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Abstract: For a Green biset functor A, we define the commutant and the center

of A and we study some of their properties and their relationship. This leads in

particular to the main application of these constructions: the possibility of split-

ting the category of A-modules as a direct product of smaller abelian categories.

We give explicit examples of such decompositions for some classical shifted repre-

sentation functors. These constructions are inspired by similar ones for Mackey

functors for a fixed finite group.
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Introduction

This paper is devoted to the construction of two analogues of the center of a ring
in the realm of Green biset functors, that is “biset functors with a compatible ring
structure”. For a Green biset functor A, we present the commutant CA of A, defined
from a commutation property, and the center ZA of A, defined from the structure of
the category of A-modules. Both CA and ZA are again Green biset functors. These
constructions are inspired by similar ones for Mackey functors for a fixed finite group
made in Chapter 12 of [1].

The commutant CA is always a Green biset subfunctor of A, and we say that A is
commutative if CA = A. Most of the classical representation functors are commutative
in that sense. One of them plays a fundamental - we should say initial - role, namely the
Burnside biset functor B, as biset functors are nothing but modules over the Burnside
functor. An important feature of the category B-Mod is its monoidal structure: given
two biset functorsM and N , one can build their tensor productM⊗N , which is again
a biset functor. For this tensor product, the category B-Mod becomes a symmetric
monoidal category, and a Green biset functor A is a monoid object in B-Mod.
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More generally, for any Green biset functor A, we consider the category A-Mod of
A-modules. We will make a heavy use of the equivalence of categories between A-Mod
and the category of linear representations of the category PA introduced in Chapter 8
of [2] (see also Definition 9 below), which has finite groups as objects, and in which the
set of morphisms from G to H is equal to A(H × G). The category PB associated to
the Burnside functor is precisely the biset category of finite groups. It is a symmetric
monoidal category (for the product given by the direct product of groups), and this
monoidal structure induces via Day convolution ([6]) the monoidal structure of B-Mod
mentioned before.

A natural question is then to know when the cartesian product of groups endows
the category PA with a symmetric monoidal structure, and we show that this is the
case precisely when A is commutative. In this case the category A-Mod also becomes
a symmetric monoidal category.

Even though the definition of the center ZA of a Green biset functor A is fairly
natural, showing that it is endowed with a Green biset functor structure (even showing
that ZA(G) is indeed a set!) is not an easy task, it requires several and sometimes
rather nasty computations. On the other hand, one of the rewarding consequences
of this laborious process is that we obtain a description of ZA(G) in terms also of a
commutation condition, this time on the morphisms of PA. Once we have that ZA
is indeed a Green biset functor, we show some nice properties of it, for instance that
there is an injective morphism of Green biset functors from CA to ZA. This implies
in particular that ZA is a CA-module. We show also that in case A is commutative,
it is a direct summand of ZA as A-modules.

In the last section we work within ZA(1), which, as we will see, coincides with the
center of the category A-Mod. Any decomposition of the identity element of ZA(1) as
a sum of orthogonal idempotents, fulfilling certain finiteness conditions, allows us to
decompose A-Mod as a direct product of smaller abelian categories. Moreover, since
CA(1) is generally easier to compute than ZA(1), we can also use similar decomposi-
tions of the identity element of CA(1) instead, thanks to the inclusion CA ↪→ ZA. We
give then a series of explicit examples. The first one is the Burnside p-biset functor
A = RBp over a ring R where the prime p is invertible. In this case, we obtain an
infinite series of orthogonal idempotents in ZA(1), and this shows in particular that
ZA can be much bigger that CA. Next we consider some classical representation func-
tors, shifted by some fixed finite group L via the Yoneda-Dress functor. In this series
of examples, we will see that the smaller abelian categories obtained in the decompo-
sition are also module categories for Green biset functors arising from the functor A,
the shifting group L, and the above-mentioned idempotents.
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1 Preliminaries

Throughout the paper, we fix a commutative unital ring R. All referred groups will be
finite. The center of a ring S will be denoted by Z(S).

1.1 Green biset functors

The biset category over R will be denoted by RC. Recall that its objects are all finite
groups, and that for finite groups G and H, the hom-set HomRC(G,H) is RB(H,G) =
R ⊗Z B(H,G), where B(H,G) is the Grothendieck group of the category of finite
(H,G)-bisets. The composition of morphisms in RC is induced by R-bilinearity from
the composition of bisets, which will be denoted by ◦.

We fix a non-empty class D of finite groups closed under subquotients and cartesian
products, and a set D of representatives of isomorphism classes of groups in D. We
denote by RD the full subcategory of RC consisting of groups in D, so in particular
RD is a replete subcategory of RC, in the sense of [2], Definition 4.1.7. The category of
biset functors, i.e. the category of R-linear functors from RC to the category R-Mod
of all R-modules, will be denoted by FunR. The category FunD,R of D-biset functors is
the category of R-linear functors from RD to R-Mod.

A Green D-biset functor is defined as a monoid in FunD,R (see Definition 8.5.1
in [2]). This is equivalent to the following definition:

Definition 1. A D-biset functor A is a Green D-biset functor if it is equipped with
bilinear products A(G) × A(H) → A(G × H) denoted by (a, b) 7→ a × b, for groups
G,H in D, and an element εA ∈ A(1), satisfying the following conditions:

1. Associativity. Let G, H and K be groups in D. If we consider the canonical
isomorphism from G × (H × K) to (G × H) × K, then for any a ∈ A(G),
b ∈ A(H) and c ∈ A(K)

(a× b)× c = A
(
Iso

(G×H)×K
G×(H×K)

)
(a× (b× c)).

2. Identity element. Let G be a group in D and consider the canonical isomorphisms
1×G→ G and G× 1→ G. Then for any a ∈ A(G)

a = A
(
IsoG1×G

)
(εA × a) = A

(
IsoGG×1

)
(a× εA).

3. Functoriality. If φ : G→ G′ and ψ : H → H ′ are morphisms in RD, then for any
a ∈ A(G) and b ∈ A(H)

A(φ× ψ)(a× b) = A(φ)(a)× A(ψ)(b).
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The identity element of A will be denoted simply by ε if there is no risk of confusion.
If A and C are Green D-biset functors, a morphism of Green D-biset functors from

A to C is a natural transformation f : A→ C such that fH×K(a× b) = fH(a)× fK(b)
for any groups H and K in D and any a ∈ A(H), b ∈ A(K), and such that f1(εA) = εC .
We will denote by GreenD,R the category of Green D-biset functors with morphisms
given in this way.

There is an equivalent way of defining a Green biset functor, as we see in the next
lemma.

Definition 2. A D-biset functor A is a Green D-biset functor provided that for each
group H in D, the R-module A(H) is an R-algebra with unity that satisfies the fol-
lowing. If K and G are groups in D and K → G is a group homomorphism, then:

1. For the (K, G)-biset G, which we denote by Gr, the morphism A(Gr) is a ring
homomorphism.

2. For the (G, K)-biset G, denoted by Gl, the morphism A(Gl) satisfies the Frobe-
nius identities for all b ∈ A(G) and a ∈ A(K),

A(Gl)(a) · b = A(Gl)
(
a · A(Gr)(b)

)
b · A(Gl)(a) = A(Gl)

(
A(Gr)(b) · a

)
,

where · denotes the ring product on A(G), resp. A(K).

Lemma 3 (Lema 4.2.3 in [12]). The two previous definitions are equivalent. Starting
by Definition 1, the ring structure of A(H) is given by

a · b = A
(
IsoH∆(H) ◦ ResH×H

∆(H)

)
(a× b),

for a and b in A(H), with the unity given by A(Inf H1 )(ε). Conversely, starting by
Definition 2, the product of A(G)× A(H)→ A(G×H) is given by

a× b = A(Inf G×H
G )(a) · A(Inf G×H

H )(b)

for a ∈ A(G) and b ∈ A(H), with the identity element given by the unity of A(1).

In what follows, the ring structure on A(G) will be understood as
(
A(G), ·

)
.

Observe that in the case of A(1), the product × : A(1) × A(1) → A(1) coincides
with the ring product · : A(1)×A(1)→ A(1), up to identification of 1× 1 with 1, and
the unity coincides with the identity element.
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Remark 4. A morphism of Green D-biset functors f : A → C induces, in each com-
ponent G, a unital ring homomorphism fG : A(G) → C(G). Conversely, a morphism
of biset functors f : A → C such that fG is a unital ring homomorphism for every G
in D, is a morphism of Green D-biset functors.
Example 5. Classical examples of Green biset functors are the following:

• The Burnside functor B. The Burnside group of a finite group G is known to
define a biset functor. The cross product of sets defines the bilinear products
B(G)× B(H)→ B(G×H) that make B a Green biset functor. The functor B
can also be considered with coefficients in R, and denoted by RB = R⊗ZB( ). It
is shown in Proposition 8.6.1 of [2] that RB is an initial object in GreenD,R. More
precisely, for a D-Green biset functor A, the unique morphism of Green functors
υ : RB → A is defined at G ∈ D as the linear map υG sending a G-set X to
A(GX1)(εA), where GX1 is the set X viewed as a (G, 1)-biset.

• The functor of K-linear representations, RK, where K is a field of characteristic 0.
That is, the functor which sends a finite group G to the Grothendieck group
RK(G) of the category of finitely generated KG-modules. Also known to be a
biset functor, it has a Green biset functor structure given by the tensor product
over K. We will consider the scalar extension FRK = F ⊗Z RK( ), where F is a
field of characteristic 0.

