functor pg/N induces an isomorphism

n =] n G/N oG/N
EXth(G)(ng SG) — EXth(G/N)(SQ//N7SR//N) :

Proof : By induction on the order of N : if N is trivial, there is nothing
to show. Otherwise, the subgroup N is a non-trivial normal subgroup of G,
contained in () N R, so N contains a central subgroup Z of order p of G. If
X is a complement of Z in ), then for any n € N

n ~ n Ng (X
EXth(G)(S)C(;a S%) = Ext (@) (Indgg(X)SXG( )> S%)
~ n Ng(X
and Res%G(X)Sg = {0} if R £ N¢(X), by Lemma 6.7. But if R < Ng(X),
then [R, X] < X, hence [R,Q] < X, for @ = X -Z and Z < Z(G). It follows

that Z < X, and this contradiction shows that Extf,,z(g)(S)Cé, S¢) = {0} for
any X € Kg(Z). Then by Theorem 8.6, for any n € N, the map

T - Ext’,{‘,lz(G)(Sg, S,%’)—>Ext’§,|z(@)(58, S%)

induced by pg /7 18 an isomorphism. Now @ and R are normal subgroups
of G, and [Q, R] = [Q, R]/Z has order smaller that |N|. By induction, the

G/Z . ) .
functor pGjN induces an isomorphism

n G o0 n G/N oG/N
EX’CME@)(S@ Sﬁ) - EXth(G/N)(SQ/N7 SR/N> )

and the result follows by composition with 7, since pg% o p& 17 = S /N O

The following result shows that for a p-group G and a field k of character-
istic p, the computation of extension groups Ext? : (G)(SS ,S%) comes down
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to the case where () and R are elementary abelian normal subgroups of G,
which centralize each other. First a notation :

15.2. Notation : Let G be a finite p-group. If QQ and R are subgroups
of G, set

Sko=1{9€G|2(R)-“9(Q)-[R,7Q] < RN?Q} .

Denote by S}GLQ the set of (Na(R), Na(Q))-double cosets in Sf . and by

[Srol a set of representatives of gin.
Let N = N LI {oc} be the linearly ordered set obtained by adding to N a
largest element co. Denote by vg(R, Q) € N the element defined by

p’¢BQ) = min |RIQ: RNIQ| = min |RYQ: RNYQ| ,

G
9€SE @ 9€[SR,q]

if 8§ # 0, and by ve(R,Q) = oo otherwise.

15.3. Theorem : Let k be a field of characteristic p, let G be a finite
p-group, and let QQ and R be subgroups of G. Then for g € ngQ :

1. the groups R and 9(Q) normalize each other.
2. the group ®(R) -9P(Q) - [R,9Q)] is equal to P(R-IQ).

3. the groups R = R/®(R-9Q) and iQ = IQ/P(RIQ) are elementary
abelian normal subgroups of Ng(R,9Q) = Ng(R,Q)/P(R9Q), which

centralize each other.

Moreover for any j € N,

Eth (SNG(Rng) SJA\ATG(R79Q))

J ~
EXth(G>(SQ’SR>_ @ M¢ (N (R9Q)) \79Q "“R
Sk,0l

g€

Proof : If g € Sg’Q, then [R,9Q] < RNYQ, so R and 9(Q) normalize each
other. Let T'= ®(R) - 99(Q) - [R,?Q)]. Then the groups R/T and 9Q/T are
elementary abelian subgroups of N¢(R,9@Q)/T, which centralize each other.
Thus (R9Q)/T is elementary abelian, and T' > ®(R-9Q)).

Conversely ®(R) < ®(R-IQ), since R-IQ is a p-group, and similarly
(1Q) = 19(Q) < B(RIQ). Moreover [R,9Q)] < [R4Q, RIQ] < B(RIQ),
so finally 7' < ®(R-9Q)), hence T' = ®(R-9Q)). Now R= R/T and 9Q = QT
are elementary abelian normal subgroups of Ng<R, 9@), which centralize each
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other.

