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Abstract

Let k be an algebraically closed field of characteristic p > 0, let R be a commutative
ring, and let F be an algebraically closed field of characteristic 0. We consider the
R-linear category F é\‘ppk of diagonal p-permutation functors over R. We first show
that the category fﬁ)pk is semisimple, and we give a parametrization of its simple
objects, together with a description of their evaluations.

Next, to any pair (G, b) of a finite group G and a block idempotent b of kG, we
associate a diagonal p-permutation functor RT, é pin F ﬁppk. We find the decomposition
of the functor IFTéb as a direct sum of simple functors in ]-'ﬁpk. This leads to a
characterization of nilpotent blocks in terms of their associated functors in ]:ﬁ)pk.

Finally, for such pairs (G, b) of a finite group and a block idempotent, we introduce
the notion of functorial equivalence over R, which (in the case R = Z) is slightly weaker
than p-permutation equivalence, and we prove a corresponding finiteness theorem: for
a given finite p-group D, there is only a finite number of pairs (G, b), where G is a finite
group and b a block idempotent of kG with defect isomorphic to D, up to functorial
equivalence over F.
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1 Introduction

In past decades, various categories have been considered, where objects are finite groups and mor-
phisms are obtained from various types of double group actions. The linear representations of these
categories give rise to interesting functor categories: Examples include biset functors ([Bc10al), p-
permutation functors ([D15]), simple modules over Green biset functors ([Ro12]), modules over
shifted representation functors ([BR21]), fibered biset functors ([BC18]), and generalizations of
these ([BO20], [B16]).

In the present paper, we consider another example of a similar context: For an algebraically
closed field k of positive characteristic p, and a commutative ring R, we define the following category

RppkA:
e The objects of RppkA are the finite groups.



e For finite groups G and H, the set of morphisms HOmepkA(G, H) from G to H in Rpps
is equal to R ®z T™(H,G), where TA(H,G) is the Grothendieck group of the category
of diagonal p-permutation (kH,kG)-bimodules. These are p-permutation bimodules which
admit only indecomposable direct summands with twisted diagonal vertices (or equivalently,
p-permutation bimodules which are projective when considered as left or right modules).

e The composition in RppkA is induced by R-linearity from the usual tensor product of bimod-
ules: if G, H, and K are finite groups, if M is a diagonal p-permutation (kH, kG)-bimodule
and N is a diagonal p-permutation (kK,kH )-bimodule, then N ®x gy M is a diagonal p-
permutation (KK, kG)-bimodule. The composition of (the isomorphism class of) N and (the
isomorphism class of) M is by definition (the isomorphism class of) N @z M.

e The identity morphism of the group G is the (isomorphism class of the) (kG, kG)-bimodule
kG.

The category RppkA is an R-linear category. The R-linear functors from RppkA, to the category
rMod of R-modules are called diagonal p-permutation functors over R. These functors, together
with natural transformations between them, form an R-linear abelian category JF ﬁppk'

These diagonal p-permutation functors have been introduced in [BY20], in the case R is a field
F of characteristic 0. Even though this will also be our assumption in most of the present paper, we
give the above more general definition, as we will also need to consider the case R = Z in various
places.

The main motivation for considering diagonal p-permutation functors comes from block theory,
and in particular the notion of p-permutation equivalence of blocks of finite groups, introduced
in [BX08] and developed in [BP20]. This notion appears in the following chain of equivalences of
blocks of group algebras, namely

Puig’s equiv. = Rickard’s splendid derived equiv. = p-permutation equiv.,

and these equivalences are related to important structural conjectures, such as Broué’s abelian
defect group conjecture (Conjecture 9.7.6 in [L18]), and finiteness conjectures, such as Puig’s
conjecture (Conjecture 6.4.2 in [L18]), or Donovan’s conjecture (Conjecture 6.1.9 in [L18]).

In this paper, we introduce yet another equivalence, weaker than p-permutation equivalence,
between blocks of group algebras, which we call functorial equivalence over R: to each pair (G,b)
of a finite group G and a block idempotent b of the group algebra kG, we associate a canonical
diagonal p-permutation functor over R, denoted by RT, éb. This functor, a direct summand of
the representable functor RTGA at G, is obtained from the (kG, kG)-bimodule kGb, viewed as an
idempotent endomorphism of G in the category RppkA. When (H,c¢) is a pair of a finite group H
and a block idempotent ¢ of kH, we say that (G,b) and (H,c) are functorially equivalent over R
if the functors RTé p and RTI% . are isomorphic in f}%ppk.

We obtain the following main results:

e The category ]-"ﬁ)pk of diagonal p-permutation functors over F is a semisimple F-linear abelian

category (Theorem 6.15).

e The simple diagonal p-permutation functors over F are parametrized by triples (L, u, V),
where (L, u) is a D®-pair (see Section 3), and V is a simple FOut(L, u)-module (see Nota-
tion 6.8).

e The evaluation St ., v(G) of the simple functor Sy, ,, v parametrized by the triple (L, u, V),
at a finite group G, is explicitly computed in Corollary 7.4.



e The multiplicity of any simple functor Sy v in the functor FT, é , associated to a block idem-
potent b of a finite group G is explicitly given by three equivalent formulas (Theorem 8.22):
One in terms of fixed points of some subgroups of Out(L, ) on V, the second one in terms of
the “u-invariant” (G, b)-Brauer pairs (P, e), and the third one in terms of the “u-invariant”
local pointed subgroups P, of G on kGb.

e We give three characterizations (Theorem 9.2) of nilpotent blocks in terms of their associated
diagonal p-permutation functors: let b be a block idempotent of the group algebra kG. Then
b is nilpotent if and only if one of the following equivalent conditions holds:

— If St v is a simple summand of ]FTéb, then v = 1.
— If St . F is a simple summand of ]FTC%b, then v = 1.

— The functor IE‘T(% , is isomorphic to the representable functor IE‘TI% for some p-group D.

e We show (Theorem 10.5) that if (G,b) and (H, ¢) are functorially equivalent blocks over F,
then kGb and kH c have the same number of simple modules, the same number of irreducible
ordinary characters, and b and ¢ have isomorphic defect groups.

e We show (Theorem 10.5) that if b and ¢ are nilpotent blocks of G and H, respectively, then
(G,b) and (H,c) are functorially equivalent over F if and only if b and ¢ have isomorphic
defect groups.

e We prove a finiteness theorem (Theorem 10.6) for functorial equivalence of blocks: for a
given finite p-group D, there are only finitely many pairs (G, b), where G is a finite group,
and b is a block idempotent of kG with defect isomorphic to D, up to functorial equivalence
over F.

e We give a sufficient condition (Theorem 11.1) for two pairs (G, b) and (H, ¢) to be functorially
equivalent over I in the situation of Broué’s abelian defect group conjecture.

The paper is organized as follows: Sections 2 to 5 are devoted to technical tools used in the proof
of our semisimplicity Theorem 6.15. Section 2 deals with Brauer quotients of tensor products of
diagonal p-permutation bimodules, Section 3 recalls the definitions of pairs, D*-pairs, and idem-
potents of p-permutation rings. The main theorem of this section is Theorem 3.7. In Section 4 we
state some results from Clifford theory, and in Section 5 a theorem on some equivalences of abelian
categories. Section 6 is devoted to the proof of our semisimplicity theorem (Corollary 6.15). In Sec-
tion 7, we compute the evaluations of the simple diagonal p-permutation functors (Corollary 7.4).
In Section 8, we introduce the diagonal p-permutation functors associated to blocks of finite groups,
and we describe their decomposition as a direct sum of simple functors (Theorem 8.22). In Sec-
tion 9, we apply these results to the characterization of nilpotents blocks in terms of the associated
functors (Theorem 9.2). In Section 10, we introduce functorial equivalence of blocks, and state
some of its basic consequences (Theorem 10.5); next we prove our finiteness theorem for functorial
equivalence over F (Theorem 10.6). Finally, Section 11 considers the case of blocks with abelian
defect groups (Theorem 11.1).

2 Brauer character formula

Throughout G, H and K denote finite groups. Let F denote an algebraically closed field of
characteristic 0 and let k denote an algebraically closed field of positive characteristic p. We
assume that all the modules considered are finitely generated.



Let M be a (kG, kH)-bimodule. For m € M and (g, h) € G x H, the formula (g, h)m = gmh~!
induces an isomorphism between categories ygmodgy and p(gxmjmod. In what follows, we will
often use this isomorphism to identify left k[G x H]-modules via (kG, kH)-bimodules.

Let M be a kG-module and let P be a p-subgroup of G. The Brauer construction of M at P
will be denoted by M[P].

2.1 Lemma Let N <G be a normal subgroup of G and let V' be an FG-module with character .
Then the character of Defg NV Is given by

1
gN — W Z x(gn)
neN

for gN € G/N.

Proof By [Bcl0a, Lemma 7.1.3] the character of Defg/NV is given by the formula

1 1 1
9N = 1 Yoo oxn = Teilal > x(gn) = 0y > xlgn),
u€G/N,heG neN neN
gN-u=u-h
as desired. [

Let X be a subgroup of G x H and let L be a finite dimensional FX-module. Let also Y be a
subgroup of H x K, and M a finite dimensional FY-module. Since k1 (X) X k2(X) is a subgroup
of X, the module L can be viewed as an (Fk;(X),Fkz(X))-bimodule. Similarly, M can be viewed
as an (Fk1(Y),Fkz(Y))-bimodule. Set S = kz(X)Nk1(Y). Then the tensor product L®gg M is an
(Fk1(X),Fko(Y))-bimodule. For (a,b) € X Y, choose h € H such that (a,h) € X and (h,b) € Y.
Then

(a,b)(1 ©m) = (a, h)] & (b, bym

is a well defined element of L ®pg M, and this defines a structure of F(X *Y)-module on L ®pg M.
This construction is first used in [Bc10b]. )
Let X xgY :={((g,h), (h,k)) € XxY | h = h}. Consider the surjective group homomorphism

v: XxgY —=XxY, ((g,h),(h,k))— (9,k).

The kernel of v is {((1,h), (h,1)) | h € S} and we denote by 7 : (X xg Y)/ker(v) - X Y the
isomorphism induced by v.

2.2 Lemma Let X < G x H andY < H x K be subgroups. Let also L be a finite dimensional
FX-module and M a finite dimensional FY -module. Then the character xpgzsn of the F(X *Y)-
module L ®pg M is given by

1
XL@FSM(G/? b) = E Z XL (a’ h) XM(ha b)7
(a},LE)IgX
(h,b)eY

for all (a,b) € X xY, where x, and x s are the characters of L and M, respectively.



Proof Let (a,b) € X xY be an arbitrary element and ¢ € H such that (a,¢) € X and (¢,b) € Y
By [B020, Proposition 2.8], we have

XL®@rsM = (ISO( ) o Def)g(XXHHYY)/ker(V ° ResﬁigY) (XL X XM) .

Hence by Lemma 2.1 we have

XLegsM(a,D) |S\ ZXL a, he)xa (he, b)
hes

1
= @ Z XL(a>h) XM(h7b) )
heH
(a,h)eX
(h,b)eY

as desired. U

2.3 Notation (a) Let U < G and W < K be subgroups and v : W — U a group isomorphism.
We set

AU, W) ={(v(w),w) :we W}

for the corresponding twisted diagonal subgroup of G x K.

(b) Let A(U,~, W) be a twisted diagonal subgroup of G x K. Let I'y(U,~, W) denote the
set of triples (a,V, ) where V is a subgroup of H, and « : V. — U and § : W — V are
group isomorphisms with the property that v = a o 8. The group Ngxx (A(U,~v,W)) x H acts
on I'y(U,~, W) in the following way: if ((z,2),h) € Naxx(A(U,v,W)) x H and (o, V, ) €
Ty (U,~, W), then

((:E’Z)a h) : (a,V,ﬁ) = (ZE o« Oi}tl’hvvih © B © igl)a

where i,, denotes the conjugation by an element w.

2.4 Proposition [BD12, Theorem 3.3], [BP20, Corollary 7.4(b)] Let L be a p-permutation
(kG, kH)-bimodule and M a p-permutation (kH,kK)-bimodule. Suppose that all of the inde-
composable summands of L and M have twisted diagonal vertices. Let T u(U,~, W) denote a set
of representatives of Ngx i (A(U,~, W)) x H-orbits of I i (U, v, W). Then the kNgx x (A(U,~, W))-
module (L @i M)[A(U,~,W)] is isomorphic to

Noxx (AU~,W
P mdye T sy LAU.0 V)] Qe MAWV,8,W)])
(a,V,8)

where (o, V, ) € Ty (U,~, W).

Throughout, we fix an embedding of the torsion units of £ in the torsion units of F. We say
that (P,u) is a pair of a finite group S, if P is a p-subgroup of S and u is a p’-element of Ng(P).
Let (P,u) be a pair of S and let X be a p-permutation kS-module. Then Tﬁu(X) € F is defined
as the value at u of the Brauer character of X[P] (see [BT10] Notation 2.1 and Notation 2.15 for
details).



In the next proposition, we will consider three finite groups G, H and K, and we will need
to lift p-permutation (kG,kH)-bimodules and (kH, kK )-bimodules from characteristic p to char-
acteristic 0. To do this, we can choose a p-modular system (K, O, k) containing k, where O is a
complete discrete valuation ring with residue field k& and field of fractions K of characteristic 0.
We choose an embedding of the torsion units of K in the units of F extending the fixed embed-
ding of the units of k. For a finite group S and a p-permutation kS-module X, there is a unique
p-permutation OS-lattice X, up to isomorphism, such that X©/J(0)X© = X. We denote by
X0 the KS-module K ®» X©. For a p-subgroup P of S and a (possibly p—singular) element u
of Ng(P), we define Tgu(X) as the value at u of the (ordinary) character of X[P]°. As TPU(X)
is a sum of roots of unity, it lies in our algebraically closed field F of characteristic O. Moreover
Tjgu(X )= Tﬁ,u(X ) when w is p-regular, by our assumption. With this notation:

2.5 Proposition Let (s,t) € Ngxx (A(U,7,W)). Let L be a p-permutation (kG, kH)-bimodule
and M a p-permutation (kH, kK )-bimodule. Suppose that all of the indecomposable summands
of L and M have twisted diagonal vertices. Then

~Gx K (L®k:H M):

1 ~GxH ~HXK
T Uy W) (5.0) TH] > TAW.a ) (sm) L) Tas.w). nay (M)

(o,V,8)€Ty (U,y, W), he H
(Sah)eNGXH(A(U7a’V))
(h,t)ENH x x (A(V,8,W))
Proof We use Proposition 2.4, where we set for simplicity

NU,'y,W - NGXK(A(U s ))

NU,oc7V = NGXH(A(U a, V )

Nvgw = Nuxr (AV,B,W))

Nuav,pw = Naxu (AU, o, V) * Ngx g (A(V, B, W)).