• The functor of p-permutation representations ppk, for k an algebraically closed
field of positive characteristic p. This is the functor sending a finite groupG to the
Grothendieck group ppk(G) of the category of finitely generated p-permutation
kG-modules (also known as trivial source modules), for relations given by direct
sum decompositions. The biset functor ppk is a Green biset functor with products
given by the tensor product over the field k. When considering coefficients for
this functor, we will assume that F is a field of characteristic 0 containing all the
p′-roots of unity, and we write similarly Fppk = F⊗Z ppk( ).

When p is a prime number, and D is the full subcategory of C consisting of finite
p-groups, the D-biset functors are simply called p-biset functors, and their category is
denoted by Funp,R. Similarly, the Green D-biset functors will be called Green p-biset
functors, and their category will be denoted by Greenp,R.

An important element in what follows will be the Yoneda-Dress construction. We
recall some of the basic results about it, more details can be found in Section 8.2
of [2]. If G is a fixed group in D and F is a D-biset functor, then the Yoneda-Dress
construction of F at G is D-the biset functor FG that sends each group K in D to
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F (K × G). The morphism FG(φ) : F (H × G) → F (K × G) associated to an element
φ in RB(K, H) is defined as F (φ×G). In turn F (φ×G) is defined by R-bilinearity
from the case where φ is represented by a (K,H)-biset U : in this case φ×G denotes
the cartesian product U×G, endowed with its obvious (K×G,H×G)-biset structure.
We also call FG the functor shifted by G.

If f : F → T is a morphism of D-biset functors, then fG : FG → TG is defined in
its component K as (fG)K = fK×G. It is shown in Proposition 8.2.7 of [2] that this
construction is a self-adjoint exact R-linear endofunctor of FunD,R.

When A is a Green D-biset functor, the particular shifted functor AG is also a
Green biset functor (Lemma 4.4 in [13]) with product given in the following way:

AG(H)× AG(K)→ AG(H ×K) (a, b) 7→ A(α)(a× b)

where α is the biset IsoH×K×G
D ResH×G×K×G

D and D ∼= H ×K × G is the subgroup of
H × G ×K × G consisting of elements of the form (h, g, k, g). Usually, by an abuse
of notation, we will denote this biset simply by ResH×G×K×G

H×K×∆(G). To avoid confusion with

the product × of A we denote the product of AG by ×d, where the exponent d stands
for diagonal.

Remark 6. It is not hard to show that the ring structure of Lemma 3 in AG(H) induced
by the product ×d of AG coincides with the ring structure of A(H×G) induced by the
product × of A. So there is no risk of confusion when talking about the ring AG(H),
since the ring structure we are considering is unique. In particular, the isomorphism
AG(1) ∼= A(G) is an isomorphism of rings.

1.2 A-modules

Definition 7 (Definition 8.5.5 in [2]). Given a Green biset functor A, a left A-module
M is defined as a biset functor, together with bilinear products

× : A(G)×M(H) −→M(G×H)

for every pair of groups G and H in D, that satisfy analogous conditions to those of
Definition 1. The notion of right A-module is defined similarly, from bilinear products
M(G)× A(H) −→M(G×H).

We use the same notation × for the product of A and the action of A on A-modules,
as long as there is no risk of confusion.

If M and N are A-modules, a morphism of A-modules is defined as a morphism
of biset functors f : M → N such that fG×H(a × m) = a × fH(m) for all groups
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G and H in D, a ∈ A(G) and m ∈ M(H). With these morphisms, the A-modules
form a category, denoted by A-Mod. The category A-Mod is an abelian subcategory
of FunD,R. Actually, the direct sum of biset functors is as well the direct sum of A-
modules. Also, the kernel, the image and the cokernel of a morphism of A-modules are
A-modules. Basic results on modules over a ring can be stated for A-modules.

In particular, a left (resp. right) ideal of a Green D-biset functor A is an A-
submodule of the left (resp. right) A-module A. A two sided ideal of A is a left ideal
which is also a right ideal.

Example 8. If A is the Burnside functor RB, then an A-module is nothing but a biset
functor with values in R-Mod.

From Proposition 8.6.1 of [2], or Proposition 2.11 of [13], an equivalent way of
defining an A-module is as an R-linear functor from the category PA to R-Mod, the
category PA being defined next.

Definition 9. Let A be a D-Green functor over R. The category PA is defined in the
following way:

• The objects of PA are all finite groups in D.

• If G and H are groups in D, then HomPA
(H, G) = A(G×H).

• Let H, G and K be groups in D. The composition of β ∈ A(H × G) and
α ∈ A(G×K) in PA is the following:

β ◦ α = A
(
Def

H×∆(G)×K
H×K ◦ ResH×G×G×K

H×∆(G)×K

)
(β × α).

• For a groupG inD, the identity morphism εG ofG in PA isA(IndG×G
∆(G)◦Inf

∆(G)
1 )(ε).

Observe that the biset Def
H×∆(G)×K
H×K ◦ ResH×G×G×K

H×∆(G)×K can also be written as

H ×
(
Def

∆(G)
1 ◦ ResG×G

∆(G)

)
×K.

Another way of denoting the (1, G×G)-biset Def∆(G)
1 ◦ResG×G

∆(G) is as
←−
G . In some cases

it will be more convenient to use this notation.

The category PA is essentially small, as it has a skeleton consisting of our chosen
set D of representatives of isomorphism classes of groups in D. Hence, the category
FunR(PA, R-Mod) of R-linear functors is an abelian category. The above-mentioned
equivalence of categories between A-Mod and FunR(PA, R-Mod) is built as follows:
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• If M is an A-module, let M̃ ∈ FunR(PA, R-Mod) be the functor defined by:

1. For G ∈ D, we have M̃(G) =M(G).

2. For G,H ∈ D and a morphism α ∈ A(H ×G) from G to H in PA, the map

α̃ : M̃(G)→ M̃(H) is the map sending

m ∈M(G) 7→M(H ×
←−
G )(α×m).

• Conversely if F ∈ FunR(PA, R-Mod), let F̂ be the A-module defined by:

1. If G ∈ D, then F̂ (G) = F (G).

2. For G,H ∈ D, a ∈ A(G) and m ∈ F (H), set

a×m = F
(
A
(
IndG×H×H

G×∆(H)Inf
G×H
G

)
(a)

)
(m) ∈ F (G×H),

where A
(
IndG×H×H

G×∆(H)Inf
G×H
G

)
(a) ∈ A(G × H × H) is viewed as a morphism

from H to G×H in the category PA.

Then M 7→ M̃ and F 7→ F̂ are well defined equivalences of categories between A-Mod
and FunR(PA, R-Mod), inverse to each other.

Finally, we extend to A-modules our previous definition of the Yoneda-Dress con-
struction.

Definition 10. Let A be a Green D-biset functor. For L ∈ D, consider the assignment
ρL = − × L defined for objects G,H of PA and morphisms α ∈ HomPA

(G,H) =
A(H ×G) by: {

ρL(G) = G× L
ρL(α) = α× L := IsoH×L×G×L

H×G×L×L
(
α× υA,L×L(L)

)
where υA,L×L(L) is the image in A(L × L) of the identity (L,L)-biset L under the
canonical morphism υA,L×L, and the isomorphism H × G× L× L → H × L× G× L
maps (h, g, l1, l2) to (h, l1, g, l2).

A straightforward computation shows that

ρL(α) = A
(
IndH×L×G×L

H×G×L InfH×G×L
H×G

)
(α),

and this form may be more convenient for calculations. Here H × G × L embeds in
H × L × G × L via the map (h, g, l) 7→ (h, l, g, l), and maps surjectively onto H × G
via (h, g, l) 7→ (h, g).
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It is easy to check that ρL is in fact an endofunctor of PA, called the (right) L-shift.
It induces by precomposition an endofunctor of the category FunR(PA, R-Mod), that
is, up to the above equivalence of categories, an endofunctor of the category A-Mod,
which can be described as follows. It maps an A-module M to the shifted D-biset
functor ML, endowed with the following product: for G,H ∈ D, α ∈ A(H) and
m ∈ML(G) =M(G×L), the element α×m ofML(H×G) =M(H×G×L) is simply
the element α×m obtained from the A-module structure of M .

This endofunctor M 7→ ML of the category A-Mod will be denoted by IdL. It is
the Yoneda-Dress construction for A-modules.

Remark 11. For L ∈ D, there is another obvious endofunctor λL = L×− of PA defined
for objects G,H of PA and morphisms α ∈ HomPA

(G,H) = A(H ×G) by{
λL(G) = L×G
λL(α) = L× α := IsoL×H×L×G

L×L×H×G
(
υA,L×L(L)× α

)
where the isomorphism L×L×H×G→ L×H×L×G maps (l1, l2, h, g) to (l1, h, l2, g).
As before, it is easy to see that L× α = A

(
IndL×H×L×G

L×H×G InfL×H×G
H×G

)
(α).

It is then natural to ask if the assignment × : PA × PA → PA sending (G,K) to
G×K and (α, β) ∈ A(H ×G)×A(L×K) to (α×L) ◦ (G× β) ∈ A(H ×L×G×K)
is a functor. We will answer this question at the end of Section 3 (Corollary 26).

2 Adjoint functors

Let A and C be Green D-biset functors. A morphism f : A → C of Green D-biset
functors induces an obvious functor Pf : PA → PC , which is the identity on objects,
and maps α ∈ HomPA

(G,H) = A(H ×G) to fH×G(α) ∈ C(H ×G) = HomPC
(G,H).