Set A = ®(Q) and B = Ng(Q). Set similarly C' = ®(R) and D = Ng(R).
Then S§ = IndeB/A(SB//A) and S§ = IndDjD/C( g//g), by Lemma 6.5 and
Corollary 6.6. Thus, by Proposition 3.16, for any j € N,

j ~ j BJA\ oD/C
Extfv'i(G)(SQ,SR) = EXtI]\/Ig(D/C) (pB/CReSgIndgzg/A(SQ//A),SR//C) :

Now by Proposition 3.27,

B/A\ ~ B B ,aB/A
pD/CResDIndeB/A(SQ//A): [DG\BG/B] Indggz5 e, Iso(fg)pgz/zgResgg(SQ//A) ,

where

D=D/C, D,=(DN*B)C/C, C,=(DNA)C/C |

B=B/A, B,=(D'NB)AJ/A, A,=(CNB)AJA ,

and where f, : B,/A, — D,/C, is the group isomorphism sending x4, to
92C,, for x € DIN B.
By Lemma 6.7, the functor 'OE U4, Res2 (SQ//A) is isomorphic to the direct

sum of the simple functors S ;’g ¢ corresponding to subgroup X such that
X /A is conjugate to Q = Q/A in B/A, up to conjugation by_Eg/Z_g. Since
() 4 B, the only possible such subgroup is @ itself, if A, < @ < B,. This

gives

- D Dy Bg/Aq D/C
Extfwc (@50 Sr) = @ Ext; £(D) (IndD 'D,/C, Iso(fg)(S@/Kg >’SR/C) '
g€[D\G/B]
A,<Q<B,

By adjunction, this gives

Extiye () (Sq: Sr) = @ Ext]c(D (Iso(f,)( nggg), 5., Res gg(sg)) ,
9€[D\G/B]
Ag<Q<By

where R = R/C. By the same argument, the functor pgg e Reslj (Sij ) is

equal to zero, unless C <R< Dg, in which case it is isomorphic to Sg/" écy.

Thus

J ~ J Bg/Aqg Dgy/Cy
Extiy: ) (So: Sr) = @ Ext z(ﬁg/ég)(lso(fg)(S@/gg ), Sgit ) .
g€[D\G/ B]
Ag<Q<B,
Cy<R<Dy
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Now the condition Q < Eg is equivalent to @ < (D9 N B)A, ie. to Q =
A(DINQ), ie. to DIN Q = @, since A = ®(Q). In other words Q < D9.

Similarly, the condition R < D, is equivalent to R < (D N9B)C, ie. to
R = (RNIB)C, ie. to R = RNYB, since C = ®(R). In other words
R<9B.

Then the condition A, < @ is equivalent to CY N B < Q. Since moreover
C9 < RI < B, it follows that C9N B = C9 < Q.

Similarly, the condition ég < R is equivalent to D N YA < R. But
IA<9IQ < D, thus DNI9A=9A < R.

In this situation
D,=(DnNYB)/C, C,=%A-C/C, B,=(D'NB)/A, A,=C%AJA ,
and the isomorphism
fy:By/A, = (DN B)/(C?A) — (DNYB)/(CYA) = D,/C,

is induced by conjugation by g. In particular f,(Q/A,) = 9Q/(C-9A), thus
finally

- N ~ (DAIB)/(C94) (DAWB)/(C94)
Extyy i) (So: Sr) ¥ @ Extiye (promycony (Srcany o Srpcany )

where
S = {g€[D\G/B]|CYA< RN‘Q < R*Q < DN 9B}
— {g€[D\G/B]|C¥A-[R,%Q| < RN‘Q} = [Shol .