We write f‘UmW = f‘H(U, v, W) for short, for a set of representatives of the orbits of Ny . w x H on
Tv~yw =Tu(U,~v,W). For (o, V,8) € 'y 4w, we denote by Sy.q,v,sw the stabilizer of (o, V, )
in NU,'y,W X I’I7 i.e.,

Sv.avew = {((x,2),h) € Nuyw x H |izoa=aociy, inof=poi.}.

With this notation, we have an isomorphism of kN, w-modules

(Lo M)[AU, W)= @ Wdye?" (LA, a, V)] Qe vy M[AV, B,W)]).

VE,W
(a,V,B)El U~ W

This isomorphism can be lifted to O, to give an isomorphism of FNy . w-modules

(Low MAUAW)] 2 @ Wdyor? (L (AU, 0,V)]° @pc,y ) MIAV, B, W)}O) :

Nu,a,ve,w
(a,V.B)ETU, v, W

and ?AG(X(]ﬁ7W),(S7t)(L ®rp M) is equal to the trace of (s,t) acting on the right hand side. This



implies that

1
~GxK = b
TA(;J,%W),(S,t)(L Qi M) = Z m Z Ov.a,v,pw("s, 1)
(a,V,B)€ly,,w VB, (a,b)ENY ~,w
(“s,’t)ENv o, v.8,W
SU V.,3,W
_ Z | o, V.8 | Z GU,a,V,B,W(as’bt)

INvy wllH| [ Nvavewl,

(a,V,B)€T Y+, W W)ENU ~ W

(*s,t)ENy o, v,5,w

where 0y o,v,8,w is the character of L[A(U,oz, V)]O ®FCy (V) M[A(V, B, W)]O.
Now we observe that p1(Sv,.a,vgw) = Nua,vgw and ka(Su.avsw) = Ca(V). It follows
that
1Sv.a.v.p.w| = INva,vswlCr(V)],
Cu (V)
N H a
TE(XU{;,W),(SJ)(L @ M) = Z N Hl Z Ou,a,v.5,w (75, "t).

N, H
(a,V,8)ET U~ W | U7’Y’W|| |(a»b)€NU%W
(“s,’t)ENy.a,v,8,W

But for (a,b) € Ny.w, saying that (%s,’t) € Ny,vsw amounts to saying that (s,t) €

( 7b) — J—
Niovew = Nuizton v goi,w- Moreover 0v.0.v.5.w (s, ) = 005z 00,V goiy,w (55 1) SO
1
~GXK
TA@aw) (o (b B M) = o 2 1Ca (V)P iz 00,v,poiw (5:)
”Y’ (a,b)ENy,~,w

(i;loa,V,ﬁoib)EFU)%W
(s,t)EN

Uyig Yoo, V,Boiy, W

= = Z |ICa(V)|0v,a,v,p.w(s:t).

(a,V,B)€T Y, W
(8,1)ENU,a,v.5,W

Now by Lemma 2.2
1

_ ~GxH ~HxK
Ov.avpw(st) = Tl ’; Ta ey (sm L) TaC s wy. oy (M)
(s,h)ENy, o, v
(h,t)eNV,L-},W
It follows that
1
~GxK ~GxH ~HxK
7-A(XU,W,W),(s,t) (L @k M) = ﬁ Z TA(XUﬂ,V)v(S:h)(L) TA(T/ﬁ,WL(hi)(M) ’

(a,V.B)€Tu 5w
heH
(s,h)ENU, o, v
(h,t)ENv, g, w



2.6 Corollary Let L be a p-permutation (kG,kH )-bimodule and let M be a p-permutation
(kH, kK)-bimodule. Suppose that all of the indecomposable summands of L and M have twisted
diagonal vertices. Then, for any diagonal pair (A(U,’y, W), (s,t)) of G x K

1
Gx K GxH HxK
Ty W () (L ®rerr M) = TH > TA .0 (s) L) Tavs.wy, ) (M),

(a,V,8)€l'y (U,y,W), h€H
(s,h)ENGx u(A(U,a,V))
(h,t)eENHx Kk (A(V,8,W))

where H,, is the set of p'-elements of H.

Proof For (a,V,8) € T'y(U,~, W), the indecomposable direct summands of the FNy o v-module
LIA(U,«, V)]" have twisted diagonal vertices. Similarly, the indecomposable direct summands of
the FNy g w-module M[A(V,3,W)]° have twisted diagonal vertices. Now assume that (s, h) €
Ny, v is such that ?E(X(Ji,v),(s,h)(L) # 0. Then by [NT89, Theorem 4.7.4], the p-part of the
element (s,h) is contained in a twisted diagonal p-subgroup of G x H. Since s is a p’-element,
this means that h is a p’-element as well. Therefore the summation over h € H in Proposition 2.5
reduces to a summation over h € Hp/, and then both (s, h) and (h,t) are p’-elements, so we can
replace T by 7 throughout. U

3 Pairs

Recall that k& denotes an algebraically closed field of characteristic p and F denotes an algebraically
closed field of characteristic zero. Also, G, H and K denote finite groups.

3.1 (a) We denote by T'(G) the Grothendieck group of p-permutation kG-modules. Let Qg )
denote the set of pairs (P,u) where P is a p-subgroup of G and u is a p’-element of Ng(P). The
group G acts on the set Qg , via conjugation and we write [Qg ] for a set of representatives of
G-orbits on Qg p.

Let M be a p-permutation kG-module. Recall from Section 2 that T}C;':u(M ) is defined as the
value at u of the Brauer character of M[P]. We extend this F-linearly to obtain a map Tgu from
FT(G) := F®z T(G) to F. It is well known that the set of maps 7p,, for (P,u) € [Qgp], is
the set of all distinct F-algebra homomorphisms from FT'(G) to F (see e.g. Proposition 2.18 of
[BT10] for details), and hence the primitive idempotents Fgu of FT(G) are indexed by [Qg ).
The idempotent Fgu is defined by the property that for any (Q,t) € [Qa,p),

1 if (Q,t) =¢ (P,u)
G (pG ’ o
F =
70+ (FFu) {0 otherwise .

(b) More generally, we often consider pairs (P, s) where P is a p-group and s is a generator
of a p’-group acting on P. We write P(s) := P x (s) for the corresponding semi-direct product.
We say that two pairs (P, s) and (Q, t) are isomorphic and write (P, s) & (@, 1), if there is a group
isomorphism f : P(s) — Q(t) that sends s to a conjugate of ¢. The following type of pairs will
play a crucial role in this paper.

3.2 Definition [BY20] A pair (P, s) is called a D*-pair, if C(4(P) = 1.



See [BY20, Proposition 5.6] for more properties of D?-pairs. Note that for an arbitrary pair
(P, s), the pair (P,3) := (PC()(P)/Cis)(P), sCys)(P)) is a D*-pair.

3.3 Lemma (i) Let (A(U,v, W), (s,t)) be a pair of G x K. Then we have (U,3) = (W,1).
(ii) Let (U, s) be a pair of G and let (W,t) be a pair of K. Suppose that (U, s) = (W,t). Then
(A(U,v,W),(s,1)) is a pair of G x K for some group isomorphism v : W — U.
(iil) Let (U, s) be a pair of G and let (W, t) be a pair of K. Assume that we have (U, 3) = (W, 1).
Then (A(U,~, W), (s,t)) is a pair of G x K for some group isomorphism v : W — U.

~—

Proof (i) The element (s,¢) normalizes the group A(U,7, W) means that s normalizes U, t
normalizes W, and v(*u) = *y(u) for all u € U. Set X := Ny 1y (AU, v, W)) < (s) x (t). Then
we have

pi(X) =(s), paAX)={(t), ki(X)=Cry(U), ka(X)=Cry(W).

Hence we have a group isomorphism
n:()/Cpy(W) = (s)/Ci) (U)
that sends tC'yy (W) to sCs)(U). The map
0:W(t)/Cy(W) — U(s)/Csy(U)

defined as O(wt'C (W) := v(w)n(t'C(yy(W)) is an isomorphism that sends tCyy (W) to sC 4 (U).
Hence the pairs (UC<S>(U)/C<S>(U),SC<S>(U)) and (WC<t>(W)/C<t> (W),t0<t>(W)) are isomor-
phic. This proves the claim.

(ii) Let f : W{(t) — U(s) be a group isomorphism that sends ¢ to a conjugate of s. Let u € U be
an element with the property that f(t) = usu™!. Let i,-1 denote the automorphism of U induced
by conjugation with v~! and define vy =i,-1 0 f : W — U. We have

Y(tw) = uT f("w)u = uT F (@) f(w) f(ETu = suT fw)usTh = *y(w)
for all w € W. This shows that (A(U,~, W), (s,t)) is a pair of G x K.
(iii) By part (ii) there exists a group isomorphism
Y WC(W)/Ciy (W) = UC 4 (U)/Cy)(U)
with the property that 4(*w) = *3(w) for all @ € WCu(W)/Cy(W). The map ¥ induces an

isomorphism « : W — U with the property that v('w) = *y(w) for all w € W. This means that
(AU, v, W), (s,1)) is a pair of G x K. U

3.4 Notation For any p-permutation kG-module W, we set W = IndgéGW. This defines an
algebra homomorphism from FT(G) to FT2(G, G).

3.5 Remark Let (P,7) be a pair of G and let (A(U7a, V), (s,z)) be a diagonal pair of G x G.
Then we have

GxG (FG ) = {CG (P(r))], if (AU, a,V),(s,2)) =axa (A(P),(r,1))

.
A(U,a,V),(s, Pr .
(U, V), (s,2) 0, otherwise .



Indeed, after identifying the group G with AG, we can also identify F' gr e FT(G) via F AAIE’:(M) €
FT(AG). Therefore by [BT10, Proposition 3.2] we have
IndgéGFAA]g;:(r,r) = |CG (P<7">) | . Fg;f;’r)

which implies the equality above.
3.6 Lemma Let (A(P,*y, Q), (r, u)) be a pair of G x K. Then

G GxK K GxK - A
EFg ®56 FX(po.0). 0 O4K FGu = FX(poq).ray 1 FTT(G,K).

Proof Let (A(P’,’}/, QhH, ', u’)) be a pair of G x K. Then by Corollary 2.6,

—_~—

GxK -G GxK
TAP @) FBr 946 F(p.0), ray 056 FG )
is equal to
1 GxG -G\ _GxK GxK K
1G] > AP v () F B ) TA(V3.00 0y FA (P @) () EFK F Q) -

(a,V,8)eT G (P'7',Q"), g€G
(r,9)ENGx G (A(P',a,V))
(9,0 )ENGx k (A(V,8,Q"))

By Remark 3.5, the evaluation Tg(xpc,;a V) g)(FgT) is non-zero if and only if
(A(P',a,V),(",9)) =axe (AP, (r,r)) if and only if there exists (g1,92) € G x G such
that (A( g p’ iglai;;, 92V, (91, 92g)) = (AP, (r, r)) In that case the above sum can be written

as

—1 E GxK GxK K
n|G| |CG(P<T>)|TA 95 pisli 097 e (FX (P, (rw) OkK FQu)
( slgg g1 Y ,Q )7( s )
(91,92)€GXG,
91y =p

(92 ') ENG k(A (V5,Q"))

where n is the number of pairs (g1, g2) which satisfy the conditions above when «,V, 8 and g are
fixed. Now again by Corollary 2.6, the element

GxK GxK /—;(/
T2 _ F Rri F,
AT Bzt @0 (5 na) AP )
is equal to
1 GxK GxK KxK K
—_ T _ F T ’ ’ FK )
K] > 805 b (o e L APQura) TAw@) ) Q)

—1
(. Y)ETk (2 Pyiytigv',Q")
k‘EKp/

( gglr,k)EchK(A( gglp’qﬁ’y))
(k' )ENK x k (A(Y,,Q"))

and therefore it is non-zero if and only if there exists k € K, and (¢,Y, ) € Tk ( gglP, iy iV Q')
such that

(A(gglpﬂﬁay)a (gz_l’f',k)) =GxK (A(P,’Y,Q), (T’ u)) (1)
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and such that
(A(Y,9,Q"), (k,u)) =k xk (AQ, (u,u)).
The latter implies that there exists (k1,k2) € K x K such that
(ACYy iy i), Q) (Mh, ™)) = (AQ, (uu))

This, in particular, implies that @ = i,:llikz and hence that ¢ = ig;ligl’y’ i,:;ikl. Therefore the
statement (1) is equivalent to

(A% 9P i iy Vigy, " E2Q), (92 9, R =g (AP, Q), (ryu))

which is equivalent to

-1 -1
(95 "91,k; kz)(A(P/,’y/,Q/),(T/,U/)) - (A(P,’y,Q),(r,u)).
This is clearly equivalent to

(A(Plvpyva/)v (’/’/,’(L,)) —GxK (A(P77aQ)a (Tr U)) .

—~—

This shows that the element Fgr Rrc Ff{;f;_@_(r ) QLK FKu is a non-zero scalar multiple of the

idempotent Fg(§ﬁ7Q)7(T7TL), ie.,

Gx K - Gx K
Fzg’:r e FA(XP,%@,(T,u) Ok FK,u =X FA(XP,%Q>,(nu)

for some non-zero A € F. But multiplying by F cjg{ ,, from the right, and by Ff’gr from the left implies
that A2 = \. Hence A = 1 and the result follows. U

The following result will be used in Section 6.
3.7 Theorem Let (P,r) be a pair of G and (Q, u) a pair of K. Then there exists a p-permutation

(kG, kK)-bimodule M all of whose indecomposable direct summands have twisted diagonal ver-
tices, with the property that

FIC:;:T ®kgM®kKF(§u 7& 0

if and only if (P,7) = (Q, ).

Proof Suppose that M is a diagonal p-permutation (kG, kK )-bimodule with the property that
Flg':r Rk M Qri Fé{,u 7é 0.

Then there exists a pair (A(U, vy, W), (s,t)) of G x K such that

TR w) (s, FEr @k M @kk FE,) #0.

11



By Corollary 2.6, there exists (o, V, 8) € T'g(U,~v, W) and g € G such that

GxG - G K
TR o) () (FEr) # 0 and 7805 (o (M @k F,) #0.

Similarly, there exists (¢, Y, 1) € I'(V,8,W) and [ € K such that

—

Gx K KxK
TAVo (g0 M) # 0 and  TX50 w0 (FG.) # 0.