Let L be a fixed group in D. The inflation morphism InfL : A → AL, introduced
in [8], is the morphism of Green biset functors defined for each G ∈ D and each
α ∈ A(G) by InfL(α) = A(InfG×L

G )(α) ∈ A(G × L) = AL(G), where G is identified
with (G×L)/({1}×L). The corresponding functor PA → PAL

will be denoted by ψL.
Explicitely, for each G ∈ D, we have ψL(G) = G, and for a morphism α ∈ A(H ×G),
we have

ψL(α) = A(InfH×G×L
H×G )(α) ∈ A(H ×G× L) = AL(H ×G) = HomPAL

(
ψL(G), ψL(H)

)
.

We introduce another functor θL : PAL
→ PA, defined as follows: for an object

G of PAL
, wet set θL(G) = G × L, wiewed as an object of PA. For a morphism

α ∈ HomPAL
(G,H) = AL(H ×G) = A(H ×G× L), we define

θL(α) = A(IndH×L×G×L
H×G×L )(α) ∈ A(H × L×G× L) = HomPA

(
θL(G), θL(H)

)
,
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where H × G × L is viewed as a subgroup of H × L × G × L via the injective group
homomorphism (h, g, l) ∈ H ×G× L 7→ (h, l, g, l) ∈ H × L×G× L.

Notation 12. In what follows, we will use a convenient abuse of notation, and generally
drop the symbols × of cartesian products of groups, writing e.g. HLGL instead of
H × L×G× L.

Theorem 13. 1. ψL is an R-linear functor from PA to PAL
.

2. θL is an R-linear functor from PAL
to PA.

3. The functors ψL and θL are left and right adjoint to one another. In other words,
for any G and H in D, there are R-module isomorphisms

HomPAL

(
G,ψL(H)

) ∼= HomPA

(
θL(G), H

)
HomPAL

(
ψL(G), H

) ∼= HomPA

(
G, θL(H)

)
which are natural in G and H.

Proof. Point (1) is clear, since the functor ψL is built from a morphism of Green biset
functors InfL : A→ AL.

To prove (2), let G,H,K ∈ D. If α ∈ AL(HG) and β ∈ AL(KH), then

θL(β) ◦ θL(α) = A(DefKLHLGLKLGL ResKLHLHLGLKLHLGL )
(
A
(
IndKLHLKHL

)
(β)× A

(
IndHLGLHGL

)
(α)

)
= A(DefKLHLGLKLGL ResKLHLHLGLKLHLGL IndKLHLHLGLKHLHGL )(β × α).

In the restriction ResKLHLHLGLKLHLGL , the group KLHLGL maps into KLHLHLGL via

f : (k, l1, h, l2, g, l3) ∈ KLHLGL 7→ (k, l1, h, l2, h, l2, g, l3) ∈ KLHLHLGL,

and in the induction IndKLHLHLGLKHLHGL , the group KHLHGL maps into KLHLHLGL via

f ′ : (k′, h′1, l
′
1, h

′
2, g, l

′
2) ∈ KHLHGL 7→ (k′, l′1, h

′
1, l

′
1, h

′
2, l

′
2, g

′, l′2) ∈ KLHLHLGL.

Then one checks readily that Im(f)Im(f ′) = KLHLHLGL, and that Im(f) ∩ Im(f ′)
is isomorphic to KHGL. Hence by the Mackey formula, there is an isomorphism of
bisets

ResKLHLHLGLKLHLGL IndKLHLHLGLKHLHGL
∼= IndKLHLGLKHGL ResKHLHGLKHGL ,
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where in IndKLHLGLKHGL , the inclusion KHGL ↪→ KLHLGL is (k, h, g, l) 7→ (k, l, h, l, g, l),
and in ResKHLHGLKHGL , the inclusion KHGL ↪→ KHLHGL is (k, h, g, l) 7→ (k, h, l, h, g, l).

Now in the deflation DefKLHLGLKLGL , the group KLHLGL maps onto KLGL via
(k, l1, h, l2, g, l3) 7→ (k, l1, g, l3). It follows that there is an isomorphism of bisets

DefKLHLGLKLGL IndKLHLGLKHGL
∼= IndKLGLKGL DefKHGLKGL ,

which gives

θL(β) ◦ θL(α) = A(IndKLGLKGL )A(DefKHGLKGL ResKHLHGLKHGL )(β × α)
= A(IndKLGLKGL )AL(Def

KHG
KG ResKHHGKHG )A(ResKHLHGLKHHGL )(β × α)

= A(IndKLGLKGL )AL(Def
KHG
KG ResKHHGKHG )(β ×d α)

= A(IndKLGLKGL )(β ◦d α) = θL(β ◦d α).

This shows that θL is compatible with composition of morphisms. A straightforward
computation shows that it maps identity morphisms to identity morphisms. This
completes the proof of Assertion 2, since θL is obviously R-linear.

(3) Since the complete proof of Assertion 3 demands the verification of many technical
details, we only include the full proof that θL is left adjoint to ψL. We next simply
give the description of the bijection involved in the other direction, and leave the
corresponding verifications to the reader.

For G and H in D, we have

HomPAL

(
G,ψL(H)

)
= AL

(
ψL(H)G

)
= A(HGL) and HomPA

(
θL(G), H

)
= A(HGL),

so an obvious candidate for an isomorphism HomPAL

(
G,ψL(H)

)
→ HomPA

(
θL(G), H

)
is the identity map of A(HGL). To avoid confusion, for α ∈ HomPAL

(
G,ψL(H)

)
, we

denote by α̃ the element α viewed as an element of HomPA

(
θL(G), H

)
.

We now check that the map α 7→ α̃ is natural in G and H. For naturality in G, if
G′ ∈ D and u ∈ HomAL

(G′, G), we have the diagrams

G
α // ψL(H)

G′

u

OO

αu

;;wwwwwwwww

θL(G)
α̃ // H

θL(G
′)

θL(u)

OO

α̃◦du

<<yyyyyyyyy

and we have to show that the right-hand side diagram is commutative, i.e. that α̃ ◦d u =
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α̃ ◦ θL(u). But

α̃ ◦ θL(u) = α ◦ A(IndGLG′L
GG′L )(u)

= A(DefHGLG
′L

HG′L ResHGLGLG
′L

HGLG′L )
(
α× A

(
IndGLG

′L
GG′L

)
(u)

)
= A(DefHGLG

′L
HG′L ResHGLGLG

′L
HGLG′L IndHGLGLG

′L
HGLGG′L )(α× u).

In the restriction ResHGLGLG
′L

HGLG′L , the inclusion HGLG′L ↪→ HGLGLG′L is the map

f : (h, g, l1, g
′, l2) ∈ HGLG′L 7→ (h, g, l1, g, l1, g

′, l2) ∈ HGLGLG′L,

and in the induction IndHGLGLG
′L

HGLGG′L , the inclusion HGLGG′L ↪→ HGLGLG′L is the
map

f ′ : (η, γ1, λ1, γ2, γ
′, λ2) ∈ HGLGG′L 7→ (η, γ1, λ1, γ2, λ2, γ

′, λ2) ∈ HGLGLG′L.

Then clearly Im(f)Im(f ′) = HGLGLG′L, and Im(f) ∩ Im(f ′) ∼= HGG′L. By the
Mackey formula, this gives an isomorphism of bisets

ResHGLGLG
′L

HGLG′L IndHGLGLG
′L

HGLGG′L
∼= IndHGLG

′L
HGG′L ResHGLGG

′L
HGG′L ,

where, in IndHGLG
′L

HGG′L , the inclusion HGG′L ↪→ HGLG′L is (h, g, g′, l) 7→ (h, g, l, g′, l),
and in ResHGLGG

′L
HGG′L , the inclusionHGG′L ↪→ HGLGG′L is (h, g, g′, l) 7→ (h, g, l, g, g′, l).

Now in DefHGLG
′L

HG′L , the quotient map HGLG′L → HG′L sends (h, g, l1, g
′, l2) to

(h, g′, l2), so the image of the subgroup HGG′L is the whole of HG′L. It follows that
there is an isomorphism of bisets

DefHGLG
′L

HG′L IndHGLG
′L

HGG′L
∼= DefHGG

′L
HG′L ,

which gives finally

α̃ ◦ θL(u) = A(DefHGG
′L

HG′L ResHGLGG
′L

HGG′L )(α× u)
= AL(Def

HGG′

HG′ )AL(Res
HGGG′

HGG′ )A(ResHGLGG
′L

HGGG′L )(α× u)
= AL(Def

HGG′

HG′ )AL(Res
HGGG′

HGG′ )(α×d u)
= α ◦d u,

as was to be shown.
We now check that the map α 7→ α̃ is natural in H. If H ′ ∈ D and v ∈

HomPA
(H,H ′) = A(H ′H), we have the diagrams

A
α //

ψL(v)◦dα ""E
EE

EE
EE

EE
ψL(H)

ψL(v)
��

ψL(H
′)

θL(G)
α̃ //

˜ψL(v)◦dα ##F
FF

FF
FF

F
H

v

��
H ′

12



and we have to show that the right-hand side diagram is commutative, i.e. that
˜ψL(v) ◦d α = v ◦ α̃. But

ψL(v) ◦d α = A(InfH
′HL

H′H )(v) ◦d α = AL(Def
H′HG
H′G ResH

′HHG
H′HG )

(
A(InfH

′HL
H′H )(v)×d α

)
= A(DefH

′HGL
H′GL ResH

′HHGL
H′HGL )A(ResH

′HLHGL
H′HHGL InfH

′HLHGL
H′HHGL )(v × α)

= A(DefH
′HGL

H′GL ResH
′HLHGL

H′HGL InfH
′HLHGL

H′HHGL )(v × α).