Moreover, by Proposition 15.1, for g € §, the group

' (DWB)/(C94) (DN9B)/(C-94)
Extue (prwp)/icoay (Ssqucaay o Skpcony )
is isomorphic to

j Ne(R9Q) oNa(RIQ)
EXth(NG(R,QQ))(S@ 55 )

and this completes the proof. O

15.4. Proposition : Let k be a field of characteristic p, let G be a finite
p-group, and let Q) and R be subgroups of G. Then

n<ve(R,Q) = Eth;(G)(SSa S%) = {0} .
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Proof : If vg(R, Q) = oo, ie. if Sf, =0, then Ext"z(G)(Sg, S&) = {0} for
any n € N, by Theorem 15.3. So one can assume vg(R, Q) € N.

The result is trivial if G = 1, so by induction on |G|, one can assume
that it holds for any group of order less than |G|. The group G being
given with this property, one can proceed by induction on n, to show that
Ext’,\lﬂz(g)(SG, SE) = {0} if Q and R are subgroups of G with vg(R, Q) > n.
This starts with the case n = —1, where there is nothing to prove, since
ve(R,Q) > 0 and Ext”Z(G)(SS, S&) = {0} for n < 0.

For the inductive step, let n > 0, let () and R be subgroups of G such
that ve(R,Q) > n, and let g € Sf,. Then the index |[R9Q : RN9Q)
is equal to the index |R-Q’ : R' N Q'|, where R’ = R/(®(R)-“®(Q)) and
Q = 9Q/(®(R)“®(Q)). By Theorem 15.3, and by induction hypothesis
on G, it suffices to consider the case where () and R are elementary abelian
normal subgroups of G, which centralize each other.

In this case, set j = vg(R,Q), sop’ = |[RQ : RNQ|. T QNR # 1,
let Z be a subgroup of order p of @ N RN Z(G). By Theorem 8.6, for any
integer n, there is a short exact sequence

a n G oC

where K is a set of representatives of G-conjugacy classes of complements
of Z in @, and Q and R denote Q/Z and R/Z, respectively.

If X € K, since R<4G, the set Ng(X)\G/Ng(R) has cardinality 1. More-
over XNR#QNR,since Z<QNRand Z £ X, s0 |QNR: XNR|=p,

e alln
S e
p|X N R|? v

In other words vg(R,X) =j+1>n—1, so ExtMc(G)(S)C?,Sg) = {0} by
induction hypothesis on n.

On the other hand ExtMc(G)(SG SG) = 0 since n < j, by induction
hypothesis on |G|. It follows that Exty. ¢ (SG, SE) = {0}.

It remains to consider the case where QOR = 1. Since vg(R,Q) >n >0,

it follows that at least one of the groups @) or R is non trivial. By symmetry
on () and R, one can assume that @ # 1, and choose a subgroup Z of order p

in @NZ(G).
Now for any n € N

n a/z
Extye o) (ZG/Z<SQ/Z) SQ) = Extye q/z) (S //Z,PG/z( S7)) ={0}

|IX-R: XNR|=
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by Proposition 6.7, since Z ¢ R. Applying HomMi(G)(—,Sg) to the first
exact sequence of Proposition 8.5 gives the isomorphisms

(155) EXtrl\l/I;(G)(Sg7SI§) = XGEBICEXtQI\l/IE%G%S)C(;?Sg) )

for any n € N, where IC is a set of representatives of G-conjugacy classes of

complements of Z in Q).
Let X € K, and set | = vg(R, X). Then

p=|X-R:XNR|=|X-R| = |X||R| ,

sol=7j—1.

If n < 7, then n — 1 < [, hence Extfﬂ_z%G)(S)G(,Sg) = {0} by induction
hypothesis on n. It follows that Ext”z(G)(SG,Sg) = {0}, as was to be
shown. O

15.6. Notation : Let () be an elementary abelian p-group. Denote
by St(Q) the only non-zero reduced integral homology group of the poset |1, Q)]
of proper non trivial subgroups of @), ordered by inclusion.

It is well known (see e.g. [3]) that, if @ has rank r, then St(Q) =

r

H,_5(]11,QJ, Z) is isomorphic to ZP(Z) . The automorphism group A = GL(r, F,)
of @ acts on St(Q), and the module St(Q) is isomorphic to the Steinberg mod-
ule of A. The restriction of St(Q) to a Sylow p-subgroup P of A is a free
ZP-module of rank 1.