Since Tg(ch,;a,v),(s o) (I;I\g'i) # 0, Remark 3.5 implies that the pair (P,r) is G-conjugate to the pair

(V,g). Similarly ng/]; W) (0t ») 7 0 implies that the pair (Q,u) is K-conjugate to the pair

o(F&,
(Y;1). Moreover since (A(V, ¢, Y) ( 1)) is a pair of G x K, Lemma 3.3 implies that (V,§) = (V,1).
Hence we also have (P,7) = (Q, ), as desired.
Now assume that ( 7) = (@, @). Then by Lemma 3.3, there exists a group isomorphism -~ :
)

i
(@
@ — P such that (A(P,~,Q), (r,u

)) is a pair of Gx K. By Lemma 3.6, FPr®kGFG(P»yQ) (ru) ORK

Fg . 18 nonzero and we are done. U
,

4 Some Clifford theory

The results in this section will be used in Section 8. Let k be an algebraically closed field of positive
characteristic p. Let also N be a finite group with a normal subgroup C' such that N/C is a cyclic

p’-group (u).

4.1 Theorem (i) Any N-invariant projective indecomposable kC-module F' can be extended to
a projective indecomposable kN-module E. Moreover, IndgF > @)\:<u>_>kx E, where E, =

E @ Infy ok

(ii) If M is a projective indecomposable kN-module such that Resy M admits an N-invariant
indecomposable summand F', then F' = Resg M, that is, Resg M is indecomposable.

Proof (i) Let F' be an N-invariant indecomposable projective kC-module and set S = F/J(F).
By [F82, Chapter III, Theorem 2.14], we can extend S to a snnple kN-module S with projective
cover E. For a group isomorphism A : (u) — k*, we set Sy =S @y Ian/CkA Then S, is a simple
kN-module with projective cover Ey = F Qj Ian/CkA.

The simple kN-modules Sy are all distinct. BEquivalently, if A : (u) — k* is a non-trivial
character, then S and §,\ are not isomorphic. Indeed, if ¢ : S - §,\ is an isomorphism of kN-
modules, then the restriction of ¢ to kC is an automorphism of S as a kC-module, hence it is a
scalar multiple of the identity ff S ,Aby Schur’s lemma. So there exists pu € k* such that p(v) = pv

for any v € S. Now since ¢ : S — Sy is a morphism of kN-modules, for any z € N and v € S, we
have

p(x-v) = A=)z - p(v),

where T is the image of z in (u). So we get that px - v = A(T)ux - v, hence A(Z) =1, so A = 1.

12



Now Homy,y (IndY F, S \) = Homkc(F S) is one dimensional. Hence there is a non-zero mor-
phism of kN-modules v : IndCF — SA, which is burjectlve since SA is simple. Since IndCF is
projective, it follows that ¢ can be lifted to 6 : Inch — FE), and 6 is surjective, because E) is a
projective cover of S - Hence 6 splits, and it follows that E) is a direct summand of Indg F.

Since the modules S » are all distinct, the modules E) are all distinct as well, and it follows
that @, FE) is a direct summand of IndgF. Since (u) is a p’-group, this implies in particular that

|u] dimy E = dimy (®AEy) < [N : Cldimg F = |u| dimy, F,

so dimy F < dimy, F. R

But on the other hand, the surjection E — S restricts to a surjection of kC-modules
Reng — 5. Since Reng is projective, we get as above that the projective cover F' of S is
a direct summand of Resg E. In particular, dimy F' < dimy E. It follows that dimy F = dimg F'
and this proves (i).

(ii) Let M be a projective indecomposable kN-module such that Resg M admits an N-invariant
indecomposable summand F. Then as above, the simple kC-module S = F/J(F) can be extended
to a simple kN-module S with projective cover F, and the simple kN-modules S \ are all distinct.
Now

HomkN(Inng, §>\) = Homyc (S, S)

is one dimensional, so there is a non-zero morphism Indg S8 » which is surjective since S A 1s
simple. It follows that we have a surjective morphism of k£/N-modules

JZInng%@g)\.
A

But these two modules have the same dimension |u| dimg S, so ¢ is an isomorphism. In particular
IndY S is semisimple.

Since F' is a direct summand of Resg M, we get a non-zero morphism Resg M — S, hence
a non-zero morphism M — Indg S. The image L of this morphism is a semisimple quotient
of M, which is projective and 1ndecomposable Hence L is simple, and isomorphic to one of the
modules Sy. Then M = Ej and F = Resy M. This proves (ii). U

5 An equivalence of categories

Let A be an abelian category with arbitrary direct sums. Recall that an object P of A is called
compact if for any family (X;);er of objects of A, the natural morphism

@D Hom (P, X;) — Homa (P, P X)

i€l iel

is an isomorphism. The following is well-known to specialists. We include the proof for the
convenience of the reader.

5.1 Theorem Let R be a commutative ring and A an R-linear abelian category with arbitrary
direct sums. Let moreover P be a set of objects of A with the following properties:
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(i) If P € P, then P is projective and compact in A.

(ii) The set P generates A, i.e., for any object X of A, there exists a family (P;);ec of elements
of P, and an epimorphism ®;ec;P; - X in A.

Let Fung(P°P, RMod) be the category of R-linear contravariant functors from the full subcat-
egory P of A to the category of R-modules. Then the functor

H:XeA— Hx = HOmA(—,X) S FunR(’POp,RMod)
is an equivalence of R-linear abelian categories.

Proof We first show that H is fully faithful. Let X be an object of A. By Condition (ii), there
exists an exact sequence in A of the form

DjesQj — DierP — X — 0, (2)

where (Q;);jes and (P;);cr are families of elements of P. Now if P € P, then applying the functor
Hom 4 (P, —) gives an exact sequence of R-modules

HOID_A(P7 @jeJQj) — HOII’IA<P, @iEIPi) — HOHIA(P,X) — 0,

since P is projective in A. Since moreover P is compact in A, this exact sequence is naturally
isomorphic to the exact sequence

@jesHomy (P, Q;) — BicrHom4 (P, P;) — Homy (P, X) — 0.
In other words, we get an exact sequence in the category F = Fung(P°P, gpMod)
@jeJHQj — @ierHp, — Hx — 0.

Now for any object Y of A, applying the functor Homx(—, Hy ) to this sequence gives the exact
sequence

00— HOHI]:(H)(, Hy) — HOIII]:(G%e]I?[pi7 Hy) — HOIH]:(@J‘GJHQj R Hy)
of R-modules. This sequence is naturally isomorphic to

0 — Homz(Hx, Hy) — [ [ Homz(Hp,, Hy) — [ [ Homz(Hg,, Hy).
i€l jeJ

~

Now by the Yoneda lemma, for each P € P, we get a natural isomorphism Homz(Hp, Hy ) =
Hy (P) =Homu(P,Y), so the previous sequence is isomorphic to

0 — Homz(Hx, Hy) — [ [Homa(P;,Y) — [ ] Homa(Q;,Y),
iel jeJ

or in other words to the sequence
0 — Homz(Hx, Hy) — Homy(®icrP;,Y) — Homy (®;ecsQ;,Y) . (3)
Now applying the functor Hom 4(—,Y) to the exact sequence (2) gives the exact sequence
0 — Homu(X,Y) — Hom(Picr P, Y) — Homu(B;esQ;,Y). (4)

Moreover, the exact sequences (3) and (4) fit into a commutative diagram
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0 —— Homy(X,Y) —— Homy(Bicr P, Y) —— Homu(P;csQ;,Y)

| ) s

0—— HOHl]:(HX,Hy) —_— HOmA(EBie]H,Y) R HOmA(@jeJQj,Y)

of R-modules. It follows that the vertical arrow Hom 4(X,Y) — Homz(Hx, Hy) is an isomor-
phism for any objects X and Y of A. In other words, the functor H is fully faithful as was to be
shown.

We now prove that H is essentially surjective. Let F be any object of F = Fung(P°P, RpMod).
For every P € P we choose a generating set sp of F(P) as an R-module. By the Yoneda lemma
again, we have an isomorphism Homz(Hp, F') & F(P) from which we get a morphism

Dpep @SESP HP — F7 (5)

which is an epimorphism as sp generates F'(P) for any P € P. Now since P consists of compact
objects of A, we have an isomorphism

Dpep @sesp HOHI_A(—, P) = Hom.A(_7 Dpecp @SESP P)

in F, in other words an isomorphism @pecp Bsesp, Hp = Hx where X = ©pcp sesp P.
So for any F' € F, there exists X € A and an epimorphism Hx — F in F as in (5). Then
there exists Y € A and an exact sequence

Hy — Hxy — F —0

in F. Since the functor H is fully faithful by the first part of the proof, the left arrow Hy — Hx
in this sequence is induced by a morphism f:Y — X in A. Let Z be the cokernel of f in A. The
exact sequence

f

Y X Z 0

in A gives an exact sequence Hy — Hx —> Hz — 0 in F, because P consists of projective
objects of A. It follows that H is isomorphic to the cokernel of Hy — Hx in F, thatis Hy = F.
It follows that the functor H is essentially surjective, which completes the proof of the theorem. []

6 Semisimplicity of the functor category

Recall that k£ denotes an algebraically closed field of positive characteristic p and F denotes an
algebraically closed field of characteristic zero. We recall from the introduction the definition of
diagonal p-permutation functors over F.

6.1 Definition Let ]FppkA be the category with
e objects: finite groups

o Morg,,a (G, H) = F @z TA(H,G) = FTA(H, G).
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An F-linear functor from IFppkA to rMod is called a diagonal p-permutation functor over F. Diagonal

p-permutation functors form an abelian category f@pk.

Let G be a finite group and let (P,r) be a pair of G. Then the element EET is an idem-
potent of FT2(G, G) which is the endomorphism algebra of the representable functor FT@. Let

IFT@FIE':T denote the corresponding direct summand of the functor IFT@. For any finite group H,
the evaluation FTE Ff, (H) is given by

FTAFS, (H) = FT®(H,G)FS, = {X ®c FS, : X € FTA(H,G)}.

6.2 Lemma Let G and K be finite groups. Let (P,r) be a pair of G and (Q,u) a pair of K. Let
F e fﬁ)pk be a diagonal p-permutation functor over F. Let also the relation = denote natural
isomorphism.

(i) We have Hom za (IE‘TC%E;G:,F) = F(G)FFG’W ={m € F(G): F(FS,)(m) =m}.
PP ’ )

(ii) We have Homﬂ%pk (FT@FE, FTR) = EETIFTA (G, K).

(iii) We have Homys (FTSFS, . FTRFK ) = FS FT(G,K)FX,,.
Proof Let ® € Homza (]FTC?}?I\S;/T, F) be a natural transformation. One shows that ® is com-
PPk ’

pletely determined by (bg(ﬁgn) =:m € F(G). Moreover, we have F(Fr';g:)(m) = m and hence

m e F(Q)F Fr. One can also show that every m € F aHF Fr determines a natural transformation.
This proves the statement (i).
Statements (ii) and (iii) are proved similarly. U

6.3 Lemma Let (P,7) be a pair of G. The functor FT4 FS  is compact and projective in }"ﬁ)pk.

Proof The functor IFTC%FIQ:T is a direct summand of the projective functor IE‘T@. Hence it is
projective as well. Let {F;} be a set of objects of ]-']P%Dpk. By Lemma 6.2(i) there is an isomorphism

@ Hom(]FTéﬁgvr, F) — Hom(]FT(?F/'gj,, @ F)
in ]:I@ka' Hence ]F‘Té};;gi is compact as well. U

6.4 Proposition Every functor in fﬁpk is a quotient of a direct sum of representable functors of

—_~—

the form FT2

Q<U>F§’<U> where (Q,v) is a D®-pair.

v

Proof Since the representable functors generate the functor category fﬁ)pk, it suffices to prove the
statement for the representable functors. Let G be a finite group and consider the representable
functor IB‘TC%.
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If the essential algebra FT4(G,G)/ (Z\H|<\G\ FT2(G,H) o FTA(H, G)) at G vanishes, then
the identity morphism of the functor FT, é can be written as a sum of morphisms a; o b;, where
bi: G — K;, a; : K; — G and |K;| < |G|. Equivalently, the functor IFTC% is a quotient of the direct
sum @iFTﬁ_. By induction on the order of GG, we can assume that the essential algebra at G does
not vanish, i.e., G = L{u) for some D*-pair (L,u) (see [BY20, Theorem 3.3]).

Now the identity map of IE‘TC% is equal to the sum of the idempotents F gr where (P, r) runs in

a set of conjugacy classes of pairs of G. If P(r) # G, then the idempotent F gr is induced from a

proper subgroup and hence Ff';gi factors through this subgroup. If P(r) = G, then P = L and (r)
is conjugate to (u). In particular, (P,r) is a D®-pair. The result follows by induction on |G|. [

6.5 Notation Let P denote the full subcategory of fﬁ‘)pk consisting of the functors IFTf‘MF LLL“),

where (L, u) runs through a set of isomorphism classes of D*-pairs.

6.6 Corollary The functor from f[@pk to Funp(P°P,pMod) sending a functor X to the repre-
sentable functor Hom FA (—, X) is an equivalence of categories.
PP

Proof This follows from Lemma 6.3, Proposition 6.4 and Theorem 5.1. U

Let (L,u) and (M,v) be D?-pairs. By Lemma 6.2 we have

Homp (T2 FL W TS o Far o)) = FLFTA (Liu), M(0) Fyp (7

u

Therefore the category PP is isomorphic to the following category.

6.7 Definition Let D denote the following category:

e objects are the isomorphism classes of D®-pairs.

o Hompa ((L,u), (M,v)) = Fay "FTA(L{u), M (v)) Fr".

—_~—

It follows from Theorem 3.7 that Ff’<u>IFTA(L<u>,M(v>)FAA/f’§)U> is non-zero if and only if

u
(L,u) and (M,v) are isomorphic. Hence our next aim is to understand the structure of

—~—

FLL)SQIFTA(L(u), L(u>)FLL<uu> We start with some preliminary results.

6.8 Notation (i) Let Aut, (L) denote the set of automorphisms f of L with the property that
O = "F).

(ii) Let Inn(C'f(yy(u)) denote the normal subgroup of Aut, (L) consisting of conjugations in-
duced by the elements of Cp ) (u).

(iii) Let Aut(L,u) denote the set of automorphisms of L{u) that sends u to a conjugate of u.

(iv) Let Inn(L(u)) denote the normal subgroup of Aut(L, ) consisting of conjugations induced
by elements of L{u).

(v) Set Out(L,u) := Aut(L, u)/Inn(L{u)).
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6.9 Remark For any f € Aut, (L) the pair (A(L, f,L), (u,u)) is a pair of L{u). Moreover, for
any fi, fo € Auty(L) the pairs (A(L, fi,L), (u,u)) and (A(L, f2, L), (u,u)) are conjugate if and
only if f1f; ' e Inn(C'p(yy (u)).

