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Abstract : Let k be a field of characteristic p > 0. Call a finite group G a poco group
over k if any finitely generated cohomological Mackey functor for G over k has polynomial
growth. The main result of this paper is that G is a poco group over k if and only if the
Sylow p-subgroups of G are cyclic, when p > 2, or have sectional rank at most 2, when
p = 2.

A major step in the proof is the case where G is an elementary abelian p-group. In
particular, when p = 2, all the extension groups between simple functors can be determined
completely, using a presentation of the graded algebra of self extensions of the simple
functor SG

1 , by explicit generators and relations.
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1. Introduction

This paper addresses the question of the cohomology and rate of growth of
cohomological Mackey functors for a finite group G over a field k. The three
main results are the following :

1.1. Theorem : Let G be a finite group and k be a field of positive
characteristic p. Then the following conditions are equivalent :

1. Every finitely generated cohomological Mackey functor for G over k has
a projective resolution with polynomial growth.

2. Let S be a Sylow p-subgroup of G. Then S is cyclic if p > 2, or S has
sectional 2-rank at most 2, if p = 2.

The key argument in the proof of this theorem is a reduction to the case
where G is an elementary abelian p-group. The case of elementary abelian
2-groups can be described quite completely :

1.2. Theorem : Let G = (C2)
m be an elementary abelian 2-group of

rank m, and k be a field of characteristic 2. Let Mc
k(G) denote the category

of cohomological Mackey functors for G over k. Let SG1 denote the simple
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cohomological Mackey functor defined by

∀Q ≤ G, SG1 (Q) =

{
k if Q = 1
{0} otherwise

.

Then the algebra Ext∗Mc
k(G)(S

G
1 , S

G
1 ) is finitely generated by elements of de-

gree 2, and its Poincaré series

P (t) =
∑

j∈N
dimk ExtjMc

k(G)(S
G
1 , S

G
1 ) tj

is equal to

P (t) =
1

(1− t2)(1− 3t2)(1− 7t2) . . .
(
1− (2m−1 − 1)t2

) .

1.3. Theorem : Let G = (C2)
m be an elementary abelian 2-group of rank m,

and k be a field of characteristic 2. Then the algebra E = Ext∗Mc
k(G)(S

G
1 , S

G
1 )

admits the following presentation :

• The generators γx, of degree 2, are indexed by the elements x of G−{0}.
• The relations are the following :

1. Whenever H is a subgroup of index 2 of G,

∑

x/∈H
γx = 0 .

2. For any distinct elements x and y of G− {0},

[γx + γy, γx+y] = 0 ,

where [a, b] = ab + ba denotes the commutator of two elements a
and b in E.

1.4. This paper is divided in two parts : the first one focuses on complexity,
and the second one on cohomology. Section 2 of Part I quickly recalls the
definitions and basic results on the rate of growth of a module for a finite
dimensional algebra over a field. In Section 3, the categories of cohomological
Mackey functors are introduced, from different points of view, which are
equivalent thanks to Yoshida’s theorem. Next some functors associated to
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bisets between categories of cohomological Mackey functors are defined, with
nice adjunction properties. In Section 4, it is shown how to reduce the
question of complexity of cohomological Mackey functors for a finite group G
over a field of characteristic p to the same question for a Sylow p-subgroup
of G. Section 5 exposes a sketch of the proof of Theorem 1.1. In Sections 6, 7,
and 8, some simple cohomological functors and extensions between them
are discussed. In Section 9, the case of cyclic p-groups is recalled from Samy
Modeliar’s thesis ([7]). In Section 10, the case of elementary abelian p-groups
is settled, and Section 11 handles the case of 2-groups with sectional 2 rank
(at most) equal to 2.

The first section of Part II states further results on extensions of simple
cohomological functors for elementary abelian p-groups. This leads to the
proof of Theorem 1.3, in Section 13. In Section 14, a similar partial result
is stated, for p = 3, which is conjectured for any odd prime p. Finally, Sec-
tion 15 exposes some results on extensions of simple functors for an arbitrary
finite p-group G, which show in particular how to reduce the computation
of these extensions to the computation of self extensions for simple functors
indexed by the trivial subgroup of some subquotients of G.

Acknowledgments : I wish to thank the MSRI, where this work was com-
pleted during my stay there for the program on Representation Theory of
Finite Groups and Related Topics, in spring 2008. I also thank Dave Benson
for stimulating conversations about all this.

I - Complexity

2. Polynomial growth

2.1. Definition : Let A be a finite dimensional (unital) algebra over a
field k. A finitely generated A-module M is said to have polynomial growth
if there exists a resolution

P∗ : · · · −→ Pn −→ Pn−1 · · · −→ P0 −→M −→ 0

of M by projective A-modules, and constants c, d and e such that

∀n ∈ N, dimk Pn ≤ c nd + e .

The module M is said to have exponential growth if for any projective reso-
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lution P∗ of M , there are constants c, d, and e, with c > 0 and d > 1, such
that

∀n ∈ N, dimk Pn ≥ c dn + e ,

The module M is said to have intermediate growth if M has neither polyno-
mial nor exponential growth.

2.2. Remark : If S is a generating set of M as an A-module, then there is a
surjective map of A-modules A|S| −→M . In particular, the projective cover
of M has dimension at most d dimkM , where d = dimk A. By induction,
this shows that there exists a projective resolution as above such that

dimk Pn ≤ (d− 1)n−1d dimkM .

In particular, this dimension is always bounded by some exponential function
of n.

2.3. Lemma : Let A be a finite dimensional algebra over a field k, and M
be a finitely generated A-module.

1. If
· · · −→ Pn −→ Pn−1 · · · −→ P0 −→M −→ 0

is a minimal projective resolution of M , then

Pn ∼= ⊕
S∈Irr(A)

P
dimk Extn

A(M,S)/ dimk EndA(S)
S ,

where Irr(A) is a set or representatives of isomorphism classes of simple
A-modules, and PS denotes a projective cover of S.

2. In particular M has polynomial growth if and only if for any simple
A-module S, there exists constants c, d and e such that

∀n ∈ N, dimk ExtnA(M,S) ≤ c nd + e .

Proof : Assertion 1 follows by décalage from the case n = 0, and from the
fact that the largest semisimple quotient of M is isomorphic to

⊕
S∈Irr(A)

Sdimk Ext0A(M,S)/ dimk EndA(S) .

Assertion 2 is a straightforward consequence of Assertion 1, since there are
finitely many simple A-modules, up to isomorphism.
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2.4. Remark : In particular, if M has polynomial growth, then any direct
summand of M has polynomial growth.

Conversely, the class of modules with polynomial growth is closed under
extensions. More precisely :

2.5. Lemma : Let A be a finite dimensional algebra over a field k.

1. If L
f−→ M

g−→ N is an exact sequence of finite dimensional k-vector
spaces, then

dimkM ≤ dimk L+ dimkN ,

with equality if and only if f is injective and g is surjective.

2. Let
0 −→ L −→M −→ N −→ 0

be a short exact sequence of finitely generated A-modules. If two of the
modules L, M , and N have polynomial growth, so does the third.

Proof : For Assertion 1, there is a short exact sequence

0 −→ Im f −→M −→ Im g −→ 0 ,

hence dimkM = dimk Im f+dimk Im g ≤ dimk L+dimkN . Equality holds if
and only if dimk Im f = dimk L and dimk Im g = dimkN , i.e. if f is injective
and g is surjective.

For Assertion 2, let S be a finitely generated A-module. Consider the
long exact sequence of Ext-groups

· · · → ExtnA(N,S) → ExtnA(M,S) → ExtnA(L, S) → Extn+1
A (N,S) → · · ·

It follows from Assertion 1 that

dimk ExtnA(M,S) ≤ dimk ExtnA(N,S) + dimk ExtnA(L, S) ,

hence if L and N have polynomial growth, so does M . Similarly,

dimk ExtnA(N,S) ≤ dimk ExtnA(M,S) + dimk Extn−1
A (L, S) ,

It follows that N has polynomial growth if L ands M have. Finally,

dimk ExtnA(L, S) ≤ dimk ExtnA(M,S) + dimk Extn+1
A (N,S) ,

hence L has polynomial growth if M and N do.
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2.6. Corollary : Let A be a finite dimensional algebra over a field k. The
following conditions are equivalent :

1. Every finitely generated A-module has polynomial growth.

2. Every simple A-module has polynomial growth.

Proof : Obviously Condition 1 implies Condition 2. The converse follows by
induction on the length of a finitely generated A-module.

3. Cohomological Mackey functors

3.1. Definition. Let R denote an arbitrary commutative unital ring.
Recall that A Mackey functor M for G over R consists of the assignment
H 7→ M(H) of an R-module to each subgroup H of G, together with maps
of R-modules

tKH : M(H) −→M(K) ,

called transfer maps, and

rKH : M(K) −→M(H) ,

called restriction maps, whenever H ≤ K ≤ G, and maps of R modules

cx,H : M(H) −→M(xH) ,

for each x ∈ G, subject to a list of compatibility conditions, in particular
the Mackey formula (cf. [9] for details). A Mackey functor M is called
cohomological if the additional conditions

tKHr
K
H = |K : H|IdM(H)

are fulfilled, for any H ≤ K ≤ G.
There is an obvious notion of morphism of (cohomological) Mackey func-

tors, and this yields the category Mc
R(G) of cohomological Mackey functors

for G over R.

3.2. Example (fixed points functors) : In particular, when V is an RG-
module, then the fixed point functor FPV is the Mackey functor defined by
FPV (H) = V H , i.e. the set of elements of V which are invariant by H. When
H ≤ K ≤ H, the transfer map V H −→ V K is the relative trace map TrKH ,
defined by

TrKH(v) =
∑

x∈[K/H]

yv ,
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for any v ∈ V H , where [K/H] is a transversal of H in K. The restriction
map V K −→ V H is the inclusion map, and for x ∈ G, the conjugation map
V H −→ V

xH is the map v 7→ xv. The functor FPV is obviously cohomologi-
cal.

The correspondence V 7→ FPV is a functor from RG-Mod to Mc
R(G). This

functor is fully faithful : if V and W are RG-modules, then any morphism
ϕ : FPV → FPW in Mc

k(G) is equal to FPf , where f is the morphism of
RG-modules from V = FPV (1) to W = FPW (1) obtained by evaluating ϕ
at the trivial subgroup of G.

3.3. The cohomological Mackey algebra. It was shown by Thévenaz
and Webb (cf. [9]) that Mc

R(G) is equivalent to the category of modules over
the cohomological Mackey algebra coµR(G) for G over R. More precisely,
if M is a cohomological Mackey functor for G over R, then the corresponding
coµR(G)-module is equal to ⊕

H≤G
M(H).

The algebra coµR(G) is a finitely generated free R-module, so in particular
when R is a field, it is a finite dimensional R-algebra. In this case, there is
a natural notion of projective cover of a finitely generated coµR(G)-module,
hence a natural notion of minimal projective resolution of a cohomological
Mackey functor.

3.4. Yoshida’s theorem. Let permR(G) denote the full subcategory of
the category RG-mod of finitely generated RG-modules, consisting of permu-
tation RG-modules, i.e. modules admitting a (globally) G-invariant R-basis.
It is an R-linear category, which is naturally equivalent to the opposite cate-
gory : indeed, the dual V ∗ = HomR(V,R) of a finitely generated permutation
RG-module is again a finitely generated permutation RG-module, and the
correspondence δ : V 7→ V ∗ is an equivalence of categories from permR(G) to
permR(G)op, which is its own inverse (up to a slight abuse of notation).

When M is a cohomological Mackey functor for G over R, then the cor-
respondence

V 7→ HomMc
R(G)(FPV ,M)

is an R-linear contravariant functor M̃ from permR(G) to R-mod. This yields
in turn an R-linear functor M 7→ M̃ from Mc

R(G) to FunR(G), where FunR(G)
denotes the category of R-linear contravariant functors from permR(G) to
R-mod.

Conversely, if F is such a functor, andH is a subgroup ofG, one can define
F̂ (H) = F

(
R(G/H)

)
, where R(G/H) is the free R-module with basis the

G-set G/H of H-cosets in G. If H ≤ K ≤ G, then the projection map pKH :
G/K −→ G/H gives a map of RG-modules RpKH : R(G/K) −→ R(G/H),
and taking image by F gives a transfer map tKH = F (pKH) : F̂ (H) −→ F̂ (K).

7



Similarly, applying first the equivalence δ gives a map rKH = F
(
δ(RpKH)

)
:

F̂ (K) −→ F̂ (H). Finally, if x ∈ G, then the map gxH 7→ gxH induce a
map R(G/xH) −→ R(G/H), whose image by F yields a conjugation map
cx,H : F̂ (H) −→ F̂ (xH). With these definitions F̂ becomes a cohomological

Mackey functor for G over R, and the correspondence F 7→ F̂ is a functor
from FunR(G) to Mc

R(G). The following theorem is essential :

3.5. Theorem : [Yoshida [10]] The functors M 7→ M̃ and F 7→ F̂ are
mutual inverse equivalences of categories between Mc

R(G) and FunR(G).

3.6. Remark : One checks easily that if V is an RG-module, then the
functor FPV is mapped to the functor HomRG(−, V ) by this equivalence.
For this reason, this functor will also be denoted by FPV . More generally,
Yoshida’s equivalence allows for an identification of Mc

R(G) with FunR(G),
that will be used freely throughout the rest of this paper.

3.7. Remark : In particular, if V is a permutation RG-module, then the
Yoneda functor FPV = HompermR(G)(−, V ) is a projective object in FunR(G).
More precisely, if M is a cohomological Mackey functor for G over R, and H
is a subgroup of G, there is an isomorphism of R-modules

(3.8) HomMc
R(G)(FPR(G/H),M) ∼= M(H) .

It follows more generally that if V is a direct summand of a permutation RG-
module, then the functor FPV is a projective object in Mc

R(G). Thévenaz and
Webb (cf. [9]) have shown conversely that any projective object in Mc

R(G)
is isomorphic to FPV , where V is a direct summand of a permutation RG-
module.

3.9. Remark : It also follows that the category FunR(G) is equivalent to
the category of modules over the Hecke algebra

YR(G) = EndRG
( ⊕
H≤G

R(G/H)
)
.

One can show easily that this algebra is actually isomorphic to the cohomo-
logical Mackey algebra coµR(G) (cf. [4]). The YR(G)-module corresponding
to the object F of FunR(G) (resp. to the cohomological Mackey functor M
for G over R) under these equivalences, is equal to ⊕

H≤G
F

(
R(G/H)

)
(resp.

to ⊕
H≤G

M(H)). In particular F is finitely generated (resp. M is finitely gen-

erated) if and only if F (W ) is a finitely generated R-module, for any finitely
generated permutation RG-module W (resp. M(H) is a finitely generated
R-module, for any H ≤ G).
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3.10. The dual of a Mackey functor. If M is a Mackey functor for G
over R, then the dual Mackey functor M∗ is defined by

∀H ≤ G, M∗(G) = HomR

(
M(G), R

)
.

The transfer, restriction, and conjugation maps for M∗ are defined by

rKH = τ (tKH) , tKH = τ (rKH ) , cx,H = τ (cx−1,xH) ,

for anyH ≤ K ≤ G and any x ∈ G, where the exponent τ denotes transposed
maps.

If M is cohomological, then M∗ is also cohomological. Through the equiv-
alence given by Yoshida’s Theorem 3.5, this duality maps the functor F of
FunR(G) to the functor F ∗ defined as the composition

permR(G)
∗−→ permR(G)op

F−→ R-Mod
∗−→ R-Modop .

3.11. Remark : The correspondence M 7→ M∗ is a functor from Mc
R(G)

to the opposite category. The canonical morphism from M to its bidual
(M∗)∗ is functorial in M , and it is an isomorphism when R is a field k
and M is finitely generated. In other words, the correspondence M 7→ M∗

induces an equivalence from the category of finitely generated cohomological
Mackey functors for G over k to the opposite category. Thus, for any finitely
generated cohomological Mackey functors M and N for G over k, there is a
natural isomorphism

HomMc
k(G)(M,N) ∼= HomMc

k(G)(N
∗,M∗) .

The functor M is a finitely generated projective object in Mc
k(G) if and only

if M∗ is a finitely generated injective object in Mc
k(G), and the previous

isomorphism extends to natural isomorphisms

ExtnMc
k(G)(M,N) ∼= ExtnMc

k(G)(N
∗,M∗) ,

for any n ∈ N.

3.12. Construction of functors. Let G and H be finite groups. If U is
a finite (H,G)-biset consider the R-linear functor

tU : V 7→ RU ⊗RG V

from RG-mod to RH-mod maps permutation RG-modules to permutation
RH-modules. By composition, this induces a functor

LU : F 7→ F ◦ tU
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from FunR(H) to FunR(G). Since the right adjoint to the functor tU is the
functor

hU : W 7→ HomRH(RU,W ) ,

it follows from standard results of category theory that the functor

RU : F 7→ F ◦ hU

from FunR(G) to FunR(H), is right adjoint to LU .

3.13. Remark : The functors LU and RU are a generalization of functors
considered by Tambara (see [8] Section 4).

3.14. Proposition :

1. Let G and H be finite groups, and U be a finite (H,G)-biset. Then the
functors RU and LU are exact.

2. Let G and H be finite groups. If U and U ′ are isomorphic finite (H,G)-
bisets, then there are isomorphisms of functors LU ∼= LU ′ and RU ∼= RU ′.

3. Let G, H, and K be finite groups. Let U be a finite (H,G)-biset, and V
be a finite (K,H)-biset. Then there are isomorphisms of functors

RV ◦ RU ∼= RV×HU , LU ◦ LV ∼= LV×HU .

4. Let G be a finite group, and let IdG denote the identity biset for G, i.e.
the set G for its (G,G)-biset structure given by multiplication. Then
the functor LIdG

and RIdG
are isomorphic to the identity functor.

5. Let G and H be finite groups. If U and U ′ are finite (H,G)-bisets,
there are isomorphisms of functors

LUtU ′ ∼= LU ⊕ LU ′ , RUtU ′ ∼= RU ⊕ RU ′ .

6. Let G and H be finite groups, and U be a finite (H,G)-biset. Then for
any object F of FunR(G), there is an isomorphism

RUop(F )∗ ∼= LU(F ∗)

in FunR(H), which is functorial in F .

Proof : Assertion 1 is obvious, since the functors RU and LU are obtained by
pre-composition with some functor (in other words, they are both restriction
functors along a suitable functor).
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Assertion 2 is a consequence of the isomorphisms of functors tU ∼= tU ′ , and
hU ∼= hU ′ , which both follow from the isomorphism RU ∼= RU ′ of (RH,RG)-
bimodules.

For Assertion 3, the associativity of tensor product gives an isomorphism
of functor

tV ◦ tU ∼= tV×HU ,

which by adjunction, gives the isomorphism of functors

hU ◦ hV ∼= hV×HU .

The isomorphisms of Assertion 3 follow by composition.
Assertion 4 follows from the fact that the functors tIdG

and tIdG
are both

isomorphic to the identity functor. Similarly, Assertion 5 follows from similar
additivity properties of the functors tU and hU with respect to U .

For Assertion 6, let W be an object of permR(G). Then

RUop(F )∗(W ) = HomR

(
RUop(F )(W ∗), R

)

= HomR

(
F

(
HomRG

(
RU op,HomR(W,R)

))
, R

)

∼= HomR

(
F

(
HomR(RU ⊗RGW,R)

)
, R

)

= LU(F ∗)(W ) ,

and these isomorphisms are functorial with respect to W .

3.15. Proposition : Let G and H be finite groups, and U be a finite
(H,G)-biset.

1. If V is an RH-module, then

LU(FPV ) = FPHomRH(RU,V ) .