When G is an elementary abelian p-group, the following theorem was
proved by Tambara ([8] Theorem 4.1) :

15.7. Theorem : Let k be a field of characteristic p, and G be a finite
p-group. Let Q) be an elementary abelian normal subgroup of rank q of G,
and H be a subgroup of rank h of Q. Then ve(H,Q) =q—h and :

1. There is a group isomorphism

—h G oG\ ~~v —h Ng(H)/H oNg(H)/H
EXtK/Ig(G)(SQ’ Sh) = EXtKA;(NG(H)/H)(SQfH ’SH7H )

2. These groups are isomorphic to the space of coinvariants
kSH(Q/H)ngmy of No(H) on k ®z St(Q/H).

3. Let H=Hy < Hy < ... < Hy_p = Q be a mazimal Ng(H)-invariant
flag.  Then ExtKA%}(LG)(Sg,Sg) has a k-basis indexed by the Ng(H)-
conjugacy classes of flags X1 > Xo > ... > X, 1 of Q such that
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Xi+H;=Q and X;NH;, =H, for1 <i<q—h—1. In particular

(2")
. E qlh G G = P
dimy, Xth(G)(SQ’ Sh) ING(H) : Z¢(H,Q)| ’

where Zg(H,Q) = {9 € G | [9,Q] < H} (in other words Zg(H, Q) is
the preimage in Ng(H) of the centralizer of Q/H in Ng(H)/H ).

Proof : Since H < @ and ®(Q) = 1, it follows that ®(H)P(Q)[H, Q] =1 <
HNQ, so vg(H,Q) < co. Moreover p:Q) = |Q-H : QN H| = |Q : H|,
since Q@ <G, so vg(H,Q) =q — h.

For Assertion 1, observe first that

n ~J n Na(H Ng(H
EXtM;(G)(SSaSg) :EXtmg(NG(H))(SQG( )7SHG( )) )

for any n € N, and vy, (H,Q) = ¢ — h since Q@ < Ng(H). By induction
on |G|, if N¢(H) < G, there is an isomorphism
n Na(H) oNa(H)\ ~ n Na(H)/H oNg(H)/H
EXtMi(Ng(H))(‘SQG Sy = EXtMi(Ng(H)/H)(‘SQ/GH 7SH/GH )
so one can suppose H <G.

If H = 1, there is nothing to prove. Otherwise, let Z be a subgroup of
order p of HN Z(G). By Theorem 8.6, there is an exact sequence

—h—1/0G QG —h G @Gy Tazh —h G oG
in M¢(G), where K is a set of representatives of G-conjugacy classes of com-
plements of Z in (), and overlines denote quotients by Z. If X € K, then

| X1 H| QI H]|

VG(HvX): XHXﬂH: = = q—h—lH:XmHQ .
p | ||XﬂHP plxnHpR P | |

Since Z < H and ZN X =1, it follows that H £ X, thus |H : X N H| = p,
and vg(H, X) = ¢— h+ 1. By Proposition 15.4, the group Ext(,{/lgéé)l(Sg?, SE)
is equal to zero. Hence the map m,_j is an isomorphism. By induction on
the the order of GG, there is an isomorphism
~h G oG\ ~ —h G/H oG/H
Ethﬂz(é)<SQ’ Sﬁ) = EXtK/Ii(G’/H)(SQ/H7 SH/H) )
which completes the proof of Assertion 1.

