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1. Introduction

Let k£ be a field and G be a finite group. The theory of Mackey functors
and cohomological Mackey functors for G over k originates in the work of
Green ([4]) and Dress ([3]), at the beginning of the 70’s. It can be viewed as
the theory of induction and restriction, when we forget the particular frame-
work of linear representations of G over k. Many important developments
have been achieved since, culminating in the comprehensive and seminal pa-
per by Thévenaz-Webb ([5]) in 1995, where the authors introduce the Mackey
algebra p,(G), and show, among many other fundamental results, that the
category of Mackey functors for G over k is equivalent to the category of
pr(G)-modules.  Similarly, they show that the subcategory M¢(G) of co-
homological Mackey functors for G' over k is equivalent to the category of
cop(G)-modules, where couy(G) is a specific quotient of . (G), called the
cohomological Mackey algebra.

The algebras ;(G) and copy(G) share many similarities with the group
algebra kG : e.g., they are finite dimensional k-vector spaces, of dimension
independent on k, the Maschke theorem holds, there is a good theory of



decomposition from characteristic 0 to characteristic p, etc... These resem-
blances raise some natural questions, whether a given theorem on kG will
admit an analogue for p,(G) or coug(G).

This was the main motivation in [2], where the question of complexity
of cohomological Mackey functors was solved (in the only non-trivial case
where k is a field of positive characteristic p dividing the order of G). It
was also shown there how this question can be reduced to the consideration
of elementary abelian p-groups E appearing as subquotients of G, and to
the knowledge of enough information on the algebra & = Ext*(S¥, SF) of
self extensions of a particular simple functor S¥ for these groups. Along
the way, a presentation of this algebra was given when p = 2, together with
a formula for the Poincaré series. In the case p > 2, no such presentation
was given, and a conjecture was proposed for the Poincaré series of £. This
conjecture was only proved in the case p = 3.

This paper settles completely the case p > 2 : a presentation of £ is given,
and, as a corollary, the forementioned conjecture is proved. The main results
are the following, where wa denotes the simple functor for the group H
defined as in 2.15. To simplify notation, when W = k is the trivial module,
we drop this subscript. We start by the construction of a new inflation
functor for cohomological Mackey functors :

1.1. Theorem : Letk be a field, let G be a finite group, let N I G and let
V' be a simple k(G /N)-module. Then there exist an exact functor Ug/zv from
MS(G/N) to M(G) satisfying

G G/NY _ oG
oan(S1y ) = Sl,lnfg/Nv :

Suppose, moreover, that G = N x H 1is the semidirect product of N by a
group H.
1. If V is a kH-module, let V be the kG-module Infg/NISOg/NV. Then

the restriction of V to H is isomorphic to V.

2. The composition Resgag /leog/ Nis isomorphic to the identity functor

of MS(H).
3. LetV and W be simple kH -modules. Then, for any n € N, the restric-
tion from G to H induces a split surjection




Let now p be an odd prime, k be a field of characteristic p and GG be an
elementary abelian p-group of rank . Then we can give an explicit presenta-
tion of Ext,f,li(c)(Sf , S, the graded algebra of self extensions of the simple
functor S§ = Sf x- Here is the main result of this paper :

1.2. Theorem : Let A be the graded k-algebra with generators
{7, | v € Hom(G,F; )}, in degree 1, and {7x|X < G, |X| = p}, in degree 2,
subject to the relations

(L1) Vo, € Hom(G,]F;), Tt = T + Ty
(L2) If p > 5, then Yo € Hom(G,F}), 72=0, and [7,, > Ax]|=0.

XfKertp
Ifp=3, then 7} =— > Ax.
XfKercp
(L3) Y € Hom(G, F),¥X, |X| = p, X < Kerg, [7y,7x] = 0.

(L4) VQ S G7 |Q| :p27VX < Q7 |X| =D, [’A)/XayfoS/Y] = 0.

Then there is an isomorphism of graded algebras from A to Ext’ﬁﬂz(G) (8§, 8.

In view of (L1), this set of generators is redundant : we choose a direct
sum decomposition G = Y1 8Yo ®--- DY, 1P Y,, and for 1 < i < r, we

choose a group homomorphism ¢; : G — F, with kernel @ Y;.
1<j<r
J#

1.3. Theorem : Let A be the graded k-algebra with generators
{7:|1 <i <r}in degree 1, and {yx|X < G, |X| = p} in degree 2,

subject to the relations

(R1) 7,7, =0, if p> 5, or

Thi=— ) Axifp=3.
XfKergpi
(R2) 7,7+ 7;7i =0 for 1 <j<i<r,ifp>5, or
%i%j‘i‘%j%i: Z Vx — Z Vx — Z Ax if p=3.
XﬁKer(w—s—cpj) XfKer ©i XfKer o
(R3) 7, X2 Ax]=0;
XﬁKerapi



(R4) [@0j(2)7 — pi(2)Tj, Yy] = 0, for 1 <i<j<1,x€G;

(R5) [x, 22 Ayl =0, forall X <Q <G, [X]=p, |Q =p*.
Y<Q

Then there is an isomorphism of graded algebras from A to Extye ¢ (8§, SE).