In ResH
′HLHGL

H′HGL , the inclusion H ′HGL ↪→ H ′HLHGL is (h′, h, g, l) 7→ (h′, h, l, h, g, l),
and in InfH

′HLHGL
H′HHGL , the quotient map H ′HLHGL→ H ′HHGL is (h′, h1, l1, h2, g, l2) 7→

(h′, h1, h2, g, l2). The composition of these two maps sends (h′, h, g, l) to (h′, h, h, g, l),
hence it is injective. This gives an isomorphim of bisets

ResH
′HLHGL

H′HGL InfH
′HLHGL

H′HHGL
∼= ResH

′HHGL
H′HGL ,

from which we get

ψL(v) ◦d α = A(DefH
′HGL

H′GL ResH
′HHGL

H′HGL )(v × α) = v ◦ α̃,

as was to be shown.
Hence the isomorphism α ∈ HomPAL

(
G,ψL(H)

)
7→ α̃ ∈ HomPA

(
θL(G), H

)
is nat-

ural in G and H, so θL is left adjoint to ψL.
We now describe the bijection implying that θL is also right adjoint to ψL. So, for

G,H ∈ D, we have to build an isomorphism

α ∈ HomPAL

(
ψL(G), H

)
7→ α̂ ∈ HomPA

(
G, θL(H)

)
of R-modules, natural in G and H. But

HomPAL

(
ψL(G), H

)
= AL(HG) = A(HGL) and HomPA

(
G, θL(H)

)
= A(HLG),

so an obvious candidate for the above isomorphism is to set α̂ = A(IsoHLGHGL)(α). The
verification that this isomorphism is functorial in G and H is similar to the proof of
the first adjunction, and we omit it.

Definition 14. Let A be a Green D-biset functor and L ∈ D. We denote by

ΨL : FunR(PAL
, R-Mod)→ FunR(PA, R-Mod)

the functor induced by precomposition with ψL, and by

ΘL : FunR(PA, R-Mod)→ FunR(PAL
, R-Mod)

the functor induced by precomposition with θL.

13



Proposition 15. The functors ΨL and ΘL are mutual left and right adjoint functors
between FunR(PAL

, R-Mod) and FunR(PA, R-Mod).

Proof. This follows from Theorem 13, by standard category theory.

Remark 16. Using the above equivalences of categories between FunR(PA, R-Mod) and
A-Mod, and FunR(PAL

, R-Mod) and AL-Mod, we will consider ΨL as a functor from
AL-Mod to A-Mod and ΘL as a functor from A-Mod to AL-Mod. One can check that,
from this point of view, if N is an AL-module, then ΨL(N) is the A-module defined as
follows:

• If G ∈ D, then ΨL(N)(G) = N(G).

• If G,H ∈ D, a ∈ A(G) and v ∈ N(H), then

a× v = A(InfG×L
G )(a)×d v

where ×d denotes the action of AL on N , and A(InfG×L
G )(a) ∈ A(G×L) is viewed

as an element of AL(G).

Conversely, if M is an A-module, then ΘL(M) is the AL-module defined as follows:

• If G ∈ D, then ΘL(M)(G) =M(G× L).

• If G,H ∈ D, a ∈ AL(G) and m ∈M(H × L), then

a×d m =M(ResG×L×H×L
G×H×L )(a×m),

where a×m is the product of a ∈ A(G×L) and m ∈M(H×L), and H×G×L
is viewed as a subgroup of G× L×H × L via the map (g, h, l) 7→ (g, l, h, l).

Theorem 17. Let A be a Green D-biset functor, and L ∈ D. The endofunctor ρL
of PA is isomorphic to θL ◦ψL and so the endofunctor ΨL ◦ΘL of A-Mod is isomorphic
to the Yoneda-Dress functor IdL. In particular IdL is self adjoint.

Proof. One checks readily that ρL is isomorphic to the composition θL ◦ ψL. The
other assertions follow by Theorem 13, as the Yoneda-Dress functor IdL is obtained by
precomposition with ρL = −× L.

We observe that the L-shift of the A-module A is the representable functor A(−, L)
of the category PA, so it is projective. More generally, the L-shift of the representable
functor A(−, X) is the representable functor A(−, L × X). Hence the Yoneda-Dress
construction maps a representable functor to a representable functor.

14



3 The commutant

Definition 18. Let A be a Green D-biset functor.

1. For G,H ∈ D, we say that an element a ∈ A(G) and an element b ∈ A(H)
commute if

a× b = A(IsoG×H
H×G)(b× a).

2. For a group G in D, we denote by CA(G) the set of elements of A(G) which
commute with any element of A(H), for any H ∈ D, i.e.

{a ∈ A(G) | ∀H ∈ D, ∀b ∈ A(H), a× b = A(IsoG×H
H×G)(b× a)},

and call it the commutant of A at G.

Observe that CA(G) is an R-submodule of A(G), since the product × is bilinear.

Lemma 19. The commutant of A is a Green D-biset subfunctor of A.

Proof. To see it is a biset functor, let Y be a (K, G)-biset for groups K and G in D,
and a be in CA(G). If b is in A(H) for a given group H in D, we have

A(Y )(a)× b = A
(
(Y ×H) ◦ IsoG×H

H×G
)
(b× a)

where Y ×H is seen as a (K ×H, G×H)-biset. If we show that (Y ×H) ◦ IsoG×H
H×G is

isomorphic to IsoK×H
H×K ◦ (H × Y ), where H × Y is seen as a (H ×K, H ×G)-biset, the

right-hand side of the equality above will be equal to

A(IsoK×H
H×K)

(
b× A(Y )(a)

)
,

which is what we want. Now, IsoG×H
H×G is the group H ×G, seen as a (G×H, H ×G)-

biset, and IsoK×H
H×K is the group H ×K, seen as a (K ×H, H ×K)-biset. So, it is not

hard to see that (Y ×H) ◦ IsoG×H
H×G is isomorphic to Y ×H as (K ×H, H ×G)-biset,

where the right action of H × G is given by (y, h)(h1, g1) = (yg1, hh1). Similarly,
IsoK×H

H×K ◦ (H×Y ) is isomorphic to H×Y as (K×H, H×G)-set, where the left action
of K × H is given by (k1, h1)(h, y) = (h1h, k1y). Hence, it is easy to verify that the
map Y ×H → H × Y sending (y, h) to (h, y) defines an isomorphism between these
two bisets.

To see that CA is closed under the product ×, let a be in CA(G), b be in CA(H)
and c be in A(K). We have

a× (b× c) = a× A(IsoH×K
K×H)(c× b),

15



which is clearly equal to A(IsoG×H×K
G×K×H)(a× c× b). Similarly

(a× c)× b = A(IsoG×K×H
K×G×H)(c× a× b).

Finally, clearly we have

IsoG×H×K
G×K×H ◦ Iso

G×K×H
K×G×H = IsoG×H×K

K×G×H ,

which yields the first equality

(a× b)× c = A(IsoG×H×K
K×G×H) (c× (a× b)) .

To finish the proof, it is clear that the identity element ε ∈ A(1) belongs to CA(1).

Corollary 20. Let A be a Green D-biset functor. Then the image of the unique Green
biset functor morphism υA : RB → A is contained in CA.

Proof. Indeed, by uniqueness of υA and υCA, the diagram

CA
� n

��:
::

::

RB

υCA
??������

υA
// A

is commutative.

Definition 21. We will say that a Green D-biset functor is commutative if A = CA.

It is easy to see that CA is commutative. All the examples considered in Example 5
are commutative Green biset functors.

If A is commutative, then clearly AG is commutative for any G. More generally we
have the following result.

Proposition 22. Let A be a Green D-biset functor and G ∈ D. Then CAG = (CA)G.

Proof. Observe that CAG and (CA)G are both Green D-biset subfunctors of AG, so
to prove they are equal as Green D-biset functors, it suffices to prove that for every
group H ∈ D, we have (CA)G(H)=CAG(H).

To prove that (CA)G(H) ⊆ CAG(H), we choose a group K in D, and elements
a ∈ (CA)G(H) and b ∈ AG(K). We must prove that

a×d b = AG(Iso
H×K
K×H)(b×d a).

16



We have

a×d b = A
(
ResH×G×K×G

H×K×∆(G)

)
(a× b) and b×d a = A

(
ResK×G×H×G

K×H×∆(G)

)
(b× a).

Now, by definition (CA)G(H) = CA(H ×G), so the element a satisfies

a× b = A
(
IsoH×G×K×G

K×G×H×G
)
(b× a).

Substituting this in the above equation on the left we easily obtain what we wanted.
To prove the reverse inclusion CAG(H) ⊆ (CA)G(H), we now let a ∈ CAG(H) and

b ∈ A(K), and consider c = A(InfK×G
K )(b). Then we have

a×d c = AG(Iso
H×K
K×H)(c×d a),

and clearly

a×d c = A
(
ResH×G×K×G

H×K×∆(G) ◦ Inf
H×G×K×G
H×G×K

)
(a× b).