In particular, the functor LU maps projective objects to projective ob-
jects.

2. If G acts freely on U , then LU ∼= RUop, where U op denotes the opposite
biset of U .

Proof : For Assertion 1, there is an isomorphism of functors

HomRG

(−,HomRH(RU, V )
) ∼= HomRH(RU ⊗RG −, V ) .

In other words FPV ◦ tU ∼= FPHomRH(RU,V ).
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The last part of Assertion 1 follows from the facts that if V is a per-
mutation RH-module, then HomRH(RU, V ) = hU(V ) is a permutation RG-
module. An alternative proof consists in observing that since LU is left adjoint
to an exact functor, it maps projective objects to projective objects.

For Assertion 2, for any RG-module W , there is an isomorphism of RH-
modules

RU ⊗RGW −→ HomRG(RU op,W ) ,

defined by sending u⊗w, for u ∈ U and w ∈ W , to the map sending v ∈ U op

(recall that U = U op as a set) to gw, if there exists an element g ∈ G such
that v = ug−1 (and in this case there is a unique such g, since G acts freely
on U), and to 0 otherwise. This isomorphism is obviously functorial in W ,
and this completes the proof.

3.16. Proposition : Let G and H be finite groups, and U be a finite (H,G)-
biset. Then for any n ∈ N, the adjunction of the pair (LU ,RU) induces an
isomorphism of bifunctors

ExtnFunR(G)

(
LU(−),−) ∼= ExtnFunR(H)

(−,RU(−)
)
.

Proof : This follows from the fact that LU and RU are both exact functors.

3.17. Remark : In terms of Yoneda extensions, this isomorphism can be
viewed as follows : the adjunction of the pair (LU ,RU) is equivalent to the
existence of natural transformation of functors

η : Id −→ RU ◦ LU and ε : LU ◦ RU −→ Id ,

called respectively the unit and counit of the adjunction, with the property
that for each object M in FunR(G) and each object N in FunR(H),

εLU (N) ◦ LU(ηN) = IdLU (N) and RU(εM) ◦ ηRU (M) = IdRU (M) .

The bijection HomFunR(G)

(
LU(N),M

) −→ HomFunR(H)

(
N,RU(M)

)
is given

by α 7→ RU(α) ◦ ηN . The inverse bijection is given by β 7→ εM ◦ L(β).
In other words, these bijections consist in taking images by one of the

functors, and then compose on the suitable side with unit or counit.
Now interpreting the extension group ExtnFunR(G)

(
LU(N),M

)
a the set of

equivalence classes of exact sequences in FunR(G) of the form

0 // M // Xn−1
// · · · // X1

// X0
// LU(N) // 0 ,
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the procedure is the same : first apply the functor RU(−), to get an exact
sequence

0 // RU(M) // RU(Xn−1) // · · · // RU(X1) // RU(X0) // RU ◦ LU(N) // 0 ,

and then compose with the map ηN , i.e. complete the cartesian square at
the right of the following diagram

0 // RU(M) // RU(Xn−1) // · · · // RU(X1) // RU(X0) // RU ◦ LU(N) // 0

0 // RU(M) // RU(Xn−1) // · · · // RU(X1) // Y0
//

OO

N //

ηN

OO

0 .

The inverse bijection is obtained similarly by first applying the functor LU ,
and composing with the map εM , i.e. completing a cocartesian square at the
left of the resulting diagram.

3.18. Remark : It follows easily that the isomorphisms of functors

αn : ExtnFunR(G)

(
LU(−),−) ∼=−→ ExtnFunR(H)

(−,RU(−)
)
.

of Proposition 3.16, are compatible with the Yoneda product, in the following
sense : if P is an object of FunR(H), and if M and N are objects of FunR(G),
if e ∈ ExtnFunR(G)

(
LU(P ), N

)
and f ∈ ExtmFunR(G)(N,M), then

αm+n(f ◦ e) = RU(f) ◦ αn(e) ∈ Extm+n
FunR(H)

(
P,RU(M)

)
.

3.19. Example (induction and restriction) : Let G be a subgroup of H.
Set U = H, viewed as an (H,G)-biset by left and right multiplication. Then
the functor V 7→ RU ⊗RG V from RG-mod to RH-mod is isomorphic to the
induction functor V 7→ IndHGV . It follows that the functor LU is isomorphic
to the restriction functor ResHG : Mc

R(H) −→ Mc
R(G) in this case.

In the same situation, the functor W 7→ HomRH(RU,W ) from RH-mod
to RG-mod is isomorphic to the restriction functor ResHG . It follows that the
functor RU is isomorphic to the induction functor IndHG : Mc

R(G) −→ Mc
R(H).

3.20. Example (restriction and induction) : Suppose now that H is
a subgroup of G, and consider U = G as an (H,G)-biset by left and right
multiplication. Then the functor V 7→ RU ⊗RG V from RG-mod to RH-mod
is isomorphic to the restriction functor V 7→ ResGHV . It follows that the
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functor LU is isomorphic to the induction functor IndGH : Mc
R(H) −→ Mc

R(G)
in this case.

In the same situation, the functor W 7→ HomRH(RU,W ) from RH-mod
to RG-mod is isomorphic to the induction functor ResHG . It follows that the
functor RU is isomorphic to the induction functor IndHG : Mc

R(G) −→ Mc
R(H).

This yields another proof of the well known fact that the induction and
restriction functors between categories of cohomological Mackey functors are
left and right adjoint to each other (cf. [9] for details).

3.21. Example (the functor ρGG/N) : Let H be a finite group, and N be

a normal subgroup of H, and set G = H/N . Also set U = G, viewed as an
(H,G)-biset in the obvious way. In this case, the functor tU is the inflation
functor from RG-mod to RH-mod. Using the equivalences of categories of
Theorem 3.5, the functor LU gives a functor denoted by ρHH/N , from Mc

R(H)

to Mc
R(H/N). One checks easily that if M is a cohomological Mackey functor

for H over R, then, denoting by x 7→ x the projection map H −→ H/N

(
ρHH/N(M)

)
(K) = M(K) .

Similarly, the transfer, restriction, and conjugation maps for the functor
ρHH/N(M) are obtained by just “removing the bars”, i.e.

tL
K

= tLK , rL
K

= rLK , cx,K = cx,K .

The right adjoint to ρHH/N is the functor RU , hereafter denoted by GG/N .

Moreover Assertion 3 of Proposition 3.15 shows that the functor ρGG/N is

also equal to the functor RUop . In particular, the left adjoint to ρGG/N is the

functor LUop , hereafter denoted by ıGG/N .

3.22. Example (the functor ıGG/N) : The left adjoint to the functor ρGG/N
will be denoted by ıGG/N . It is obtained as follows : if M is a cohomological

Mackey functor for G/N , and K is a subgroup of G, then

(
ıGG/N(M)

)
(K) = M(KN/N) .

If K ≤ L ≤ G, then the transfer, restriction, and conjugation maps for the
functor ıGG/N(M) are given by

tLK = |L ∩N : K ∩N |tLN/NKN/N , rLK = r
LN/N
KN/N , cx,K = cxN,KN/N .
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3.23. Example (the functor GG/N) : The right adjoint to the functor ρGG/N
will be denoted by GG/N . It is obtained as follows : if M is a cohomological

Mackey functor for G/N , and K is a subgroup of G, then

(
GG/N(M)

)
(K) = M(KN/N) .

If K ≤ L ≤ G, then the transfer, restriction, and conjugation maps for the
functor GG/N(M) are given by

tLK = t
LN/N
KN/N , rLK = |L ∩N : K ∩N |rLN/NKN/N , cx,K = cxN,KN/N .

3.24. Remark : The functors ıGG/N and GG/N should not be confused with

the inflation functor InfGG/N : recall (cf. [9]) that if N is a normal subgroup
of a finite group G, and M is a Mackey functor for G/N over R, then the
functor InfGG/NM is the Mackey functor for G over R defined by

(InfGG/NM)(H) =

{
M(H/N) if H ≥ N
{0} otherwise

.

The transfer, restriction, and conjugation maps are the obvious ones. In
general, this inflation procedure does not preserve cohomological Mackey
functors : indeed, if M is cohomological, and if K < H are subgroups of G
such that H ≥ N but K 6≥ N , then the composition

tHKr
H
K : (InfGG/NM)(H) −→ (InfGG/NM)(H)

is equal to 0, so it is not equal in general to the multiplication by |H : K|.
However, if N is a p-group, for some prime number p, then p divides

|KN : K| = |N : K ∩ N |, hence p divides |H : K|. If moreover R has
characteristic p, then |H : K| = 0 in R in this situation, and one checks
then that InfGG/NM is cohomological. In this case, the inflation functor
Mc
R(G/N) −→ Mc

R(G) corresponds via Yoshida’s equivalence of categories
to the functor FunR(G/N) −→ FunR(G) obtained by composition with the
Brauer quotient functor V 7→ V [N ] from permR(G) to permR(G/N).

3.25. Example : group isomorphism : Let f : G → H be a group
isomorphism. Then the set U = H has a natural structure of (H,G)-biset,
for which h ∈ H acts by left multiplication by h, and g ∈ G acts by right
multiplication by f(g). It is clear in this case that the functor RU is the
transport by isomorphism via f . This functor will be denoted by Iso(f). The
functor LU is isomorphic to Iso(f−1), by Assertion 3 of Proposition 3.15.
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Recall that a section (B,A) of G is a pair of subgroups of G such that
AEB.

3.26. Lemma : Let G be a finite group, and (B,A) be a section of G.
Then there is an isomorphism

IndGB ı
B
B/A

∼= LA\G

of functors from Mc
R(B/A) to Mc

R(G), where A\G is endowed with its natural
(B/A,G)-biset structure. Similarly, there is an isomorphism

ρBB/AResGB
∼= LG/A

of functors from Mc
R(G) to Mc

R(B/A), where G/A is endowed with its natural
(G,B/A)-biset structure.

Proof : The functor IndGB ı
B
B/A is equal to the composition of IndGB = LV ,

where V is the set G for its natural (B,G)-biset structure, and ıBB/A = LU ,

where U is the set B/A, for its natural (B/A,B)-biset structure. It follows
from Proposition 3.14 that IndGBı

B
B/A

∼= LW , where W = (B/A)×BG is clearly

isomorphic to the (B/A,G)-biset A\G.
By adjunction, it follows that ρBB/AResGB

∼= RA\G. But RA\G ∼= LG/A by

Assertion 3 of Proposition 3.15, since B/A acts freely on G/A.

3.27. Proposition : Let G be a finite group, and (B,A), (D,C) be two
sections of G. Then there is an isomorphism

ρDD/C ResGD IndGB ı
B
B/A

∼= ⊕
g∈[D\G/B]

IndD
Dg

ı
Dg

Dg/Cg
Iso(fg) ρ

Bg

Bg/Ag
ResB

Bg

of functors from Mc
k(B/A) to Mc

k(D/C), where

D = D/C, Dg = (D ∩ gB)C/C, Cg = (D ∩ gA)C/C ,

B = B/A, Bg = (Dg ∩B)A/A, Ag = (Cg ∩B)A/A ,

and where fg : Bg/Ag −→ Dg/Cg is the group isomorphism sending xAg to
gxCg, for x ∈ Dg ∩B.

Proof : (see Proposition7.1 of [5] for details) By Lemma 3.26 and Proposi-
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tion 3.14, there are isomorphisms of functors

ρDD/CResGDIndGBı
B
B/A

∼= LG/C ◦ LA\G
∼= LA\G×GG/C

∼= LA\G/C .

Now the (B/A,D/C)-biset A\G/C splits as a disjoint union of transitive
ones

A\G/C ∼=
⊔

g∈[D\G/B]

A\Bg−1D/C .

Moreover for each g ∈ [D\G/B], with the above notation, there is an iso-
morphism of (B,D)-bisets

A\Bg−1D/C ∼= (B/Ag)×Bg/Ag
Iso(fg)×Dg/Cg

(Cg\D) .

By Lemma 3.26 and Proposition 3.14 again, there is an isomorphism of func-
tors

LA\Bg−1D/B
∼= IndD

Dg
◦ ıDg

Dg/Cg
◦ Iso(fg) ◦ ρBg

Bg/Ag
◦ ResB

Bg
,

as was to be shown.

4. Reduction to p-groups

4.1. Lemma : Let k be a field, let G and H be finite groups, and U be a
finite (H,G)-biset.

1. If F is an object of Funk(H), then

dimk LU(F ) ≤ CU dimk F ,

where CU =
∑
K≤G

|H\U/K|.

2. If F is an object of Funk(H), and if F has polynomial growth, then so
does LU(F ).

Proof : Let F be an object of Funk(H). The coµk(G)-module corresponding
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to LU(F ) is equal to ⊕
K≤G

LU(F )
(
k(G/K)

)
, by Remark 3.9. Thus

dimk LU(F ) =
∑
K≤G

dimk F
(
kU ⊗kG k(G/K)

)

=
∑
K≤G

dimk F
(
k(U/K)

)

=
∑
K≤G

∑

u∈[H\U/K]

dimk F
(
k(H/HuK)

)
,

where HuK = {h ∈ H | ∃g ∈ K, hu = ug}. Now for each K ≤ G and each
u ∈ [H\U/K]

dimk F
(
k(H/HuK)

) ≤ dimk F =
∑
L≤H

dimk F
(
k(H/L)

)
,

thus
dimk LU(F ) ≤

( ∑
K≤G

∑

u∈[H\U/K]

1
)

dimk F ,

showing Assertion 1.
Now if

· · ·Pn −→ Pn−1 −→ · · · −→ P0 −→ F −→ 0

is a projective resolution with polynomial growth, there are constants c, d,
and e, such that dimk Pn ≤ cnd + e, for all n ∈ N. Now the complex

· · · LU(Pn) −→ LU(Pn−1) −→ · · · −→ LU(P0) −→ LU(F ) −→ 0

is a projective resolution LU(F ), since LU is exact and maps projective objects
to projective objects. Moreover

dimk LU(Pn) ≤ CU dimk Pn ≤ CUcn
d + CUe ,

so LU(F ) has polynomial growth.

4.2. Proposition : Let G be a finite group, and (B,A) be a section of G.
Let k be a field, and N be a cohomological Mackey functor for B/A over k.
Then the following conditions are equivalent :

1. The functor N has polynomial growth.

2. The functor IndGB ı
B
B/A(N) has polynomial growth.
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Proof : The functor IndGB ı
B
B/A is isomorphic to LW , where W is the (B/A,G)

bisetA\G, by Lemma 3.26, so Condition 1 implies Condition 2, by Lemma 4.1.
Conversely, if LW (N) has polynomial growth, then so does LW op◦LW (N) ∼=

LW×GW op(N), by Lemma 4.1. But W ×G W
op ∼= A\G/A, as a (B/A,B/A)-

biset. In particular, it is the disjoint union of the identity biset IdB/A = B/A
and some other (B/A,B/A)-biset. By Assertions 4 and 5 of Proposition 3.14,
it follows that the identity functor is a direct summand of LW×GW op . In par-
ticular N is isomorphic to a direct summand of LW×GW op(N), and N has
polynomial growth, by Remark 2.4. Thus Condition 2 implies Condition 1.

4.3. Lemma : Let G be a finite group and M be a cohomological Mackey
functor for G over R. Then for any subgroup H of G the composition

M −→ IndGHResGHM −→M

of the unit and counit morphisms of the adjoint pairs of functors
(ResGH , IndGH) and (IndGH ,ResGH) is equal to the multiplication by |G : H|.

Proof : This is because the same is true for the categories of RG-modules and
RH-modules, and the induction and restriction functors between them.

4.4. Proposition : Let k be a field of positive characteristic p. Let G be a
finite group, and S be a subgroup of G, containing a Sylow p-subgroup of G.
Then for any cohomological Mackey functor M for G over k, the following
conditions are equivalent :

1. The functor M has polynomial growth.

2. The functor ResGSM has polynomial growth.

Proof : Condition 1 implies Condition 2, by Lemma 4.1. Conversely, if
ResGSM has polynomial growth, so does IndGSResGSM , by Lemma 4.1 again.
Now Lemma 4.3 shows that M is a direct summand of IndGSResGSM , since
|G : S| is non zero in k. Hence M has polynomial growth, by Remark 2.4.

4.5. Definition : Let k be a field. A finite group G is called a poco group
over k if every finitely generated cohomological Mackey functor for G over k
has polynomial growth.

4.6. Corollary : Let k be a field of characteristic p. Let G be a finite group,
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and S be a Sylow p-subgroup of G. Then G is a poco group over k if and
only if S is a poco group over k.

Proof : Indeed, if G is a poco group, and N is a cohomological Mackey func-
tor for S over k, then IndGSN has polynomial growth, and N has polynomial
growth, by Proposition 4.2, applied to the section (S,1) of G. So S is a poco
group.

Conversely, if S is a poco group, andM is a cohomological Mackey functor
for G over k, the ResGSM has polynomial growth, so M has polynomial
growth, by Proposition 4.4.

4.7. Proposition : Let k be a field, and G be a finite group. The following
conditions are equivalent :

1. The group G is a poco group over k.

2. For any finitely generated kG-module V , the functor FPV has a poly-
nomial growth.

Proof : Obviously Condition 1 implies Condition 2. Conversely, observe that
since any morphism from FPL to FPN , where L and N are kG-modules, is
determined by a morphism of kG-modules from L toN , for any cohomological
Mackey functor M for G over k, there is a short exact sequence

0 −→ FPV −→ FPL −→ FPN −→M −→ 0 ,

where L and N are permutation kG-modules, and V is the kernel of a mor-
phism of kG-modules from L to N . Now if FPV has polynomial growth, so
does M .

5. Proof of Theorem 1.1

Corollary 4.6 shows that G is a poco group if and only if S is a poco group,
where S is a Sylow p-subgroup of G. Now by Proposition 4.2, if (B,A) is a
section of S, the factor group B/A is also a poco group.

It will be shown in Sections 9 and 10 that an elementary abelian p-group
is a poco group if and only if it has rank at most 1, when p > 2, or at most 2,
when p = 2. It will follow that if G is a poco group, then S has sectional
rank at most 1 if p > 2, which implies that S is cyclic, or at most 2 if p = 2.
In other words, Condition 1 of Theorem 1.1 implies Condition 2.

Conversely, it will be shown in Section 9 that cyclic p-groups are poco
groups. So Condition 2 of Theorem 1.1 implies Condition 1, when p > 2. The
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corresponding assertion for p = 2 will be stated in Section 11, completing
the proof of Theorem 1.1.

6. Simple cohomological functors for p-groups

Recall (see [9] for details) that if G is a p-group, the simple cohomologi-
cal Mackey functors for G over k, up to isomorphism, are in one to one
correspondence with the subgroups of G, up to conjugation. The simple
functor SGQ (also denoted by SQ if G is clear from context) corresponding to
the subgroup Q is defined by

∀T ≤ G, SGQ(T ) =

{
k if T =G Q

{0} otherwise.

The projective cover of the functor SGQ is the fixed point functor FPkG/Q.
Moreover EndMc

k(G)(S
G
Q) ∼= k, and SGQ is self dual (i.e. (SGQ)∗ ∼= SGQ).

6.1. Lemma : Let k be a field of characteristic p, and G be a p-group.
There is a short exact sequence in Mc

k(G)

0 −→ FPΩG
−→ FPkG −→ SG1 −→ 0 ,

where ΩG is the kernel of the augmentation map ε : kG→ k.

Proof : Consider the exact sequence of kG-modules

0 −→ ΩG −→ kG
ε−→ k −→ 0 .