As a consequence of the above theorem, we get the following result, which
was proved for p = 3 in ([2], Theorem 14.2) and conjectured for p > 5:

1.4. Proposition : Let k be a field of odd characteristic p, and G = (C,)".
Then :

)
degree 1, for o € Hom(G, k™), and by the elements v§ in degree 2, for

X < G with | X| =p.

2. The Poincaré series for £ is equal to

1. The algebra € = ExtKAi(G)(S?, S$) is generated by the elements TS in

1
(1-t)1—t—(p-1)(1—t—@E*—1)2) ... (1—t— (pr—'—1)t?)

The paper is organized as follows. In Section 2 we construct a new in-
flation functor for cohomological Mackey functors for a finite group G over
a field k. In the case where the group is a semi-direct product, more prop-
erties of this functor are given. For completeness, Section 3 recalls a series
of results on extensions of cohomological Mackey functors when G is an ele-
mentary abelian p-group G and k is a field of characteristic p. These results,
taken from [2], are crucial in the second part of the paper. The use of the
inflation functor constructed in Section 2 makes the proof of the exactness of
the sequence in Corollary 3.10 straightforward. Section 4 deals with finding
relations in the graded algebra & = Ext’,f,lz(c)(SlG, SE). Section 5 gives a re-
cursive direct decomposition of this algebra. The decomposition is obtained
through an involved induction on the rank of GG, constructed on the technical
support of Lemma 5.1. Based on this direct decomposition and the relations
stated in Section 4, Section 6 builds a presentation of £. Some arithmetics
of extensions in abelian categories, needed in the paper, are presented in the
Appendix.



2. Yet another inflation functor

2.1. Let k be a commutative ring with identity element, and G be a finite
group. Let M{(G) denote the category of cohomological Mackey functors for
G over k. By Yoshida’s Theorem, the category M¢(G) is equivalent to the cat-
egory Fung(G) of k-linear contravariant functors from the category perm, (G)
of finitely generated permutation kG-modules, to the category k-Mod of k-
modules.

2.2. When G and H are finite groups, any k-linear functor from perm, (G)
to perm,(H) gives by precomposition a functor from Fung(H) to Fung(G).
Two special cases of this situation have been considered in [2] (Section 3.12) :
if U is a finite (H, G)-biset, the functor

ty V= kU Qg V
from perm,(G) to perm,(H) yields a functor
Ly: F— Foty
from Fung(H) to Fung(G). Similarly, the functor
hy : W — Homyy (KU, W)
from perm,(H) to perm;(G) yields a functor
Ry:Fw— Fohy

from Fung(G) to Funi(H), which is right adjoint to L.

2.3. Several special cases of this special case occur when H = G/N, where
N is a normal subgroup of G. First, if U = G/N, viewed as a (G, H)-biset
in the obvious way, then the functor Ly : Fung(G/N) — Fun(G) is denoted
by zg/N, and Ry : Fung(G) — Fung(G/N) is denoted by pg/N.

Reversing the actions, and viewing V' = G/N as an (H,G)-biset, the
functor Ry : Fung(G/N) — Fung(G) is denoted by jg/N, and Ly : Fung(G) —
Funi(G/N) again by pg/N (there is no notational conflict here, as Ly = Ry
by [2] Proposition 3.15).

The functors & N and 7§ /v are two inflation-like functors for cohomo-
logical Mackey functors. They are not isomorphic in general, and also both
different from the usual inflation' Inf& /v for Mackey functors (as defined
in [5] Section 2). Similarly, the functor p& /v 1s a deflation functor.

2.4. When C is a k-linear category, recall ([1] Exemple 8.7.8 p. 97) that the

!Note that this inflation functor Infg /N does not preserve cohomological Mackey func-
tors over k unless N is a p-group



karoubian envelope CT of C is the category defined as follows : the object of
C™ are the pairs (X, e), where X is an object of C and e is an idempotent in
End¢(X). If (X, e) and (Y, f) are objects of C*, then by definition

Home+ ((X,€), (Y, f)) = fHome(X,Y)e

and the composition of morphism in C* is induced by the composition of
morphism in C.
The category C* is a k-linear category. Moreover, the correspondence

XecC — (X, Idy) eC*
f€Home(X,Y) — fe€Home+((X,Idx), (V,Idy))

is a fully faithful k-linear functor i from C to C*.

By composition, this functor induces a functor | : M +— M oi from the
category JF, of k-linear functors from C* to k-Mod, to the category Fj of
k-linear functors from C to k-Mod, which is easily seen to be an equivalence
of categories : the functor J : F, — F,;' defined by

JL)(X,e)) = L(e)(L(X))

is a quasi-inverse to |.

2.5. Applying this to the category C = perm,(G), we observe that the
category C* is equivalent to the full subcategory perm; (G) of kG-mod con-
sisting of direct summands of finitely generated permutation kG-modules :
this equivalence is induced by the functor (X, e) — e(X). It follows that
the category M¢(G) is equivalent to the category Fun} (G) of contravariant
k-linear functors from perm; (G) to k-Mod.