It follows that for Assertions 2 and 3, it suffices to consider the case
H=1,ie. h=0. Inthiscase H; G, for 0 <i<gq. Ilf ¢g=0,ie. if Q =1,
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there is nothing to prove, since Ext}, e (G)(SlG ,S¢) = k. This allows to start a
proof by induction on q.
If ¢ > 0, by Proposition 8.5, there is an exact sequence
G ( SG/ H,

0— & S)G(1—>LG/H1 Q/Hi

)—>Sg—>07
X1ex

where IC is a set of representatives of G-conjugacy classes of complements
of Hy in Q. Since pg ,; (SF) = {0}, this gives an isomorphism

G QG ~ -1 (oG oG
Extye ) (5g, 51) = X%c Extyye ) (5%,,57) -

Moreover, for X; € K,

-1 G QG ~ -1 Na(X1) oNa(X1)
EXtKA;(G)(SXNSl) = EXtK/Iz(Ng(Xl))(SX? VST
The flag 1 < HoNX; < H3NX; < ... < H1NX; < X is a maximal
Ng(Xj)-invariant flag in X;. By induction hypothesis, the space

—1 Ne(X1) aNe(X1)
EXtK/I;(NG(Xl))<SX1G S )

has a k-basis indexed by Ng(X7)-conjugacy classes of flags
X2>X3> ...>Xq_1

such that X; ® (H; N X;) = X, for 2 < i < ¢ — 1. Equivalently X, < X,
and X;® H;=Q, for2<i<qg—1.

Now X; runs through a set of representatives of G-conjugacy classes of
complements of H; in ), and X5 > ... > X,_; runs through a set of repre-
sentatives of Ng(X7)-conjugacy classes of flags such that X; & H; = @Q, for
2 <1i < q—1. Equivalently X; > Xy > ... > X, ; runs through a set of
conjugacy classes of flags of ) such that X; ® H; = @, for 1 < ¢ < g — 1.
This completes the inductive step, and the first part of Assertion 3 follows.

Now the stabilizer C' in G of a flag X; > Xy > ... > X, ; such that
X, ®H; =0Q, for 1 <i < q— 1 stabilizes two opposite maximal flags of Q).
Since G is a p-group, it follows that the image of C' in the automorphism
group of @ is trivial (since it consists of matrices which are both upper and
lower triangular with 1’s on the diagonal). In other words C' = C(Q).

There are p(g) maximal flags opposite to a given maximal flag in (), and
the cardinality of each G-conjugacy class of such flags is |G : C¢(Q)|. This
completes the proof of Assertion 3.

Assertion 2 follows from the fact that £St(Q) has a k-basis indexed by
maximal flags opposite to a given G-invariant maximal flag of @), and this
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basis is permuted by G (see [3] for details). In other words £St(Q) is a free
k(G/Cq(Q))-module. 0

Together with Theorem 15.3, the following theorem allows to compute
any extension group between simple functors for a p-group G, from the self
extension groups for the simple functor S{, where C' runs through some
subquotients of G :

15.8. Theorem : Let k be a field of characteristic p, let G be a finite p-
group, and let QQ and R be elementary abelian normal subgroups of G which
centralize each other. Let q denote the rank of QQ and r the rank of R.

1. For any n € N, the group Ext”E(G)(SG, S%) is isomorphic to

o kSt(R/H) @y Ext’;ﬂgfgggf*r(sfﬂ, Sy @, kSHQ/H) |,
H<QNR
rank(H)=h a
where Zy = Zg(H,Q-R)/H = {9 € G | [¢9,Q-R] < H}/H, and the

G-subscript denotes the space of coinvariants.

2. In particular, the dimension of the space Ext"z(G)(Sg, S is equal to

Z p(‘?;h)+(r§h) d; E tn+2h—q—r(SZH SZH)
imy Exty,: : _
heN |NG(H) : ZG(H, QR)| K Mg (Zm) 1 1
H<QNR, mod.G
rank(H)=h

Proof : For Assertion 1, when () and R are both trivial, there is nothing to
prove. This allows for a proof by induction on |Q||R|. By symmetry on @
and R, one can assume that ) # 1, and choose a subgroup Z of order p of
QN Z(G). There are two cases :

e if 7 £ R, then pg/Z(Sg) = {0} by Lemma 6.7, and the exact sequence of
Proposition 8.5 gives isomorphisms