Since fixed point functors are left exact, the inclusion ΩG ⊆ kG yields an
inclusion FPΩG

⊆ FPkG. Let S denote the quotient functor. In particular
S(1) ∼= k. And if Q is a non-trivial subgroup of G, then (kG)Q = TrQ1 (kG) ⊆
ΩG. Thus (ΩG)Q = (kG)Q, and S(Q) = {0}. Hence S ∼= SG1 .

6.2. Theorem : [Samy Modeliar [7]] Let k be a field of characteristic p,
and G be a finite p-group. Then

Ext1
Mc

k(G)(S
G
1 , S

G
1 ) ∼= HomZ

(
G/

(
Φ(G)I(G)

)
, k+

)
,

where k+ is the additive group of k, where Φ(G) is the Frattini subgroup of G,
and I(G) is the subgroup of G generated by elements of order 2 (so I(G) = 1
if p > 2).
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Proof : By Lemma 6.1, there is an exact sequence

0 −→ k → k −→ HomMc
k(G)(FPΩG

, SG1 ) −→ Ext1
Mc

k(G)(S
G
1 , S

G
1 ) −→ 0 ,

hence Ext1
Mc

k(G)(S
G
1 , S

G
1 ) ∼= HomMc

k(G)(FPΩG
, SG1 ).

Now a morphism ϕ : FPΩG
→ SG1 is entirely determined by its evaluation

at the trivial group, which is a morphism of kG-modules from ΩG to k.
Conversely, a morphism of kG-modules f : ΩG → k is the evaluation at 1
of a morphism of Mackey functors from FPΩG

to SG1 if and only if it maps
(ΩG)Q = rQ1 FPΩG

(Q) to rQ1 S
Q
1 (Q) = {0}, for any non-trivial subgroup Q

of G, or equivalently, for any subgroup Q of order p of G.
In other words f is a G-invariant linear form on the space

ΩG/
∑
Q≤G
|Q|=p

TrQ1 kG ,

i.e. a linear form on ΩG such that

(6.3) f
(
h(g − 1)− (g − 1)

)
= 0, ∀g, h ∈ G ,

and

(6.4) f(1 + x+ · · ·+ xp−1) = 0, ∀x ∈ G, |x| = p .

Now ΩG is generated as a k-vector space by the elements dg = g − 1, for
g ∈ G, and the only relations between these generators are d1 = 0. Hence a
linear form f on ΩG is determined by the values u(g) = f(g − 1), subject to
u(1) = 0. Since dhg = (hdg − dg) + dh + dg, for any g, h ∈ G, Equation 6.3 is
equivalent to

u(gh) = u(g) + u(h), ∀g, h ∈ G .

In other words u is a group homomorphism from G to k+ (note that this
implies u(1) = 0, as required). Equivalently u factors through a group ho-
momorphism G/Φ(G) → k+.

Now if x is an element of order p of G

1 + x+ · · ·+ xp−1 = d1 + dx + dx2 + · · ·+ dxp−1 ,

so Equation 2 is equivalent to

u(1) + u(x) + u(x2) + · · ·+ u(xp−1) = 0, ∀x ∈ G, |x| = p .
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If u is a group homomorphism from G to k+, this is equivalent to

(
0 + 1 + 2 + · · ·+ (p− 1)

)
u(x) =

(
p

2

)
u(x) = 0, ∀x ∈ G, |x| = p .

Now if p is odd, the integer
(
p
2

)
is a multiple of p, so this condition is satisfied

whenever u is a group homomorphism to k+. And if p = 2, this condition is
equivalent to

u(x) = 0, ∀x ∈ G, |x| = 2 .

This shows finally that HomMc
k(G)(FPΩG

, SG1 ) is isomorphic to the group of

homomorphisms from G/
(
Φ(G)I(G)

)
to k+, and this completes the proof.

6.5. Lemma : Let G be a finite p-group, and Q be a subgroup of G. Set
B = NG(Q), and denote by A = Φ(Q) the Frattini subgroup of Q. Then

SGQ
∼= IndGB ı

B
B/A(S

B/A
Q/A) ∼= LA\G(S

B/A
Q/A) ,

where A\G is viewed as a (B/A,G)-biset.

Proof : The second isomorphism follows from Lemma 3.26. As for the
first one, recall (see [9]) that SGQ = IndGBS

B
Q , so it suffices to show that

SGQ = ıGG/A(S
G/A
Q/A), when QEG. In this case, if H ≤ G

ıGG/A(S
G/A
Q/A)(H) = S

G/A
Q/A(HA/A) .

This is equal to k if HA = Q, and to zero otherwise. But HA = Q if and
only if H = Q, and this completes the proof.

6.6. Corollary : With the same notation,

SGQ
∼= IndGB 

B
B/A(S

B/A
Q/A) ∼= RG/A(S

B/A
Q/A) .

Proof : This follows from Lemma 6.5, using Proposition 3.14, and the fact
that SGQ is self dual.

6.7. Lemma : Let G be a p-group, let Q be a subgroup of G, and (B,A)
be a section of G. Then

ρBB/AResGB(SGQ) ∼= ⊕
Q′
S
B/A
Q′/A ,
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where Q′ runs through the set of G-conjugates of Q which contain A and are
contained in B, modulo B-conjugation.

Proof : Let H/A be a subgroup of B/A. Then
(
ρBB/AResGB(SGQ)

)
(H/A) =

(
ResGB(SGQ)

)
(H) = SGQ(H) ,

and this is equal to k if H is conjugate to Q in G, and to {0} otherwise.

7. Some cohomological functors for p-groups

7.1. Notation : Let G be a finite group. A subset S of the set of subgroups
of G will be called convex if

∀H ≤ K ≤ L ≤ G, H,L ∈ S ⇒ K ∈ S .

The set S will be called G-stable if it is invariant by G-conjugation.

The following is an extension of Assertion (ii) of Corollary 15.3 of [9] :

7.2. Proposition : Let k be a field of characteristic p, and G be a finite
group. The correspondence

M 7→ Suppp(M) = {H ≤ G | H is a p-group and M(H) 6= {0}}

induces a one to one correspondence between the set of isomorphism classes
of subquotients of the functor FPk and the set of G-stable convex subsets of
the set of p-subgroups of G. The inverse bijection maps the G-stable convex
subset S of p-subgroups of G to the class of the functor kS defined by

∀H ≤ G, kS(H) =

{
k if Hp ∈ S
{0} otherwise ,

where Hp denotes a Sylow p-subgroup of H.
When H ≤ K ≤ G, the restriction map rKH is equal to 0, except if Hp ∈ S

and Kp ∈ S, in which case rKH = 1. The transfer map tKH is multiplication by
|K : H| for all H ≤ K ≤ G. The conjugation map cx,H is always the identity
map kS(H) → kS(xH).

Proof : By Corollary 15.3 of [9], the correspondences

F 7→ Suppp(F ) = {Q | Q is a p-subgroup of G and F (Q) 6= {0}}
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and
T 7→ kT = <FPk(Q)>Q∈T

are mutual inverse bijections between the set of subfunctors of FPk and the
set of G-stable subsets of the set sp(G) of p-subgroups of G, which are closed
under taking subgroups.

By Proposition 2.4 of [9], the value of kT at some subgroup H of G is
equal to

kT =
∑
Q∈T
Q≤H

|H : Q|k .

This is equal to k if Hp ∈ T , and to zero otherwise. The restriction maps
between non zero values of kT are equal to the identity map of k. The transfer
map tKH is multiplication by |K : H|, and the conjugation maps are identity
maps (possibly zero).

It follows that any subquotient M of FPk is equal to kT /kT ′ , where T
and T ′ are G-stable subsets of sp(G), which are closed under taking sub-
groups, and such that T ′ ⊆ T . With the notation of Proposition 7.2, this
means that M ∼= kS , where S = T −T ′ is a G-stable convex subset of sp(G),
equal to Suppp(M).

Conversely, let S be a G-stable convex subset of sp(G). Set

T = {Q ∈ sp(G) | ∃S ∈ S, Q ≤ S}

T ′ = T − {Q ∈ sp(G) | ∃S ∈ S, S ≤ Q} .

Then T and T ′ are G-stable, and closed under taking subgroups. Moreover

T − T ′ = {Q ∈ sp(G) | ∃S, S ′ ∈ S, S ′ ≤ Q ≤ S} .

Thus T − T ′ = S, and kS = kT /kT ′ is a subquotient of FPk.
These correspondences M 7→ Suppp(M) and S 7→ kS are clearly mutual

inverse bijections between the set of isomorphism classes of subquotients
of FPk and the set of G-stable convex subsets of sp(G).

7.3. Corollary : Let G be a finite p-group, and Q ≤ R be subgroups of G.
Then there exists a unique object ΣG

Q,R of Mc
k(G) such that

∀H ≤ G, ΣG
Q,R(H) =

{
k if Q ≤G H ≤G R
{0} otherwise .
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and such that

∀H < K ≤ G, tKH = 0, rKH =

{
1 if Q ≤G H and K ≤G R
0 otherwise .

Moreover the socle of ΣG
Q,R is isomorphic to SGQ , and the head of ΣG

Q,R is
isomorphic to SGR .

Proof : Let S = {S ≤ G | Q ≤G S ≤G R}. Then S is a G-stable convex
set of subgroups of G, and the corresponding functor kS fulfills the required
conditions, so the functor ΣG

Q,R exists. The uniqueness follows from the fact
that the values of ΣG

Q,R are given, as well as the transfer and restriction
maps. The non zero conjugation maps cx,Q are determined by elements of
H1(G, IndGQk

×) ∼= HomZ(Q, k
×), which is equal to zero since G is a p-group.

So the conjugation maps are all identity maps (possibly zero).
Now a morphism ϕ from ΣG

Q,R to some functor N is entirely determined
by its evaluation ϕR : ΣG

Q,R(R) = k → N(R) : indeed, if S ≤ G and

ΣG
Q,R(S) 6= {0}, then Sg ≤ R for some g ∈ G, and then the map ψ = cg,SgrQSg

is an isomorphism from ΣG
Q,R(R) to ΣG

Q,R(S), such that ϕQ = cg,SgrQSgϕRψ
−1.

Hence the only simple quotient of ΣG
Q,R is SGR , with multiplicity one.

By a similar argument, a morphism from N to ΣG
Q,R is determined by its

value at Q, so the only simple subfunctor of ΣG
Q,R is SGQ , with multiplicity

one.

7.4. Notation : Let G be a finite p-group. If Q < R are subgroups of G

such that |R : Q| = p, the functor ΣG
Q,R will be denoted by

(
SGR
SGQ

)
. The dual

functor
(
ΣG
Q,R

)∗
will be denoted by

(
SGQ
SGR

)
. With this notation, there are non

split exact sequences in Mc
k(G)

(7.5) DQ,R : 0 −→ SGQ −→
(
SGR
SGQ

)
−→ SGR −→ 0 .

(7.6) D∗
Q,R : 0 −→ SGR −→

(
SGQ
SGR

)
−→ SGQ −→ 0 .

In particular, if X is a subgroup of order p of G, set DX = D1,X and
D∗
X = D∗

1,X , and denote by γGX (or γX if G is clear from the context) the

26



element of Ext2
Mc

k(G)(S
G
1 , S

G
1 ) represented by the exact sequence

ΓX : 0 −→ SG1 −→
(
SGX
SG1

)
−→

(
SG1
SGX

)
−→ SG1 −→ 0 ,

obtained by splicing the sequences DX and D∗
X .

8. Extensions of simple functors for p-groups

8.1. Lemma : Let G be a p-group, and Z be a central subgroup of order p
of G. Then there are isomorphisms

ıGG/Z(S
G/Z
1 ) ∼=

(
SGZ
SG1

)
, GG/Z(S

G/Z
1 ) ∼=

(
SG1
SGZ

)

in Mc
k(G). In particular, there are non-split exact sequences in Mc

k(G)

DZ : 0 −→ SG1 −→ ıGG/Z(S
G/Z
1 ) −→ SGZ −→ 0 .

D∗
Z : 0 −→ SGZ −→ GG/Z(S

G/Z
1 ) −→ SG1 −→ 0 .

Proof : Let H be a subgroup of G. Then ıGG/Z(S
G/Z
1 )(H) = S

G/Z
1 (HZ/Z) is

equal to k if HZ = Z, i.e. if H ≤ Z, and to zero otherwise. The conjugation
maps are all identity maps (possibly zero), the restriction map rZ1 is the

identity map of k, and the transfer map tZ1 is zero. Thus ıGG/Z(S
G/Z
1 ) ∼=

(
SGZ
SG1

)
.

The other isomorphism follows by duality, and the two exact sequences are
special cases of Sequences 7.5 and 7.6.

8.2. Corollary : For any n ∈ N, composition by DZ induces a group
isomorphism

Extn−1
Mc

k(G)(S
G
1 , S

G
1 ) ∼= ExtnMc

k(G)(S
G
Z , S

G
1 )

Proof : Indeed, for n ∈ N,

ExtnMc
k(G)

((SGZ
SG1

)
, SG1

) ∼= ExtnMc
k(G/Z)

(
S
G/Z
1 , ρGG/Z(SG1 )

)
= {0}
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by Proposition 3.16 and Lemma 6.7.

8.3. Corollary : Let k be a field of characteristic p, and G be a p-group.
If X is a subgroup of order p of G, then

Ext1
Mc

k(G)(S
G
X , S

G
1 ) ∼= k ∼= Ext1

Mc
k(G)(S

G
1 , S

G
X) .

Proof : Indeed NG(X) is equal to the centralizer C of X, since |X| = p, and
SGX = IndGCS

C
X . Thus for any n ∈ N

ExtnMc
k(G)(S

G
X , S

G
1 ) ∼= ExtnMc

k(C)(S
C
X ,ResGCS

G
1 )

∼= ExtnMc
k(C)(S

C
X , S

C
1 )

∼= Extn−1
Mc

k(C)(S
C
1 , S

C
1 )

by Corollary 8.2, since X is a central subgroup of order p of C. Corollary 8.3
follows, taking n = 1.

The isomorphism k ∼= Ext1
Mc

k(G)(S
G
1 , S

G
X) follows from Remark 3.11, since

the simple functors are self dual.

8.4. Notation : If N is a normal subgroup of a group G, contained in the
subgroup H of G, denote by KH(N) the set of complements of N in H, i.e.
the set of subgroups X of G such that NX = H and N ∩X = 1.

Denote by [NG(H)\KH(N)] a set of representatives of NG(H)-conjugacy
classes of subgroups in KH(N).

The following proposition is a generalization of Lemma 8.1 :

8.5. Proposition : Let G be a p-group, let Q be a subgroup of G, and Z be
a central subgroup of order p of G contained in Q. Then there are non-split
exact sequences in Mc

k(G)

0 −→ ⊕
X∈[NG(Q)\KQ(Z)]

SGX −→ ıGG/Z(S
G/Z
Q/Z ) −→ SGQ −→ 0 ,

0 −→ SGQ −→ GG/Z(S
G/Z
Q/Z ) −→ ⊕

X∈[NG(Q)\KQ(Z)]
SGX −→ 0 .

Proof : Since the simple functors are self dual, the second sequence is ob-
tained from the first by applying duality, by definition of the functor GG/Z
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and Assertion 6 of Proposition 3.14. So it suffices to prove the existence of
the first one.

Denote by I the functor ıGG/Z(S
G/Z
Q/Z ), and by R its radical. If H is a

subgroup of G, then I(H) = S
G/Z
Q/Z (HZ/Z) is equal to k if HZ =G Q, and

to zero otherwise. Moreover HZ = Q if and only if H = Q, or H ∈ KQ(Z),
since Z has order p. Equation 3.8 shows that the composition factors of I
are the functors SGQ and the functors SGX , for X ∈ [NG(Q)\KQ(Z)], each with
multiplicity 1.

Moreover, if Y is any subgroup of G, consider

HY = HomMc
k(G)

(
I, SGY

) ∼= HomMc
k(G/Z)

(
S
G/Z
Q/Z , ρ

G
G/Z(SGY )

)
.

Now ρGG/Z(SGY ) = {0} if Z 6≤ Y , and ρGG/Z(SGY ) = S
G/Z
Y/Z , by Lemma 6.7. Thus

HY = {0} unless Y =G Q, and HY
∼= k in this case.

This means that I/R is simple, isomorphic to SGQ . Moreover, if H is a
subgroup of G, then R(H) = {0} except if HZ =G Q and H ∩ Z = 1, i.e.
if H is conjugate to some element of KQ(Z) in G, and R(H) ∼= k in this case.
Hence R is isomorphic to the direct sum of the simple functors SGH , where H
runs in a set of representatives of G-conjugacy classes of such subgroups, i.e.
equivalently H ∈ [NG(Q)\KQ(Z)].

8.6. Theorem : Let k be a field of characteristic p > 0, let G be a
finite p-group. Let Q and R be subgroups of G, and let Z be a subgroup
of order p of Q ∩ R ∩ Z(G). Set G = G/Z, Q = Q/Z, R = R/Z, and
K = [NG(Q)\KQ(Z)].

Then, for any n ∈ N, there are short exact sequences of vector spaces

0 → ⊕
X∈K

Extn−1
Mc

k(G)(S
G
X , S

G
R ) → ExtnMc

k(G)(S
G
Q , S

G
R )

πn→ Extn
Mc

k(G)
(SG

Q
, SG

R
) → 0 ,

where the map πn is induced by ρGG/Z.

Proof : Applying HomMc
k(G)(−, SGR ) to the first exact sequence of Proposi-

tion 8.5 gives a long exact sequence

· · · //// ⊕
X∈K

Extn−1
Mc

k(G)(S
G
X , S

G
R ) //ExtnMc

k(G)(S
G
Q , S

G
R )

πn //Extn
Mc

k(G)
(SG

Q
, SG

R
)EDBC

GF@A
// ⊕
X∈K

ExtnMc
k(G)(S

G
X , S

G
R ) //Extn+1

Mc
k(G)(S

G
Q , S

G
R )

πn+1 // · · ·

where the image of an extension u ∈ ExtnMc
k(G)(S

G
Q , S

G
R ) under the map πn is
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obtained by first taking the image under the map

ϕ : ıGG/Z(S
G/Z
Q/Z ) → SGQ ∈ Ext0

Mc
k(G)

(
ıGG/Z(S

G/Z
Q/Z ), SGQ

)
,

and then using the adjunction isomorphisms

ExtnMc
k(G)

(
ıGG/Z(S

G/Z
Q/Z ), SGR

) ∼= Extn
Mc

k(G)

(
SG
Q
, ρGG/Z(SGR )

) ∼= Extn
Mc

k(G)
(SG

Q
, SG

R
) .

In other words, with the notation of Remark 3.18

πn(u) = αn(u ◦ ϕ) = ρGG/Z(u) ◦ α0(ϕ) = ρGG/Z(u) ,

since the map α0(ϕ) : S
G/Z
Q/Z → ρGG/Z(SGQ) ∼= S

G/Z
Q/Z obtained from ϕ by adjunc-

tion is the identity map. This shows that πn is induced by ρGG/Z .

Now the inflation functor InfGG/Z : Funk(G/Z) → Funk(G) is an exact

functor such that ρGG/Z ◦ InfGG/Z is isomorphic to the identity functor. Since

SZQ
∼= InfGG/Z(S

G/Z
Q/Z ) and SZR

∼= InfGG/Z(S
G/Z
R/Z ), this inflation functor induces a

map

σn : Extn
Mc

k(G)
(SG

Q
, SG

R
) → ExtnMc

k(G)(S
G
Q , S

G
R )

such that πn ◦ σn = Id. In particular πn is surjective, so the long exact
sequence above splits as a series of short exact sequences.