2.6. It follows that when G and H are finite groups, any k-linear functor
from perm; (G) to perm; (H) induces by composition a functor from Fun} (H)
to Fun; (G), and by the above remarks, this yields a corresponding functor
MS(H) — ME(G). In particular, when X is a direct summand of a finitely
generated permutation (kH, kG)-bimodule, the functor tx = X Qg — yields
a functor Ly : M{(H) — M{(G), and the functor hx = Homy g (X, —) yields
a functor Rx : M{(G) — M{(H).

2.7. We will consider here another special case of this kind of construction :
let N be a normal subgroup of G, and let H = G/N. Also denote by U the
set G/N, viewed as a (G, H)-biset. As for any kG-module W, there is an
isomorphism of kH-modules

Homyq (KU, W) = W |



the functor hy : perm/(G) — perm/ (H) is the fixed points functor W +—
W,

Now W D trl¥ (W), and this inclusion is functorial with respect to W :
the functor W +— tr{ (W) is a functor from RG-Mod to RH-Mod, which is a
subfunctor of the functor W s W,

A natural question is then to know whether it can happen that the functor
W +— trd (W) preserves direct summands of permutation modules. This is
equivalent to requiring that the following condition holds :

2.8. Condition : For any finite G-set X, the module tr) (kX) isomorphic
to a direct summand of a permutation kH-module.

2.9. Lemma : Let G be a finite group, let N be a normal subgroup of G,
let H=G/N, and let X be a finite G-set. Then there is an isomorphism of
kH-modules

G/N
o) (kX) = P Indys (N |
z€G\X

where G s the stabilizer of x in G, and N, = N N G,.

Proof : The module (kX)" has a k-basis consisting of the elements

E ne

neEN/N,

for x € N\X. This basis is G/N-invariant, and the stabilizer of b, in G/N
is equal to NG, /N. Thus

~ G/N
(kX)N = P WdJy k-
zeG\X

The submodule tr) (kX)) is generated by the elements trd (z) = |N,|b,, for
z € N\X, and these elements are permuted by G/N. The lemma follows. 0O

In particular, as a k-module,

(%) = @D (N.lb) -

zeN\X

Thus if tr)(kX) is isomorphic to a direct summand of a permutation kH-
module, since any permutation kH-module is free as a k-module, it follows
that | N, |k is a projective k-module. Hence, if Condition 2.8 holds, then the
following condition also holds :



2.10. Condition : For any subgroup M of N, the module |M|k is a pro-
jective k-module.

Conversely, if Condition 2.10 holds, and if X is a finite G-set, then for any
x € X, the k-module |N,|k is projective, hence it is isomorphic to a direct
summand of k (since the map A — |N,|\ is a surjective morphism of k-
modules from k to |N,|k). It follows that |V, |k is also isomorphic to a direct
summand of k as k(NG,/N)-module, since the action of NG, /N on k and

| N, |k is trivial. Thus Indg/é\i /n([Nz|k) is isomorphic to a direct summand

of Indg/G]\i/N(k) as a k(G/N)-module. Since this is a permutation module, it

follows that trd(kX) is isomorphic to a direct summand of a permutation
kH-module. This shows that Conditions 2.8 and 2.10 are equivalent.

2.11. Now saying that for some m € N, the k-module mk is projective, is
equivalent to saying that there exists an idempotent e,, of k£ such that e,k
is equal to the annihilator Anng(m) of m in k. Moreover Condition 2.10
obviously implies the following :

2.12. Condition : For any prime factor p of |N|, the k-module pk
is projective. FEquivalently, there exists an idempotent e, of k such that
Ann(p) = eyk.

Conversely, if Condition 2.12 holds, let m be any integer dividing |N|,
and denote by e,, the sum ) e, of the idempotents e, corresponding to the
plm
distinct prime factors of m. | Then e, is an idempotent : indeed, if p and ¢
are distinct prime numbers, then e,e, = 0, since it is both a p-torsion and
a g-torsion element. Note that, more generally, if m and n are integers such
that m|n, then e,e, = e,,.

Since moreover m
men, :Z—pep:() ,
plm b
it follows that e,k C Anng(m).
Now write m as a product pyps - - - p; of (possibly equal) prime numbers.
We prove by induction on [ that Anng(m) = e,,k.
If I =0, then m =1, and e; = 0 generates Anng(1) = {0}. If [ > 0, let
p = p1, and n = m/p. If x € Anng(m), then pnx = 0, so there exists y € k
such that nx = e,y. Thus e,nz = nz, i.e. n(r —eyz) = 0. By induction
hypothesis, there exists z € k such that 2 = e,z + e,2. Thus

EmT = €meEpT + EpmenZ = €T + €2 =T

8



since e,,e, = e, if r/m. It follows that = € e,,k, as was to be shown.
This shows that Conditions 2.8, 2.10, and 2.12 are equivalent.

2.13. Remark : These conditions are fulfilled in particular if the ring £ is
hereditary, since any ideal of k is projective in this case.