We extend any f € Aut, (L) to f € Aut(L(u)) by defining f(lu’) := f(I)u’. This induces an
embedding Aut, (L) — Aut(L,u). We identify Aut, (L) by its image in Aut(L,u).
6.10 Lemma We have Out(L,u) = Aut,(L)/Inn(Cp ) (u)).

Proof Let ¢ € Aut(L,u) be an automorphism and let g € L{u) be an element with the property
that ¢(u) = 9u. Set f:=i,-10¢. Then f € Aut,(L) and ¢ = iz0 f € Aut(L,u). This shows that
Aut(L,u) = Inn(L(u))Aut, (L). We also have

Inn(L(u)) N Auty, (L) = Inn(Cp iy (u)) -

Hence the result follows from the second isomorphism theorem. U

6.11 Lemma Let (A(P,7, L), (s,u)) be a pair of G x L(u), let v1,v2 € Auty (L), let x € Cp ) (u)
and let z € L{u).

(i) The subgroups A(P, 71, L) and A(P,wi,y1,L) of G x L{u) are conjugate.

(ii) The pairs (A(P, 71, L), (s,u)) and (A(P, wizy1, L), (s,u)) of G x L{u) are conjugate.

(iii) The pairs (A(L, y2is71, L), (u,u)) and (A(L,v271, L), (u,u)) of L{u) x L{u) are conjugate.
Proof Let a:=~;'(z~'). Then we have

CON(P, 7y, L) = A(P, iy, L)

which proves (i). The other parts are proved similarly. U

6.12 Lemma Let G be a finite group and (L,u) a D®-pair. Let (A(P,$,L),(s,u)) be a pair of
G x L{u) and let (A(L,v, L), (u,u)) be a pair of L{u) x L{u). Then

Gx L{u) L{uyxL{u) 1 Gx L{u) . A
Fxpg.) o) B2t FA(LA,0).0w) = TZT ] T AP B FTHG L{w)-

Proof Using Corollary 2.6 one shows that if (A(R, o,L), (t,ui)) is a pair of G x L{u) with the
property that

GxL(u) GxL(u) L{u) x L{u)
TA(R,;L),(t,m) (FA(P,¢,L),(S,U) QKL (u) FA(E,w,L)fL(u,u)) #0

then (A(R,o,L),(t,u’)) is conjugate to a pair of the form (A(P,¢iyy,L),(s,u)) where z €
Cruy(u). Lemma 6.11 implies that in this case that the pair (A(R, o,L), (t,ui)) is conjugate
to (A(Pv (b’\/vL)v (S,’LL))
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Now by Corollary 2.6 again, we have

G X L{u) G x L{u) L{u)x L(u)
APy L) (5.0) F A1), (5) kL) FACL L) ()
1 GxL{u) Gx L{u) L{u)x L{u) L{u)x L{u)
= IZ(w)| Z TA(P,a,L),(s,c) (FA(P,¢,L),(s,u)) TA(L,ﬂ,L),(C,u)( A(L,—y,L),(u,u)) :
(aaL’ﬁ)EFL(u) (P7¢%L)
ce(u)
(S’C)GNGXL(u>(A(P7a7L))
(¢, u)ENL (u) x L (uy (A(L,B,L))
The product
G X L{u) G X L{u) L{u)x L{u) L{u)x L{u)
TA(P,a,L),(s,c)( A(P,¢,L),(s,u)) TA(L,ﬁ,L),(c,u)( A(L,A/,L),(u,u))

is non-zero if and only if there exist g € G and [y, 12,13 € L(u) such that

(A(P,a, L), (s,¢)) = “" (AP, 6, L), (s,u)) = (A(*P,igei ", L), (%, “ru)
and

(A(L, B, L), (c;w)) = "' (AL, 7, L), (1)) = (A(Lyigyvip ', L), (2, 5u))
hold. These conditions imply that

g € Ng(P,s), ls, l;lll €Cruy(u), a= igdn'l:l and (= ilg'yil;l .
Moreover, the condition that ¢y = af implies that
Oy = ighVia

as maps from L to P, where x = v~ 1(I7 12)i5 "
The number of quadruples (g, 11, 2,13) that satisfy these conditions is

G (P, $)||Crquy (w) *| L{u)]

where Cq(P, s) := Ng(P,s) N Cq(P). However, when («, L, ) € I'r(,y and ¢ € (u) are fixed there
are |Cp ) (w)|?|Z(L{u))||Ca(P, s)| quadruples with these properties. Therefore, we have

Ca (P, $)[|CLuy (W) *| L{u)|

TGXL(u) ( G X L{u) RnL FL(u)XL(u) ):
AT () AP OL) () TEED AT L), ()] L ()| O ) (w) P Z(L(w)) [ (P, 9)]
_ 1
| Z(L{u))|
This completes the proof. U

6.13 Proposition Let (L,u) be a D®-pair. Then FLL,;MIFTA(L(M,L(u})FLLﬁL") is equal to the
F-algebra generated by the elements of the form Fi’(@;%u&t W In particular, the F-dimension of

—_—~—

FLL,:”]P‘TA(L(u), L(u))FLL<uu> is equal to the cardinality of Out(L,u).
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Proof Let (A(L,v,L),(u’,u’)) be a pair of L{u) x L{u) such that

L) L XL(w)  pL{u)
FL,u FA(L,’y,L),(ui,uj)FL,u 7& 0.

Then there exists a pair (A(L, ¢, L), (s,t)) of L{u) x L(u) such that

L{u)x L(u) (

L{u) ~L{u)x L{u)
TA(L,,L),(5,1) F,

L{u)
Lu A(L,’y,L),(ui,uJ')FL,u ) 7& 0.

By Corollary 2.6, there exists (a,L,3) € Trpwy(L,¢,L) and a € (u) such that (s,a) €
NL(u)xL(u}(A(L»a,L)» (avt) € NL(u)xL(u)(A(LaﬁaL) and

L{u)x L(u) L(u) L(u)xL{u) L(u)yxL{u) L(u)
TA(L,a,L),(s,a) (FL,u ) "TA(L,B,L),(a)t) (FA(L;y,L),(ui,uJ') Lu ) #0.

This implies, in particular, that
(A(L, a, L), (s, a)) = L{u) x L{u) (AL, (u, u)) . (6)

Moreover, applying Corollary 2.6 again, there exists (¢, L,v) € I'ry(L,3,L) and b € (u) such
that (a,b) € NL{u)xL(u) (A(L, o, L), (b,t) € NL(u)xL(u) (A(L,, L) and

L(u)xL{u) L(u)x L{u) L(u)xL{u) L(u)
TA(L,¢,L),(a,b) (FA(L,%L),(ui,uJ')) "TA(L,L),(b,t) (FL u ) #0.

Therefore

(A(L7 o, L)7 (av b)) = L{(u)x L{u) (A(Lv s L)7 (ui7 u])) (7)

and

(A(Lava)7(b7 t)) = L{u)x L{u) (AL7 (uvu)) . (8>
Now using the conditions (6), (7) and (8) one shows that
(A(L» 2 L)v (87 t)) =L {u)x L{u) (A(L» v L>, (uiv uj)) .
This means that the algebra maps Tﬁé?:ALL()u()s ) and Tﬁé?:i%z iy are equal and hence we can

replace the pair (A(L, v, L), (s, t)) by the pair (A(L, v, L), (u?, uﬂ)) But then again the conditions
above imply that there exist [1,lo € L(u) such that u' = “u and w/ = 2u. Therefore we have

B (AL, L), (uf ) = (AL, i iy, L), (u, 1)) -

This shows that FLLﬁ)Fﬁé?:%u&“ uj)FLLf;> is non-zero if and only if the pair (A(L, v, L), (u?, uJ))

is conjugate to a pair of the form (A(Lgy',L),(wu)), and in that case, by Lemma 3.6,

FLLZMFEZ),?%H(LM)FLL(;) is equal to Fié?:%u&m) This proves the first claim. The second
claim follows now from Remark 6.9 and Lemma 6.10. U

20



6.14 Corollary The map

Fr9FTA (L{w), L) Fr &Y — FOut(L, u)
L () x L{w) 1
Fato). ) = T2

is an algebra isomorphism.

Proof This follows from Lemma 6.12 and Proposition 6.13. U

6.15 Corollary The category fﬁ)pk is semisimple. Moreover, the simple diagonal p-permutation
functors, up to isomorphism, are parametrized by the isomorphism classes of triples (L, u, V') where
(L,u) is a D®-pair, and V is a simple FOut (L, u)-module.

Proof By Corollary 6.6, the category ]-"ﬁjpk is equivalent to Funp(D?,rMod). By Theorem 3.7
the category D2 is a product of the categories D (L, u) where D?(L,u) is a category with one

object, a D?-pair (L, u) up to isomorphism, and hom set Ff’iu)IFTA (L{u), L(u))FLLSL> The result

now follows from Corollary 6.14. U

7 More on simple functors

Let (L,u) be a DA®-pair and let V be a simple FOut(L,u)-module. Let Ep, :=

FLL’<uu>IF‘TA(L<u>7 L(u))FLL<uu> We can consider V' as an Er, ,-module via the isomorphism in Corol-
lary 6.14. Let ey denote a primitive idempotent of FOut(L,«) such that V is isomorphic to
FOut(L,u)ey. Then the simple diagonal p-permutation functor Sr, .y that correspond to the
triple (L, u, V) is Spuv = ]F‘Tﬁuev. More precisely, for any finite group G, we have

Spuv(G) =FT2(G, L{u))ey = {X Qp(u) ev|X € FTA(G, L{u))} .

Our aim is to give a more precise description for the evaluation Sy, .. v (G).

7.1 Let M := ]FTA(G,L(U))FLL<“>. Note that M is an (FT*(G,G), Er, ,,)-bimodule. Hence via

the isomorphism in Corollary 6.’14, M can be viewed as an (FT2(G, G),FOut(L,u))-bimodule.
Note that

Y Ff, =k €FI(G)
(P,9)€[Qa »]

implies that the sum

Y F§, = [kG] € FTA(G,G)
(Ps)E[Qc ]
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is equal to the identity element of FT2(G, G). This means that we have the decomposition

M= @ FEM= @ FEFTAG Liu)FY
(P,s)€[Qa,p) (P.s)€[Qa,p]

as F-vector spaces. Note that Theorem 3.7 implies that ngM = 0 unless (P, 3) = (L,u). Hence
as F-vector spaces, we have

M= Y FSFTAG, L{u)Fri .

(P,5)€[Qc ]
(P,8)~(L,u)

7.2 (a) Let (P,s) be a pair of G with the property that (P, 3) = (L, u). Using Corollary 2.6 one
shows that if (A(R,~, L), (t,u")) is a pair of G x L{u) with the property that

G G xL{u) L{u)
FgSFA(R,'y,L),(t,ui)FL,u #0

then the pair (A(R,v, L), (t,u’)) is conjugate to a pair of the form (A(P,¢,L),(s,u)). But then

Lemma 3.6 further implies that F”I;G:JSFTA(G, L(u))FLL<uu> is generated by the elements of the form
FGXL(u)
A(P¢,L),(s,u)*

(b) Fix an isomorphism ¢p s : L — P satisfying ¢p (") = “¢p(I) for all { € L. Note that
the existence of such an isomorphism follows from Lemma 3.3. For any g € Ng(P,s), the map
¢1;,1s 014 0 ¢p,s belongs to Aut,(L). Therefore we have a group homomorphism

Ng(P,s) = Out(L,u) (9)
that sends g € Ng(P,s) to the image of ¢1_3,1s 0i40 ¢ps in Out(L,u). This allows us to define

an FNg (P, s)-module structure on any FOut(L, u)-module. Let N denote the image of Ng(P,s)
under this homomorphism and set

€ps Z:ﬁ Zn

7.3 Proposition Let G be a finite group and let (L,u) be a D®-pair. The map

Ui FG FTA(G, L{u) FE™ = ep JFOut(L, u)
GXL{u) =1
FA(P,cj),uL),(s,u) = epsPp @
is an isomorphism of right FOut(L, u)-modules where ~ denotes the image in Out(L, u).

Proof First we show that the map ¥ is well-defined. Let (A(P, ¢, L), (s,u)) and (A(P, o, L), (s,u))
be two conjugate pairs of G X L{u). Then there exists (g,1) € G x L{u) such that

(A(P,¢, L), (s,u)) = “ (AP0, L), (s,u))
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This means that g € Ng(P,s), | € Cpyy(u) and ¢ = igoi; ', Therefore we have

GxL{u — 1. .1
W(FA(?,£,2)7<S,u)) = €P,s¢p715¢ = €P75¢P)1szgazl 1

1 =i -1
= ™ Z np (igoi

neN

1 — T
= W Z ”¢P,ls’g¢P’s '¢P,1s‘”z !
neN
1 1
= 7 2 "0
|N| nenN

. Gx L{u)
- \IJ(FA(P,U,UL),(s,u)) .

This proves the well-definedness. The map ¥ is clearly surjective. For the injectivity, assume that

G X L{u) .
VD A FA(pg iy o) | =0 (10)
)

where Ay € F and where the sum runs over a set of isomorphisms ¢ : L — P such that the

idempotents FOXEW are all distinct. This implies that
A(P,¢,L),(s,u)

ST (ZnW) —0. (11)
¢

neN

Now if ¢ and o are isomorphisms L — P that appear in (11), and if m,n € N such that
T =i
nQSP,sd) - m¢P,30—7
then there exist g € Ng(P,s) and | € Cpyy(u) such that
Gpis 0lg 0 BP0 Pp 00 =0p 0001

which implies that i,o¢0i; ' = o. Therefore the pairs (A(P, ¢, L), (s,u)) and (A(P, 0, L), (s,u)) are

conjugate and hence FAG(?%%),(‘W) = Fg&féy)’(&u). Since the idempotents in (10) are chosen to be

distinct, this implies that ¢ = ¢ and so n = m. This shows that the elements nqb;,,lsqb € Out(L, u)
in (11) are distinct. Therefore we have Ay = 0 for any ¢ in the sum. This shows that the map U is
injective and hence an isomorphism of F-vector spaces. The right Out(L, u)-module structure on

ZE;QTSIFTA (G, L{u))F LL<uu> is given via the algebra isomorphism in Corollary 6.14 and hence Lemma
6.12 implies that the map ® is also an FOut(L, u)-module homomorphism. U

We define an FN¢g(P, s)-module structure on the simple FOut(L,u)-module V via the ho-

momorphism in (9). Proposition 7.3 implies that the vector space I*?E;IFTA (G,L(u>)FLL)<uu>eV is

isomorphic to the space of Ng(P, s)-fixed points VN¢(F%) of V. We proved the following.
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7.4 Corollary For any finite group G, we have

SL,u,V(G) = @ VNG(P’S) .