8.7. Proposition : Let k be a field of characteristic p > 0, let G be a
finite p-group, and H be a subgroup of index p in G. Set I = IndGHS

H
1 , and

let R and S denote respectively the radical and the socle of I as an object of
Mc
k(G). Then I ⊃ R ⊇ S ⊃ {0}. Moreover I/R ∼= S ∼= SG1 , and

R/S ∼= L⊕ ⊕
X∈[G\KG(H)]

SGX ,

where L is a functor all of whose composition factors are isomorphic to SG1 ,
with multiplicity p− 2.

Proof : Let Q be a subgroup of G. Then by Proposition 3.16

HomMc
k(G)(I, S

G
Q) ∼= HomMc

k(H)(S
H
1 ,ResGHS

G
Q) .

Moreover, by Lemma 6.7, the functor ResGHS
G
Q is isomorphic to the direct

sum of functors SHQ′ , where Q′ runs through a set of H-conjugacy classes of
G-conjugates of Q which are contained in H.

Thus HomMc
k(G)(I, S

G
Q) = {0} if Q 6= 1, and HomMc

k(G)(I, S
G
1 ) ∼= k. This

shows that I/R ∼= SG1 .
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A similar argument shows that HomMc
k(G)(S

G
Q , I) is equal to {0} if Q 6= 1,

and isomorphic to k if Q = 1. Thus S ∼= SG1 .
Let X be a subgroup of G. Then

I(X) ∼= ⊕
x∈G/HX

SH1 (H ∩ xX) .

This is isomorphic to kp if X = 1, to k if X is non trivial and H ∩ X = 1
(which implies that HX = G), and to {0} otherwise. In particular I 6= S
(since I(1) = kp 6= k = S(1)), so S ⊆ R.

Moreover, the short exact sequence

0 −→ R −→ I → SG1 −→ 0

shows that ExtnMc
k(G)(S

G
X , R) ∼= Extn−1

Mc
k(G)(S

G
X , S

G
1 )) for any n ∈ N, since

ExtnMc
k(G)(S

G
X , I)

∼= ExtnMc
k(H)(ResGHS

G
X , S

H
1 ), and since ResGHS

G
X = {0}. In

particular Ext1
Mc

k(G)(S
G
X , R) ∼= HomMc

k(G)(S
G
X , S

G
1 ) = {0}.

Now the short exact sequence

0 −→ SG1 −→ R→ R/S −→ 0

yields a long exact sequence of ExtMc
k(G)(S

G
X ,−) groups starting with

0 −→ 0 −→ 0 −→ Hom(SX , R/S) → Ext1(SX , S1) → Ext1(SX , R) = {0} .

It follows that Hom(SX , R/S) ∼= k, by Corollary 8.3. Moreover I is self dual,
since SH1 is self dual and IndGH commutes with duality, by Proposition 3.14.
Thus

Hom(R/S, SX) ∼= Hom(SX , R/S) ∼= k ,

by Remark 3.11, since SX is also self dual.
In particular, there exists an injection i : SX −→ R/S and a surjection

s : R/S −→ SX . If s ◦ i = 0, then (R/S)(X) has dimension at least equal
to 2. But (R/S)(X) ∼= I(X) ∼= k, so s ◦ i 6= 0. Hence s ◦ i is invertible, and
SX is a direct summand of R/S.

It follows that ⊕
X∈[G\KG(H)]

SGX is also a direct summand of R/S, for it is a

direct sum of non isomorphic simple summands of R/S. Hence there exists
a subfunctor L of R/S such that

R/S ∼= L⊕ ⊕
X∈[G\KG(H)]

SGX .

Now if Q is a subgroup of G, then (R/S)(Q) is equal to {0}, unless Q = 1
or Q is a complement of H in G, in which case (R/S)(Q) ∼= k. It follows
that L(Q) is equal to {0}, except if Q = 1 (and L(1) has dimension p − 2
over k). This completes the proof.
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9. The case of cyclic p-groups

9.1. It has been shown by M. Samy Modeliar ([7]) that cyclic p-groups
are poco groups over a field k of characteristic p. This result relies on the
construction of periodic projective resolutions for the fixed points functors,
which can be seen has follows : if G is cyclic of order pm, then the group
algebra kG is isomorphic to a truncated polynomial algebra A = k[X]/(Xpm

),
via the map sending X ∈ A to g− 1 ∈ kG, where g is some chosen generator
of G.

The indecomposable A-modules are the modules Ed = k[X]/(Xd), for
1 ≤ d ≤ pm, so Ed, where the chosen generator g of G acts by multiplication
by 1 + X, is the unique indecomposable kG-module of dimension d, up to
isomorphism. The indecomposable permutation kG-modules have dimension
equal to a power of p, so they are the modules Epj , for 0 ≤ j ≤ m.

This means that the functors FPE
pj

are the projective indecomposable

objects, in Mc
k(G), and they are their own projective resolution.

Now if 1 ≤ d ≤ pm and d is not a power of p, there exists a unique
integer h in {0, · · · ,m− 1} such that ph < d < ph+1. Let

ed : Eph ⊕ Eph+1 −→ Ed

denote the morphism of A-modules induced by the map

(Q,R) ∈ k[X]× k[X] 7→ Xd−ph

Q+R ∈ Ed .

This map is well defined, and surjective, and it is a morphism of kG-modules.
The unique subgroup Gl of G of index pl, where 0 ≤ l ≤ m, is the

subgroup generated by gp
l
. If W is a kG-module, then the subspace WGl

of W on which Gl acts trivially is equal to

WGl = {w ∈ W | gpl

w = w} = {w ∈ W | (g − 1)p
l

w = 0} .

So viewing W as an A-module, the space WGl is equal to the kernel of Xpl

on W . In particular, for any j ∈ {1, · · · ,m}, the space (Ej)
Gl is equal to

k[X]Xr/(Xj), where r = max(j − pl, 0). This shows that

ed
(
(Eph ⊕Eph+1)Gl

)
=

(
k[X]Xd−ph+max(0,ph−pl) + k[X]Xmax(0,ph+1−pl)

)
/(Xd) .

If l ≤ h, this is equal to k[X]Xd−pl
/(Xd), and if l > h, this is equal to

k[X]/(Xd). In other words

ed
(
(Eph ⊕ Eph+1)Gl

)
= k[X]Xmax(0,d−pl)/(Xd) = (Ed)

Gl .
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It follows that the restriction of the map ed to the spaces of fixed points by
any subgroup of G is surjective : in the terminology of Samy Modeliar ([7]),
the map ed is supersurjective. Equivalently, it induces a surjection

FPed
: FPE

ph
⊕ FPE

ph+1
−→ FPEd

in Mc
k(G).

Now the kernel of ed consists of the images in Eph ⊕ Eph+1 of the pairs

(Q,R) ∈ k[X]× k[X] such that Xd−ph
Q + R is a multiple of Xd, i.e. of the

pairs (−T,Xd−ph
T ), for T ∈ k[X]. Hence the map

T ∈ Eph+ph+1−d 7→ (−T,Xd−ph

T ) ∈ Ker ed

is well defined (note that ph < ph+ph+1−d < ph+1), and it is an isomorphism
of A-modules. This yields a short exact sequence

0 −→ Eph+ph+1−d −→ Eph ⊕ Eph+1
ed−→ Ed −→ 0

of kG-modules, leading to a short exact sequence

0 −→ FPE
ph+ph+1−d

−→ FPE
ph
⊕ FPE

ph+1

FPed−→ FPEd
−→ 0

in Mc
k(G). This shows in particular that FPEd

has a projective resolution in
Mc
k(G), which is periodic of period 2, of the form

· · · FPαd−→ FPE
ph⊕Eph+1

FPβd−→ FPE
ph⊕Eph+1

FPαd−→ FPE
ph⊕Eph+1

FPed−→ FPEd
−→ 0

where αd and βd are the endomorphisms of Eph ⊕ Eph+1 given by

αd(Q,R) = (−Xph+1−dQ−R,Xph+1−ph

Q+Xd−ph

R)

βd(Q,R) = (−Xd−ph

Q−R,Xph+1−ph

Q+Xph+1−dR) .

Hence all the functors FPV , where V is an indecomposable kG-module, have
a periodic resolution. In particular G is a poco group, by Proposition 4.7.

9.2. If pm ≥ 3, this applies to the case d = pm − 1 (which is not a power
of p), and h = m− 1, consequently. In this case Ed ∼= ΩG, and Eph+1

∼= kG.
Splicing the above resolution with the short exact sequence

0 −→ FPEpm−1
−→ FPEpm → SG1 −→ 0

of Lemma 6.1 gives a projective resolution of SG1 of the form

· · · FPβ−→ FPEpm−1⊕Epm

FPα−→ FPEpm−1⊕Epm

FPγ−→ FPEpm −→ SG1 −→ 0 ,
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where α and β are the above maps αd and βd, for d = pm−1 (and h = m−1),
and γ : Epm−1 ⊕ Epm → Epm is the map defined by

γ(Q,R) = Xpm−pm−1

Q+XR .

Now FPEpm−1⊕Epm
∼= FPEpm−1 ⊕ FPEpm . Moreover, by Equation 3.8,

HomMc
k(G)(FPEpm−1 , S

G
1 ) ∼= SG1 (Gpm−1) = {0} ,

and
HomMc

k(G)(FPEpm , S
G
1 ) ∼= SG1 (Gpm) = SG1 (1) = k .

More precisely, a morphism FPEpm −→ SG1 is determined by its evaluation
at the trivial subgroup, which is a scalar multiple of the augmentation mor-
phism ε.

It follows easily that the groups ExtnMc
k(G)(S

G
1 , S

G
1 ) are the cohomology

groups of the complex whose terms are all isomorphic to k, with zero differ-
entials. Thus ExtnMc

k(G)(S
G
1 , S

G
1 ) ∼= k, for n ∈ N.

9.3. Proposition : Let k be a field of characteristic p, and G be a cyclic
p-group. Then :

∀n ∈ N− {0}, ExtnMc
k(G)(S

G
1 , S

G
1 ) ∼=

{
k if |G| ≥ 3
{0} if |G| ≤ 2

.

Proof : The case |G| ≥ 3 follows from the above discussion. The case
|G| ≤ 2 follows essentially from the fact that in this case, any kG-module is
a permutation module : if G is trivial, there is nothing to prove. And if G
has order 2, then SG1 has a projective resolution

0 −→ FPk −→ FPkG −→ SG1 −→ 0 ,

and moreover HomMc
k(G)(FPk, S

G
1 ) = {0}, by Equation 3.8.

10. The case of elementary abelian p-groups

10.1. Proposition : Let k be a field of characteristic p, and G be an
elementary abelian p-group. Let H be a subgroup of index p in G, and
T ∈ KG(H). Then the functor I = IndGHS

H
1 of Mc

k(G) has a subfunctor J
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isomorphic to ιGG/T (S
G/T
1 ). Moreover J is contained in the radical R of I,

and there is an isomorphism

R/J ∼= L⊕ ⊕
X∈KG(H)−{T}

SGX ,

where L is a functor all of whose composition factors are isomorphic to SG1 ,
with multiplicity p− 2.

Proof : Let S be the socle of I. By Proposition 8.7, there is a filtration
I ⊃ R ⊇ S ⊃ {0}, and I/R ∼= S ∼= SG1 . Moreover

(10.2) R/S ∼= L⊕ ⊕
X∈KG(H)

SGX ,

where L is a functor all of whose composition factors are isomorphic to SG1 ,
with multiplicity p− 2.

By Lemma 8.2, the functor J = ıGG/T (S
G/T
1 ) has simple socle, equal to its

radical, and isomorphic to SG1 , and simple top, isomorphic to SGT . Moreover

HomMc
k(G)(J, I) ∼= HomMc

k(H)(ResGHJ, S
H
1 ) ∼= k ,

since ResGHJ
∼= SH1 , for the only non zero evaluation of this functor is at the

trivial group, where it is equal to k.
Hence there is a non zero morphism f : J → I. If f is not injective, then

its image is isomorphic to SGT , since this is the only proper non zero quotient
of J . But SGT is not isomorphic to a subfunctor of I, since the socle of I is
simple and isomorphic to SG1 .

It follows that f is injective, and one can identify J with a subfunctor
of I, containing S, and J/S ∼= SGT . Moreover J is a proper subfunctor of I,
since SG1 is not a quotient of J . Hence J ⊆ R, and

R/J ∼= L⊕ ⊕
X∈KG(H)−{T}

SGX ,

by (10.2).

10.3. Corollary : With the same notation, there is a long exact sequence
of extension groups

· · · //L(n− 1)⊕ ⊕
X∈X

EG(n− 2) // EG(n) // EH(n) EDBC
GF@A

//L(n)⊕ ⊕
X∈X

EG(n− 1) // EG(n+ 1) // EH(n+ 1) · · · ,
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where EG(n) = ExtnMc
k(G)(S

G
1 , S

G
1 ), EH(n) = ExtnMc

k(H)(S
H
1 , S

H
1 ), L(n) =

ExtnMc
k(G)(L, S

G
1 ), and X = KG(H)− {T}.

Proof : There is a short exact sequence

0 −→ J −→ I −→ I/J −→ 0

in Mc
k(G). Since ExtnMc

k(G)(J, S
G
1 ) ∼= ExtnMc

k(G/T )

(
S
G/T
1 , ρGG/T (SG1 )

)
= {0} for

any n ∈ N, by Proposition 3.16 and Lemma 6.7, and since ResGHS
G
1 = SH1 , it

follows that

ExtnMc
k(G)(I/J, S

G
1 ) ∼= ExtnMc

k(G)(I, S
G
1 ) ∼= ExtnMc

k(H)(S
H
1 , S

H
1 ) = EH(n) .

Now by Proposition 10.1, there is a short exact sequence

0 −→ R/J −→ I/J −→ SG1 −→ 0 ,

and R/J ∼= L ⊕ ⊕
X∈KG(H)−{T}

SGX . Applying the functor HomMc
k(G)(−, SG1 )

gives the long exact sequence of extension groups in Mc
k(G)

0 // Hom(SG1 , S
G
1 ) // Hom(I/J, SG1 ) // Hom(R/J, SG1 ) EDBC

GF@A
// Ext1(SG1 , S

G
1 ) // Ext1(I/J, SG1 ) // Ext1(R/J, SG1 ) EDBC

GF@A
//__________ · · · · · · · · · EDBC

GF@A
//______ Extn(SG1 , S

G
1 ) // Extn(I/J, SG1 ) // Extn(R/J, SG1 ) EDBC

GF@A
// Extn+1(SG1 , S

G
1 ) // Extn+1(I/J, SG1 ) // Extn+1(R/J, SG1 ) · · ·

Now

Extn(R/J, SG1 ) ∼= Extn(L, SG1 )⊕ ⊕
X∈KG(H)−{T}

Extn(SGX , S
G
1 )

∼= Extn(L, SG1 )⊕ ⊕
X∈KG(H)−{T}

Extn−1(SG1 , S
G
1 )

= L(n)⊕ ⊕
X∈X

EG(n− 1) ,

by Corollary 8.2. This completes the proof.
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10.4. The case p > 2.

10.5. Theorem : Let k be a field of odd characteristic p. Let G be an
elementary abelian p-group of rank 2. Then the simple functor SG1 of Mc

k(G)
has exponential growth.

Proof : Let H be a subgroup of index p in G, and consider the long exact
sequence of Corollary 10.3. The set KG(H) consists of p subgroups of order p
in H, so X has cardinality p− 1. Moreover

EH(n) = ExtnMc
k(H)(S

H
1 , S

H
1 ) ∼= k ,

by Proposition 9.3, since H is cyclic of order p ≥ 3.

This yields a long exact sequence of the form

· · ·→k→L(n)⊕EG(n−1)p−1→EG(n+1)→k→L(n+1)⊕EG(n)p−1→· · · .

In particular, by Lemma 2.5, this shows that

dimk

(
L(n)⊕ EG(n− 1)p−1

) ≤ 1 + dimk EG(n+ 1) ,

thus dimk EG(n+ 1) ≥ (p− 1) dimk EG(n− 1)− 1, for any n ≥ 1. Hence, by
induction on n,

dimk EG(2n)− 1

p− 2
≥ (p− 1)n

(
dimk EG(0)− 1

p− 2

)
=

(p− 1)n(p− 3)

p− 2
,

dimk EG(2n+1)− 1

p− 2
≥ (p−1)n

(
dimk EG(1)− 1

p− 2

)
=

(p− 1)n(2p− 5)

p− 2
,

since dimk EG(1) = 2 by Lemma 6.2. Thus SG1 has exponential growth if
p > 3.

Now if p = 3, the functor L is simple, and isomorphic to SG1 , by Proposi-
tion 10.1. It follows that in this case

dimk EG(n) + (p− 1) dimk EG(n− 1)− 1 ≤ dimk EG(n+ 1) .

In particular dimk EG(2) ≥ 2+2−1 = 3, since dimk EG(1) = 2 by Lemma 6.2.
Since dimk EG(n+ 1) ≥ 2 dimk EG(n− 1)− 1, it follows that

dimk EG(2n)− 1 ≥ 2n−1
(
dimk EG(2)− 1

) ≥ 2n ,

dimk EG(2n+ 1)− 1 ≥ 2n
(
dimk EG(1)− 1

) ≥ 2n ,

hence SG1 has exponential growth in this case also.
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10.6. The case p = 2.

10.7. Theorem : Let k be a field of characteristic 2, and G be an elemen-
tary abelian 2-group. Then

∀j ∈ N, Ext2j+1
Mc

k(G)(S
G
1 , S

G
1 ) = {0} .

Proof : By induction on the rank m of G, starting with m = 0, i.e. G = 1,
where the result is trivial. Suppose m > 0, and that the result holds for all
elementary abelian 2-groups of rank smaller than m. Choose a subgroup H
of index p in G, and a complement T ∈ KG(H), and consider the long exact
sequence of Corollary 10.3.

In this case by Proposition 10.1, since p−2 = 0, the functor L is equal to
zero. Thus L(n) = {0} for any n ∈ N. Moreover Ext1

Mc
k(G)(S

G
1 , S

G
1 ) = {0}, by

Theorem 6.2, since G is generated by involutions. This starts an induction
argument on j : suppose that Ext2r+1

Mc
k(G)(S

G
1 , S

G
1 ) = {0}, for 0 ≤ r < j. The

exact sequence of Corollary 10.3 becomes

(10.8) · · · // ⊕
X∈X

EG(n− 2) // EG(n) // EH(n) EDBC
GF@A

// ⊕
X∈X

EG(n− 1) // EG(n+ 1) // EH(n+ 1) · · · ,

where EG(n) = ExtnMc
k(G)(S

G
1 , S

G
1 ) and EH(n) = ExtnMc

k(H)(S
H
1 , S

H
1 ), and

X = KG(H)− {T}.
Set n = 2j + 1 in this sequence. By induction hypothesis on m

EH(n) = EH(2j + 1) = Ext2j+1
Mc

k(H)(S
H
1 , S

H
1 ) ∼= {0} ,

since H is elementary abelian of rank m− 1. Also

EG(n− 2) = EG(2j − 1) = Ext2j−1
Mc

k(G)(S
G
1 , S

G
1 ) = {0} ,

by induction hypothesis on j.
It follows that EG(n) = Ext2j+1(SG1 , S

G
1 ) = {0}, and this completes the

inductive step on j, hence the inductive step on m.