2.14. Notation :  When the normal subgroup N of G fulfills Condi-
tion 2.12, the functor W — tr W from perm; (G) to perm; (G/N) induces
an exact functor denoted by O'g/N from ML(G/N) to Ms(G).

The exactness of ag N follows from the fact that this functor is obtained
by pre-composition with some functor.

2.15. From now on we will assume that k is a field of characteristic p > 0.
Remark 2.13 shows that Condition 2.12 is fulfilled, for any normal subgroup
N of G.

Recall that the simple cohomological Mackey functors for G over k are
indexed by pairs (Q, V), where @ is a p-subgroup of G (which in the case
p = 0 should be understood as Q = 1), and V is a simple kN (Q)-module,
where, as usual, Ng(Q) = Ng(Q)/Q. As an object of Fun/(G), the functor
SSy indexed by the pair (Q, V') can be described as follows : if W is a direct
summand of a permutation kG-module, then

SS v (W) = try ““"Hom, (W[Q], V) |

where W[Q)] is the Brauer quotient of W at ). The functorial structure
with respect to W is the obvious one. In other words SS,V(W) is the set of

k]Y ¢(@)-homomorphisms from W[Q] to V which factor through a projective
EN ¢(Q)-module.

2.16. Proposition : Let k be a field. If N <G, and if V is a simple
k(G/N)-module, then

G G/Ny\ _ oG
oan(S1y ) = Sl,lnfg/Nv :

Proof : The value of the functor Sﬁ (,N on a direct summand of a permutation
k(G/N)-module W is equal to

ST W) = N Homy (W, V) .



So for U € perm} (G)
oSN (ST = SG/N(trl ()
= tr{VHomy, (tr?' (U), V) .
On the other hand

51 InfC (U) = tr$Homy (U, Infg/NV) )

NV

Let i : tr{U < U denote the inclusion map, and let s : U — tr)’U be a
k-linear map such that so¢ =1Id. If ¢ € Homk(tr:l U V) then ¢ = w o1,
where ¢ = 1) o s € Homy,(U, InfG/NV) Setting 0 = trl Nep, for any u € U

botri(w) = 35 gilg~'nu)

geG/N neN

= > gn (g )

geG/N neN

= ) g9 'u)

9eG
= uf(¥)(u) ,
thus 0 o trl¥ = tr?(%. This shows that the map
I : Homy,(tr)'U, V) — Homy (U, InfG/NV)

sending 6 to 6 o tr) maps trl/ Homy, (trU, V) into tr{Homy (U, Infg/NV)
The map I is obviously injective, as tr) : U — trdU is surJectlve
Conversely, let ¢ € Homy (U, Infg/NV), and set = = tr{p. Then for u € U

(W) = > gp(g ")

(1]

geG

= D gne(n g M)
geG/N neN

= > D gelg'n )
g€G/N neN

(since n g tw =g t-gntg7" - u)
G/N .
= (07 (pod)(oriu)

so==1 (trlG/ N(gp o @)), showing that I induces an isomorphism

trIG/NHomk(trjlvU7 V) — tr$Homy (U, Infg/NV) :

10



which is obviously functorial in U. This completes the proof. O

2.17. Proposition : Let G = N x H be the semidirect product of N by a
group H.
1. If V is a kH-module, let V be the kG-module Infg/NISOg/NV. Then
the restriction of V to H is isomorphic to V.

2. The composition Resgag/NIsofI/N 1s 1somorphic to the identity functor

of M§.(H).
3. LetV and W be simple kH-modules. Then, for any n € N, the restric-

tion from G to H induces a split surjection

r& Extﬁz(e)(slc’:f/, SG W) — ExtML(H)(Sl v Stw)

Proof : Assertion 1 is obvious. For Assertion 2, let W be a direct summand
of a permutation kH-module, and let W’ be the kH-module defined by

W' = Isogytry IndG W .
The set N is a set of representatives of G/H, so
IndGW =~ PHneow .
neN

Moreover, for any n € N and w € W,

trl n®w) an@w—Zx@w.

zeN TeEN

This shows that the map 0 : w € W +— Zx ®@w € W' is a k-linear

zeN
isomorphism from W to W’. Moreover, for any h € H

h(Zx@w) = th@w

TEN zEN
= thh_l-h@)w:th@w
zeN zeN
= Z r® hw .
zeN

Thus 6 is actually an isomorphism of kH-modules W — W’ which is ob-
viously functorial with respect to W. So the functor F' = IsoZ /Ntr]lv Ind¥ is

11



isomorphic to the identity functor of perm; (H). Assertion 2 follows, since
the functor Res§o§ /NISOG/ is the endofunctor of M{(H) obtained by com-
position with F'.

Assertion 1 implies that Res HS G~ GH v, 80 the restriction functor Res%
induces a k-linear map

g:Ext"c (SG SG ) — Extie g (SIV,SEW) :

1,v?