(Ps)€[Qa ]
(P.8)(L,u)

7.5 Remark For p-groups G and H, the F-vector space FT2(G, H) is canonically isomorphic
to FBA(G, H), the F-linear extension of the Burnside group of bifree (G, H)-bisets. Moreover,
through this isomorphism, the tensor product of bimodules becomes the composition of bisets.
Hence diagonal p-permutation functors restricted to p-groups are precisely global Mackey functors
restricted to p-groups (see [W93] for more information on global Mackey functors).

For a simple diagonal p-permutation functor Sr iy and a p-group G, the isomorphism in
Corollary 7.4 becomes

Spav(G) = P vie™
P~L

where P runs through the subgroups of G up to conjugation, and we recover the formula for the
evaluations of simple global Mackey functors (see [W93], Theorem 2.6(ii)]).

8 Blocks as functors

In this section, G denotes a finite group and b a block idempotent of kG. For an arbitrary
commutative ring of coefficients R, we define the the block diagonal p-permutation functor RTé b
as

RTéb : Rppi> — rMod
H +— RT*(H,G) ®pc kGb.

Our aim in this section is to describe the functor IFTé , in terms of the simple functors S, ... We
first make a remark for the case of an arbitrary R.

8.1 Remark Let D be a defect group of b and let i € (kGb)P be a source idempotent of b.
The source algebra ikGi of b is an interior D-algebra and for any finite group H we denote by
RT?(H,ikGi) the Grothendieck group of (kH, ikG47)-bimodules whose restriction to H x D lies in
RTA(H, D).

By [P81] the map sending a kGb-module M to the ikGi-module iM induces a Morita equiva-
lence between pgpymod and ;rc;mod. Hence we have a Morita equivalence between pymodgg, and
wrmod;ic; given by a p-permutation bimodule in RT4 (kH,kEG). Tt follows that the functor RT, é b
is isomorphic to the diagonal p-permutation functor RT®(—,ikG4). This means in particular that
the functor RTéb depends only on the source algebra of b. By [P88], the source algebra of b
determines the G-conjugacy classes of local points on kGb and one of our aims in the rest of this
section is to give a description of the multiplicities of the simple functors in ]FTé , in terms of the
local points on kGb (see Theorem 8.22).

8.2 Let (L,u) be a D?-pair and V a simple FOut(L, u)-module. We set

—~

Mult(G, b, L, u, V) := kGb @ FT (G, L(u) @y Ff ey
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where ey is an idempotent of FOut(L, u) such that V = FOut(L, u)ey .
By the Yoneda lemma we have

Homza (FT&. SLuv) = Spuv(G).

Therefore Schur’s lemma implies that the multiplicity of the simple functor Sy v in the repre-
sentable functor ]FT@ is equal to

dim]p (SL,u,V(G)) = dim]F <FTA(G, L(u)) ®kL(u> FLL_’ZJ>€V> .

This implies that the multiplicity of St . v in the functor IFTGA" p is equal to
dimp (Mult(G, b, L,u,V)) .

Our aim in this section is to give a description of Mult(G, b, L, u, V). First, we give a description
of kGb @y FTA(G, L{u)) @ppiy Fro.
8.3 Let M be a (kG,kL(u))-bimodule and let A(P,w,L) be a twisted diagonal subgroup

of G x L{u). The Brauer quotient of kGb ke M = bM at A(P,m, L) is isomor-
phic to Brp(b)M [A(P,n,L)]. By [Br85], this implies, in particular, that any element of

bFTA (G, L(u})FLLW> is a linear combination of the elements of the form

U

mpn E ‘= M (A(P,ﬂ', L)7 E) F£,$> )

where 7 : L — P < (G is a group isomorphism, FE is a projective indecomposable
kNG (A(P,m, L)) /A(P, 7, L)-module, and M (A(P,m,L),E) is the unique, up to iso-
morphism, indecomposable p-permutation (kG,kL{u))-bimodule whose Brauer quotient at
A(P,7, L) is isomorphic to F.

8.4 (a) Let P(G, L,u) denote the set of pairs (P, ) where P < G is a p-subgroup and 7 : L — P
is a group isomorphism for which there exists s € G such that (A(P,7, L), (s,u)) is a pair of
G x L{u). The group G x L{u) acts on P(G, L, u) via

(g,t)-(P,TF) = (gPﬂ;goﬂ-oit_l)

for g € G, t € L{u) and (P,7) € P(G, L,u). Two elements (P,7) and (Q, p) of P(G, L,u) lie in
the same G x L(u)-orbit if and only if the subgroups A(P, 7, L) and A(Q, p, L) of G x L{u) are
conjugate.

(b) The group Aut(L,u) also acts on P(G, L, u) via

(P’W)"V: (Pvﬂ"Y)

for (P,w) € P(G, L,u) and v € Aut(L,u). If also g € G and t € L(u), we have

(9.0 () v =27 @)- ((P.m) )
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(¢) For (P, ) € P(G, L,u), let (P,7) denote the orbit (G x L{u))(P,n). The group Out(L,u)
acts on (G x L(u))\P(G, L,u) via

(P,7T)~7: (Pvﬂ-’)/)

for (P,m) € (G x L{u))\P(G, L,u) and 7 € Out(L, u), where v € Aut(L,u) is an automorphism
with image 7 in Out(L, ). Note that the orbit (P, 7y) does not depend on the choice of ~.

(d) Let m : L — P be a group isomorphism and let s € G be an element with w(“l) = *n(l)
for all [ € L. The p-part of the order of s is coprime to the order of u. Hence there are integers a
and b with

a-lul+b-|s], =1.
Now setting s’ := s¥l5l» and s := %l we get that
1g O =g Olgn O = Uy OT Ofyalul = lg OT,
since u®*l = 1. Hence the p’-element s’ satisfies iy o m = 7 0 i,, which implies that 7 € P(G, L, u).

8.5 Let (P,m) € P(G, L,u) be a pair and let v € Aut(L, u).

(a) Set Npy := Ngxrw) (A(P,m, L)) /A(P,m,L). Since (s,u) € Ngxrw) (A (P, L)) for
some s € G, the group homomorphism

(0] :Npm — <U>

(a,lu?) — u'

is surjective. Also the map
t:Cq(P) = Npx
x = (x,1)

is an injective group homomorphism. One also shows that the kernel of ® is equal to the image
of 1. Therefore we have a short exact sequence

1= Cg(P) = Npr— (u) =1

of groups.
(b) Similarly, let Ny = Npuyxrwy (A(L,7, L)) /(A(L, 7, L). One shows that the map

@:N7—><u>

(a,lu?) — u’

is well-defined and surjective. Also the map
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is an injective group homomorphism. One also shows that the kernel of ® is equal to the image
of +. Therefore we have a short exact sequence

1= Z(L) = Ny— (u) > 1

of groups which is split since (u) is a p’-group and Z(L) is a p-group. Therefore we have N,
Z(L){u).
(c) We have a group isomorphism
NGXL(u) (A(P7 7-‘-rva)) — NGXL(u) (A(P77TaL))
(s,8) = (s,7(1))
which maps A(P, 7y, L) to A(P, 7, L). Hence we have a group isomorphism
Ny = Nyy o (s,) = (5,7(1)). (12)

o~

8.6 Lemma Let (P,7r) € P(G,L,u) and let v € Aut(L,u). Let also V be a kN p.-module and

let W be a k(u)-module. Consider the kN p r-module V ®rz(L) (Indé\;’ W) with the action

(s,8) - (v @w) := (s,7(1))v @ (y(1), hw

for (s,t) € Np,m, veVandw e Indng. Consider also the kﬁp’m—module V @ W with the
action

(5,) - (v@w) = (5,7(t)v @ u'w

for (s,t) € Npny, vQw €V @y W where t = lu'. Then the map
oV ®rz(L) (k’ny Ok (u) W) = VW
v ® (lu' @ w) — vy(l) @ u'w
is an isomorphism of kN p r-modules, where we use the isomorphism N., = Z(L)(u).

Proof Clearly, the map ® is well-defined and surjective. Let v® (lu‘®w) € V®rzr) (kﬁ Ok (u) W)
and (s,t) € Np . Write t = l'u? and note that the image of (y(t),t) in N is (y(ud),u?). Let
also lp € Z(L) be the element with the property that u/l = lou/. We have

o (W (ve (v’ ® w))) =0 ((s, Y(t)v @ ((’Y(t)a t) (lu'® “’))>
= ¢ (G (o o w))

5,7(t))v)7(lo) ® u™ 7w




This shows that ® is a kNp,m—module homomorphism. Since both sides have the same k-
dimension, it follows that ® is an isomorphism. U

8.7 Lemma Let (L,u) be a D®-pair and let v € Aut(L,u). We have

L{u)x L{w) _ 1 N, [ ()
FA(L,’y,L),(u,u) [A(L, v, L)] = 4\Z(L<u>)|lnd<“> (Flu)

in FT(N.,).

Proof Let X < A(L,~, L) be a subgroup with the property that X (“*) = X. Let also \ : (u) — k*
be a group homomorphism. The indecomposable direct summands of

L)X Lu) (. (A(LA,L) ()
Ind 5 oy (’“<X(u7u>>yx )

have vertices contained in (X (u,w)) N *A(L,~v, L) for some s. Therefore the Brauer construction
of such an induced module at A(L,~, L) is zero if X is strictly contained in A(L,~, L). Tt follows
by the primitive idempotent formula (see [D15, Proposition 2.7.8]) that

L(u) x L{u) _
FA(L:")ZL),(U,U) [A(L77a L)} =

1Caw . (u; u) ~1y (a9 < (A(L,L) (u,))
T [Cn, (ww)] (Z M) (W55 (0160 ) ) 1AL, D)
Ai{u)—kX

where ) is the Brauer character of ky. The classical formula for the Brauer construction of an
induced module implies that

A(L,v,L)(u,u
(A0 5y (ES TP ) Y (A5, D) = Tnd )y

(AL, L) (u,u))
L) () (Inf<u> kk)

(A(Lyy, L) (uw,u)

as kN,-modules. Therefore,

L{u) x L{u) _
FA(L,’Y,L),(u,u) [A(Lv Vs L)] =

S MuHnd) (k)

As{u)—kX*

1
Z L))
_ 1 (u)

= Tzt (7))

as desired. 0

Let A(P,m, L) be a twisted diagonal p-subgroup of G x L(u). For a kN p -module E and a

group homomorphism A : {(u) — k*, following the notation in Section 4, we denote E ®j, Inf 2:}; Tk
by E). We also set

Spi= Y AMu')E,.

A {u)—kX
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8.8 Lemma Let A(P,m,L) be a twisted diagonal subgroup of G x L{u) and let mp, g €
OFTA(G, L{u)) Fp 4.

u

(i) Let A(Q, p, L) be a twisted diagonal subgroup of G x L{u). We have

mp . g[AQ,p,L)] =0

unless A(Q, p, L) Is conjugate to A(P, 7, L).
(ii) We have

1
mprp [AP,7,L)] = E @ ) = WSE

in FProj(kN p ). In particular, if mp r g [A(P, 7, L)] is non-zero, then (P,m) € P(G, L, u).

Proof (i) By Proposition 2.4, the Brauer quotient of the element

mp 5 € FTA(G, Liu)) Fr Y
at A(Q, p, L) is equal to

Naxrnu) (A ,L m
P mdyGy O (M(A(P,w,m,E) AQ. . V)] ®rz(r) Fﬁiﬁ[A(v,ﬁ,L)]) ,

0:=(a,V,p3)
in FT (NGXL u)( (Q P )))7 where (O[ v, B) € fL u)(Q Py L)7 X(Q) NGXL u)( (Q,OZ V)) and
Y(0) = Nyt (A(V,8,L)). By Remark 3.5, we have Fi') = |Z(L{u)| - F{"l " which

implies that the Brauer quotient FLLSL [A(V, 8, L)] is zero unless the group A(V, 8, L) is (L{u) x
L{u))-conjugate to AL. This implies that V' = L and the map f is an inner automorphism of L.
Therefore, up to the action of Ngy () (A(Q,p, L)) X L{u), we can assume that § is the identity
and hence o = p. This shows that

mP,T{,E[A(Q? P L)] =0
unless A(Q, p, L) is conjugate to A(P, 7, L).
(ii) We use the calculations in the proof of part (i). One shows that for § = (7, L, id), we have

Nexr) (AP, L)) = X(0) « Y (0).

Therefore, the calculations above, together with Lemma 8.6 and Lemma 8.7, imply that

mP,TF,E[A<Pa7T7L)] =M (A(Pvﬂ-aLLE) [A(Pvﬂ-aL)] ®kZ(L) F <u> [A( )]
=FE®rz(1) Indé\i) (Ff;ﬁ)

U

in FT'(N). For the second assertion, note that if the Brauer construction mp . g[A(P,m, L)] is
non-zero, then its Brauer character is non-zero at some p’-element (s,t) € Ngy ) (A(P, 7, L)).

This implies that the Brauer character of the module Ff’ﬁ is non-zero at ¢t € (u) which in turn

implies that ¢ = u. This shows that (A(P, 7, L), (s,u)) is a pair of G x L{u). U
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8.9 (a) Let FProj (kBrp(b)N pr,u) denote the subgroup consisting of elements w of the group
FProj(kN pr) of projective kN p r-modules such that

Bl'p()
5\( )wforany)\ (uy — k™.

(b) Let FProj (kBI‘P(b)NPJ‘—,U)ﬁ denote the subgroup of FProj (kBrp(b)N px,u) consisting

of linear combinations of projective indecomposable kﬁpﬂr—modules FE such that Resgc’: ’(’I'D)E is
indecomposable.

8.10 Lemma All elements of FProj (k;Br P(b)ﬁp,ﬂ, u) are linear combinations of the elements Sg
where E is a projective indecomposable kN p .-module.

Proof Let v € FProj (kBrp(b)N pr,u) be an arbitrary element and let E be a projective inde-
composable kﬁp,ﬁ—module appearing in v with a nonzero coefficient z. Since vy = S\(U)v for any

A : (u) — k%, it follows that the coefficient of Ey in v is A(u~') - z. Hence the sum Sp appears
in v with the coefficient z.