10.9. Theorem : Let k be a field of characteristic 2. Let G be an
elementary abelian 2-group, and H be a subgroup of index 2 of G. Choose
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T ∈ KG(H), and set S = KG(H)− {T}.
Then for any j ∈ N, there is a short exact sequence of extension groups

0 → ⊕
X∈S

Ext2j−2(SG1 , S
G
1 )

γ→ Ext2j(SG1 , S
G
1 )

rG
H→ Ext2j(SH1 , S

H
1 ) −→ 0

where rGH is induced by restriction to H, and γ is the direct sum of the maps
induced by the Yoneda product with the element γX of Ext2(SG1 , S

G
1 ), for

X ∈ S.

Proof : This follows from the exact sequence 10.8, in which all the terms
EG(2j − 1), EG(2j + 1), and EH(2j + 1) are equal to zero. The exact se-
quence 10.8 splits as a series of short exact sequences

0 → ⊕
X∈S

Ext2j−2(SG1 , S
G
1 )

γ→ Ext2j(SG1 , S
G
1 )

r→ Ext2j(SH1 , S
H
1 ) −→ 0 ,

for each j ∈ N. It remains to show that the morphisms γ and r are as stated
in Theorem 10.9.

First, with the notation of Proposition 10.1, the morphism

t : Ext2j−1(R/J, SG1 ) −→ Ext2j(SG1 , S
G
1 )

is the transition morphism associated to the short exact sequence

T : 0 −→ R/J −→ I/J −→ SG1 −→ 0 ,

so it it given by Yoneda product with T .
Via the isomorphism R/J ∼= ⊕

X∈S
SGX , the morphism t can be viewed as

the direct sum of morphisms tX : Ext2j−1(SGX , S
G
1 ) → Ext2j(SG1 , S

G
1 ), where

tX is given by composition with the sequence TX obtained from T by the
projection πX to the summand SGX , i.e. by completing the diagram

T : 0 // ⊕
X∈S

SGX
//

πX

²²

I/J //

f

²²

SG1
// 0

TX : 0 // SGX
// Y // SG1

// 0 .

Now f is surjective, since πX and IdSG
1

are. Since SGX is not a quotient of I/J ,

it follows that Y is a non-split extension of SG1 by SGX . Thus Y ∼= GG/X(S
G/X
1 ),

by Lemma 8.3. More precisely TX is isomorphic to the sequence D∗
X of

Lemma 8.1.
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Moreover, by Corollary 8.2, the isomorphism

Ext2j−2(SG1 , S
G
1 ) ∼= Ext2j−1(SGX , S

G
1 )

is given by Yoneda composition with DX . Hence the component index by
X ∈ S of the morphism

γ : ⊕
X∈S

Ext2j−2(SG1 , S
G
1 ) −→ Ext2j(SG1 , S

G
1 )

is given by composition with ΓX = DX ◦D∗
X , i.e. by Yoneda product with γX ,

as claimed.
Now the morphism rGH : Ext2j

Mc
k(G)(S

G
1 , S

G
1 ) → Ext2j

Mc
k(H)(S

H
1 , S

H
1 ) is com-

posed of two steps : first, taking the image by the projection map q : I → SG1 ,
i.e. taking the Yoneda product with q ∈ Ext0

Mc(G)(IndGHS
H
1 , S

G
1 ), and then

using the adjunction (IndGH ,ResGH), which gives a map

Ext2j
Mc

k(G)(I, S
G
1 ) ∼= Ext2j

Mc
k(H)(S

H
1 ,ResGHS

G
1 ) ∼= Ext2j

Mc
k(H)(S

H
1 , S

H
1 ) .

In other words, with the notation of Remark 3.18, for u ∈ Ext2j
Mc

k(G)(S
G
1 , S

G
1 )

rGH(u) = α2j(u ◦ q) = ResGH(u) ◦ α0(q) = ResGH(u) ,

since the map α0(q) : SH1 → ResGHS
G
1
∼= SH1 obtained by adjunction is the

identity map. Hence rGH is induced by ResGH , and this completes the proof.

The following corollary is Theorem 1.2 of Section 1 :

10.10. Corollary : Let G be an elementary abelian 2-group of rank m.
Then the algebra Ext∗Mc

k(G)(S
G
1 , S

G
1 ) is finitely generated by the elements γX ,

where X is a subgroup of order 2 of G. Its Poincaré series

P (t) =
∑

j∈N
dimk ExtjMc

k(G)(S
G
1 , S

G
1 ) tj

is equal to

P (t) =
1

(1− t2)(1− 3t2)(1− 7t2) . . .
(
1− (2m−1 − 1)t2

) .

Proof : By induction on m, the case m = 0 being trivial. In Theorem 10.9,
one can assume that the algebra Ext∗(SH1 , S

H
1 ) is generated by the ele-

ments γHX , where X is a subgroup of order 2 of H. This means that for
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n ∈ N, any element in Ext2n(SH1 , S
H
1 ) is a k-linear combination of products

of the form
γHX1

γHX2
· · · γHXn

,

where X1,. . . , Xn are subgroups of order 2 of H.
Denote by Γ the k-linear subspace of Ext2n(SG1 , S

G
1 ) generated by the

similar products γGX1
γGX2

· · · γGXn
.

Now for X ≤ H, by Proposition 3.14, there are isomorphisms of functors

ResGH ◦ ıGG/X ∼= LG ◦ LG/X ∼= LG×G(G/X) ,

where G is viewed as an (H,G)-biset and G/X as a (G,G/X)-biset. Now
G×G (G/X) ∼= (H/X)×H/X (G/X) as (H,G/X)-bisets, thus

ResGH ◦ ıGG/X ∼= ıHH/X ◦ Res
G/X
H/X .

It follows that ResGH

(
SGX
SG1

)
∼=

(
SHX
SH1

)
. Similarly ResGH

(
SG1
SGX

)
∼=

(
SH1
SHX

)
. Thus

rGHγ
G
X = γHX , because ResGH respects the Yoneda composition.
It follows that

γHX1
γHX2

· · · γHXn
= rGH(γGX1

γGX2
· · · γGXn

) ,

thus Ext2n(SG1 , S
G
1 ) = Γ + Ker rGH . But

Ker rGH = γ
(
Ext2n−2(SG1 , S

G
1 )

)
=

∑
X∈S

Ext2n−2(SG1 , S
G
1 ) ◦ γGX ,

and by induction on n, this shows that Γ = Ext2n(SG1 , S
G
1 ).

Denote by Pm(t) the Poincaré series of the algebra Ext∗Mc
k(G)(S

G
1 , S

G
1 ),

where G is an elementary abelian 2-group of rank m. The short exact se-
quence of Theorem 10.9 gives the relation

Pm(t) = |S|t2Pm(t) + Pm−1(t) ,

and moreover |S| = 2m−1 − 1. Thus

Pm(t) = Pm−1(t) · 1

1− (2m−1 − 1)t2
,

and the claimed formula follows by induction on m.
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10.11. Theorem : Let k be a field of characteristic 2, and G be an
elementary abelian 2-group of rank m.

1. [Samy Modeliar [7]] If m ≤ 2, the group G is a poco group over k.

2. If m ≥ 3, the group G is not a poco group over k. More precisely, the
simple functor SG1 of Mc

k(G) has exponential growth.

For Assertion 2, observe that

1

(1− t2)(1− 3t2) . . .
(
1− (2m−1 − 1)t2

) =
m−1∏
j=1




∞∑
nj=0

(2j − 1)nj t2nj


 ,

Thus

dimk Ext2n(SG1 , S
G
1 ) =

∑
n1+···+nm−1=n

m−1∏
j=1

(2j − 1)nj

≥ (2m−1 − 1)n .

By Corollary 8.2, since moreover Ext2n+1(SGZ , S
G
1 ) ∼= Ext2n+1(SG1 , S

G
Z ) as sim-

ple functors are self dual, it follows that

dimk Ext2n+1(SG1 , S
G
Z ) ≥ (2m−1 − 1)n ,

thus SG1 has exponential growth, by Lemma 2.3, if 2m−1 − 1 > 1, i.e. if
m ≥ 3.

Assertion 1 is trivial if m = 0. It is straightforward if m = 1 : since every
kG-module for a group G of order 2 is a permutation module, it follows that
all the fixed points functors are projective in this case, so Mc

k(G) has finite
projective dimension in this case.

For m = 2, M. Samy Modeliar has described explicit eventually peri-
odic resolutions of the fixed points functors FPV , for all indecomposable kG-
modules V . An alternative proof can be sketched as follows : the Poincaré se-
ries of Ext∗(SG1 , S

G
1 ) is equal to 1

1−t2 in this case. It follows that Extn(SG1 , S
G
1 )

is equal to {0} if n is odd, and one dimensional if n is even. If Q is a non
trivial subgroup of G, then there is an exact sequence

(10.12) 0 −→ ⊕
X∈KQ(Z)

SGX −→ ıGG/Z(S
G/Z
Q/Z ) −→ SGQ −→ 0 ,

where Z is a subgroup of order 2 of Q. Moreover ıGG/Z(S
G/Z
Q/Z ) has finite

projective dimension, since G/Z has order 2, and since ıGG/Z is exact and
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preserves projectives. It follows easily by induction on |Q| that there exists
a constant cQ such that dimk Extj(SGQ , S

G
1 ) ≤ cQ for any j ∈ N.

Thus dimk Extj(SG1 , S
G
R ) ≤ cR for any j ∈ N, and any R ≤ G. Using

again the exact sequence 10.12, one can show by induction on |Q| that for
any Q,R ≤ G, there is a constant cQ,R such that dimk Extj(SGQ , S

G
R ) ≤ cQ,R

for any j ∈ N. By Lemma 2.3 and Corollary 2.6, the group G is a poco
group.

11. The case of 2-groups of sectional rank at

most 2

11.1. Proposition : Let k be a field of characteristic 2, let G be a 2-
group, and let H be a subgroup of index 2 of G. If the functor SH1 (over k)

has polynomial growth, and if the functor S
CG(X)
X has polynomial growth, for

any X ∈ KG(H), then the functor SG1 has polynomial growth.

Proof : Consider the functor I = IndGHS
H
1 . By Proposition 8.7, there is a

filtration
I ⊃ R ⊇ S ⊃ {0} ,

where R is the radical and S is the socle of I, such that I/R ∼= S ∼= SG1 , and
R/S ∼= ⊕

X∈[G\KG(H)]
SGX . This gives two short exact sequences in Mc

k(G)

(11.2) 0 −→ SG1 −→ R −→ ⊕
X∈[G\KG(H)]

SGX −→ 0

(11.3) 0 −→ R −→ I −→ SG1 −→ 0 .

Let M be a finitely generated cohomological Mackey functor for G over k.
Applying the functor HomMc

k(G)(−,M) to the sequence (11.2) gives the fol-
lowing long exact sequence of Ext groups in Mc

k(G)

· · · −→ ⊕
X∈[G\KG(H)]

Extn(SGX ,M) −→ Extn(R,M) −→ Extn(SG1 ,M) −→ · · ·

By Lemma 2.5, this gives

rn ≤ en +
∑

X∈[G\KG(H)]

eX,n ,

where rn = dimk Extn(R,M), eX,n = dimk Extn(SGX ,M), for X ∈ KG(H),
and en = dimk Extn(SG1 ,M).
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Now applying the functor HomMc
k(G)(−,M) to the sequence (11.3) gives

the following long exact sequence of Ext groups in Mc
k(G)

· · · −→ Extn(R,M) −→ Extn+1(SG1 ,M) −→ Extn+1(I,M) −→ · · ·
By Lemma 2.5, this gives

en+1 ≤ rn + in+1 ,

where in = dimk Extn(I,M). Thus

(11.4) en+1 ≤ en + (
∑

X∈[G\KG(H)]

eX,n) + in+1 .

Now SGX = IndGCG(X)S
CG(X)
X , for any X ∈ KG(H), thus

eX,n = dimk ExtnMc
k(CG(X))(S

CG(X)
X ,ResGCG(X)M) .

Hence if S
CG(X)
X has polynomial growth, there are constants cX , dX , and eX ,

such that
∀n ∈ N, eX,n ≤ cXn

dX + eX .

Thus
∀n ∈ N,

∑

X∈[G\KG(H)]

eX,n ≤ CnD + E ,

where C =
∑

X∈[G\KG(H)]

cX , D = max
X∈[G\KG(H)]

dX , and E =
∑

X∈[G\KG(H)]

eX .

Similarly,
in = dimk ExtnMc

k(H)(S
H
1 ,ResGHM) ,

so if SH1 has polynomial growth, there are constants c, d, and e such that

∀n ∈ N, in ≤ cnd + e .

Thus

∀n ∈ N, in+1 ≤ c|(n+ 1)d − 1|+ c+ e ≤ c(2n)d + c+ e = c2dnd + c+ e .

Inequality 11.4 now gives

∀n ∈ N, en+1 ≤ en + γnδ + ε

where γ = c2d + C, δ = max(D, d), and ε = E = c = e. By induction, it
follows that

∀n ∈ N, en ≤ γ

n∑
j=1

jδ + nε+ e0 ≤ γnδ+1 + nε+ e0 ≤ (γ + ε)nδ+1 + e0 ,
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so SG1 has polynomial growth.

11.5. Theorem : Let k be a field of characteristic 2, and G be a 2-group
of sectional 2-rank at most 2. Then G is a poco group over k.

Proof : By induction on the order of G, one may assume that for any section
(B,A) 6= (G,1), the group B/A is a poco group. By Corollary 2.6, proving
that G is a poco group is equivalent to proving that for any subgroup Q of G,
the simple functor SGQ has polynomial growth. First consider the case where
Q = 1.

LetH be a subgroup of index 2 of G. ThenH is a poco group by induction
hypothesis. Similarly, if X ∈ KG(H) and CG(X) 6= G, then CG(X) is a poco
group. Thus, if H has no central complement in G, by Proposition 11.1,
the functor SG1 has polynomial growth. This holds in particular if H has no
complement at all in G, i.e. if H contains all involutions of G. Thus, if G
is not generated by involutions, then SG1 has polynomial growth. So one can
assume that G is generated by involutions.

Now if H has some central complement X in G, then G ∼= H×X. Since G
has sectional 2-rank at most 2, the group H has sectional 2-rank at most 1,
hence it is cyclic. Thus G is abelian, and generated by involutions, hence
elementary abelian, and of sectional 2-rank at most 2. So the group G is
elementary abelian of rank at most 2, and the results of Section 10 show that
SG1 has polynomial growth.

In any case SG1 has polynomial growth. By induction on the order of Q,
it follows that SGQ has polynomial growth, for any subgroup Q of G : indeed,
setting B = NG(Q) and A = Φ(Q), Lemma 6.5 shows that

SGQ
∼= LU(S

B/A
Q/A) ,

where U is the set A\G, for its natural structure of (B/A,G)-biset struc-

ture. If (B,A) 6= (G,1), then S
B/A
Q/A has polynomial growth, hence SGQ has

polynomial growth, by Lemma 4.1.
So it remains to consider the case where (B,A) = (Q,1), i.e. the case

where Q is a non trivial normal elementary abelian subgroup of G. Let Z be
a subgroup of order 2 of Q ∩ Z(G).

By Proposition 8.5, there is a short exact sequence

0 −→ ⊕
X∈[G\KQ(Z)]

SGX −→ ıGG/Z(S
G/Z
Q/Z ) −→ SGQ −→ 0 .

By the induction hypothesis, all the functors SGX , for X ∈ KQ(Z), have poly-

nomial growth. Moreover, the functor ıGG/Z(S
G/Z
Q/Z ) has polynomial growth,
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by Lemma 4.1. Hence SGQ has polynomial growth, by Lemma 2.5, and this
completes the proof.

11.6. Remark : The 2-groups of sectional rank at most 1 are the cyclic 2-
groups. In a recent preprint, Andersen, Oliver and Ventura have shown that
the 2-groups of sectional rank 2 are the metacyclic 2-groups (see Lemma 10.2
of [1]). For 2-groups of order at least 32, this also follows from a theorem of
Blackburn (see [2], or Satz 11.13 in [6]).

II - Cohomology

12. Extension of simple functors for elemen-

tary abelian p-groups

In this section k is a field of characteristic p, the group G ∼= (Cp)
m is an

elementary abelian p-group of rank m, in additive notation, and all the co-
homological Mackey functors have values in k-vector spaces.

Recall from Notation 7.4 that γX ∈ Ext2
Mc

k(G)(S
G
1 , S

G
1 ) is the element

represented by the 2-fold extension

0 −→ SG1 −→
(
SGX
SG1

)
−→

(
SG1
SGX

)
−→ SG1 −→ 0 .

12.1. Notation : If G = (Cp)
m and x ∈ G − {0}, set γx = γG<x>. Thus

γx ∈ Ext2(SG1 , S
G
1 ).

12.2. Lemma : Let A be a ring. If L ⊇ M ⊇ N ⊇ {0} is a filtration of
an A-module L, then the exact sequence

0 −→ N −→M −→ L/N −→ L/M −→ 0

obtained by splicing the short exact sequences

0 // N // M //

##GGG
G L/N // L/M // 0

M/N

%%LLL
LL

99ttt

0

::uuuu
0

represents the zero class of Ext2
A(L/M,N).
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Proof : There is a commutative diagram

0 // N // M //

i

²²

L/N
p //

(Id,p)
²²

L/M // 0

0 // N // L
(q,0) // L/N ⊕ L/M

( 0
Id) // L/M // 0

where i is the inclusion map, and p, q are projection maps. Moreover, the
bottom sequence represents zero in Ext2

A(L/M,N), since the map
(

0
Id

)
is split

surjective.

12.3. Lemma : Let G be an elementary abelian p-group. If X and Y are
distinct subgroups of order p of G, set Q = XY . Then the sequences

0 −→ SGX −→
(
SG1
SGX

)
−→

(
SGY
SG1

)
−→ SGY −→ 0

and

0 −→ SGX −→
(
SGQ
SGX

)
−→

(
SGY
SGQ

)
−→ SGY −→ 0

represent opposite elements of Ext2
Mc

k(G)(S
G
Y , S

G
X).

Proof : Indeed, the sum of the corresponding elements in Ext2
Mc

k(G)(S
G
Y , S

G
X)

is represented by the sequence

(12.4) 0 −→ SGX −→
(
SG1 SGQ
SGX

)
−→

(
SGY

SG1 SGQ

)
−→ SGY −→ 0 ,

where the functor LX =
(SG

1 SG
Q

SG
X

)
is the Mackey functor for G over k whose

values at 1, X and Q are equal to k, and other values are zero. The con-
jugation maps for this functor are all identity maps (possibly zero), and the
possibly non zero transfer and restriction maps are given in the following
diagram

LX(Q) = k

rQ
X=1

··
LX(X) = k

tQX=0

TT

rX
1 =0

··
LX(1) = k

tX1 =1

TT

47



It follows in particular that SGX is isomorphic to a subfunctor of LX , and this
yields an exact sequence

(12.5) 0 −→ SGX −→
(
SG1 SGQ
SGX

)
−→ SG1 ⊕ SGQ −→ 0

in Mc
k(G).