But it is easy to see (for example from Section 1.1.3 of [2]) that

ResH×G×K×G
H×K×∆(G) ◦ Inf

H×G×K×G
H×G×K

∼= Iso
H×K×∆(G)
H×G×K .

By doing a similar transformation with c×d a, and applying the corresponding isomor-
phisms, we easily obtain what we wanted.

Lemma 23. For any group G in D, the commutant CA(G) is a subring of Z
(
A(G)

)
.

Proof. Take a ∈ CA(G) and b ∈ A(G), then

a · b = A
(
IsoG∆(G) ◦ ResG×G

∆(G)

)
(a× b)

= A
(
IsoG∆(G) ◦ ResG×G

∆(G) ◦ Iso(σG)
)
(b× a)

= A
(
IsoG∆(G) ◦ ResG×G

∆(G)

)
(b× a) = b · a,

where σG is the automorphism of G × G switching the components. Since CA(G)
and Z(A(G)) have the same ring structure, inherited from the Green D-biset functor
structure of A, this shows that CA(G) is a subring of Z

(
A(G)

)
.

Remark 24. It is not hard to see then that A is a commutative Green biset functor if
and only if for every group G, the ring A(G) is a commutative ring.

We now answer the question raised in Remark 11.
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Proposition 25. Let G,H,K,L ∈ D. Let α ∈ A(HG) and β ∈ A(LK). Then the
square

G×K G×β //

α×K
��

G× L
α×L
��

H ×K
H×β

// H × L

commutes in PA if and only if α and β commute.

Proof. Let u = (α× L) ◦ (G× β). By definition

u = A(IndHLGLHGL InfHGLHG )(α) ◦ A(IndGLGKGLK InfGLKLK )(β)

= A(DefHLGLGKHLGK ResHLGLGLGKHLGLGK )
(
A(IndHLGLHGL InfHGLHG )(α)× A(IndGLGKGLK InfGLKLK )(β)

)
,

where the notation DefHLGLGKHLGK means the deflation with respect to the underlined nor-

mal subgroup, and ResHLGLGLGKHLGLGK means that the underlined GL in subscript embeds

diagonally in the underlined GLGL in superscript. Similarly in IndHLGLHGL , the group L
in subscript embed diagonally in the two underlines copies of L in superscript, and in
InfHGLHG , inflation is relative to the underlined L in superscript. Thus

u = A(DefHLGLGKHLGK ResHLGLGLGKHLGLGK IndHLGLGLGKHGLGLK InfHGLGLKHGLK )(α× β)

Standard relations in the composition of bisets (see Section 1.1.3 and Lemma 2.3.26
of [2]) and some tedious but straightforward calculations finally give

u = (α× L) ◦ (G× β) = A(IsoHLGKHGLK)(α× β).

Similar calculations show that

(H × β) ◦ (α×K) = A(IsoHLGKLKHG)(β × α).

So (H × β) ◦ (α×K) = (α× L) ◦ (G× β) if and only if

β × α = A(IsoLKHGHLGKIso
HLGK
HGLK)(α× β)

= A(IsoLKHGHGLK)(α× β),

that is, if α and β commute.

Corollary 26. The assignment × : PA × PA → PA sending (G,K) to G × K and
(α, β) ∈ A(H ×G)×A(L×K) to (α×L) ◦ (G× β) ∈ A(H ×L×G×K) is a functor
if and only if A is commutative. In particular, when A is commutative, this functor ×
endows PA with a structure of a symmetric monoidal category.
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4 The center

Definition 27. Let A be a Green D-biset functor. For a group L in D, we denote by
ZA(L) the family of all natural transformations Id → IdL from the identity functor
Id : A-Mod→ A-Mod to the functor IdL. We call it the center of A at L.

When L is trivial, the functor IdL is isomorphic to the identity functor, hence
ZA(1) is the family of natural endotransformations of the identity functor. So our def-
inition is analogous to that of the center of a category (see for example Hoffmann [11]
for arbitrary categories, or Section 19 of Butler-Horrocks [5] for abelian categories).
Nonetheless, we want to regard this center as a Green D-biset functor, and see its
relation with the commutant CA. Our construction is inspired by an analogous con-
struction for Green functors over a fixed finite group in [1] Section 12.2.

4.1 The center as a Green biset functor

Our goal is to show that for each Green D-biset functor A, the assignment L 7→ ZA(L)
is itself a Green D-biset functor. For this, we will first give an equivalent description
of ZA(L), and then build a Green functor structure on ZA.

Proposition 28. Let A be a Green D-biset functor, and L ∈ D. Then ZA(L) is
isomorphic to the family ZA′(L) of natural transformations from the identity functor
of PA to ρL.

Proof. Consider the Yoneda embedding YA : PA → A-Mod sending L ∈ D to the
functor A(−, L). Since IdL preserves the image of YA, which is a fully faithful functor,
we have IdL◦YA = YA◦ρL, and it follows that each element of ZA(L) induces a natural
transformation from the identity functor of PA, denoted by ρ1, to ρL. In this way, we get
a linear map fL : ZA(L)→ ZA′(L). Conversely, each natural transformation ρ1 → ρL
induces a natural transformation YA → IdL ◦ YA. Since the image of YA generates
A-Mod, such a natural transformation extends to a natural transformation from the
identity functor of A-Mod to IdL. This gives a linear map gL : ZA′(L) → ZA(L).
Clearly fL and gL are inverse to one another.

We will now use the previous identification to get a better understanding of ZA(L).
Indeed, a natural transformation t from the identity functor of PA to the functor
ρL = − × L = θLψL consists, for each G ∈ D, of a morphism tG : G → G × L in PA,
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i.e. tG ∈ A(G×L×G), such that for any H ∈ D and any α ∈ A(H ×G), the diagram

G
tG //

α

��

G× L
α×L=θLψL(α)
��

H
tH // H × L

(1)

is commutative in PA.

Lemma 29. Let G,H ∈ D, and α ∈ A(H ×G) = HomPA
(G,H). For an element u of

A(H×L×G) = HomPA
(G,H×L), let u♮ denote the element u, viewed as a morphism

from L×G to H in PA. Then for any t ∈ A(G× L×G)(
θLψL(α) ◦ t

)♮
= α ◦ t♮ in A(H × L×G).

Proof. The functor ρL is a self-adjoint R-linear endofunctor of PA. It follows from
the proof of Theorem 13 that for any G,H ∈ PA, the natural bijection given by this
adjunction

v ∈ HomPA

(
G, ρL(H)

)
= A(HLG)→ v♯ ∈ HomPA

(
ρL(G), H

)
= A(HGL)

is induced by the isomorphism HLG→ HGL switching the components L and G. By
adjunction we have commutative diagrams

G t //

ρL(α)◦t ""E
EE

EE
EE

EE
ρL(G)

ρL(α)
��

ρL(H)

ρL(G)
t♯ //

(
ρL(α)◦t

)♯
""F

FF
FF

FF
F

G

α

��
H

so
(
ρL(α) ◦ t

)♯
= α ◦ t♯. Since t♮ = t♯ ◦ τL,G, where τG,L : LG→ GL is the isomorphism

switching G and L, the lemma follows by right composition of the previous equality
with τG,L.

Since v and v♮ are actually the same element of A(HLG), for any v ∈ A(HLG),
the commutativity in Diagram (1) can be simply written as

α ◦G tG = tH ◦H α, (2)

where ◦G is the composition A(HG)×A(GLG)→ A(HLG), and ◦H is the composition
A(HLH)× A(HG)→ A(HLG). Thus:
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Proposition 30. Let A be a D-green biset functor, and L ∈ D. Then an element t
of ZA(L) consists of a family of elements tG ∈ A(GLG), for every G ∈ D, such that
α ◦G tG = tH ◦H α, for any G,H in D and α ∈ A(HG). In particular ZA(L) is a set.

Proof. It remains to see that ZA(L) is a set. This is clear, since an element t of ZA(L)
is determined by its components tG, where G runs trough our chosen set D of represen-
tatives of isomorphism classes of groups in D. More precisely ZA(L) is in one to one
correspondence with the set CrA(L) of sequences of elements (tG)G∈D ∈

∏
G∈D

A(GLG)

such that the above condition (2) holds for any G,H ∈ D and any α ∈ A(HG).

Proposition 31. 1. Let K,L ∈ D, and β ∈ CA(LK). Then the family of mor-
phisms λG(β) = G× β : G×K → G× L, for G ∈ D, define a natural transfor-
mation of functors ρβ from ρK to ρL.

2. Let EndR(PA) denote the category of R-linear endofunctors of PA, where mor-
phisms are natural transformations of functors. Then the assignment{

K ∈ D 7→ ρK ∈ EndR(PA)
β ∈ CA(LK) 7→ (ρβ : ρK → ρL)

is a faithful R-linear functor ρCA from PCA to EndR(PA).

Proof. (1) This follows from Proposition 25.

(2) We have to check that if G, J,K, L ∈ D, if α ∈ A(KJ) and β ∈ A(LK), then
(G× β) ◦ (G× α) = G× (β ◦ α) in A(GLGJ), and that if β is the identity element of
CA(KK), then G× β is the identity morphism of G×K in PA. This follows from the
fact that λG is a functor.

So we get a functor ρCA : PCA → EndR(PA). Seing that this functor is faithful
amounts to seing that if β ∈ CA(LK), then ρβ = 0 if and only if β = 0. But the
component 1× β of ρβ is clearly equal to β, after identification of 1×K with K and
1× L with L.