Let (P, ) € P(G, L,u) and mp g € bFT> (G, L{u))F; )“> Since bmp r g = mpr g, it follows

that Brp(b) acts as the identity on E, where we identify Cq(P) with its image in N p ». Moreover,
Lemma 8.8 implies that mp r g[A(P, 7, L)] lies in FProj (kBrp(b)N px, u).
Let F' be an indecomposable direct summand of the restriction of £ to C(P), and let T be its

inertial subgroup in Np,. By Clifford theory, we have F = Ind¥ PTIW for some indecomposable
direct summand W of Indg «(p)F'. The isomorphism

(IndY""W) @y, ky — IndY ™" (W @y k)
new) @k —ne® (wen - k)

implies that we have

Sp = IndY"" ST AW @y ky
A{uy—k*

The module W ®, ky depends only on the restriction of A to the image (u’) of 7' in (u). Let
Ao : (u) — k* be given. If (u’) is a proper subgroup of (u), then the element u=1{u®) € (u)/(u’)
is not identity and hence the sum

Z AMu™t) = Z AMu™t) = Z o™ DI ™)
Ar{u)y—k* Ar{u)y—k* Ar{u)y—k*
M iy =0l iy (uby<ker(AAg 1) (u?y<ker(AAg 1)

= Z ):0(u_l)Inf§Z§/<u,i>X(u_l)
A(u) /(u?)y—kx

= D> o X Hu)

is zero. Therefore, mp . g[A(P,7,L)] = 0 unless T' = Np)ﬂ—. This proves the following.
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8.11 Lemma Let (P,m) € P(G,L,u) and mprr € b]FTA(G,L<u>)FLL’(J>. We have
mpx g|A(P,m,L)] = 0 unless the restriction of E to Cg(P) is indecomposable. In particular,

mp . g|A(P, 7, L)] lies in FProj (kBrp(b)Wp,m u)ﬁ.

8.12 Theorem The map

© : BFTA(G, L{u) Fr Y — P FProj (kBrp(b)N p.r,u)*
(P,m)e[(GXL{u))\P(G,L,u)]

sending an element v to the sequence of its Brauer quotients v[A(P,w, L)], for (P,7) in a set of
representatives of G x L{u)-orbits of P(G, L,u), is an isomorphism of F-vector spaces.

Proof An element in the kernel of ® has all its Brauer quotients equal to zero, so it is zero. Hence
® is injective. By Lemma 8.8, Lemma 8.10 and Lemma 8.11, ® is also surjective. U

8.13 We define Z = Z(G, L,u) as the set of triples (P, 7, E) where
e P is a p-subgroup of G.

e 7: L — P is a group isomorphism such that there exists a p’-element s € G with 7 (") =
*m(l) for all l € L.

™

P) FE is indecompos-

e F is a projective indecomposable kBr p(b)me-module such that Resgg (
able.

With the notation above this means that (P, 7) € P(G, L, u).
(b) The group G x L(u) acts on Z by
(gvt) ' (P77T7E) = (gP’ Z‘g’rrit_lu (g)t)E)

for (g,t) € G x L{u) and (P,m, E) € Z. Here YYE is the kNgPiqﬂ'i _,-module equal to E as a

k-vector space and on which (a,b) € Wng'gm‘ _ acts by
ig T, —

(a,b) - WYe .= (a9, bt)e.

To show that the action is well-defined, we first show that there exists a p’-element a € G such
that (igmi;—1)(“1) = “((igmi;—1)(1)) for all [ € L. By 8.13(a), it suffices to show that there exists

a € G with this property. In other words, we need to show that (a,u) € Nng‘ I for some
Vg, —

a € G. This is equivalent to the condition that (a9, ut) € Np . Now one shows that u’ = Iy - u for
some [y € L. Therefore for any [ € L we have

ﬂ(“tl) = 7(lo)w(“Dr(lg") = 7(lo)sm()s *m(lgh) .

Hence the element a = gm(lp)sg~" € G satisfies the desired condition.
Also since the action on WYE is _induced from the action on FE, it follows that WHE is
a projective indecomposable kBrop,(b)Nop; . -module whose restriction to kCq(?P) is also
vg t—

indecomposable.
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(¢) The group Aut(L,u) acts on Z by
2 (P>7T7E) = (P77r90_1a WE)

for ¢ € Aut(L,u) and (P, 7w, E) € Z, where ?FE is the kﬁp’,w_l—module equal to E as the k-vector
space on which (a,b) € NP,WLP—I acts via

To show that this action is well-defined, we first need to show that (a,u) € Np r,-1 for some
a € G. Since ¢ maps u to a conjugate of u, the existence of a is similar to Part(b).

Npx
Cqg(P)

NP,'/rapfl

Also, since Resg (5 (YE) = Res E, it follows that the action is well-defined.

o~

(d) The group (u) = Hom({(u), k*) acts Z on the right by
(P,m,E)-\:=(P,m, E))

where F, is the kﬁpm—module equal to F as the k-vector space on which (a,b) € Np,ﬂ— acts by

(a,D) - ex := A(b)(a, b)e.

Here X : L{u) — (u) — k%, [ -u — A(u) is the composition map. B

Since E) is projective indecomposable kBrp(b)N p -module and since Resgg‘(P)E,\
Resgg ’(})E is indecomposable, it follows that this action is well-defined.

(e) The group Aut(L,u) acts on G x L{u) by ¢ - (g,t) := (g,p(t)) for ¢ € Aut(L,u) and
(9,t) € G x L{u). We set S := (G x L(u)) x Aut(L,u) using this action. Let ((g,t),p) €
(G x L{u)) x Aut(L,u) and (P, 7, E) € Z. Then for any | € L, we have

(igmig—10~ ) (1) = igm (t7 (D) = igm (@ (0t ) (D (1))
=iy (Sp_l(ﬁp(t_l)l@(t))) = (igﬂ@_1i¢(t*1)) (l) .

Moreover, for (a,b) € NgP,igm‘t,wfl = and e € E, we have

@b ¢ ((g,t)e> _
= a97 Spfl(bﬁP(t)))e = (a97 b‘P(t)) . Pe
=(a,b) - (9:¢(1)) (“e) .

QP,igwgpfli¢(t,1)

(a9~ 1(0)) - We = (as, o~ 1(b)")e
(

These show that

Therefore the group S acts on Z.

—~

(f) Let (g,t) € G x L{u), ¢ € Aut(L,u), A € (u) and (P,7,E) € Z.
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For any b = lju/ € L{u), we have b = lyu/ for some I € L, and hence A(b) = A(b*). Therefore
for any (a,b) € Nop; i, and e € FE, we have

(a,0) - (“De)x = A(b)(a,b) - @Pe = A(b)(as,b)e = A(b')(ad, b)e
=(a%b) -ex = (a,b) - 9(ey).

This means that

((g,t)~(P,7T,E))')\: (g,t)~((P,7T,E)~)\) )

i.e., the actions of G x L{u) and </u\> on Z commute. _ R
Since ¢ maps u to a conjugate of u, one has that A(b) = A(p~1(b)) for any b € L(u). Therefore
calculations similar to above show that

(@'(Pﬂva))')‘:@'((PﬂTaE)')‘)7

i.e., the actions of Aut(L,u) and </u\> on Z commute. These imply that Z is an (S, </u\>)—biset. Note
that since F) = FE if and only if A = 1, it follows that Z is free on the right.

(g) We have a map from Z to bFT4 (G, L(u))F LS;” sending (P, , E') to mp g. This extends

to a linear map

—~—

© : FZ — bFTA(G, L{u))FE .

s

8.14 Lemma Let (g,t) € G x L{u), ¢ € Aut(L,u), A € </u\> and z € Z. Then
(i) ©((g,1)2) = O(2).
(i) ©(22) = A(u)O(2).
(iif) O(pz) = O(2)p~".

Proof (i) Let z = (P, m, E) € Z. We have

0 ((g,t)(P, 7, E)) = O((IP,iymi,1, GYUE)) = Mop, i | 00 =MPrE € FT2(G, L{u)).

Hence (i) follows.
(ii) We have

@((Pﬂr, E))\) = @(P,TUE)\) = Mpr E\ = )\(u)mme = )\(U)@(P,ﬂ', E) .
(iii) Finally, we have

@(@(Pvﬂ—vE)) = @(Pv 7“'0_17 LPE) = mP,mpfl,wE = mP’ﬂ'»EQD_l = @<P777E)§0_1
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8.15 Let Q = [Z/(u)] be a set of representatives of the right orbits of (u) on Z. As Z is an

(S, (u))-biset, we can choose € to be left invariant by the action of S. Then, since G x L{u) is a
normal subgroup of S, the set ¥ = (G x L(u))\? is a left Aut(L,u)-set. Now by Lemma 8.14(i),
the map © induces a map

©:FS - 0FTA(G, L{u)) 1Y

sending the orbit (G x L(u))(P,w, E), for (P,m, E) € Q, to mpx g.

(a) Every element in bIFTA(G,L<u))FLL’§f> is a linear combination of the elements mp . 5.
Moreover, if (P, 7, E) and (P’,n’, E') are in the same ((G x L{u)) x </u\>)—orbit7 then the elements

mp g and mps o g differ by a constant. Therefore, the map © is surjective.

Now assume that axmp, , g, + -+ amp, r, g, = 0 for pairwise distinct elements (P;, 7;, F;)
of ¥ and o; € F. Fix i € {1,---,l}. Then the (P;,m;)-component of the image of the sum
0Mp, B+ - Foump, r, g, under the isomorphism in Theorem 8.12 is also zero. This component

is equal to
> ;S (13)
J

up to a non-zero scalar, where the sum runs over j € {1,---,{} with the property that (P;,n;) =
(P;, m;). Now if ; is non-zero, then since the sum in (13) is zero there exists an index j # 4 such

that E; = (E;), for some X\ € </\u> But this implies that (P;, m;, E;) and (P;,7;, E;) are in the
same (G x L(u)) x (u)-orbit. This is a contradiction. Therefore we conclude that the map © is
injective and hence an isomorphism.

(b) By Lemma 8.14(iii), we have O(pf) = O(f)¢~! for any ¢ € Aut(L,u) and f € FX.

Together with Part(a), this implies that the map © : FY — bFT* (G, L(u))FLLsf> is an isomorphism
of right FAut(L, u)-modules.

8.16 Let Y = Y(G, L,u) be the set of triples (P, 7, F') where
e P is a p-subgroup of G.

e 7 : L — P is a group isomorphism such that there exists a p’-element s € G with 7(“l) =
sm(l) for all I € L.

e [ is a u-invariant projective indecomposable kBrp(b)Cq(P)-module.
(a) The group G x L{u) acts on J by
(9,1) - (P, F) := (9P,iymiyr, 7F)

for (g,t) € G x L{u) and (P,m, F) € Y. Here 9F is the kCq(?P)-module equal to F' as a k-vector
space and on which ¢ € Cg(9P) acts by

c-If=cf.

To show that this action is well-defined, we only need to show that YF is a u-invariant projective in-
decomposable kBrs ,(b)Cq(YP)-module. Since F' is projective indecomposable, it follows that 7F
is also projective indecomposable. Moreover, by Theorem 4.1 the module F' extends to a projective
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indecomposable kN p ,-module E. By 8.13(b) the module WYE is a projective indecomposable
kN Pyigmrl—module whose restriction to C(9P) is indecomposable. But the restriction of 9V E
to Cq(7P) is 9F and hence it is u-invariant.

(b) The group Aut(L,u) acts on Y by

¢ (P,m,F):= (P~ ', F)

for ¢ € Aut(L,u) and (P,7,F) € Y. The well-definedness of this action is proved similarly to
Part(a), using 8.13(c).

(c) Let ((g,t),¢) € S = (G x L{u)) x Aut(L,u) and (P, 7, E) € Z. Then, as before, for any
[ € L, we have

(igmig—1p™1)(1) = (igW@_licp(t—l)) OF
Moreover, for ¢ € Cg(?P) and f € F, we have

‘. “”<<g,t>f> —9f—c. 00 oy
These show that

¢ ((g,t) - (P,m, F)) = (g,(1)) - (¢ (P, F)) .

Therefore the group S acts on ).

8.17 (a) We view ) as an (S, </u\>)—biset with trivial right action. Consider the map
v:.zZ2-Y

Npx
(P, 7, E) — (P, Rescg’(P)E) .

o~

Note that the map is well-defined. Now let ((g,t),¢) € S, A € (u) and (P, 7, E) € Z. Then we
have

U(((9:0),9) - (P, B) = W (PP igm Vs, O0(9E))
Ip; -1 NgP’ig"“”flirl (9:1) (¢
g TP Zt*l,ReSCG(gP) (¥E)
I9Ip ; -1 (61 Np w1
Pigmo i1, ResCG’(P) (YE)

Npx
g,t),@) ' (P,TI',RQSC:’(P)E)

Hence VU is a map of S-sets. Moreover,

U ((P,m,E)- X) = U(P,m, Ex) = (P,m,Resppy Ex) = (Pm,Res () = ¥ (P, E)
— U (P, E)\.
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Hence ¥ is also a map of right @—sets and therefore a map of (.S, </u\>)—bisets.

(b) The map ¥ induces a map ¥ : Q) = [Z/</u\>] — Y of S-sets. The map V¥ is an isomorphism
by Theorem 4.1. Indeed, given (P,7) € P(G, L,u), any (u)-invariant projective indecomposable
kCqg(P)-module F extends to a projective indecomposable kN p -module E and any two such
extensions differ by an element A of (u).

Now ¥ induces an isomorphism of left Aut(L,u)-sets

P (G x L{u))\Q = E:= (G x L{u)) \Y
and hence 8.15(b) implies that

—_—

DET™(G, L{u)) FL'\) = FE (14)

as right FAut(L, u)-modules where now Aut(L,u) acts on the right on =.

(c) Let U = [((Gx L{u))\Y(G, L,u))/Aut(L,u)] be a set of representatives of Aut(L,u)-orbits
on E. For (P,m,F) € Y, we write (P,7,F) := (G x L{u)) (P,m, F). Also for (P,7,F) € Z, we
denote by Aut(L, u)5—= the stabilizer of (P, 7, F') in Aut(L,u). The isomorphism in (14) can be

(P,m,F)
written as

WFTA(G, L{u)) FLY = @ Indjiiir®) . (15)

Aut(L,u)m
(P,m,F)eUd

Note that (P, m, F') and (P’,n’, F’) lie in the same Aut(L,w)-orbit if and only if there exist ¢ €
Aut(L,u) and (g,t) € G x L{u) such that

(P, 7', F") = (9P,igmiy—, IF).

Furthermore, the element ¢ € Aut(L,u) belongs to Aut(L,u)m if and only if there exists
(g,t) € G x L{u) such that

(Pymo, F) = (9P, igmiy—1, IF),
ie., g€ Ng(P), pm = igmiz—1 and 9F = F.