Extie (56, S5) = 2 EXtﬁ%%g)(S)Céﬁg) :

for any n € N, where K = [G\K(Z)] is a set of representatives of G conju-
gacy classes of complements of Z in (). Now for each X €

n— ~Y n— N, X N, X
ExtMi%G)(Sﬁ,Sg) o EXtMi%NG(X))(SXG( )’SRG( )) .
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Since | X||R| = |Q||R]|/p, by induction hypothesis, this group is isomorphic
to

& kSt(R/H) @, Extr-1#2h—a—r (g% g%y o kSt(X/H) ,

heN M (Z3)
H<XNR
rank(H)=h Ne(X)
where x = ¢ — 1 is the rank of X, and
Zy ={9 € Na(X) | lg. X-R] < H}/H .

But if g € G, then [g, X-R| < H if and only if [g,Q-R] < H, since Q = X-Z
and Z < Z(G). And if [g,Q-R] < H, then

9. X] <[9,Q] <[9,Q R <H<X
s0 g € Ng(X). It follows that
Zy ={9€G|[g,Q-R|<HY/H=Zy .

Finally, the group Ext’,f,,z(G)(Sg , S$) is isomorphic to

w2 & KSH(R/H) @y Extyyety 877 (ST, 577) @ kSt(X/H)
¢ H<XNR
rank(H)=h a

Exchanging the order of summation, this gives

® k;St(R/H)®kExt’§’,|EfZ‘§_r(SIZH,Sle)®k( @©  kSt(X/H))

heN
rank(H)=h - G

Now ZNH = 1since ZNR = 1, hence the conditions X € Kqo(Z) and X > H
are equivalent to X-(ZH) =Q and X N(ZH) = H,ie. to H< X <@ and
X/H € Kq/u(ZH/H). By classical combinatorial results,

S kESt(X/H) = St(Q/H)
X/HeKq y(ZH/H)
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thus EXt&;(G)@& S%) is isomorphic to

) kSt(R/H) &y Ext“?h (ST ST @ kSEH(Q/H) |,
H<QNR
rank(H)=h G

as was to be shown.

o If 7 < R, then by Theorem 8.6, for any n € N, there is an exact sequence

0 Extm ! SGSG ,
2 Btiio) 550 =

by

(S¢,85) — Extye G)(SQ, S¢ )—>Ext’,\‘/|6 @

J/

in M¢(G), where £ = [G\K(Z)] as above, and overlines denote quotients
by Z. Tt follows that Ext"i(G)(SS, S§) = T @ Exty, (G)(SG SG)

The same argument as above shows that the space Y is isomorphic to
(15.9)

® kSt(R/H) & Ext2h-a7r(§%n gZmy o, kSt(Q/H)

c
heN M5 (Zm)
H<QNR, HNZ=1
rank(H)=h G

On the other hand, by induction hypothesis, the space Ext} ( (S G SG)
isomorphic to

©  KSUR/H) @ Extyrty TS, 577) @ kSUQ/H) |
heN

ﬁg%mﬁ

rank(H)=h a
where § = ¢ — 1 and 7 = r — 1. Summing over H is equivalent to summing
over H < QN R with H > Z. If H has rank h, then H = H/Z has rank
h=h—1,and n+2h—q§—7=n-+2h—q—r. Moreover R/H = R/H, and
Q/H = Q/H Also

Zg=1{3€G|(g.QR <H}H={geG||g,QRI <H}H=12Zy .

70



Thus Ext?,

MC(G)(S S¢ ) is isomorphic to
(15.10)

@ kSt(R/H) @y Ext’”fh (ST ST @ kSt(Q/H)
Z<H<QNR
rank(H)=h a

Now the direct sum of 15.9 and 15.10 is isomorphic to the expression in
Theorem 15.8, as was to be shown for Assertion 1.
It follows that the dimension of the space Ext’,\l,lz(G)(Sg, S¢) is equal to

3 dim, (k:St(R/H) @ Extyg 07 (S04, S74) @y k:St(G/H))

heN
H<QNR, mod.G
rank(H)=h

Ng(H)

The image of the group Ng(H) in the automorphism group of R/H is iso-
morphic to Ng(H)/Zg(H, R), and kSt(R/H) is a free kNg(H)/Zc(H, R)-
module. Similarly the module £St(Q/H) is a free kN (H)/Za(H, Q)-module.
It follows that the module V' = kSt(R/H) @y kSt(Q/H) is a free kNg(H )/ Z-
module, where Z = Z¢(H,R) N Z(H,Q) = Zg(H, Q- R).