Conversely, the functor 0§ /n1so H/ Vs an exact functor from M¢ (H) to M¢(G),

which sends S to Sl (2 by Proposition 2.16. This yields a k-linear map

st - Extie oy (St Stiw) — Extiye ) (7 1) -

Since by Assertion 2, the functor Resgag /NIsog/ Nig isomorphic to the iden-

tity functor of M¢(H), the composition 7§ o s is an isomorphism, so r% is

split surjective. O

3. Extensions of cohomological Mackey func-
tors

3.1. Hypothesis : From now on, we assume that k is a field of positive
characteristic p and that G is a finite p-group.

In this section we recall some notation and results from [2] about ex-
tensions of cohomological Mackey functors for elementary abelian p-groups.
When H is a subgroup of G, we denote by K (H) the set of complements of
H in G, i.e. the set of subgroups T of G such that H ®T = G.

3.2. ([2] Corollary 8.3) When X is a subgroup of order p of G, there exist a

€]
unique cohomological Mackey functor S)é , up to isomorphism, which fits
1
into a non split exact sequence in M¢(G) of the form
G S§ G
(3.3) 0— 57 — ga — Sy —0 .
1
G
There is also a unique cohomological Mackey functor ( SIG>’ up to isomor-
X

phism, which fits into a non split exact sequence in M¢(G) of the form
G

(3.4) O—>S§—><SIG>—>SIG—>O ,
Sk

12



AN . SE\ . (5%
and & | is isomorphic to the dual o) of | .o
SY S St

We denote by 7§ € Extﬁ,li () (ST, 57) the class of the exact sequence

FG 0 — SG N S)Cg N SI? N SG =0
X 1 S]_G S)G( 1

obtained by splicing the two previous short exact sequences ([2] Notation 7.4).

3.5. ([2] Section 14) When p > 2, and ¢ € Hom(G, k™), let Uf denote the
kG-module k£ @ k, on which G acts by

Vg € G, Y(z,y) € k>, g(z,y) = (z+ 0(9)y,y) -

Let T, f denote the unique Mackey functor for G over k such that Tf (H) is
zero if H is a non trivial subgroup of G, and TS(1) = US. The functor TY
is cohomological, and fits in an exact sequence

O—>SlG—>T§—>S?—>O,

in M¢(G), which is non split if ¢ # 0. We denote by Tg the class of this
extension in Ext,{/lﬁ(@(slc, S§). When ¢ € Hom(G,F}), we denote by the
same symbol the composition of ¢ with the inclusion ]F‘};F — kT, and by 7,
the corresponding element of Ext,lwz(g)(SlG , 55,

3.6. The following conjecture was proposed in [2], and proved there for p = 3
([2] Theorem 14.2) :

3.7. Conjecture : Let k be a field of odd characteristic p, and G = (C,)".
Then :

1. The algebra £ = EXtK/l;(G)(Sfa S§) is generated by the elements 7S in

degree 1, for o € Hom(G, k™), and by the elements v§ in degree 2, for
X < G with | X| = p.

2. The Poincaré series for £ is equal to

1
(I-t)(1—t—(p-12)(1—t - @E*-1)2) ... (1=t — (pr—1=1)t2)

3.8. Proposition : [[2] Proposition 8.7 and Proposition 10.1] Let k be a
field of characteristic p > 0, let G be an elementary abelian p-group, and let

13



H be a subgroup of index p in G. Set I = Inng{{.

1. Let R and S denote respectively the radical and the socle of I, as an
object of M$(G). Then I > R 2 S D {0}, and I/R = S = S¢.
Moreover

R/S=2Le & S§,
XeKq(H)

where L is a functor all of whose composition factors are isomorphic
to S, with multiplicity p — 2.
2. Let Y € Kg(H). The functor R has a subfunctor J isomorphic to

Lg/Y(Sf/Y), and there is an isomorphism

R/J=L® ® S$
XeKg(H)—{Y}

3.9. Corollary : [[2] Corollary 10.3] With the same notation, there is a
long exact sequence of extension groups

—L(n—-1)® XEEBX Eq(n —2)—= Eg(n) Ey(n) )
LL(n)@ @® Egln—1) Ecn+1)—=Eg(n+1)--- |

XekXx

where Eg(n) = EX‘L?,,E(G)(S?,Slc), Ey(n) = Ext’,\L,li(H)(Sf,S{{), L(n) =
Extye @) (L, SEY, and X = Kg(H) — {Y'}.

Moreover, it is easy to check that the map Eg(n) — Ey(n) in this corol-
lary is induced by the restriction functor Res%, since Res% S 22 SH. As k is
a field by Hypothesis 3.1, the conclusion of Proposition 2.17 holds and this
map is (split) surjective. Thus :

3.10. Corollary : With the same notation, for any n € N, there is a short
exact sequence of extension groups

00— Ln—1)® & Eg(n—2)— Eg(n) — Exg(n) —0 .
Xex

14



4. Mackey functors concentrated at 1 and re-
lations in &£

We first consider some generalizations of the functor L of Proposition 3.8 :

4.1. Definition : Let k be a field of characteristic p > 0, and G be a finite
p-group.

e A Mackey functor M for G over k is said to be concentrated at 1 if
M(H) = {0} for any non trivial subgroup H of G.

o A kG-module V s said to have zero traces if
try (V) = {0}

for any non trivial subgroup X of G.