The functor
( SG

Y

SG
1 SG

Q

)
is isomorphic to the dual L∗Y of LY =

(SG
1 SG

Q

SG
Y

)
: its

non zero values are at 1, Y and Q, and they are equal to k. The conjugation
maps for L∗Y are all identity maps (possibly zero), and the possibly non zero
transfer and restriction maps are given in the following diagram

L∗Y (Q) = k

rQ
Y =0

··
L∗Y (Y ) = k

tQY =1

TT

rY
1 =1

··
L∗Y (1) = k

tY1 =0

TT

There is an exact sequence

(12.6) 0 −→ SG1 ⊕ SGQ −→
(

SGY
SG1 SGQ

)
−→ SGY −→ 0

in Mc
k(G), and the exact sequence 12.4 is obtained by splicing the exact

sequences 12.5 and 12.6.
Let MX,Y denote the functor defined for H ≤ G by MX,Y (H) = k if

H ∈ {1, X, Y,Q}, and by MX,Y (H) = {0} otherwise. The conjugation maps
for MX,Y are all identity maps (possibly zero), and the possibly non zero
transfer and restriction maps for MX,Y are given in the following diagram

(12.7)

MX,Y (Q) = k
rQ
X=1

yy rQ
Y =0 ))

MX,Y (X) = k
tQX=0

99

rX
1 =0 **

M(Y ) = k

tQY =1
ii

rY
1 =1

zz
MX,Y (1) = k

tX1 =1
jj

tY1 =0

::

One checks easily that MX,Y is a cohomological Mackey functor for G over k,
that LX is a subfunctor ofMX,Y (represented by the left half of diagram 12.7),
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and that L∗Y is a quotient functor of MX,Y (represented by the right half
of 12.7). Hence there is a filtration

MX,Y ⊃ LX ⊃ SGX ⊃ {0} ,

such that MX,Y /LX ∼= SGY and MX,Y /S
G
X
∼= L∗Y . Now Lemma 12.2 shows

that the exact sequence 12.4 represents zero in Ext2
Mc

k(G)(S
G
Y , S

G
X), and this

completes the proof.

12.8. Lemma : Let G be an elementary abelian p-group, and let Q < R
be subgroups of G such that |R : Q| = p2. Let M denote the functor ΣG

Q,R of
Corollary 7.3. Then there is a filtration M ⊃ J ⊃ S ⊃ {0}, where J is the
radical of M and S is its socle. Moreover

M/J ∼= SGR , S ∼= SGQ , J/M ∼= ⊕
Q<X<R

SGX .

Proof : Recall that ΣG
Q,R is the subquotient of FPk whose value at H ≤ G

is equal to k if Q ≤ H ≤ R, and to zero otherwise. By Corollary 7.3, the
head of ΣG

Q,R is simple, isomorphic to SGR , and its socle is simple, isomorphic
to SGQ . In particular S ≤ J . Moreover, if H ≤ G, then (J/S)(H) is equal to
zero, except if Q < H < R, and in this case (J/S)(H) = k. It follows that

J/M ∼= ⊕
Q<X<R

SGX ,

as was to be shown.

12.9. Proposition : Let G be an elementary abelian p-group, and Q be a
subgroup of order p2 of G. Then for any subgroup Y of order p of Q

[
∑

1<X<Q

γX , γY ] = 0 ,

in Ext4
Mc

k(G)(S
G
1 , S

G
1 ), where [a, b] = ab− ba, for a, b ∈ Ext2

Mc
k(G)(S

G
1 , S

G
1 ).

Proof : Recall that if X is a subgroup of order p of G, the element γX of
Ext2

Mc
k(G)(S

G
1 , S

G
1 ) is represented by the sequence

0 −→ SG1 −→
(
SGX
SG1

)
−→

(
SG1
SGX

)
−→ SG1 −→ 0 .
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It follows that if Y is another subgroup of order p of G, the Yoneda product
γXγY is represented by the sequence

0 −→ SG1 −→
(
SGX
SG1

)
−→

(
SG1
SGX

)
−→

(
SGY
SG1

)
−→

(
SG1
SGY

)
−→ SG1 −→ 0 .

This sequence is obtained by splicing the following three exacts sequences :

0 −→ SG1 −→
(
SGX
SG1

)
−→ SGX −→ 0

(12.10) 0 −→ SGX −→
(
SG1
SGX

)
−→

(
SGY
SG1

)
−→ SGY −→ 0

0 −→ SGY −→
(
SGY
SG1

)
−→ SG1 −→ 0 .

By Lemma 12.3, if XY = Q, i.e. if X and Y are distinct subgroups of order p
of Q, the sequence 12.10 and the sequence

(12.11) 0 −→ SGX −→
(
SGQ
SGX

)
−→

(
SGY
SGQ

)
−→ SGY −→ 0

represent opposite elements of Ext2
Mc

k(G)(S
G
Y , S

G
X). It follows that for a given

subgroup Y of order p of Q

(
∑

1<X<Q
X 6=Y

γX)γY = −(
∑

1<X<Q
X 6=Y

fQX,Y )γY ,

where fQX,Y is the element represented by the sequence

0 −→ SG1 −→
(
SGX
SG1

)
−→

(
SGQ
SGX

)
−→

(
SGY
SGQ

)
−→

(
SG1
SGY

)
−→ SG1 −→ 0 .

This in turn is the splice of the following two exact sequences

UQ
X : 0 −→ SG1 −→

(
SGX
SG1

)
−→

(
SGQ
SGX

)
−→ SGQ −→ 0

(UQ
Y )∗ : 0 −→ SGQ −→

(
SGY
SGQ

)
−→

(
SG1
SGY

)
−→ SG1 −→ 0 .
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The sum of the elements uQX of Ext2
Mc

k(G)(S
G
Q , S

G
1 ) represented by the se-

quences UQ
X , for 1 < X < Q, is represented by the sequence

0 −→ SG1 −→
(

ΣG
Q

SG1

)
−→

(
SG1
ΣG
Q

)
−→ SGQ −→ 0 ,

where

(
ΣG
Q

SG1

)
has simple socle isomorphic to SG1 , and head isomorphic to

ΣG
Q = ⊕

1<X<Q
SGX , and

(
SG1
ΣG
Q

)
is isomorphic to the dual of

(
ΣG
Q

SG1

)
. By Lemma 12.2

and Lemma 12.8, it follows that

∑
1<X<Q

uQX = 0 .

Hence
∑

1<X<Q
X 6=Y

uQX = −uQY , so

(
∑

1<X<Q
X 6=Y

γX)γY = uQY γY .

This is represented by the sequence

0 −→ SG1 −→
(
SGY
SG1

)
−→

(
SGQ
SGY

)
−→

(
SGY
SGQ

)
−→

(
SG1
SGY

)
−→ SG1 −→ 0 ,

which is obviously self dual. It follows that

(
∑

1<X<Q
X 6=Y

γX)γY =
(
(

∑
1<X<Q
X 6=Y

γX)γY

)∗
= γY (

∑
1<X<Q
X 6=Y

γX) .

Adding γ2
Y to both side, this shows that γY and

∑
1<X<Q

γX commute, which

completes the proof.

13. The algebra Ext∗Mc
k(G)(S

G
1 , S

G
1 ) for G ∼= (C2)

m

In this section k is a field of characteristic 2, the group G ∼= (C2)
m is an

elementary abelian 2-group of rank m, in additive notation, and all the co-
homological Mackey functors have values in k-vector spaces.
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By Corollary 10.10 and Notation 12.1, the algebra Ext∗Mc
k(G)(S

G
1 , S

G
1 ) is

generated by the elements γx of Ext2(SG1 , S
G
1 ), for x ∈ G− {0}.

13.1. Proposition : Let H be a subgroup of index 2 of G. Then

∑

x/∈H
γx = 0 in Ext2

Mc
k(G)(S

G
1 , S

G
1 ) .

Proof : By Proposition 10.1, there is a filtration I ⊃ R ⊃ S ⊃ {0}, where
I = IndGHS

H
1 , such that S ∼= I/R ∼= SG1 , and i

R/S ∼= ⊕
X∈K

SGX ,

where K = KG(H). By Lemma 12.2, the sequence

0 −→ SG1 −→ R −→ I/S −→ SG1 −→ 0

represents 0 in Ext2(SG1 , S
G
1 ).

For each X ∈ K, the functors ρGG/X(I), ρGG/X(R), and ρGG/X(I/S) are all

isomorphic to S
G/X
1 , since their non zero evaluation is at the trivial subgroup,

where it is isomorphic to k. By adjunction, this gives morphisms

pX :

(
SGX
SG1

)
→ R and qX : I/S →

(
SG1
SGX

)
.

This gives a commutative diagram with exact lines

0 // ⊕
X∈K

SG1 //

Σ

²²

⊕
X∈K

(
SGX
SG1

)
//

p

²²

⊕
X∈K

(
SG1
SGX

)
// ⊕
X∈K

SG1 // 0

0 // SG1
// R // ⊕

X∈K

(
SG1
SGX

)
// ⊕
X∈K

SG1 // 0

0 // SG1
// R // I/S //

q

OO

SG1
//

∆

OO

0 ,

where p is the sum of the maps pX and q is the sum of the maps qX , for
X ∈ K, where Σ is the summation map, and ∆ the diagonal inclusion. The
top line of this diagram is the direct sum of the sequences ΓX , for X ∈ K
(see Notation 7.4).
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One checks easily that the top left square in this diagram is cocartesian,
and that the bottom right square is cartesian. It follows that the bottom line
represents the sum in Ext2(SG1 , S

G
1 ) of the 2-fold extensions in the top line,

i.e. the sum
∑
X∈K

γX .

Hence this sum is equal to 0, i.e. equivalently
∑
x/∈H

γx = 0.

13.2. Proof of Theorem 1.3. Let G ∼= (C2)
m be an elementary abelian

2-group of rank m, in additive notation, and k be a field of characteristic 2.
Denote by E the graded algebra Ext∗Mc

k(G)(S
G
1 , S

G
1 ).

• By Corollary 10.10 and Notation 12.1, the algebra E is generated by the
elements γx, for x ∈ G− {0}, where γx has degree 2.

Let x and y be distinct elements in G − {0}. Then x and y generate a
subgroup Q of order 4 of G, and the non zero elements of Q are x, y, and
x+ y. By Proposition 12.9, the commutator

[γx + γy + γx+y, γx+y]

in E is equal to 0. Equivalently

(13.3) [γx + γy, γx+y] = 0 .

Now if H is a subgroup of index 2 of G, Proposition 13.1 shows that

(13.4)
∑

x/∈H
γx = 0

in E .

• Conversely, let Ẽ denote the graded associative k-algebra with generators γ̃x
in degree 2, for x ∈ G− {0}, subject to the relations

{ ∀H ≤ G, |G : H| = 2,
∑
x/∈H

γ̃x = 0 ,

∀x, y ∈ G− {0}, x 6= y, [γ̃x + γ̃y, γ̃x+y] = 0 .

Then there is a unique surjective homomorphism s : Ẽ → E of graded k-
algebras such that s(γ̃x) = γx, for all x ∈ G − {0}. Thus showing that s
is an isomorphism is equivalent to showing that for any integer n ∈ N, the
restriction sn of s to the subspace Ẽn of elements of degree n in Ẽ is an
isomorphism onto the corresponding subspace En of E . Since sn is surjective,
this amounts to showing that dimk Ẽn ≤ dimk En.
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13.5. Lemma : Let B be an F2-basis of G. Then the set

{γ̃x | x ∈ G− (B t {0})}

is a k-basis of Ẽ2, and s2 is an isomorphism.

Proof : By Corollary 10.10

dimk E2 = (21 − 1) + (22 − 1) + · · ·+ (2m−1 − 1) = 2m −m− 1 .

Thus dimk Ẽ2 ≥ 2m−m− 1, since s2 is surjective. As 2m−m− 1 is precisely
equal to the cardinality of G − (B t {0}), it is enough to show that the
subspace Ẽ ′2 of Ẽ2 generated by the elements γ̃x, for x ∈ G − (B t {0}), is
equal to Ẽ2.

Let b ∈ B, and denote by H the subgroup of G generated by B − {b}.
Then |G : H| = 2, so ∑

x/∈H
γ̃x = 0 .

Since G−H = H+ b, the only element of G−H which is also in B is b itself.
This gives

γ̃b =
∑

y∈H−{0}
γ̃b+y ,

so γ̃b ∈ Ẽ ′2. Since this holds for any b ∈ B, and since Ẽ2 is the set of k-linear
combinations of elements γ̃x, for x ∈ G−{0}, it follows that Ẽ ′2 = Ẽ2, as was
to be shown.

13.6. Notation : Fix a linear ordering b1 < b2 < · · · < bm on B. If
x ∈ G − {0}, let dB(x) denote the least integer i ∈ {1, . . . ,m} such that
x ∈ <b1, . . . , bi>.

Then dB(x) = i if and only if x = y + bi, for some y ∈ <b1, . . . , bi−1>.

13.7. Definition : Let n ∈ N. If M = γ̃x1 γ̃x2 . . . γ̃xn ∈ Ẽ2n, where

xi ∈ G − {0} for 1 ≤ i ≤ n, set w(M) =
n∑
i=1

dB(xi). The monomial M

is called special if xi ∈ G − (B t {0}), for 1 ≤ i ≤ n, and ordered if
dB(xi) ≤ dB(xi+1), for 1 ≤ i < n.

13.8. Lemma : Let x1,. . . ,xn be elements of G− (Bt{0}). Then for any
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i ∈ {1, . . . , n− 1} such that dB(xi) 6= dB(xi+1), the sum

γ̃x1 . . . γ̃xi−1
γ̃xi
γ̃xi+1

γ̃xi+2
. . . γ̃xn + γ̃x1 . . . γ̃xi−1

γ̃xi+1
γ̃xi
γ̃xi+2

. . . γ̃xn

is a linear combination of special monomials M ′ with w(M ′) > w(M).

Proof : Since the assertion is symmetric in xi and xi+1, one can assume
that r = dB(xi) > dB(xi+1) = s. In this case xi = u + br, where u ∈
<b1, . . . , br−1> − {0}, and xi+1 = v + bs, where v ∈ <b1, . . . , bs−1> − {0}.
Let t = xi + xi+1 = (v + bs + u) + br, so dB(t) = r. Now the relation
[γ̃xi+1

+ γ̃t, γ̃xi
] = 0 gives

γ̃xi
γ̃xi+1

+ γ̃xi+1
γ̃xi

= γ̃tγ̃xi
+ γ̃xi

γ̃t ,

so the sum in the lemma is equal to

(13.9) S = γ̃x1 . . . γ̃xi−1
γ̃tγ̃xi

γ̃xi+2
. . . γ̃xn + γ̃x1 . . . γ̃xi−1

γ̃xi
γ̃tγ̃xi+2

. . . γ̃xn .

If t /∈ B, this is a sum of two special monomials M ′ with w(M ′) > w(M),
for dB(t) = dB(xi) > dB(xi+1). And if t ∈ B, then t = br, so

(13.10) γ̃t =
∑

u∈H−{0}
γ̃br+u ,

where H is the subgroup of index 2 of G generated by B − {br}. But
dB(br + u) ≥ r, for any u ∈ H. Replacing γ̃t in 13.9 by the right hand side
of 13.10 gives an expression of S as a sum of special monomials M ′ with
w(M ′) > w(M).

13.11. Proposition : The set of special ordered monomials is a k-basis
of Ẽ, and the map s is an isomorphism.

Proof : This is equivalent to saying that for any n ∈ N, the set of special
ordered monomials of degree 2n is a k-basis of Ẽ2n, and that the map s2n is
an isomorphism.

The first step consists in showing that the special ordered monomials of
degree 2n generate Ẽ2n. In other words, using (13.10), any special monomial

M = γ̃x1 γ̃x2 . . . γ̃xn

should be equal to a linear combination of special ordered monomials of
degree 2n.

For such an arbitrary monomial w(M) ≤ nm, and this allows for a proof
by induction on j = nm− w(M) : if j = 0, then dB(xi) = m, for 1 ≤ i ≤ n,
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and the monomial M is a special ordered monomial, so there is nothing to
prove.

Otherwise, if M is not ordered, there is a least integer i ∈ {1, . . . , n− 1}
such that dB(xi) > dB(xi+1). By Lemma 13.8, the monomial M is equal to
the monomial obtained by exchanging γ̃xi

and γ̃xi+1
, up to a linear combi-

nation of monomials M ′ with w(M ′) > w(M), which are equal to a linear
combination of special ordered monomials, by induction hypothesis.

By repeated application of this procedure, the term γ̃xi+1
can be moved

to the left, until it sits between γ̃xj
and γ̃xj+1

such that

dB(xj) ≤ dB(xi+1) < dB(xj+1) ,

(possibly j = 0, in which case γ̃xi+1
is moved to the first place on the left),

and the monomial M is equal to the monomial

γ̃x1 γ̃x2 . . . γ̃xj
γ̃xi+1

γ̃xj+1
. . . γ̃xi−1

γ̃xi
γ̃xi+2

. . . γ̃xn

up to a linear combination of special ordered monomials. In this monomial,
the i+ 1 first values

dB(x1), dB(x2), . . . , dB(xj), dB(xi+1), dB(xj+1) . . . , dB(xi−1), dB(xi)

are linearly ordered. By induction on n − i, this monomial is is equal to a
linear combination of special ordered monomials. This shows that the special
ordered monomials of degree 2n generate Ẽ2n.

The second step consists in counting the special ordered monomials : such
a monomial is a product

γ̃x1 . . . γ̃xj1︸ ︷︷ ︸
dB(xi)=1

γ̃xj1+1
. . . γ̃xj1+j2︸ ︷︷ ︸

dB(xi)=2

. . . γ̃xj1+···+jm−1+1
. . . γ̃xj1+···+jm︸ ︷︷ ︸

dB(xi)=m

of j1 elements γx with x ∈ G − (B t {0}) and dB(x) = 1, followed by
j2 elements γx with x ∈ G − (B t {0}) and dB(x) = 2, and so on, up
to a product of jm elements γx with x ∈ G − (B t {0}) and dB(x) = m,
where j1 + j2 + · · · + jm = n. An element x of G − (B t {0}) such that
dB(x) = i is an element of the form y + bi, where y is a non zero element of
<b1, . . . , bi−1>−{0}. It follows that the number of special ordered monomials
of degree 2n is equal to

∑
j1+j2+···+jm=n

m∏
i=1

(2i−1 − 1)ji .
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The only element x in G − {0} with dB(x) = 1 is b1 ∈ B, and this forces
j1 = 0. So the number of ordered monomials of degree 2n is equal to

∑

l1+l2+···+lm−1=n

m−1∏
i=1

(2i − 1)li ,

where li = ji+1, for 1 ≤ i ≤ m−1. But this is precisely equal to the coefficient
of the term of degree 2n in the Poincaré series for E , by Corollary 10.10. It
follows that dimk Ẽ2n ≤ dimk E2n, hence dimk Ẽ2n = dimk E2n, and the map
s2n is an isomorphism. This completes the proof of Corollary 13.11, and also
the proof of Theorem 1.3.

14. Partial results for G ∼= (Cp)
m, p > 2

Let G ∼= (Cp)
m be an odd order elementary abelian p-group. The main

difference with the case p = 2 is that Theorem 10.7 no longer holds, as can
be seen from Theorem 6.2 : if ϕ : G→ k+ is a group homomorphism, let EG

ϕ

denote the kG-module k ⊕ k, where the G-action is defined by

∀g ∈ G, ∀(x, y) ∈ k2, g(x, y) =
(
x+ yϕ(g), y

)
,

and let TGϕ denote the unique Mackey functor for G over k such that Tϕ(H)
is equal to zero if 1 6= H ≤ G, and such that Tϕ(1) ∼= Eϕ. Then TGϕ is a
cohomological Mackey functor, and there is a non split exact sequence

0 −→ SG1 −→ TGϕ −→ SG1 −→ 0 ,

whose class is an element τGϕ ∈ Ext1
Mc

k(G)(S
G
1 , S

G
1 ).

If X is a subgroup of order p of G, recall that there is a 2-fold extension
γGX ∈ Ext2

Mc
k(G)(S

G
1 , S

G
1 ) represented by the short exact sequence

0 −→ SG1 −→
(
SGX
SG1

)
−→

(
SG1
SGX

)
−→ SG1 −→ 0 .