Remark 32. In particular, it follows from Assertion 2 that an isomorphism of groups
K → K ′ induces an isomorphism of functors ρK → ρ′K : indeed a group isomorphism φ :
K → K ′ is represented by a (K ′, K)-biset Uφ ∈ RB(K ′K), hence by an element βφ =
υK′K(Uφ) ∈ CA(K ′K), by Corollary 20. The corresponding natural transformation
ρβφ is an isomorphism ρK → ρ′K , with inverse ρβφ−1 .

Lemma 33. Let A be a Green D-biset functor and K,L ∈ D.

1. The endofunctors functor ρL ◦ ρK and ρKL of PA are naturally isomorphic.
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2. Let s ∈ ZA(LK), given by the family of elements sG ∈ A(GLKG), for G ∈ D.
Then the natural transformation so : ρK → ρL deduced from s : Id → ρKρL by
adjunction, is defined by the family of morphisms

soG = IsoGLGKGLKG(sG) ∈ A(GLGK) = HomPA
(GK,GL).

3. The map s 7→ so is an isomorphism of R-modules

ZA(LK)→ HomEndR(PA)(ρK , ρL).

Proof. (1) This follows from a straightforward verification.

(2) Indeed, by the proof of Theorem 13, for each G ∈ D, the morphism sG ∈ A(GLKG)

sG : G→ GLK = ρKρL(G) = θKψKρL(G)

in PA gives by adjunction the morphism

u : ψK(G)→ ψKρL(G),

in PAK
, defined as the element u = A(IsoGLGKGLKG)(sG) ∈ AK(GLG) = A(GLGK). This

element u gives in turn the morphism

v : θKψK(G) = ρK(G)→ ρL(G)

equal to u ∈ A(GLGK), but viewed as a morphism in PA from GK to GL.

(3) This is clear, by adjunction.

Proposition 34. The center of A is a D-biset functor.

Proof. First ZA(L) is obviously an R-module, for any L ∈ D. Let K ∈ D and t ∈
ZA(K), i.e. t is a natural transformation Id→ ρK of endofunctors of the category PA.
If L ∈ D and u ∈ RB(LK), let uA = υLK(u) ∈ A(LK) be the image of u under the
unique morphism of Green functor υ : RB → A. Since uA ∈ CA(LK), by Corollary 20,
we can compose t with the natural transformation ρuA : ρK → ρL from Proposition 31,
to get a natural transformation ρuA ◦ t : Id→ ρL, i.e. an element of ZA(L). Hence we
get a linear map

u ∈ RB(LK) 7→
(
t 7→ ρuA ◦ t ∈ HomR

(
ZA(K), ZA(L)

))
,

and Assertion 4 of Proposition 31 shows that this endows ZA with a structure of biset
functor.
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We now build a product on ZA, to make it a Green biset functor. For K,L ∈ D, let
s ∈ ZA(K) and t ∈ ZA(L). Since s is a natural transformation Id → ρK , we get, by
adjunction, a natural transformation so : ρK → Id. By composition with t : Id → ρL,
we obtain a natural transformation t ◦ so : ρK → ρL, which in turn, by adjunction
again, gives a natural transformation o(t ◦ so) : Id → (ρL)K ∼= ρLK , i.e. an element of
ZA(LK). So we set

∀s ∈ ZA(K), ∀t ∈ ZA(L), t× s = o(t ◦ so) ∈ ZA(LK). (3)

Translating this in the terms of Proposition 30 gives:

Lemma 35. Let s ∈ ZA(K) and t ∈ ZA(L) be defined respectively by families of
elements sG ∈ A(GKG) and tG ∈ A(GLG), for G ∈ D. Then t × s is the element of
ZA(LK) defined by the family (t× s)G = tG ◦ sG ∈ A(GLKG), for G ∈ D.

Proof. As the adjunction s 7→ so amounts to switching the last two components of
GKG, the element t× s = o(t ◦ so) is defined by the family

(t× s)G = A(IsoGLKGGLGK)
(
tG ◦ A(IsoGGKGKG)(sG)

)
= A(IsoGLKGGLGK)A(Def

GLGGK
GLGK ResGLGGGKGLGGK )

(
tG × A(IsoGGKGKG)(sG)

)
,

where the notation DefGLGGKGLGK means that we take deflation with respect to the un-

derlined factor, and ResGLGGGKGLGGK means that the underlined G in subscript embeds
diagonally in the underlined group GG in superscript. It follows that

(t× s)G = A(DefGLGKGGLKG IsoGLGKGGLGGKRes
GLGGGK
GLGGK IsoGLGGGKGLGGKG)(tG × sG)

= A(DefGLGKGGLKG ResGLGGKGGLGKG )(tG × sG)
= tG ◦ sG ∈ A(GLKG).

Notation 36. Let A be a Green D-biset functor, and G,H,K,L ∈ D. For morphisms
in PA, namely α : G → H in A(HG) and β : K → L in A(LK), we denote by
α⊠ β : GK → HL the morphism defined by

α⊠ β = A(IsoHLGKHGLK)(α× β) ∈ A(HLGK).
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Proposition 37. Let A be a Green D-biset functor, and G,H,K,L ∈ D. Let moreover
α ∈ CA(HG) and β ∈ CA(LK). Then for any s ∈ Z(G) and t ∈ Z(K), and for any
X ∈ D

(ρα ◦ s)X ◦ (ρβ ◦ t)X =
(
ρα⊠β ◦ (s× t)

)
X
.

Proof. The proof amounts to rather lengthy but straighforward calculations on bisets,
similar to those we already did several times above, e.g. in the proof of Theorem 13.
We leave it as an exercice.

Theorem 38. Let A be a Green D-biset functor. Then ZA, endowed with the product
defined in (3), is a Green D-biset functor.

Proof. It is clear from Lemma 35 and Proposition 30 that the product on ZA is asso-
ciative. Moreover the identity transformation from the identity functor to ρ1 = IdPA

is
obviously an identity element for the product on ZA. This product is also R-bilinear
by construction. Finally, the equality ZA(U)(s)× ZA(V )(t) = ZA(U ⊠ V )(s× t) for
bisets U and V is a special case of Proposition 37.

4.2 Relations between the commutant and the center

Proposition 39. Let A be a Green D-biset functor.

1. The maps sending α ∈ CA(L) to ρα ∈ ZA(L), for L ∈ D, define a morphism of
Green biset functors ιA : CA→ ZA.

2. The maps sending t ∈ CrA(L) ∼= ZA(L) to t1 ∈ A(L), for L ∈ D, define a
morphism of Green biset functors πA : ZA → A. The image of this morphism
in the component 1 lies in Z(A(1)), hence there is a morphism of rings πA, 1 :
ZA(1)→ Z(A(1)).

3. The composition

CA � � ιA // ZA
πA // A

is equal to the inclusion CA � � // A . In particular ιA is injective.

Proof. For Assertion 1, let α ∈ CA(K), for K ∈ D. Then the element ρα of ZA(K)
corresponds to the family of elements ρα,G ∈ A(GKG), for G ∈ D, defined by

ρα,G = A(IndGKGKG InfKGK )(α).
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Similarly, if L ∈ D and β ∈ CA(L), the element ρβ of ZA(L) corresponds to the
family ρβ,G = A(IndGLGLG InfLGL )(β). By Lemma 35, the product q = ρα×ρβ in ZA(KL)
corresponds to the family

qG = ρα,G ◦ ρβ,G
= A(IndGKGKG InfKGK )(α) ◦ A(IndGLGLG InfLGL )(β)

= A(DefGKGLGGKLG ResGKGGLGGKGLG )
(
A(IndGKGKG InfKGK )(α) ◦ A(IndGLGLG InfLGL )(β)

)
= A(DefGKGLGGKLG ResGKGGLGGKGLG IndGKGGLGKGLG InfKGLGKL )(α× β).

Standard relations in the composition of bisets then show that

qG = A(IndGKLGKLG InfKLGKL )(α× β),

and it follows that q = ρα×β. In other words ιA(α×β) = ιA(α)× ιA(β). Moreover, the
identity element εA ∈ CA(1) is mapped by ιA to the element of ZA(1) defined by the
family of elements A(IndGGG InfG1 )(εA), for G ∈ D, that is the identity element of ZA.
So ιA is a morphism of Green D-biset functors.

The first part of Assertion 2 is a consequence of Lemma 35. Indeed, if K,L ∈ D,
if s ∈ ZA(K) corresponds to the family sG ∈ CrA(K), and if t ∈ ZA(L) corresponds
to the family βG ∈ CrA(L), for G ∈ D, then the product u = s × t is the element of
ZA(KL) corresponding to the family uG = sG ◦ tG. In particular, for G = 1, we have

u1 = s1 ◦ t1 = s1 × t1.

This shows that the maps sending t ∈ ZA(L) to t1 ∈ A(L), for L ∈ D, is a morphism
of Green functors π : ZA→ A.

Since composition ◦ : A(1) × A(1) → A(1) coincides with the product as a ring
of A(1), the commutativity property defining the series of CrA(1) shows that πA, 1 has
image in Z(A(1)). This completes the proof of Assertion 2.

For Assertion 3, we start with an element α ∈ CA(L), for L ∈ D. It is sent by ιA
to the element t ∈ ZA(L) corresponding to the family tG = A(IndGLGLG InfLGL )(α), for
G ∈ D, in CrA(L). In particular t1 = A(IndLLInf

L
L)(α) = α, do πA ◦ ιA is equal to the

inclusion CA ↪→ A.