8.18 (a) Let V be a set of representatives of Aut(L,u)-orbits on (G x L{u))\P(G, L,u). For
(P,m) € P(G,L,u), let (P,m) denote the orbit (G x L{u))(P,n) and let Aut(L,u)5— denote

its stabilizer in Aut(L,u). Then for (P,m, F) € Y, the stabilizer Aut(L, u)rs—%

(Pm)
is a subgroup

(P, ,F)
Aut(L, u)(Piﬂ), and we can rewrite (15) as
A ~ Aut(L,u) Aut(L,u) oy
bFT(G, L{u > P dyy (L) P md,, e F (16)
(Pm)ev FEWGE

where WW is a set of representatives of Aut(L, u)(Piﬂ)—orbits on the set of u-invariant projective
indecomposable kBrp(b)C(P)-modules. Note that we have

Aut(L,u)p
P ndy, ™ F 2 FProj(kBrp (b)Ca(P), u)

FEWGF—
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as right FAut(L, u)( -y-modules where the action of Aut(L, u)r5—
W—— and let ¢ € Aut(L wWrp—

P is given as follows: Let F €

s Then there exists (z,t) € G x L{u) such that

(Pm)’
("Pyigmis 1) = (P7g)
This is equivalent to the existence of an element g € G such that

(9P,igm) = (P, o).

Indeed, since m € P(G, L,u), there exists s € G such that w(“l) = *w(l) for all | € L. Now if
t =ly-ul, then g := xs"ﬁr(lgl) satisfies the desired equation. Moreover, one can show that the
element ¢ is well-defined up to multiplication by an element of C¢(P). Now since we have

(P,W,F)-(p: (P,TR)O,F) = (gpaigﬂ-vF) :g'(P77T7 gilF)a

the element ¢ maps F' to )

(b) All these imply that we have an isomorphism

bETA(C, L) Fr ) = (D) Indyyi(ih) FProj(kBrp(b)Co(P).u), (17)
(PW)EV

of right FAut(L, u)-modules. Arguments in Part(a) imply that the orbits of G and of G x L{u)
on the set P(G, L,u) are the same. Hence in Equation (17) we can take V to be any set of
representatives of the (G, Aut(L, u))-orbits of the biset P(G, L, u).

8.19 Let F;, denote the category whose objects are b-Brauer pairs (P, e) and whose morphisms
from (P, e) to (Q, f) are group homomorphisms ¢ : P — @ for which there exists g € G such that
(z) = 9x for any z € P and such that Y(P,e) < (Q, f) (see, for instance, [L18, Section 6.3] for
more details on Brauer pairs).

Let Py(G, L, u) be the set of triples (P, e, ) where

o (P,G)E./.:.b

e 7: L — P is a group isomorphism such that 7i, 7! € Autg (Pe).
(a) The set Py(G, L, u) is a (G, Aut(L,u))-biset via
g-(Pem)-@= (P Y, igmp)

for g € G, (P,e,m) € Py(G, L,u) and ¢ € Aut(L,u). Indeed, we have (9P, %) € Py(G, L,u) and
one shows that

. . -1 _—1- .
LgTPlyP~ T lg—1 = iy

where s’ = gn(lp)s € Ng (9P, 9¢), lp € L with 7(u) = lp-u and s € Ng (P, e) such that 7,7~ = i,.
(b) Let (P, ) € V. We have

FProj(kBrp(b)Ca(P),u) = @)  FProj(keCa(P),u)

e€BI(Cg(P))
Brp(b)e=e

37



as right FAut(L, u)5— By modules. Note that the group Aut(L, u) 5 (P Permutes the summands on
the right-hand side as follows Let ¢ € Aut(L, u)( y and let e € Bl(Cg(P)) with Brp(b)e = e.
Then there exists g € Ng(P) such that igm = e and by 8.18(a), ¢ sends an u-invariant projective
indecomposable keCq(P)-module S to 973, Hence ¢ maps the b-Brauer pair (P, e) to (P, g_le).

Let BI(Cg(P),u) denote the set of block idempotents e of Cg(P) for which there exists an

indecomposable projective u-invariant keCg(P)-module. Let [Bl(Cg(P),u)] denote a set of rep-
resentatives of Aut(L,u)W-orbits of BI(Cg(P),u). Then as right Aut(L, u)( o-modules, we

have

FProj(kBrp(b)Ce(P), u) = B mdiny _FProj(keCe(P), u)
c€[BI(Ca (P).u)] -

where Au‘c(L,u)(Pe -y is the stabilizer in Aut(L, u)(P -y of e. Note that ¢ € Aut(L,u)(P ) fixes e
if and only if there exists g € Ng(P) with i,m = mp and 9e = e. Hence Aut(L,u)(P o) is equal

to the stabilizer of the G-orbit of (P, e, 7) in Aut(L,u). In other words

Aut(L, u) ooy = ={p€Aut(L,u) | g€ G, (Pe,m)-¢o=g-(Pe,m)}
={p € Aut(L,u) | 3g € G, (P,e,mp) = (9P, %,i47)}
={p € Aut(L,u) | 3g € Ng(P,e), igm = mp} (18)
These imply that we have
BETA(G, Liu)) FF4 = D Ind (7 Zﬁ( FProj(keCq(P),u)  (19)

(Pe,m)e[G\Py(G,L,u)/Aut(L,u)]

as right FAut(L, u)-modules.

8.20 Let F; denote the fusion system of kGb with respect to a maximal b-Brauer pair (D, ep).
For each subgroup P < D let ep denote the unique block of kC(P) with (P,ep) < (D,ep). We
understand the objects of F;, to be Brauer pairs rather than subgroups of the defect group and
hence it follows that every G-orbit in F, contains an element in Fy.

For (P,ep) € Fp, let P(pe,)(L,u) denote the set of group isomorphisms 7 : L — P with
mi,m ! € Autr, (P,ep). The set Ppe,)(L,u) is an (Ng(P,ep), Aut(L, u))-biset via

g TP =g
for g € Na(P,ep), m € P(pepy(L,u) and ¢ € Aut(L,u). It follows moreover from (18) that

Aut(L,u) = {p € Aut(L,u) | mprn~t € Autx,(P,ep)}. (20)

(Pep 71')

Let [P(p,ep)(L,u)] denote a set of representatives of Ng(P,ep) x Aut(L,u)-orbits of Pp.,)(L,u).
Then the isomorphism in (19) can be written as

U) ~ Aut(L,u .
T (G, L) F Y = P D IndAuEEL’u;(PwepYW)IE‘Prot](k'eng(P),u). (21)
(Pep)€[Fo] m€[P(p,cp) (Lyu)]

where [F3] denotes a set of representatives of the Fp-isomorphism classes of objects (P, ep).
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8.21 Let £4(G, L, u) denote the set of pairs (P, 7) where
e P, is a local pointed point group on kGb,
e 7: L — P is a group isomorphism such that mi, 7! = Res(is) for some s € Ng(Py).

The set L,(G, L,u) is a (G, Aut(L, u))-biset via
g- (P’y77T) TP = (gPQ’Y?igTrSD)

for g € G and ¢ € Aut(L,u). For (Py,m) € Ly(G, L,u), we write Aut(L, )
of the G-orbit of (Py, ) in Aut(L,u), that is

(ot for the stabilizer

Aut(L,u)m— = {¢ € Aut(L,u) | mprn " = Res(i,) for some g € Ng(P,)} (22)

(Py,m)

Let (P,7) € V. A projective indecomposable kBrp(b)Cq(P)-module S determines a conjugacy
class of a primitive idempotent of kBrp(b)Cq(P) and hence via the Brauer morphism

Brp : (kGb)F — kCq(P)

a local point v of P on kGb. This in fact induces a bijection between the sets of local points of P
on kGb and projective indecomposable kBrp(b)Cq(P)-modules. See for instance [T95, Corollary
37.6] for more details. This bijection induces an isomorphism of right Aut(L, u)m—modules

FProj(kBrp(b)Cq(P),u) = ]F[:(pm)

where Lp ) is the set of local points P, with mi,m ' =i, for some s € Ng(P,). The action of
v € Aut(L, u)ﬁ on FLp ) is given as follows: There exists g € G such that (9P, i m) = (P, 7).
Then ¢ maps P, € L(pr) to P, . Hence the isomorphism in (17) implies that

A ~ Aut(L,u) Aut(Lvu)(P,ﬂ)
WFTA(G, L{u)) Fr = D Ind At (L) s b Ind Aut(L,u>(PMF
(P,mey PyE[L(p,xy/Aut(L,u)p ]
as right FAut(L, u)-modules where Aut(L, u)( . is the stabilizer of P, in Aut(L,u)W. But
one shows that Aut(L, u)(P . s equal to Aut(L u) —y and it follows that
’ v
A /L\(/> ~ Aut(L,u)
bFT2 (G, L(u))Fy " = T Indy s e F (23)
(P’Y77")E[G\Eb(GaLvu)/Aut(Lvu)}
as right FAut(L, u)-modules. We get finally an isomorphism
FTA(G, L{u))Fr " = F(G\Ly(G, L, u)) (24)

of right (permutation) FAut(L, u)-modules.

Let us recall some notation for the following statement: The set Y(G, L, u) was defined in 8.16, the
set P(pep)(L,u) in 8.20, the set Eb(G,L,u) in 8.21, the group Aut(L,u)m in 8.20 Equation
(20), and the group Aut(L,u)5—
of representatives.

P in 8.21 Equation (22). As usual, square brackets denote sets
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8.22 Theorem Let Sy v be a simple diagonal p-permutation functor and let b be a block idem-
potent of kG. The multiplicity of Sp v in IFTéb is equal to the F-dimensions of any of the
following vector spaces.

() Dprryey VTS, where U = [((G % L{u)\Y(G, L,u)) /Aut(L, u)].

(b) B perreir) Preve (Per\P. py (Louy/aut(z.u) FPTOI(kepCa (P), 1) @ aut(z.um)
Aut(Lm)m

(P,ep,m)
(©) D, m)elc\Lo(G L)/ Aut (L)) V.

Proof Recall from 8.2 that the multiplicity of S, v in ]FTéb is equal to the F-dimension of

P

b]FTA(G,L<u>)FLL’§f>eV where ey is an idempotent of FOut(L,u) such that V' = FOut(L, u)ey .
Hence part (a) follows from the isomorphism in (15), part (b) follows from the isomorphism in
(21), and part (c) follows from the isomorphism in (23). U

8.23 Corollary (i) The multiplicity of the simple functor Si 1 in the functor ]FTGA,b is equal to
the number of isomorphism classes of simple kGb-modules.

1 e multiplicity o e simple functor Syg, ., v at 1s zero unless L 1s 1somorphic to a
ii) The multiplicity of the simple f Spuy at FTS, i less L is i hi
subgroup of a defect group of b.

Proof Both statements follow immediately from Theorem 8.22. U

9 Nilpotent blocks

Nilpotent blocks were introduced by Broué and Puig in [BrP80]. In this section we give a char-
acterization of nilpotent blocks in terms of diagonal p-permutation functors. Let G be a finite

group.

9.1 Definition ([BrP80]) A block idempotent b of kG is called nilpotent if for any b-Brauer pair
(P, e) the quotient Ng(P,e)/Cq(P) is a p-group.

9.2 Theorem Let b be a block idempotent of kG with a defect group D. The following are
equivalent.

(i) The block idempotent b is nilpotent.

(ii) If Sp,u,v is a simple summand of ]FTGA)b, then u = 1.
(iii) If Sp . Is a simple summand of FTéb, then u = 1.
(

iv) The functor ]FTé , is isomorphic to the functor FT4.

Proof (i) = (ii): Suppose that b is nilpotent and that S,y is a simple summand of FTg,.
Then by Theorem 8.22(b), there exists a triple (P, e, 7) € 751,(G, L,u) such that

FProj(keCq(P),u) #0.
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Let s € Ng(P,e) be an element with the property mi,7—! =i, : P — P. By 8.4(d), there exists a
p/-element s’ € Ng (P, e) with mi, 7! = iy. Since the block idempotent b is nilpotent, the quotient
Ng(P,e)/Cq(P) is a p-group. It follows that s’ € Cg(P) and hence

/

w(“l) = *n(l) =7w()

for any [ € L. Since (L, u) is a D?-pair, this means that « = 1. Hence (i) implies (ii).

(ii) = (iii): This is clear.

(iii) = (i): Assume that (iii) holds. Then for any D*-pair (L,u) with v # 1, by Theo-
rem 8.22(a) applied to V' = F, the set Y(G, L,u) is empty. This is equivalent to the following
statement:

(B)gp: If P is a p-subgroup of G and if s € Ng(P) induces a non-trivial p’-automorphism
of P, then there is no s-invariant simple kBrp(b)Cq(P)-module.

Indeed, if s € Ng(P) induces a non-trivial p’-automorphism u of P, setting L = P, m = id, then
(L,u) is a D?-pair and (P,7) € P(G, L,u). Hence if S is an s-invariant simple kBrp(b)Cq(P)-
module, then (P,’IT,S) € Y(G, L,u) where S is a projective cover of S. This contradicts our
assumption.

Now we claim that the statement (B)q is equivalent to the following statement:

(C)gp: If (Pe) is a b-Brauer pair and if s € Ng(P,e) induces a nontrivial p’-automorphism
of P, then there is no s-invariant simple kC¢g(P)e-module.

Indeed, (B)g,p = (C)ap is clear. Now assume that (C)g, holds and suppose that s € Ng(P)
induces a non-trivial p’-automorphism of P and S is an s-invariant simple kBrp(b)Cq (P)-module.
Then S belongs to a unique block e of kCe(P). Since S is s-invariant, it follows that e is also
s-invariant. This is a contradiction.

We will prove that the statement (C)¢,, implies that the block b is nilpotent. We use induction
on the order of G.

If G is the trivial group, then the block kG = k is obviously nilpotent. Now assume that the
statement (C') g, implies that the block ¢ is nilpotent whenever ¢ is a block idempotent of a group
H with |H| < |G|, and assume that the statement (C)g,p holds.

Let (P, e) be a b-Brauer pair. We will show that Ng(P,e)/Cq(P) is a p-group. Set H = C(P).
If H = G, then the quotient Ng(P,e)/Cq(P) is trivial hence a p-group.