Moreover since Zy = Z/H, the group Z acts trivially on

W = Ex t:ﬂt?g (SZH SZH) ,

so Wis a kNg(H)/Z-module. Hence V@ W is a free kNg(H)/Z-module,
and it follows that dim, (V& W )N,y = dimy (V@ W)

| IN(H)/Z]
proof of Assertion 2. O

which completes the

In the case where G is elementary abelian, the following has been proved
by Tambara ([8] Theorem B) :

15.11. Corollary : Let k be a field of characteristic p, let G be a finite

p-group, and let Q and R be subgroups of G, such that vg(R, Q) < co. Then

Ex tVG((IéQ (S§,5%) is isomorphic to

5 (kSt(R/(RNYQ) 01 kSt UQ/(RN*Q)))

9
gGngR NG(Rng)

where /\/lgﬁ ={g € [Sgg] | |R9Q : RN9Q| = prc(BQ)},
In particular vg(R, Q) = min{n € N | Extﬁi(G)(SG, SE) £ {0}}.
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Proof : If n < vg(R,Q), then Ext&i(c)(sg, S%) = {0}, by Proposition 12.4.

Suppose that n = vg(R, @), and let g € [SiQ] such that, with the notation
of Theorem 15.3,

n Na(R9Q) oNa(RIQ)

Extye 5o (rsa)) (575 , S5 ) #0 .

It follows that p™ > pyﬁcm’g@(R’ Q) _ |R9Q : RN9Q| > pr¢Q) . Hence
n=ve(R,Q)=[RIQ: RNIQ|.

Moreover, in the expression of Ext, (S NG(R’QQ), SN (RIQ)

M¢ (Ng(R,9Q)) R
by Theorem 15.8, the non zero terms correspond to subgroups H of RN QQ
such that n+2h —q—r > 0, where h, ¢, and r are the ranks of H, QQ and R
respectively. Thus

[H[* > [PQI|R|/p" = |7Q||R||/|R4Q| = |[RNQJ* .
It follows that H = RN9Q, that B/H =~ R/RNIQ, that 9Q/H =~ 9Q/RNIQ,

and that n+2h —q¢—17 =0, so ExtRAZ(ZH)(Sle,SIZH) = k. This completes
the proof. 0

) given

15.12. Remark : Let G be an abelian p-group, and (), R be elementary
abelian subgroups of GG, of rank ¢ and r, respectively. In this case, by Asser-
tion 1 of Theorem 15.3, the group Extnc (SG, S%) is isomorphic to

©  kSt(R/H) @ Extyy i (57, ST @y kSHQ/H)

heN

H<QNR
rank(H)=h

Fix H < QN R, of rank h, and denote by ¢ the inclusion map

kSt(R/H) ® Ext%fg;g,;’“(sf/ 187 @1 kSH(Q/H) — Bxtiy (SG. S9).

It is easy to check that this map can be explicitly described as follows : if
y € kSt(R/H) = Ext,TVIC}(LG (84,55, if e € Ext&t?g/z)T(Sf/H,Sf/H), and if
x € kSt(Q/H) = Extq h (SQ, S%), then i(y ® e @ x) is equal to the Yoneda
composition y o InfG/He ox.

In terms of morphisms in the derived category of M{(G), it means that
any morphism from Sg to some translate of S§ is a linear combination of
morphisms which factor through a morphism of the form Infg /i€, where
H < QNR, and e is a morphism from SIG/H to some of its translate.

In the case p = 2 and G is elementary abelian, this leads to an explicit
description of all the Yoneda products of extensions of simple cohomological
Mackey functors.
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