The morphism ιA of the previous proposition allows us to give a CA-module struc-
ture to ZA. With this structure, (the image under ιA of) CA is a CA-submodule
of ZA. In the particular case where A is commutative, the previous proposition tells
us more.
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Corollary 40. If A is a commutative Green D-biset functor, then A is isomorphic to
a direct summand of ZA in the category A-Mod.

Proof. This follows from the fact that ιA and πA are morphisms of Green D-biset
functors, so in particular morphisms of A-modules. Moreover the composition πA ◦ ιA
is equal to the identity when A is commutative.

Proposition 41. Let A be a Green D-biset functor. Let EndR(PA) be the category of
R-linear endofunctors of PA.

1. The assignment{
K ∈ D 7→ ρK ∈ EndR(PA)

t ∈ ZA(LK) 7→ to ∈ HomEndR(PA)(ρK , ρL)

is a fully faithful R-linear functor ρZA from PZA to EndR(PA).

2. The following assignment µA{
K ∈ D 7→ K ∈ D

α ∈ CA(LK) 7→ oρα ∈ ZA(LK)

is equal to the functor PιA from PCA to PZA, induced by ιA : CA → ZA. In
particular µA is faithful, and such that

ρZA ◦ µA = ρCA.

3. The following assignment νA{
K ∈ D 7→ K ∈ D

s ∈ ZA(LK) 7→ s1 ∈ A(LK)

is equal to the functor PπA from PZA to PA induced by the morphism of Green
biset functors πA : ZA → A. The composition πA ◦ µA is equal to the inclusion
functor PCA → PA.

Proof. All the assertions are straightforward consequences of Proposition 39.

To conclude this section, we now show that the isomorphism CAL ∼= (CA)L of
Proposition 22 only extends to an injection ZAL ↪→ (ZA)L. We first prove a lemma.
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Lemma 42. Let A be a Green D-biset functor. For L ∈ D, let ψAL : PA → PAL
be the

functor ψL of Theorem 13. If K ∈ D, let ψAL
K : PAL

→ P(AL)K be the similar functor
built from AL and K. Then the diagram

PA
ψA
L //

ψA
KL ))RR

RRR
RRR

RRR
RRR

RRR PAL

ψ
AL
K // P(AL)K

eK,L ∼=
��

PAKL

of categories and functors, is commutative, where eK,L is the natural equivalence of
categories P(AL)K → PAKL

provided by the canonical isomorphism of Green D-biset
functors (AL)K ∼= AKL.

Proof. Indeed, all the functors involved are the identity on objects. And for a morphism
α : G→ H in PA, i.e. an element α of A(HG), we have

ψAL
K ψAL (α) = ψAL

K A(InfHGLHG )(α) = AL(Inf
HGK
HG )A(InfHGLHG )(α)

= A(InfHGKLHGL )A(InfHGLHG )(α)

= A(InfHGKLHG )(α) = ψAKL(α).

Proposition 43. Let A be a Green biset functor and L be a group. Then there is an
injective morphism of Green D-biset functors from ZAL to (ZA)L.

Proof. Let K,L ∈ D, and t ∈ ZAL(K), i.e. a natural transformation

t : IdPAL
→ ρAL

K

from the identity functor of PAL
to the functor ρAL

K = θAL
K ψAL

K , where θAL
K is the functor

P(AL)K → PAL
of Theorem 13 built from AL and K. By precomposition of this natural

transformation with the functor ψAL , we get a natural transformation

ψAL → θAL
K ψAL

K ψAL ,

which by adjunction, gives a natural transformation

IdPA
→ θALθ

AL
K ψAL

K ψAL .

By Lemma 42, the functor ψAL
K ψAL is isomorphic to ψAKL. By Theorem 13, the functor

θAL
K is left and right adjoint to the functor ψAL

K , and θAL is left and right adjoint to ψAL .
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It follows that the functor θALθ
AL
K is isomorphic to the adjoint θAKL of ψAKL. Hence we

have a natural transformation

T : IdPA
→ θAKLψ

A
KL = ρAKL,

that is an element of ZA(KL) = ZAL(K).
So we have a map jL,K : t ∈ ZAL(K) 7→ T ∈ (ZA)L(K), which is obviously R-

linear. Lengthy but straightforward calculations show that the family of these maps,
for K ∈ D, form a morphism of Green biset functors from ZAL to (ZA)L.

5 Application: some equivalences of categories

5.1 General setting

We begin by recalling some well known folklore facts on the decomposition of a cate-
gory FP of functors from a small R-linear category P to R-Mod, using an orthogonal
decomposition of the identity in the center ZP of P .

Since P is R-linear, its center ZP is a commutative R-algebra. Suppose we have a
family (γi)i∈I of elements of ZP indexed by a set I, with the following properties:

1. For i, j ∈ I, the product γiγj is equal to 0 if i ̸= j, and to γi if i = j.

2. For any object G of P , there is only a finite number of elements i ∈ I such that
γi,G ̸= 0. Then, for each object G ∈ P , we can consider the (finite) sum

∑
i∈I
γi,G,

which is a well defined endomorphism of G. We assume that this endomorphism
is the identity of G, for any G ∈ P .

If F is an R-linear functor from P to R-Mod, and i ∈ I, we denote by Fγi the functor
that in an object G of P is defined as the image of F (γi,G), that is

(Fγi)(G) = Im
(
F (γi,G) : F (G)→ F (G)

)
,

which is an R-submodule of F (G). For a morphism α : G→ H, we denote by (Fγi)(α)
the restriction of F (α) to (Fγi)(G). The image of (Fγi)(α) is contained in Fγi(H),
because the square

G
γi,G //

α

��

G

α

��
H

γi,H
// H
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is commutative in P , hence also its image by F .
It is easy to check that Fγi is an R-linear functor from P to R-Mod, which is

a subfunctor of F . Moreover, the assigment F 7→ Fγi is an endofunctor Γi of the
category FP . The image of this functor consists of those functors F ∈ FR such that
the subfunctor Fγi is equal to F . Let FRγi be the full subcategory of FR consisting of
such functors. It is an abelian subcategory of FR.

For each G ∈ P , the direct sum ⊕
i∈I
Fγi(G) is actually finite, and our assump-

tions ensure that is is equal fo F (G). This shows that the functor sending F ∈ FR
to the family of functors Fγi is an equivalence between FR and the product of the
categories FRγi.

A particular case of the previous situation is when the identity element ε ∈ A(1) of
a Green biset functor A has a decomposition in orthogonal idempotents ε =

∑n
i=1 ei

in the ring CA(1). Each ei induces a natural transformation Ei : Id→ Id1, defined at
an A-module M and a group H ∈ D as

Ei
M,H :M(H)→M1(H) m 7→M(IsoH×1

1×H)(ei ×m).

For simplicity, we will think of this natural transformation as sending m simply to
ei ×m, and we will denote by eiM the A-submodule of M given by the image of Ei

M .
Since the morphism from CA(1) to ZA(1) is a ring homomorphism, we have that

the natural transformations Ei satisfy Ei ◦ Ei = Ei, Ei ◦ Ej = 0 if i ̸= j and that
the identity natural transformation, 1, is equal to

∑n
i=1E

i. By Proposition 28, we
have then the hypothesis assumed at the beginning of the section and so we obtain
the equivalence of categories mentioned above. In this case we can give a more precise
description of this equivalence.

Lemma 44. The A-module eiA is a Green D-biset functor, and for every A-moduleM ,
the functor eiM is an eiA-module. Furthermore A ∼=

⊕n
i=1 eiA as Green D-biset func-

tors.

Proof. As we have said, eiA is an A-module, in particular it is a biset functor. We
claim that it is a Green biset functor with the product

eiA(G)× eiA(K)→ eiA(G×K) (ei × a)× (ei × b) = ei × a× b.

Observe that since all the × represent the product of A, then (ei × a) × (ei × b) is
isomorphic to a × ei × ei × b, because ei ∈ CA(1). But the product × coincides with
the ring product in A(1), hence this element is isomorphic to a × ei × b and then to
ei×a×b. This implies immediately that the product is associative, the identity element
in eiA(1) is of course ei× ε. Next, notice that since Ei

A is a morphism of A-modules, if
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L,G ∈ D and X is an (L, G)-biset, then A(X)(ei×a) ∼= ei×A(X)(a) for all a ∈ A(G).
With this, one can easily show the functoriality of the product.

Similar arguments show that eiM is an eiA-module with the product

eiA(G)× eiM(K)→ eiM(G×K) (ei × a)× (ei ×m) = ei × a×m.

For the final statement, first it is an easy exercise to verify that given A1, . . . , Ar
Green biset functors, then their direct sum

⊕r
i=1Ai in the category of biset functors

is again a Green biset functor, with the product given component-wise. With this, it
is straightforward to see that the isomorphism of biset functors A ∼=

⊕n
i=1 eiA is an

isomorphism of Green biset functors.

All these observations give us the following result.

Theorem 45. Let A be a Green D-biset functor as above. Then the category A-Mod
is equivalent to the product category

n∏
i=1

eiA-Mod.

Moreover, for each indecomposable A-module M , there exists only one ei such that
eiM ̸= 0, and hence eiM ∼= M .

When considering the shifted functor AH , if we have an idempotent e ∈ CAH(1)
as before, then the evaluation of eAH at a group G can be seen as follows. Since
eAH(G) = e×d AH(G), then for a ∈ AH(G) it is easy to see that

e×d a = A(Res1×H×G×H
G×∆(H) )(e× a) = A(InfG×H

H )(e) · a,

where the product · indicates the ring structure in A(G×H). The last equality follows
from Lemma 3 and the properties of restriction and inflation. So, the evaluation of
eAH at a given group depends on how inflation of A acts on the idempotents of CA(H).