In this case, I propose the following conjecture :

14.1. Conjecture : Let k be a field of odd characteristic p, and G ∼= (Cp)
m.

Then :

1. The algebra E = Ext∗Mc
k(G)(S

G
1 , S

G
1 ) is generated by the elements τGϕ in

degree 1, for ϕ ∈ HomZ(G, k
+), and by the elements γGX in degree 2,
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for X ≤ G with |X| = p.

2. The Poincaré series for E is equal to

1

(1− t)
(
1− t− (p−1)t2

)(
1− t− (p2−1)t2

)
. . .

(
1− t− (pm−1−1)t2

) .

14.2. Theorem : Conjecture 14.1 is true for p = 3.

Proof : If G = 1, i.e. if m = 0, there is nothing to prove. By induction
on m, one can assume that the result holds for any elementary abelian p-
group of rank smaller than m. Let H be a subgroup of index p of G, let T
be a complement of H in G, and set X = KG(H)− {T}. By Corollary 10.3,
there is a long exact sequence in Mc

k(G) of the form
(14.3)

· · · //L(n− 1)⊕ ⊕
X∈X

EG(n− 2) // EG(n)
rn // EH(n) EDBC

GF@A
//L(n)⊕ ⊕

X∈X
EG(n− 1) // EG(n+ 1)

rn+1 // EH(n+ 1) // · · · ,

where EG(n) = ExtnMc
k(G)(S

G
1 , S

G
1 ), EH(n) = ExtnMc

k(H)(S
H
1 , S

H
1 ), L(n) =

ExtnMc
k(G)(L, S

G
1 ), and X = KG(H) − {T}. Recall from Proposition 8.7 that

L is a functor all of whose composition factors are isomorphic to SG1 , with
multiplicity p − 2. Thus if p = 3, the functor L is isomorphic to SG1 , and it
follows that L(n) ∼= EG(n), for any n ∈ N.

It is easy to see that the map L(n−1) → EG(n) in Sequence 14.3 consists
in taking Yoneda product with the sequence

(14.4) 0 −→ L −→M −→ SG1 −→ 0

obtained by taking the image of the sequence

0 −→ R/J −→ I/J −→ SG1 −→ 0

of Proposition 10.1 under the split surjection R/J → L.
On the other hand, the map EG(n − 2) → EG(n) from the component

indexed by X ∈ X is equal to the Yoneda product by γGX , by the argument
given in the proof Theorem 10.9.

The map rn in Sequence 14.3 is induced by restriction from G to H,
also by the argument used in the proof of Theorem 10.9. In particular, it is
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compatible with the Yoneda product. By induction hypothesis, any element
in EH(n) is a linear combination of Yoneda products of elements τHψ and
elements γHY , where ψ ∈ HomZ(H, k

+) and Y ≤ H with |Y | = p.
To show that rn is surjective, it suffices to show that for any such ψ, there

exists ϕ ∈ HomZ(G, k
+) such that τHψ = r1(τ

G
ϕ ), and that for any such Y ,

there exists X ≤ G with |X| = p, such that γHY = r2(γ
G
X). For the latter, the

argument of the proof of Corollary 10.10 applies, and one can take X = Y .
Now if ψ ∈ HomZ(H, k

+), there exists ϕ ∈ HomZ(G, k
+) whose restriction

to H is equal to ψ, and it is straightforward to check that the restriction
to H of the extension TGϕ defining τGϕ is isomorphic to THψ . It follows that
r1(τ

G
ϕ ) = τHψ , so rn is surjective, for any n ∈ N. Actually this proves more :

the submodule E ′
G(n) of EG(n) generated by products of elements τGϕ and γGX

maps surjectively by rn on EH(n). Thus E ′
G(n) + Ker rn = EG(n).

Finally, in the case p = 3, the long exact sequence 14.3 splits as a series
of short ones

(14.5) 0 −→ EG(n− 1)⊕ ⊕
X∈X

EG(n− 2) −→ EG(n)
rn−→ EH(n) −→ 0 .

The image of each component EG(n − 2) in EG(n) is obtained by taking
Yoneda product with some γGX , and the image of EG(n − 1) is obtained by
taking the Yoneda product with the sequence 14.4, which for p = 3, is of the
form

0 −→ SG1 −→M −→ SG1 −→ 0 .

It follows easily that it is isomorphic to a sequence Tϕ, where ϕ ∈ HomZ(G, k
+)

has kernel H. So the image of EG(n − 1) in EG(n) is obtained by taking
Yoneda product with τGϕ .

An easy induction argument now shows that the kernel of rn is contained
in E ′

G(n), so E ′
G(n) = EG(n), completing the inductive step for Assertion 1

of Conjecture 14.1.
Assertion 2 now follows from Sequence 14.5 : this sequence shows that

if Pm(t) denotes the Poincaré series for the algebra Ext∗Mc
k(G)(S

G
1 , S

G
1 ), where

G ∼= (Cp)
m, then

Pm(t) = tPm(t) + |X |t2Pm(t) + Pm−1(t) .

Thus

Pm(t) =
Pm−1(t)

1− t− (
pm−1 − 1)t2

,

and Assertion 2 follows easily by induction.

14.6. Remark : The main reason for proposing Conjecture 14.1, apart
from Theorem 14.2, is a computer calculation for p = 5 or p = 7, using GAP
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software (http://www.gap-system.org), showing that the terms of lower
degree of the Poincaré series for the algebra Ext∗Mc

k(G)(S
G
1 , S

G
1 ) (up to degree 5

for p = 5 and m = 2) are as predicted by Assertion 2 of Conjecture 14.1.

15. More on extension of simple functors

15.1. Proposition : Let k be a field of characteristic p, and G be a finite
p-group. Let Q and R be normal subgroups of G, and set N = [Q,R]. Then
for each n ∈ N, the functor ρGG/N induces an isomorphism

ExtnMc
k(G)(S

G
Q , S

G
R )

∼=−→ ExtnMc
k(G/N)(S

G/N
Q/N , S

G/N
R/N ) .

Proof : By induction on the order of N : if N is trivial, there is nothing
to show. Otherwise, the subgroup N is a non-trivial normal subgroup of G,
contained in Q ∩ R, so N contains a central subgroup Z of order p of G. If
X is a complement of Z in Q, then for any n ∈ N

ExtnMc
k(G)(S

G
X , S

G
R ) ∼= ExtnMc

k(G)(IndGNG(X)S
NG(X)
X , SGR )

∼= ExtnMc
k(NG(X))(S

NG(X)
X ,ResGNG(X)S

G
R ) ,

and ResGNG(X)S
G
R = {0} if R 6≤ NG(X), by Lemma 6.7. But if R ≤ NG(X),

then [R,X] ≤ X, hence [R,Q] ≤ X, for Q = X ·Z and Z ≤ Z(G). It follows
that Z ≤ X, and this contradiction shows that ExtnMc

k(G)(S
G
X , S

G
R ) = {0} for

any X ∈ KQ(Z). Then by Theorem 8.6, for any n ∈ N, the map

πn : ExtnMc
k(G)(S

G
Q , S

G
R )−→Extn

Mc
k(G)

(SG
Q
, SG

R
)

induced by ρGG/Z is an isomorphism. Now Q and R are normal subgroups

of G, and [Q,R] = [Q,R]/Z has order smaller that |N |. By induction, the

functor ρ
G/Z
G/N induces an isomorphism

Extn
Mc

k(G)
(SG

Q
, SG

R
) −→ ExtnMc

k(G/N)(S
G/N
Q/N , S

G/N
R/N ) ,

and the result follows by composition with πn, since ρ
G/Z
G/N ◦ ρGG/Z ∼= ρGG/N .

The following result shows that for a p-group G and a field k of character-
istic p, the computation of extension groups ExtjMc

k(G)(S
G
Q , S

G
R ) comes down
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to the case where Q and R are elementary abelian normal subgroups of G,
which centralize each other. First a notation :

15.2. Notation : Let G be a finite p-group. If Q and R are subgroups
of G, set

SGR,Q = {g ∈ G | Φ(R) · gΦ(Q) · [R, gQ] ≤ R ∩ gQ} .

Denote by SGR,Q the set of
(
NG(R), NG(Q)

)
-double cosets in SGR,Q, and by

[SGR,Q] a set of representatives of SGR,Q.

Let N = N t {∞} be the linearly ordered set obtained by adding to N a
largest element ∞. Denote by νG(R,Q) ∈ N the element defined by

pνG(R,Q) = min
g∈SG

R,Q

|R·gQ : R ∩ gQ| = min
g∈[SG

R,Q]

|R·gQ : R ∩ gQ| ,

if SGR,Q 6= ∅, and by νG(R,Q) = ∞ otherwise.

15.3. Theorem : Let k be a field of characteristic p, let G be a finite
p-group, and let Q and R be subgroups of G. Then for g ∈ SGR,Q :

1. the groups R and gQ normalize each other.

2. the group Φ(R) · gΦ(Q) · [R, gQ] is equal to Φ(R·gQ).

3. the groups R̂ = R/Φ(R·gQ) and ĝQ = gQ/Φ(R·gQ) are elementary

abelian normal subgroups of N̂G(R, gQ) = NG(R, gQ)/Φ(R·gQ), which
centralize each other.

Moreover for any j ∈ N,

ExtjMc
k(G)(SQ, SR) ∼= ⊕

g∈[SG
R,Q]

Extj
Mc

k( bNG(R,gQ))

(
S
bNG(R,gQ)
cgQ , S

bNG(R,gQ)
bR

)
,

Proof : If g ∈ SGR,Q, then [R, gQ] ≤ R ∩ gQ, so R and gQ normalize each
other. Let T = Φ(R) · gΦ(Q) · [R, gQ]. Then the groups R/T and gQ/T are
elementary abelian subgroups of NG(R, gQ)/T , which centralize each other.
Thus (R·gQ)/T is elementary abelian, and T ≥ Φ(R·gQ).

Conversely Φ(R) ≤ Φ(R·gQ), since R·gQ is a p-group, and similarly
Φ(gQ) = gΦ(Q) ≤ Φ(R·gQ). Moreover [R, gQ] ≤ [R·gQ,R·gQ] ≤ Φ(R·gQ),

so finally T ≤ Φ(R·gQ), hence T = Φ(R·gQ). Now R̂ = R/T and ĝQ = gQ/T

are elementary abelian normal subgroups of N̂G(R, gQ), which centralize each
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other.
Set A = Φ(Q) and B = NG(Q). Set similarly C = Φ(R) and D = NG(R).

Then SGQ
∼= IndGBı

B
B/A(S

B/A
Q/A) and SGR = IndGD

D
D/C(S

D/C
R/C ), by Lemma 6.5 and

Corollary 6.6. Thus, by Proposition 3.16, for any j ∈ N,

ExtjMc
k(G)(SQ, SR) ∼= ExtjMc

k(D/C)

(
ρDD/CResGDIndGBı

B
B/A(S

B/A
Q/A), S

D/C
R/C

)
.

Now by Proposition 3.27,

ρDD/CResGDIndGBı
B
B/A(S

B/A
Q/A)∼= ⊕

g∈[D\G/B]
IndD

Dg
ı
Dg

Dg/Cg
Iso(fg)ρ

Bg

Bg/Ag
ResB

Bg
(S

B/A
Q/A) ,

where

D = D/C, Dg = (D ∩ gB)C/C, Cg = (D ∩ gA)C/C ,

B = B/A, Bg = (Dg ∩B)A/A, Ag = (Cg ∩B)A/A ,

and where fg : Bg/Ag −→ Dg/Cg is the group isomorphism sending xAg to
gxCg, for x ∈ Dg ∩B.

By Lemma 6.7, the functor ρ
Bg

Bg/Ag
ResB

Bg
(S

B/A
Q/A) is isomorphic to the direct

sum of the simple functors S
Bg/Ag

X/Ag
corresponding to subgroup X such that

X/A is conjugate to Q = Q/A in B/A, up to conjugation by Bg/Ag. Since
QEB, the only possible such subgroup is Q itself, if Ag ≤ Q ≤ Bg. This
gives

ExtjMc
k(G)(SQ, SR) ∼=

⊕

g∈[D\G/B]

Ag≤Q≤Bg

Extj
Mc

k(D)

(
IndD

Dg
ı
Dg

Dg/Cg
Iso(fg)(S

Bg/Ag

Q/Ag
), S

D/C
R/C

)
.

By adjunction, this gives

ExtjMc
k(G)(SQ, SR)∼=

⊕

g∈[D\G/B]

Ag≤Q≤Bg

Extj
Mc

k(D)

(
Iso(fg)(S

Bg/Ag

Q/Ag
), ρ

Dg

Dg/Cg
ResD

Dg
(SD

R
)
)
,

where R = R/C. By the same argument, the functor ρ
Dg

Dg/Cg
ResD

Dg
(SD

R
) is

equal to zero, unless Cg ≤ R ≤ Dg, in which case it is isomorphic to S
Dg/Cg

R/Cg
.

Thus

ExtjMc
k(G)(SQ, SR)∼=

⊕

g∈[D\G/B]

Ag≤Q≤Bg

Cg≤R≤Dg

Extj
Mc

k(Dg/Cg)

(
Iso(fg)(S

Bg/Ag

Q/Ag
), S

Dg/Cg

R/Cg

)
.
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Now the condition Q ≤ Bg is equivalent to Q ≤ (Dg ∩ B)A, i.e. to Q =
A(Dg ∩ Q), i.e. to Dg ∩ Q = Q, since A = Φ(Q). In other words Q ≤ Dg.
Similarly, the condition R ≤ Dg is equivalent to R ≤ (D ∩ gB)C, i.e. to
R = (R ∩ gB)C, i.e. to R = R ∩ gB, since C = Φ(R). In other words
R ≤ gB.

Then the condition Ag ≤ Q is equivalent to Cg ∩B ≤ Q. Since moreover
Cg ≤ Rg ≤ B, it follows that Cg ∩B = Cg ≤ Q.

Similarly, the condition Cg ≤ R is equivalent to D ∩ gA ≤ R. But
gA ≤ gQ ≤ D, thus D ∩ gA = gA ≤ R.

In this situation

Dg = (D ∩ gB)/C, Cg = gA·C/C, Bg = (Dg ∩B)/A, Ag = Cg·A/A ,

and the isomorphism

fg : Bg/Ag = (Dg ∩B)/(Cg·A) −→ (D ∩ gB)/(C·gA) = Dg/Cg

is induced by conjugation by g. In particular fg(Q/Ag) = gQ/(C·gA), thus
finally

ExtjMc
k(G)(SQ, SR) ∼= ⊕

g∈S
ExtjMc

k((D∩gB)/(C·gA))

(
S

(D∩gB)/(C·gA)
gQ/(C·gA) , S

(D∩gB)/(C·gA)
R/(C·gA)

)
,

where

S = {g ∈ [D\G/B] | C·gA ≤ R ∩ gQ ≤ R·gQ ≤ D ∩ gB}
= {g ∈ [D\G/B] | C·gA · [R, gQ] ≤ R ∩ gQ} = [SGR,Q] .

Moreover, by Proposition 15.1, for g ∈ S, the group

ExtjMc
k((D∩gB)/(C·gA))

(
S

(D∩gB)/(C·gA)
gQ/(C·gA) , S

(D∩gB)/(C·gA)
R/(C·gA)

)

is isomorphic to

Extj
Mc

k( bNG(R,gQ))

(
S
bNG(R,gQ)
cgQ , S

bNG(R,gQ)
bR

)
,

and this completes the proof.

15.4. Proposition : Let k be a field of characteristic p, let G be a finite
p-group, and let Q and R be subgroups of G. Then

n < νG(R,Q) ⇒ ExtnMc
k(G)(S

G
Q , S

G
R ) = {0} .
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Proof : If νG(R,Q) = ∞, i.e. if SGR,Q = ∅, then ExtnMc
k(G)(S

G
Q , S

G
R ) = {0} for

any n ∈ N, by Theorem 15.3. So one can assume νG(R,Q) ∈ N.
The result is trivial if G = 1, so by induction on |G|, one can assume

that it holds for any group of order less than |G|. The group G being
given with this property, one can proceed by induction on n, to show that
ExtnMc

k(G)(S
G
Q , S

G
R ) = {0} if Q and R are subgroups of G with νG(R,Q) > n.

This starts with the case n = −1, where there is nothing to prove, since
νG(R,Q) ≥ 0 and ExtnMc

k(G)(S
G
Q , S

G
R ) = {0} for n < 0.

For the inductive step, let n ≥ 0, let Q and R be subgroups of G such
that νG(R,Q) > n, and let g ∈ SGR,Q. Then the index |R·gQ : R ∩ gQ|
is equal to the index |R′·Q′ : R′ ∩ Q′|, where R′ = R/

(
Φ(R)·gΦ(Q)

)
and

Q′ = gQ/
(
Φ(R)·gΦ(Q)

)
. By Theorem 15.3, and by induction hypothesis

on G, it suffices to consider the case where Q and R are elementary abelian
normal subgroups of G, which centralize each other.

In this case, set j = νG(R,Q), so pj = |R·Q : R ∩ Q|. If Q ∩ R 6= 1,
let Z be a subgroup of order p of Q ∩ R ∩ Z(G). By Theorem 8.6, for any
integer n, there is a short exact sequence

0 → ⊕
X∈K

Extn−1
Mc

k(G)(S
G
X , S

G
R ) → ExtnMc

k(G)(S
G
Q , S

G
R ) → Extn

Mc
k(G)

(SG
Q
, SG

R
) → 0 ,

where K is a set of representatives of G-conjugacy classes of complements
of Z in Q, and Q and R denote Q/Z and R/Z, respectively.

If X ∈ K, since REG, the set NG(X)\G/NG(R) has cardinality 1. More-
over X ∩ R 6= Q ∩ R, since Z ≤ Q ∩ R and Z 6≤ X, so |Q ∩ R : X ∩ R| = p,
and

|X·R : X ∩R| = |Q||R|
p|X ∩R|2 = pj+1 .

In other words νG(R,X) = j + 1 > n − 1, so Extn−1
Mc

k(G)(S
G
X , S

G
R ) = {0} by

induction hypothesis on n.
On the other hand Extn

Mc
k(G)

(SG
Q
, SG

R
) = 0 since n < j, by induction

hypothesis on |G|. It follows that ExtnMc
k(G)(S

G
Q , S

G
R ) = {0}.

It remains to consider the case where Q∩R = 1. Since νG(R,Q) > n ≥ 0,
it follows that at least one of the groups Q or R is non trivial. By symmetry
on Q and R, one can assume that Q 6= 1, and choose a subgroup Z of order p
in Q ∩ Z(G).

Now for any n ∈ N

ExtnMc
k(G)

(
ıGG/Z(S

G/Z
Q/Z ), SQR

) ∼= ExtnMc
k(G/Z)

(
S
G/Z
Q/Z , ρ

G
G/Z(SGR )

)
= {0} ,

64



by Proposition 6.7, since Z 6⊆ R. Applying HomMc
k(G)(−, SGR ) to the first

exact sequence of Proposition 8.5 gives the isomorphisms

(15.5) ExtnMc
k(G)(S

G
Q , S

G
R ) ∼= ⊕

X∈K
Extn−1

Mc
k(G)(S

G
X , S

G
R ) ,

for any n ∈ N, where K is a set of representatives of G-conjugacy classes of
complements of Z in Q.

Let X ∈ K, and set l = νG(R,X). Then

pl = |X·R : X ∩R| = |X·R| = |X||R| ,

so l = j − 1.
If n < j, then n − 1 < l, hence Extn−1

Mc
k(G)(S

G
X , S

G
R ) = {0} by induction

hypothesis on n. It follows that ExtnMc
k(G)(S

G
Q , S

G
R ) = {0}, as was to be

shown.