4.2. Remark : 0) A Mackey functor concentrated at 1 is cohomological.
1) A (finitely generated) Mackey functor for G over k is concentrated at
1 if and only if all its composition factors are isomorphic to S¢.
2) By transitivity of traces, a kG-module V has zero traces if and only if
try (V) = {0} for any subgroup X of order p of G.

4.3. Proposition : Let k be a field of characteristic p, and G be a finite
p-group.
1. Let M be a Mackey functor for G over k. If M is concentrated at 1,

then M is cohomological, and the kG-module V' = M(1) has zero
traces.

2. If V is a kG-module having zero traces, then there is a unique Mackey
functor' V- for G over k such that V' is concentrated at 1 and V(1) =V
as kG-modules.

3. If M is an object of M$(G), let M° denote the kG-submodule
M° = ﬂ Ker ¢

1<X<G
of M(1). Then M° has zero traces, and MO s the largest subfunctor
of M concentrated at 1.

4. The correspondences M — M(1) and V +— V are mutual inverse equiv-
alences of categories between the full subcategory of MS.(G) whose ob-
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jects are concentrated at 1, and the full subcategory of kG-Mod whose
objects are modules with zero traces.

Proof : For Assertion 1, observe that for any subgroup X of G, and any

veV =M(Q1)
rito = Zx-v = try (v) .
zeX
This has to be zero if X is non-trivial, since M(X) = {0} by assumption.
Moreover M is obviously cohomological.

For Assertion 2, it is straightforward to check that if V' has zero traces,
then the assignments M(1) =V and M(H) = {0} for 1 < H < G, define a
Mackey functor M for GG over k. This proves the existence part of Assertion 2.
Uniqueness is straightforward.

Assertion 3 is also straightforward, and Assertion 4 follows easily. O

4.4. Example : Let H be a subgroup of index p of GG, and let W = Indflk.
Let € : W — k denote the augmentation map, and set V' = Kere. Then the
kG-module V' has zero traces : indeed, if X is a subgroup of order p of G,
then either X < H, and then try"(W) = {0}, since X acts trivially on W.
Or X £ H, and then Res§{W 22 Indy'k = kX, so there is an exact sequence

0— ResGV — kX -k —0 ,

showing that tr{ (V) = {0} also in this case.

The module Ind% % is inflated from the free module of rank 1 for the cyclic
group G/H. Hence, it is uniserial, and all its subquotients are indecompos-
able, and characterized by their dimension, up to isomorphism. We denote
by U, the subquotient of dimension a, for @ € {1,...p}. If a < p —1, the
module U, is isomorphic to a submodule of V', hence it has zero traces, and
we denote by T, the functor U,.

Let ¢ € Hom(G, k") with kernel H. Then the functor TS introduced in
Paragraph 3.5 is isomorphic to T5. Similarly, the functor L of Proposition 3.8
is isomorphic to 7,9, since L(1) = U,_o. We also denote by M the functor
1,1 = V. The two short exact sequences

(4.5) 0—-k—Uy1—U,—0, and 0->U, > Uyy1 — k—0
of kG-modules yield corresponding exact sequences

(4.6) O—>Sf—>Ta+1—>Ta—>O, and O—>Ta—>Ta+1H51G—>O
of cohomological Mackey functors for GG over k. In particular,

(4.7) 0—-k—-V->U—-0, and 0-U—-V—-k—0
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yield
(4.8) 0858 —-M—-L—-0, and 0 > L — M — S¢ 0.

We will denote by 7, the element of Ext,l\,lz(g)(L, 5S¢, respectively 77,
the element of Extﬁ,,z(G)(SlG , L) corresponding to this last two short exact
sequences.

Assertion 2 of Proposition 3.8 can now be rephrased as follows : there
exists a subfunctor ¥ of R, containing S, such that

R=M+Y%, S=MNnYE, /S~ ¢ S§.
XeKq(H)

Setting K = L + ¥, this gives the following diagram of subfunctors of I :

We give now a series of relations between elements in Extbz(G)(SlG , S
and Extﬁﬂi(a) (8§, S¢). For simplicity, we will drop the exponent G, and write
Ty, VX, S1, Ty, U, instead of 7'5, 7§, S¢, Tg, Uf respectively. We start with
a linearity relation between the 7’s

4.9. Lemma : Let ¢ and ¢ be two morphisms in Hom(G,k*). Then
Ty + Top = Totap m Ethl\Ai(G)(Sly Sl)

Proof : Let 0 — S — T, — S1 — 0 be the representative for 7, and 0 —
S1 — Ty — S1 — 0 be the representative for 7, described in Paragraph 3.5.
Given that both 7, and 7 are concentrated at the trivial subgroup, this will
also be the case for 7, + 7.