5.2 Some examples

5.2.1 p-biset functors

When p is a prime and p is invertible in the ring R, a family of orthogonal idempotents
in the center of the Green functor RBp of Example 5 has been introduced in [3]. These

idempotents b̂L are indexed by atoric p-groups L up to isomorphism, i.e. finite p-groups
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which cannot be decomposed as a direct product Q × Cp of a finite p-group Q and a
group Cp of order p.

More precisely, for each such atoric p-group L and each finite p-group P , a specific
idempotent bPL of RBp(P, P ) is introduced (cf. [3], Theorem 7.4), with the property
that

a ◦ bPL = bQL ◦ a

for any finite p-groups P and Q, and any a ∈ RB(Q,P ). In other words, the family
bL = (bPL)P is an element of the center of the biset category RCp of finite p-groups. The
elements b̂L of the center of the category of p-biset functors over R - i.e. the category
RBp-Mod - are deduced from the elements bL in [3], Corollary 7.5.

The idempotents bPL have the following additional properties:

1. If L and L′ are isomorphic atoric p-groups, then bPL = bPL′

2. If L and L′ are non isomorphic atoric p-groups, then bPLb
P
L′ = 0. Let [Atp] denote

a set of representatives of isomorphism classes of atoric p-groups.

3. For a given finite p-group P , there are only a finite number of atoric p-groups L,
up to isomorphism, such that bPL ̸= 0.

4. The sum
∑

L∈[Atp]
bPL , which is a finite sum by the previous property, is equal to the

identity element of RB(P, P ).

It follows that one can consider the sum
∑

L∈[Atp]
b̂L in Z(RBp)(1), and that this sum is

equal to the identity element of Z(RBp)(1). So we obtain a locally finite decomposition
of the identity element of Z(RBp)(1) as a sum of orthogonal idempotents, which allows
for a splitting of the category of p-biset functors over R as a direct product of abelian
subcategories (cf. [3], Corollary 7.5). As a consequence, for each indecomposable p-
biset functor F over R, there is an atoric p-group L, unique up to isomorphism, such
that b̂L acts as the identity of F (or equivalently, does not act by zero on F ). This
group L is called the vertex of F (cf. [3], Definition 9.2).

Remark 46. This example shows in particular that ZA can be much bigger than CA:
indeed for A = RBp, when R is a field of characteristic different from p, we see that
ZA(1) is an infinite dimensional R-vector space, whereas CA(1) ∼= R is one dimen-
sional.
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5.2.2 Shifted representation functors

Now we apply the results of Section 5.1 to some shifted classical representation functors,
with coefficients in a field F of characteristic 0. In each case we will begin with a
commutative Green biset functor C such that for each group H, the F-algebra C(H) is
split semisimple. In particular, taking A = CH , in A(1) = C(H) we will have a family

of orthogonal idempotents {eHi }
nH
i=1 such that ε =

nH∑
i=1

eHi . As we said in Section 5.1, the

evaluation eHi A(G) is given in the following way

eHi ×d a = A(InfG1 )(e
H
i ) · a = C(InfG×H

H )(eHi ) · a

for a ∈ A(G). Now, since inflation is a ring homomorphism, A(InfG1 )(e
H
i ) is equal to∑

j∈J
eG×H
j for some J ⊆ {1, . . . , nG×H} depending on eHi and G. On the other hand, we

also have a =
nG×H∑
i=1

αi(a)e
G×H
i , for some αi(a) ∈ F. This implies that the idempotents

appearing in the evaluation eHi A(G) depend only on the set {eG×H
j }j∈J .

Shifted Burnside functors.

We consider the Burnside functor FB over F. We fix a finite group H, and consider
the shifted functor A = FBH . Then the algebra A(1) is isomorphic to FB(H), hence
it is split semisimple. Its primitive idempotents eHK are indexed by subgroups K of H,
up to conjugation, and explicitly given (see. [10], [14]) by

eHK =
1

|NH(K)|
∑
L≤K

|K|µ(L,K) [H/L],

where µ is the Möbius function of the poset of subgroups of H and [H/L] ∈ B(H) is
the class of the transitive H-set H/L.

By Theorem 45, we get a decomposition of the category A-Mod as a product∏
K∈[sH ]

eHKA-Mod, where [sH ] is a set of representatives of conjugacy classes of sub-

groups of H. From the action of inflation on the primitive idempotents of Burnside
rings (see [2] Theorem 5.2.4), it is easy to see that for K ≤ H, the value eHKA(G) of
the Green functor eHKA at a finite group G is equal to the set of linear combinations
of idempotents eG×H

L of FB(G × H) indexed by subgroups L of (G × H) for which
the second projection p2(L) is conjugate to K in H. Also, for each indecomposable
A-module M , there exists a unique K ≤ H, up to conjugation, such that eHKM ̸= 0,
and then eHKM =M .
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Shifted functors of linear representations.

Next we consider the functor FRK of linear representations over K, a field of character-
istic 0. As before, we fix a finite group H and consider the shifted functor A = (FRK)H .
This is a commutative Green biset functor, and A(1) is isomorphic to the split semisim-
ple F-algebra FRK(H). If |H| = n, it is shown in Section 3.3.1 of [8] (and in a slightly
different way in [9]) that FRK(H) has a complete family of orthogonal primitive idem-
potents eHD indexed by the E-conjugacy classes of H, where E is certain subgroup of
(Z/nZ)×. By E-conjugacy we mean that two elements x, y ∈ H are E-conjugated
if there exist [i] ∈ E such that x =H yi. This defines an equivalence relation on H
and the set of E-conjugacy classes is denoted by ClE(H). The group E is built in
the following way: First we fix an algebraically closed field L, which is an extension
of F and K, and then we take the intersection E = F ∩ K in L. By adding an n-th
primitive root of unity, ω, to E, we obtain E as the group isomorphic to Gal(E[ω]/E)
in (Z/nZ)×. Observe that, as a group, E depends only on F, K and n, and not on the
choice of L. Then, by Theorem 45, we get a decomposition of the category A-Mod as a
product

∏
D∈ClE(H)

eHDA-Mod. Also, for each indecomposable A-module M , there exists

a unique E-conjugacy class D of H such that eHDM ̸= 0 and so eHDM = M . On the
other hand, in Corollary 3.3.14 of [8] it is shown that eHDA is a simple A-module and
hence that A is a semisimple A-module, since A =

∑
D

eHDA.

Finally, using Lemma 3.3.10 in [8], we see that the idempotents eG×H
C , for C an

E-class of G×H, appearing in the evaluation A(InfG1 )(e
H
D) are those for which πH(C),

the projection of C on H, is equal to D.

Shifted p-permutation functors.

Let k be an algebraically closed field of positive characteristic p. In this case we assume
also that F contains all the p′-roots of unity, and consider the functor Fppk. Then Fppk
is a commutative Green biset functor, and the category Fppk-Mod has been considered
in particular in [7] (when F is algebraically closed).

We fix a finite group H, and consider the shifted functor A = (Fppk)H . Then the
algebra A(1) is isomorphic to the algebra Fppk(H). This algebra is split semisimple,
and its primitive idempotents FH

Q,s have been determined in [4]: they are indexed by
(conjugacy classes of) pairs (Q, s) consisting of a p-subgroup Q of H, and a p′-element
s of NH(Q)/Q. We denote by QH,p the set of such pairs, and by [QH,p] a set of
representatives of orbits of H for its action on QH,p by conjugation.

If (Q, s) ∈ QH,p and u ∈ Fppk(H), then FH
Q,su = τHQ,s(u)F

H
Q,s, where τ

H
Q,s(u) ∈ F.

The maps u 7→ τHQ,s(u), for (Q, s) ∈ [QH,p] are the distinct algebra homomorphisms
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(the species) from Fppk(H) to F (see e.g. [4] Proposition 2.18). Moreover, the map
τHQ,s is determined by the fact that for any p-permutation kH-module M , the scalar
τHQ,s(M) is equal to the value at s of the Brauer character of the Brauer quotient M [Q]
of M at Q.

It follows that if N ⊴ H, and v ∈ Fppk(H/N), then τHQ,s(Inf
H
H/Nv) = τ

H/N

Q,s
(v), where

Q = QN/N , and s ∈ NH/N(Q)/Q is the projection of s to H/N . As a consequence,

if (R, t) ∈ QH/N,p, then InfHH/N(F
H/N
R,t ) is equal to the sum of the idempotents FH

Q,s for

those elements (Q, s) ∈ [QH,p] for which (Q, s) is conjugate to (R, t) in H/N .
Now by Theorem 45, we get a decomposition of the category A-Mod as a product∏

(Q,s)∈[QH,p]

FH
Q,sA-Mod. Let G be a finite group. It follows from the previous discus-

sion on inflation that the evaluation FH
Q,sA(G) of A at G is equal to the set of linear

combinations of primitive idempotents FG×H
L,t , for (L, t) ∈ QG×H,p, such that the pair(

p2(L), p2(t)
)
is conjugate to (Q, s) in H, where p2 : G×H → H is the second projec-

tion. Also, for each indecomposable A-moduleM , there exists a unique (Q, s) ∈ [QH,p]
such that FH

Q,sM ̸= 0, and then FH
Q,sM =M .
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