15.6. Notation : Let Q be an elementary abelian p-group. Denote
by St(Q) the only non-zero reduced integral homology group of the poset ]1, Q[
of proper non trivial subgroups of Q, ordered by inclusion.

It is well known (see e.g. [3]) that, if Q has rank r, then St(Q) =

H̃r−2(]1, Q[,Z) is isomorphic to Zp
(r
2)

. The automorphism groupA ∼= GL(r,Fp)
of Q acts on St(Q), and the module St(Q) is isomorphic to the Steinberg mod-
ule of A. The restriction of St(Q) to a Sylow p-subgroup P of A is a free
ZP -module of rank 1.

When G is an elementary abelian p-group, the following theorem was
proved by Tambara ([8] Theorem 4.1) :

15.7. Theorem : Let k be a field of characteristic p, and G be a finite
p-group. Let Q be an elementary abelian normal subgroup of rank q of G,
and H be a subgroup of rank h of Q. Then νG(H,Q) = q − h and :

1. There is a group isomorphism

Extq−hMc
k(G)(S

G
Q , S

G
H) ∼= Extq−hMc

k(NG(H)/H)(S
NG(H)/H
Q/H , S

NG(H)/H
H/H ) .

2. These groups are isomorphic to the space of coinvariants
kSt(Q/H)NG(H) of NG(H) on k ⊗Z St(Q/H).

3. Let H = H0 < H1 < . . . < Hq−h = Q be a maximal NG(H)-invariant

flag. Then Extq−hMc
k(G)(S

G
Q , S

G
H) has a k-basis indexed by the NG(H)-

conjugacy classes of flags X1 > X2 > . . . > Xq−h−1 of Q such that
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Xi +Hi = Q and Xi ∩Hi = H, for 1 ≤ i ≤ q − h− 1. In particular

dimk Extq−hMc
k(G)(S

G
Q , S

G
H) =

p(
q−h

2 )

|NG(H) : ZG(H,Q)| ,

where ZG(H,Q) = {g ∈ G | [g,Q] ≤ H} (in other words ZG(H,Q) is
the preimage in NG(H) of the centralizer of Q/H in NG(H)/H).

Proof : Since H ≤ Q and Φ(Q) = 1, it follows that Φ(H)Φ(Q)[H,Q] = 1 ≤
H ∩ Q, so νG(H,Q) < ∞. Moreover pνG(H,Q) = |Q·H : Q ∩ H| = |Q : H|,
since QEG, so νG(H,Q) = q − h.

For Assertion 1, observe first that

ExtnMc
k(G)(S

G
Q , S

G
H) ∼= ExtnMc

k(NG(H))(S
NG(H)
Q , S

NG(H)
H ) ,

for any n ∈ N, and νNG(H)(H,Q) = q − h since QENG(H). By induction
on |G|, if NG(H) < G, there is an isomorphism

ExtnMc
k(NG(H))(S

NG(H)
Q , S

NG(H)
H ) ∼= ExtnMc

k(NG(H)/H)(S
NG(H)/H
Q/H , S

NG(H)/H
H/H ) ,

so one can suppose H EG.
If H = 1, there is nothing to prove. Otherwise, let Z be a subgroup of

order p of H ∩ Z(G). By Theorem 8.6, there is an exact sequence

0 → ⊕
X∈K

Extq−h−1
Mc

k(G) (S
G
X , S

G
H) → Extq−hMc

k(G)(S
G
Q , S

G
H)

πq−h→ Extq−h
Mc

k(G)
(SG

Q
, SG

H
) → 0 ,

in Mc
k(G), where K is a set of representatives of G-conjugacy classes of com-

plements of Z in Q, and overlines denote quotients by Z. If X ∈ K, then

pνG(H,X) = |X·H : X ∩H| = |X||H|
|X ∩H|2 =

|Q||H|
p|X ∩H|2 = pq−h−1|H : X ∩H|2 .

Since Z ≤ H and Z ∩X = 1, it follows that H 6≤ X, thus |H : X ∩H| = p,
and νG(H,X) = q−h+1. By Proposition 15.4, the group Extq−h−1

Mc
k(G) (S

G
X , S

G
R )

is equal to zero. Hence the map πq−h is an isomorphism. By induction on
the the order of G, there is an isomorphism

Extq−h
Mc

k(G)
(SG

Q
, SG

H
) ∼= Extq−hMc

k(G/H)(S
G/H
Q/H , S

G/H
H/H) ,

which completes the proof of Assertion 1.
It follows that for Assertions 2 and 3, it suffices to consider the case

H = 1, i.e. h = 0. In this case Hi EG, for 0 ≤ i ≤ q. If q = 0, i.e. if Q = 1,
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there is nothing to prove, since Ext0
Mc

k(G)(S
G
1 , S

G
1 ) ∼= k. This allows to start a

proof by induction on q.
If q > 0, by Proposition 8.5, there is an exact sequence

0 −→ ⊕
X1∈K

SGX1
−→ ιGG/H1

(S
G/H1

Q/H1
) −→ SGQ −→ 0 ,

where K is a set of representatives of G-conjugacy classes of complements
of H1 in Q. Since ρGG/H1

(SG1 ) = {0}, this gives an isomorphism

ExtqMc
k(G)(S

G
Q , S

G
1 ) ∼= ⊕

X1∈K
Extq−1

Mc
k(G)(S

G
X1
, SG1 ) .

Moreover, for X1 ∈ K,

Extq−1
Mc

k(G)(S
G
X1
, SG1 ) ∼= Extq−1

Mc
k(NG(X1))(S

NG(X1)
X1

, S
NG(X1)
1 ) .

The flag 1 < H2 ∩ X1 < H3 ∩ X1 < . . . < Hq−1 ∩ X1 < X1 is a maximal
NG(X1)-invariant flag in X1. By induction hypothesis, the space

Extq−1
Mc

k(NG(X1))(S
NG(X1)
X1

, S
NG(X1)
1 )

has a k-basis indexed by NG(X1)-conjugacy classes of flags

X2 > X3 > . . . > Xq−1

such that Xi ⊕ (Hi ∩ X1) = X1, for 2 ≤ i ≤ q − 1. Equivalently X2 < X1,
and Xi ⊕Hi = Q, for 2 ≤ i ≤ q − 1.

Now X1 runs through a set of representatives of G-conjugacy classes of
complements of H1 in Q, and X2 > . . . > Xq−1 runs through a set of repre-
sentatives of NG(X1)-conjugacy classes of flags such that Xi ⊕ Hi = Q, for
2 ≤ i ≤ q − 1. Equivalently X1 > X2 > . . . > Xq−1 runs through a set of
conjugacy classes of flags of Q such that Xi ⊕ Hi = Q, for 1 ≤ i ≤ q − 1.
This completes the inductive step, and the first part of Assertion 3 follows.

Now the stabilizer C in G of a flag X1 > X2 > . . . > Xq−1 such that
Xi ⊕Hi = Q, for 1 ≤ i ≤ q − 1 stabilizes two opposite maximal flags of Q.
Since G is a p-group, it follows that the image of C in the automorphism
group of Q is trivial (since it consists of matrices which are both upper and
lower triangular with 1’s on the diagonal). In other words C = CG(Q).

There are p(
q
2) maximal flags opposite to a given maximal flag in Q, and

the cardinality of each G-conjugacy class of such flags is |G : CG(Q)|. This
completes the proof of Assertion 3.

Assertion 2 follows from the fact that kSt(Q) has a k-basis indexed by
maximal flags opposite to a given G-invariant maximal flag of Q, and this
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basis is permuted by G (see [3] for details). In other words kSt(Q) is a free
k
(
G/CG(Q)

)
-module.

Together with Theorem 15.3, the following theorem allows to compute
any extension group between simple functors for a p-group G, from the self
extension groups for the simple functor SC1 , where C runs through some
subquotients of G :

15.8. Theorem : Let k be a field of characteristic p, let G be a finite p-
group, and let Q and R be elementary abelian normal subgroups of G which
centralize each other. Let q denote the rank of Q and r the rank of R.

1. For any n ∈ N, the group ExtnMc
k(G)(S

G
Q , S

G
R ) is isomorphic to


 ⊕

h∈N
H≤Q∩R

rank(H)=h

kSt(R/H)⊗k Extn+2h−q−r
Mc

k(ZH) (SZH
1 , SZH

1 )⊗k kSt(Q/H)



G

,

where ZH = ZG(H,Q·R)/H = {g ∈ G | [g,Q·R] ≤ H}/H, and the
G-subscript denotes the space of coinvariants.

2. In particular, the dimension of the space ExtnMc
k(G)(S

G
Q , S

G
R ) is equal to

∑

h∈N
H≤Q∩R, mod.G

rank(H)=h

p(
q−h

2 )+(r−h
2 )

|NG(H) : ZG(H,Q·R)| dimk Extn+2h−q−r
Mc

k(ZH) (SZH
1 , SZH

1 ) .

Proof : For Assertion 1, when Q and R are both trivial, there is nothing to
prove. This allows for a proof by induction on |Q||R|. By symmetry on Q
and R, one can assume that Q 6= 1, and choose a subgroup Z of order p of
Q ∩ Z(G). There are two cases :

• if Z 6≤ R, then ρGG/Z(SGR ) = {0} by Lemma 6.7, and the exact sequence of
Proposition 8.5 gives isomorphisms

ExtnMc
k(G)(S

G
Q , S

G
R ) ∼= ⊕

X∈K
Extn−1

Mc
k(G)(S

G
X , S

G
R ) ,

for any n ∈ N, where K = [G\KQ(Z)] is a set of representatives of G conju-
gacy classes of complements of Z in Q. Now for each X ∈ K

Extn−1
Mc

k(G)(S
G
X , S

G
R ) ∼= Extn−1

Mc
k(NG(X))(S

NG(X)
X , S

NG(X)
R ) .
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Since |X||R| = |Q||R|/p, by induction hypothesis, this group is isomorphic
to

 ⊕

h∈N
H≤X∩R

rank(H)=h

kSt(R/H)⊗k Extn−1+2h−x−r
Mc

k(ZX
H )

(S
ZX

H
1 , S

ZX
H

1 )⊗k kSt(X/H)



NG(X)

,

where x = q − 1 is the rank of X, and

ZX
H = {g ∈ NG(X) | [g,X·R] ≤ H}/H .

But if g ∈ G, then [g,X·R] ≤ H if and only if [g,Q·R] ≤ H, since Q = X·Z
and Z ≤ Z(G). And if [g,Q·R] ≤ H, then

[g,X] ≤ [g,Q] ≤ [g,Q·R] ≤ H ≤ X ,

so g ∈ NG(X). It follows that

ZX
H = {g ∈ G | [g,Q·R] ≤ H}/H = ZH .

Finally, the group ExtnMc
k(G)(S

G
Q , S

G
R ) is isomorphic to


 ⊕
X∈KQ(Z)

⊕
h∈N

H≤X∩R
rank(H)=h

kSt(R/H)⊗k Extn+2h−q−r
Mc

k(ZH) (SZH
1 , SZH

1 )⊗k kSt(X/H)



G

.

Exchanging the order of summation, this gives


 ⊕

h∈N
H≤Q∩R

rank(H)=h

kSt(R/H)⊗k Extn+2h−q−r
Mc

k(ZH) (SZH
1 , SZH

1 )⊗k

( ⊕
X∈KQ(Z)
X≥H

kSt(X/H)
)


G

.

Now Z∩H = 1 since Z∩R = 1, hence the conditionsX ∈ KQ(Z) andX ≥ H
are equivalent to X·(ZH) = Q and X ∩ (ZH) = H, i.e. to H ≤ X ≤ Q and
X/H ∈ KQ/H(ZH/H). By classical combinatorial results,

⊕
X/H∈KQ/H(ZH/H)

kSt(X/H) ∼= St(Q/H) ,
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thus ExtnMc
k(G)(S

G
Q , S

G
R ) is isomorphic to


 ⊕

h∈N
H≤Q∩R

rank(H)=h

kSt(R/H)⊗k Extn+2h−q−r
Mc

k(ZH) (SZH
1 , SZH

1 )⊗k kSt(Q/H)



G

,

as was to be shown.

• If Z ≤ R, then by Theorem 8.6, for any n ∈ N, there is an exact sequence

0 → ⊕
X∈K

Extn−1
Mc

k(G)(S
G
X , S

G
R )

︸ ︷︷ ︸
Σ

→ ExtnMc
k(G)(S

G
Q , S

G
R )→Extn

Mc
k(G)

(SG
Q
, SG

R
) → 0 ,

in Mc
k(G), where K = [G\KQ(Z)] as above, and overlines denote quotients

by Z. It follows that ExtnMc
k(G)(S

G
Q , S

G
R ) ∼= Σ⊕ Extn

Mc
k(G)

(SG
Q
, SG

R
).

The same argument as above shows that the space Σ is isomorphic to
(15.9)

 ⊕
h∈N

H≤Q∩R,H∩Z=1

rank(H)=h

kSt(R/H)⊗k Extn+2h−q−r
Mc

k(ZH) (SZH
1 , SZH

1 )⊗k kSt(Q/H)



G

.

On the other hand, by induction hypothesis, the space Extn
Mc

k(G)
(SG

Q
, SG

R
) is

isomorphic to




⊕
h∈N

H≤Q∩R
rank(H)=h

kSt(R/H)⊗k Extn+2h−q−r
Mc

k(ZH) (S
ZH
1 , S

ZH
1 )⊗k kSt(Q/H)



G

,

where q = q − 1 and r = r − 1. Summing over H is equivalent to summing
over H ≤ Q ∩ R with H ≥ Z. If H has rank h, then H = H/Z has rank
h = h− 1, and n+ 2h− q− r = n+ 2h− q− r. Moreover R/H ∼= R/H, and
Q/H ∼= Q/H. Also

ZH = {g ∈ G | [g,Q·R] ≤ H}/H ∼= {g ∈ G | [g,Q·R] ≤ H}/H = ZH .
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Thus Extn
Mc

k(G)
(SG

Q
, SG

R
) is isomorphic to

(15.10)
 ⊕

h∈N
Z≤H≤Q∩R
rank(H)=h

kSt(R/H)⊗k Extn+2h−q−r
Mc

k(ZH) (SZH
1 , SZH

1 )⊗k kSt(Q/H)



G

.

Now the direct sum of 15.9 and 15.10 is isomorphic to the expression in
Theorem 15.8, as was to be shown for Assertion 1.

It follows that the dimension of the space ExtnMc
k(G)(S

G
Q , S

G
R ) is equal to

∑

h∈N
H≤Q∩R, mod.G

rank(H)=h

dimk

(
kSt(R/H)⊗k Extn+2h−q−r

Mc
k(ZH) (SZH

1 , SZH
1 )⊗k kSt(G/H)

)
NG(H)

.

The image of the group NG(H) in the automorphism group of R/H is iso-
morphic to NG(H)/ZG(H,R), and kSt(R/H) is a free kNG(H)/ZG(H,R)-
module. Similarly the module kSt(Q/H) is a free kNG(H)/ZG(H,Q)-module.
It follows that the module V = kSt(R/H)⊗k kSt(Q/H) is a free kNG(H)/Z-
module, where Z = ZG(H,R) ∩ ZG(H,Q) = ZG(H,Q·R).

Moreover since ZH = Z/H, the group Z acts trivially on

W = Extn+2h−q−r
Mc

k(ZH) (SZH
1 , SZH

1 ) ,

so W is a kNG(H)/Z-module. Hence V ⊗W is a free kNG(H)/Z-module,

and it follows that dimk(V ⊗W )NG(H) =
dimk(V ⊗W )
|NG(H)/Z| , which completes the

proof of Assertion 2.

In the case where G is elementary abelian, the following has been proved
by Tambara ([8] Theorem B) :

15.11. Corollary : Let k be a field of characteristic p, let G be a finite
p-group, and let Q and R be subgroups of G, such that νG(R,Q) <∞. Then

Ext
νG(R,Q)
Mc

k(G) (SGQ , S
G
R ) is isomorphic to

⊕
g∈MG

Q,R

(
kSt

(
R/(R ∩ gQ)

)⊗k kSt
(
gQ/(R ∩ gQ)

))
NG(R,gQ)

,

where MG
Q,R = {g ∈ [SGR,Q] | |R·gQ : R ∩ gQ| = pνG(R,Q)}.

In particular νG(R,Q) = min{n ∈ N | ExtnMc
k(G)(S

G
Q , S

G
R ) 6= {0}}.
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Proof : If n < νG(R,Q), then ExtnMc
k(G)(S

G
Q , S

G
R ) = {0}, by Proposition 12.4.

Suppose that n = νG(R,Q), and let g ∈ [SGR,Q] such that, with the notation
of Theorem 15.3,

Extn
Mc

k( bNG(R,gQ))

(
S
bNG(R,gQ)
cgQ , S

bNG(R,gQ)
bR

) 6= 0 .

It follows that pn ≥ p
ν bNG(R,gQ)

( bR,cgQ)
= |R·gQ : R ∩ gQ| ≥ pνG(R,Q). Hence

n = νG(R,Q) = |R·gQ : R ∩ gQ|.
Moreover, in the expression of Extn

Mc
k( bNG(R,gQ))

(
S
bNG(R,gQ)
cgQ , S

bNG(R,gQ)
bR

)
given

by Theorem 15.8, the non zero terms correspond to subgroups H of R̂ ∩ ĝQ
such that n+2h− q− r ≥ 0, where h, q, and r are the ranks of H, ĝQ and R̂
respectively. Thus

|H|2 ≥ |ĝQ||R̂|/pn = |ĝQ||R̂||/|R̂·ĝQ| = |R̂ ∩ ĝQ|2 .

It follows that H = R̂∩ ĝQ, that R̂/H ∼= R/R∩gQ, that ĝQ/H ∼= gQ/R∩gQ,
and that n + 2h − q − r = 0, so Ext0

Mc
k(ZH)(S

ZH
1 , SZH

1 ) ∼= k. This completes
the proof.

15.12. Remark : Let G be an abelian p-group, and Q, R be elementary
abelian subgroups of G, of rank q and r, respectively. In this case, by Asser-
tion 1 of Theorem 15.3, the group ExtnMc

k(G)(S
G
Q , S

G
R ) is isomorphic to

⊕
h∈N

H≤Q∩R
rank(H)=h

kSt(R/H)⊗k Extn+2h−q−r
Mc

k(G/H) (S
G/H
1 , S

G/H
1 )⊗k kSt(Q/H) .

Fix H ≤ Q ∩R, of rank h, and denote by i the inclusion map

kSt(R/H)⊗k Extn+2h−q−r
Mc

k(G/H) (S
G/H
1 , S

G/H
1 )⊗k kSt(Q/H) ↪→ ExtnMc

k(G)(S
G
Q , S

G
R ).

It is easy to check that this map can be explicitly described as follows : if
y ∈ kSt(R/H) ∼= Extr−hMc

k(G)(S
G
H , S

G
R ), if e ∈ Extn+2h−q−r

Mc
k(G/H) (S

G/H
1 , S

G/H
1 ), and if

x ∈ kSt(Q/H) ∼= Extq−hMc
k(G)(S

G
Q , S

G
H), then i(y⊗ e⊗ x) is equal to the Yoneda

composition y ◦ InfGG/He ◦ x.
In terms of morphisms in the derived category of Mc

k(G), it means that
any morphism from SGQ to some translate of SGR is a linear combination of

morphisms which factor through a morphism of the form InfGG/He, where

H ≤ Q ∩R, and e is a morphism from S
G/H
1 to some of its translate.

In the case p = 2 and G is elementary abelian, this leads to an explicit
description of all the Yoneda products of extensions of simple cohomological
Mackey functors.
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