So we can assume that |[H| < |G|. Let (@, f) be an e-Brauer pair of H. Then one can show
that the pair (QP, f) is a b-Brauer pair of G. Let s € Ny (Q, f) be an element which induces a
nontrivial p’-automorphism u of Q. Then s € Co(P)NNg(Q, f) C Ng(QP, f) induces a nontrivial
p/-automorphism of of QP. Since (C')g holds and since (QP, f) is a b-Brauer pair, it follows
that there is no s-invariant simple kCq(QP)f-module. Therefore there is no s-invariant simple
kCw(Q)f-module. This proves that the statement (C')g . holds. Since |H| < |G|, by induction
hypothesis, the block e of kH = kCq(P) is nilpotent. So there is a unique simple module S of
kCq(P)e. Now if t € Ng(P, e) induces a nontrivial p’-automorphism v of P, then S is invariant by ¢
and hence v = 1 since (C')g,p holds. In other words ¢t € C'q(P) and so the quotient Ng (P, e)/Cq(P)
is a p-group. This shows that (iii) implies (i), so (i), (ii), and (iii) are equivalent.

(iv) = (ii): This is clear.

(i) = (iv): Assume that b is nilpotent. By the first part of the proof, if St , v is a simple
summand of FTéb, then u = 1. So let Sp, 1, be a simple functor. We will show that

bFT (G, L)FE, =~ FT*(D, L)FE,
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as right FAut(L)-modules using the isomorphism in (21). Since b is nilpotent, for any b-Brauer pair
(P, ep), the block idempotent ep € kCg(P) is nilpotent. So there is a unique simple kepCq(P)-
module, and hence FProj(kepCq(P),1) = F. Moreover, F, = Fp, P(P,ep)(L,1) = Isom(L, P)
and Ng(P,ep) = Np(P). The result follows. D

10 Functorial equivalence of blocks

In this section G and H denote finite groups. We come back to the case of an arbitrary commutative
ring R of coefficients.

10.1 Definition Let b be a block idempotent of kG and let ¢ be a block idempotent of kH. We
say that the pairs (G,b) and (H, ¢) are functorially equivalent over R, if the corresponding diagonal
p-permutation functors RTC% p and RTI%c are isomorphic in F ﬁppk.

10.2 Lemma Let (G,b) and (H,c) be as in Definition 10.1.
(i) (G,b) and (H,c) are functorially equivalent over R if and only if there exists w €
bRT?(G, H)c and o € cRT*(H, G)b such that
w-go=[kGb in bRT*(G,G)b and o-gw=[kHc in c¢RT(H, H)c.

(ii) If kGb and kH ¢ are p-permutation equivalent, then (G,b) and (H, ¢) are functorially equiv-
alent over R.

Proof The first statement follows from the Yoneda lemma. The second statement follows from
the first one, and from the definition of p-permutation equivalence in [BP20]. U

10.3 Remark It follows that functorial equivalence over Z is almost the same notion as p-
permutation equivalence, which only requires in addition that o be the opposite of w in (i).

10.4 Theorem Let b be a block idempotent of kG and ¢ a block idempotent of kH. The following
are equivalent:

(i) (G,b) and (H,c) are functorially equivalent over F.
(ii) For any D®-pair (L, u), one has an isomorphism
BET (G, L{u)) Fiy) 2 cFT(H, L{u)) FL
of right FAut(L, u)-modules.
(iii) For any D®-pair (L,u), the right FAut(L,u)-module

Aut(L,u .
@ IndAquL;ug(ReﬂFPrOJ(keCG(P), u)
(P.e,m)€[G\ Py (G, L,u) /Aut(L,u)]
is isomorphic to

Aut(L,u .
A @ IndAuEEL,ug(Q,f”J)FPrOJ(kaH(Q)v U) :
(Q.f,p)E[H\Pe(H,L,u)/Aut(L,u)]
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(iv) For any D*-pair (L,u), one has an isomorphism
F(G\Ly(G, L,u)) 2 F(H\L.(H, L, u))
of right permutation FAut(L, u)-modules.
(v) For any D®-pair (L,u) and any ¢ € Aut(L,u), one has
|(G\Ly(G, L,u))*| = [(H\Lc(H, L,u))?].

Proof The statements (ii), (iii) and (iv) are equivalent by the isomorphisms in (19) and (24). If
(iv) holds, then by Theorem 8.22(c), the multiplicity of any simple diagonal p-permutation functor
in FT§, and in FTj , are the same. Hence (i) holds. Now assume (i). Let w and o be as in
Lemma 10.2. Then the map

OFTA(G, L)) Fr " — cFT(H, L{u)F} "

yr—=ooy

is an isomorphism of right FAut(L, «)-modules with inverse

FTA (H, L(u)) F} " — 0FTA(G, L{u) Ff Y

)

ZH Wwoz.

Thus, (ii) holds. This shows that statements (i)-(iv) are equivalent. Finally, the permutation
FAut(L, u)-modules F[G\Ly(G, L, u)] and F{[H\L.(H, L, u)] are isomorphic if and only if they have
the same characters. So, the equivalence of (iv) and (v) follows and we are done. U

For a block idempotent b of kG, [(kGb) and k(kGb) denote the number of irreducible Brauer
characters and the number irreducible ordinary characters of b, respectively.

10.5 Theorem Let b be a block idempotent of kG and ¢ a block idempotent of kH.
(i) If (G,b) and (H,c) are functorially equivalent over F, then we have I(kGb) = l(kHc).
(ii) If (G,b) and (H,c) are functorially equivalent over IF, then we have k(kGb) = k(kHc).

(iii) If (G,b) and (H,c) are functorially equivalent over F, then b and ¢ have isomorphic defect
groups.

(iv) If b has defect zero, then the functor IE"Té p Is Isomorphic to the simple functor Si 1.
In particular, all pairs (G,b), where b is a block of defect zero of kG, are functorially equivalent
over IF.

(v) More generally, for any p-group D, all pairs (G,b), where b is a nilpotent block of kG with
defect isomorphic to D are functorially equivalent over F.

Proof The first statement follows from Corollary 8.23(i). For the second statement, note that by
Theorem 10.4, for any D?-pair (L, u), one has

> dimg (FProj(keCq(P), u)) = > dimp (FProj(kfCx(Q), u)) .
(Pe,m)€[G\Py (G, L,u)] (Q,f:p)E[H\P(H,L,u)]
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Considering the D®-pairs of the form (L, 1) this equality reduces to

> I(keCq(P)) = > WkfCR(Q)).

(P,e)€[G\BP(G,b)] (Q:f)E[H\BP(H,c)]
P=L Q=L

If we let L run over cyclic p-groups, the sums run over G-conjugacy classes and H-conjugacy
classes of b and c-Brauer elements, respectively. The result follows from, for instance, [NT89,
Theorem 9.4]. For the third statement, let D be a defect group of b. The multiplicity of the
simple functor Sp 1 in }FT(%b is non-zero by Theorem 8.22. Hence it is also nonzero in JFTI%C. By
Corollary 8.23(ii), it follows that D is isomorphic to a subgroup of a defect group of the block c.
Similarly, one can show that a defect group of ¢ is isomorphic to a subgroup of a defect group of
b whence (iii) holds. For the fourth statement assume that b has defect zero. Then by Corollary
8.23, the functor IFTé_b is isomorphic to [(kGb)S11r = S1,1,7. The last statement follows from

Theorem 9.2. U

10.6 Theorem Let D be a finite p-group. Then there is only a finite number of pairs (G, b), where
G is a finite group, and b is a block idempotent of kG with defect D, up to functorial equivalence
over F.

Proof We know that the functor FT, é , splits as a direct sum of simple functors Sp .. Using
Theorem 8.22 (b), we will show that the number of simple functors Sy, ,, v that can appear in IFT@ bs
and that the multiplicity of St . v as a summand of IE‘TG , are bounded by constants depending
only on D. This will imply that, up to isomorphism, there is only a finite number of possibilities
for the functor FTG »» once the defect D of b is fixed.

Recall that the simple functors S, v are parametrized by triples (L,u, V), where L is a
finite p-group, u is a faithful p’-automorphism of L, and V is a simple FOut(L, v)-module, where
Out(L,u) is a quotient of Aut(L,u), itself a subgroup of the automorphism group Aut(L) of L. By
Theorem 8.22 (b), the multiplicity of Sp .,y as a summand of IFTéb is equal to the F-dimension of

miy(®) = P . FProj(kepCa(P), t) @ aut(Lw) ey V)
(Pep)€[Fp] m€[P(p,ep) (L,u)]

where Fj is the fusion system of b and [P(p.,.)(L,u)] is a set of Ng(P,ep) x Aut(L,u)-orbits of
the set P(p,cp) (L, u) of group isomorphisms 7 : L — P such that 7 o4, o 71 is an automorphism
of (P,ep) in the fusion system F;. Moreover Proj (keng(P), u) is a subgroup of the group of
projective ke pCq(P)-modules.

It follows that if St ., appears in ]FTG , With non zero multiplicity, then L is isomorphic to
a subgroup of D. Hence there is only a finite number of such groups L, up to isomorphism. For
each L, there is only a finite number - at most |Aut(L)| - of faithful p’-automorphisms w of L,
and for each such u, there is only a finite number - at most |Aut(L)| again - of simple FAut(L, u)-
modules, up to isomorphism. Hence the number of simple summands of FTé , is bounded by a
number ¢p depending only on D.

Now for such a summand Sy, the dimension of the F-vector space
FProj (keng(P), u) @Aut(L,u)pep,. V 18 less than or equal to dimFProj (keng(P)) dim V', and
moreover dimV < |Out(L,u)| < |Aut(L)|. Now dimFProj(kepCq(P)) is equal to the number
l(kepCq(P)) of simple kepCq(P)-modules, which is equal to the number I(kep PCc(P))) of

44



simple kep PCq(P)-modules, as P acts trivially on each simple kep PCq(P)-module. Now ep is
a block idempotent of kPCq(P), and by Corollary 4.5 of [AB79], we can assume that P < D,
and that e has defect PCp(P), which is a subgroup of D. By Theorem 1 of [BF59], the number
of ordinary irreducible characters in a block c¢ of a finite group H is at most ip% + 1, where p? is
the order of the defect group of ¢. This number is smaller than 2p?¢. It follows that l(k:e ng(P)),
which is at most equal to the number of ordinary irreducible characters in the block ep of
PCg(P), is smaller than 2|PCp(P)|* < 2|D|%.
Finally, we get that
miu,v(b) < np,2|D*|Aut(L)[?,

where np 1, is the number of subgroups of D isomorphic to L. So there is a constant mp, depending
only on D, such that mp, ,.v(b) < mp (for example mp = np2|D|?> M3, where np is the number of
subgroups of D, and Mp is the sup of |Aut(L)| over subgroups L of D). This bound only depends
on D, as was to be shown. This completes the proof. U

11 Blocks with abelian defect groups

Let b be a block idempotent of kG with an abelian defect group D. Let ¢ be a block idempotent
of kH which is in Brauer correspondence with b where H = Ng(D). Let (L, u) be a D®-pair with
the property that the multiplicity of S, v in IE‘Téb is non-zero for some V € FOut(L, u)-mod.
Then L is also abelian.

Let (D,ep) be a maximal b-Brauer pair and note that (D,ep) is also a maximal ¢-Brauer
pair. For every P < D, let ep € Bl(kCg(P)) and fp € Bl(kCy(P)) such that (P,ep) <g
(D,ep) and (P, fp) <y (D, ep). One can show that the block idempotents ep and fp are Brauer
correspondents. Let J3 be the fusion system of b associated to (D, ep) and let F. be the fusion
system of ¢ associated to (D,ep). By Alperin’s fusion theorem, the identity automorphism of D
is an isomorphism of fusion systems F;, & F..

Recall that by (21), we have isomorphisms

WFTA(G, Lu) FLY = P D Indiﬁigszgw ___FProj(kepCo(P),u)
(Peep)ElF] nE[PG, , ) (Lu)] o
and
U) ~ Au U .
FT(H, L)) Fr = P ) IndAutgiungPYOJ(kaCH(P)7U)

(P-,fP)E[]:c] ﬂE[P(I_IID,fP)(L,u)]

of right FAut(L, u)-modules.

(a) Let (P,ep) € Fp. Let also s € Ng(P,ep). The isomorphism F, = F, implies that there
exists h € Ny (P, ep) with the property that is =iy : P — P.

(b) We have P(GP,ep)(L’“) = P(I};fp)(L,u) for any P < D. Indeed, let m € P(GReP)(L,u).
Then by definition 7i, 7~ € Autr, (P, ep). So there exists s € Ng(P, ep) such that mi, 7~ = i,.
By part (a), there exists h € Ny (P,ep) with i; = 5. But then h € Ny (P, fp) and hence
™ e 73&,7EP)(L, u) as desired.
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Conversely, let 7 € ’Pg, ) (Lyw). Then mi,m = ij, for some h € Ng (P, fp). By part (a) we
can choose h € Ny(D,ep). Then one shows that "ep = ep which implies that h € Ny (P,ep) C
Ng(P,ep). Therefore, m € 7783 epy(Lrw).

(¢c) Let P < D and let 7, p € Pg,)fp)(L,u) = 735,7ep)(L,u). Then p € Ng(P,ep) -7 - Aut(L, u)
if and only if p € Ny (P, fp) - 7 - Aut(L,u). Indeed, suppose that for some g € Ng(P,ep) and
¢ € Aut(L, u) we have p = igmp. By part (a), there exists h € Ny (P, ep) with ¢5 = i5. But then
h € Ny (P, fp) and p = iy which proves the claim. The converse is proved similarly.

(d) Let P < D and let 7 € [778376P)(L,u)] = [Pga7fp)(L,u)}. We have Aut(L,u)po, 7 =
Aut(L,u)m. Indeed, let ¢ € Aut(L,u)m. Then there exists g € Ng(P,ep) such that
mon ! = ig. As above this means that there exists h € Ny (P, fp) such that mon~ ! = ig = in.
This proves that ¢ € Aut(L, u)m

Conversely, if ¢ € Aut(L,u)m, then there exists h € Ny (P, fp) such that morn=! = iy,.
Again as above, we can choose h € Ny(D,ep) and hence it follows that h € Ny (P,ep) C
Ng(P,ep). Therefore, ¢ € Aut(L, u)p o —-

Paragraphs (b)-(d) and Theorem 8.22(b) imply the following.

11.1 Theorem Let b be a block idempotent of kG with an abelian defect group D. Let ¢ be a
block idempotent of kH which is in Brauer correspondence with b where H = N (D). Let (D, ep)
be a maximal b-Brauer pair. For every P < D, let ep € Bl(kCq(P)) and fp € Bl(kCy(P)) such
that (P,ep) <¢ (D,ep) and (P, fp) <g (D,ep).

(a) The multiplicities of Sp .,,v in IFTéb and IFTﬁC are the same.
(b) If for every P < D and s € Ny (P, fp),» we have an isomorphism

FProj(kepCa(P), s) = FProj(k frCu(P), s)

of FNy (P, fp)-modules, then (G,b) and (H,c) are functorially equivalent over F.
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