17



We construct a representative 0 — S7 — T — S; — 0 for the sum as in
Lemma A.2 working with the G-modules U, and U, that give the functors
T, respectively Ty. Then T'(1) is given by the following sequence of pushout
and pullback

ko k.U, U, , Uk ak.
7T1+7T2l l T TA
k U’ T(1) k

The same computation as in Lemma A.2 gives
T(l) ~ {(al, as, bl, bQ, C) € k5|a2 = bg}/{(o, d17 0, dg, —d; — d2)|d1, de € k’} .

This module has dimension 2, the action of G' on the class of (ay, as, by, by, ¢)
is induced by the action on U, for the first two terms, the action on U, for
the next two terms and is trivial on the last. More precisely,

g[(a’lv az, blv b2? C)] = [((],1 + Qp(g>a27 az, b1 + ¢<g)b27 b27 C)] :

Thus 7'(1) is a G-module with k-basis {[(0,1,0,1,0)],[(0,0,0,0,1)]} and ac-
tion given by

9[(0,0,0,0,1)] = [(0,0,0,0,1)]
and
g[(07 1,0,1, 0)] = [(go(g)l, 1, ¢(g)’ L 0)] = [(Ov 1,0,1, O)]+[(07 0,0,0, cp(g)—f—@/)(g))] :
This means that T'(1) = U, and that T =2 T,,. O

The following lemmas give relations involving (7,)?. We obtain different
relations in the cases p = 3 and p > 5. This is tidily related to the existence of
the functor T3 only when p > 5. This functor is constructed in Example 4.4 as
an application of Proposition 4.3 . The main ingredient used in both lemmas
is Lemma 12.2 of [2], that we use to detect zero elements in Ext,Q\,'z(G)(Sl, S1).

4.10. Lemma : Let k be a field of characteristic p > 5 and let ¢ €
Hom(G, k™). Then (1,)* =0 in Ext%,lz(c)(Sl, S1).

S
Proof : Recall from Example 4.4 that T, = Sl = T,, when H = Ker ¢.

1
Since p > 5, we have p—1 > 3, so the module U; defined in Example 4.4 has
zero traces. This module has a filtration

{0} CckCcU,CU;,
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such that Us/k = Uy and U3 /U, = k. 1t follows that T3 has a filtration
{0} CcS1CcThCT;

such that T3/57 = Ty and T3/T; = S;. Applying Lemma 12.2 of [2] to this
filtration shows that the sequence

S S
OHSl—><Si>—>(Si)—>Sl—>O

represents the zero element of Extﬁ,lz(G)(Sl,Sl). But this represents pre-
cisely (7,)%. u|

In the case p = 3, using the notation of Example 4.4, we have M = T, and
L = S;. Hence, the construction in the proof of previous lemma cannot be
used. We use instead the decomposition of the functor I from Proposition 3.8.

4.11. Hypothesis :  We assume from now on that G = (C,)" is an
elementary abelian p-group of rank r.

4.12. Lemma : Let k be a field of characteristic p = 3. Let G be an
elementary abelian p-group, and o € Hom(G,F}). Then

m EXt%/lz(G) (Sl, Sl) .

Proof : If ¢ = 0, there is nothing to prove, since 7, = 0 and the summation
in the right hand side is empty. So we assume ¢ # 0, and set H = Kerp.
With the notation of Proposition 3.8, let I D R D 57 be a filtration of the
functor I = Ind%S”. Then we have I/R ~ S; and, using that R/S; =

S
S1® @ Sy, weobtain [ /Sy ~ ( ! ) Moreover, we have
S1 6 Sx

XeKq(H) S¥)
XeKg(H)
S1®@ @& Sy
that R = ( XeKg(H) ) Lemma 12.2 of [2] applied to this filtration
S1
gives that the exact sequence
Sl @ @ SX Sl
()—>Sl—>( XeKq(H) >—>( >—>Sl—>0
S, S1® & Sy
XeKg(H)
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represents the zero element of Extﬁ,li () (51,51). The result follows as this

sequence also represents (7,)*+ >, Ax. 0
XeKg(H)

We prove now two commutation relations satisfied by the elements 7, and
Yx in EXti/lz(G) (Sl, Sl) :

4.13. Lemma : Let k be a field of characteristic p > 3 and G be an
elementary abelian p-group. Then

VXTe = TpVX
forall o : G — kT and X < Kergp, | X|=p.

Proof : We fix ¢ : G — k™ and X < Keryp, |X| = p. Let M be the
functor defined by the following data. First set M (1) = U,. Recall that this
means M (1) = k @ k as k-vector spaces and the action by g € G is given by
g(z,y) = (x + ¢(9)y,y). Then set M(X) = kdk = {(s,t)|s,t € k} with
trivial G-action and M (H) = 0 for all subgroups H of G different from 1
and X. Also set t(1,0) = (0,0), 5(0,1) = (1,0), ry(1,0) = (0,0) and
r+(0,1) = (1,0). Tt is easy to check that M is a cohomological Mackey
functor. The fact that X < Ker ¢ gives that the action of u € X is trivial

on U, and, thus > w-(z,y) =p- (z,y) =0 =177 (2, y).
ueX

S
The functor M has a subfunctor isomorphic to ( SX> and the quotient
1
S
by this subfunctor is isomorphic to ( Sl)' Define the Mackey functor M’
X

by M'(1) = U,, M'(X) =k, r1* (1) = (1,0) and ¢;*(z,y) = 0. It is straight

forward that M’ is a cohomological Mackey functor, that 7, is a subfunctor
Sx

of M'" and that M’ = <Sl) . Also, define the Mackey functor M” by
S1

M'"(1) = Uy, M"(X) =k, ri(1) = (0,0) and 7 (x,y) = y. Again, it is

straight forward that A" is a cohomological Mackey functor, that T, is a

S1
factor of M” when factoring out the socle Sx and that M” = <Sl>

Sx
Moreover, we get an exact sequence

0—-5—-M—->M-—->M —5 —0.
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It is now straightforward to show that this sequence is Yoneda equivalent to

Sx S S
0*&*(&)*(&>*(&)ﬁ&ﬁo

S S
via the canonical projections M’ — ( SX>7 M — ( Sl) and, respectively,
1 X

S
M" — < Sl> and also equivalent to
1

S Sx S
OH&ﬁ@J%(&)ﬁ@J%&%O
Sx

S
via the canonical injections | ') — M/,
S1 S1

> — M and, respectively,

Sx
respectively, 7,vx, the result follows. O

< ") — M”. Given that the last two exact sequences represent yx7,,

4.14. Lemma : Let k be a field of characteristic p > 3 and G be an
elementary abelian p-group. Then

( Z VX)Tp = To( Z x) -

XfKer © XfKer ©

Proof : Again if ¢ = 0, there is nothing to prove, so we assume ¢ # 0, and
set H=Kerp. Let T =T, g be the functor described in Paragraph 3.5 and
let L, respectively M, be the functors described in Example 4.4.

e First step.

(%) Tr,Te+ Z Yr,.x =0
XeKq(H)

where the notation is as follows : the functor L was defined in Proposition 3.8,
and the element 77, in Example 4.4.

Let ¢ : S1 — L be the inclusion map corresponding to the isomorphism
from S; to the socle of L. Taking the image under ¢ of Extension 3.3 yields
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the following diagram

Sx
0*>514>(Sl) SX 0

Sx

)4>SX4>0

whose bottom line can be spliced with Extension 3.4 to give the exact se-

quence
O—>L—>(Sz()—><5;)—>sl—>0 ,

which defines the element v, x € Extfﬂz(G)(Sl, L).
We apply Lemma 12.2 in [2] to the sequence of functors

{0}cLCRCI,
where R and [ are defined in Proposition 3.8. The quotient R/L is isomorphic

Sl ) S% SX
toS1® @ Sy, so R can be represented by ( XeKg(H) )
XeKg(H) L

The quotient I/R is isomorphic to Sy. The quotient I/L is isomorphic

to ( 51 ) Thus one gets a four terms exact sequence
. X
S1 @ ® Sy & q
XeKg(H)
S1® ® Sx Sy
0—>L—>< XeKg(H) )—)( )—>SI—>0
I S196 @& Sx

XeKqg(H)
representing a zero extension in Ext?(Sy, L), which is in fact (*).

e Second step.
(%%)  ToLVLx = ToUX

where 7,, =(0— 5, = M — L —0)
The left hand side of (**) is represented by

0—>51—>M—>(Sz()_>(§;>—>51—>0,

and the right hand side is represented by

O%S]_—>TH(§T>—><§;)HS]_HO )
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One constructs an equivalence of these extensions by taking inclusions
S S
maps 1" — M, respectively (SX) — ( X
1

I ), and the identity elsewhere.
The equality in (**) follows.

e Third step. Recall that we have
(*) TLeT, + Z Yo,x =0

XeKg(H)

() TorvLx = ToYX

(%) TorTre+ Y x =0
XeKq(H)

Left-multiplying (*) by 7, ; and right-multiplying (***) by 7, we get:
(Y, =7l Y, 7x)
XeKq(H) XeKq(H)
Then by (**) we replace the right term to get
( Z Tx)Tp = T Z Vx)
XeKg(H) XeKa(H)
hence (>  7x) and 7, commute. If G is cyclic, the sum has only one

XeKq(H)
term vy commuting with (the unique) 7. 0

5. Inductive construction of a basis of £
Recall that k£ be a field of characteristic p > 3 and G is an elementary
abelian p-group of rank r. Our aim is to construct a basis of the algebra

Extye () (ST, 5¢). We do this by induction. The technical structure of the
induction is build on the following general result on commutative diagrams :

5.1. Lemma : Suppose we have the following diagram of finite dimensional
k-vector spaces, where the four exterior triangles and the triangle (Eq, Fy, F1)
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are commutative.

Ey

N
e N

N Ve
NV

Suppose that, in the above diagram, the two maps Ey — Fy are the same and
that all the sequences

are exact, where o is any of the horizontal or vertical maps. Suppose more-
over that

(H1) Ker(Ey — Fy) = Ker(Ey — F1),

(H2) Ker(Ey — F) = Ker(E, — Fy),

(H3) Ey — Fy — Es is ezact,

(H}) Im(FE; — Fy) = Im(Fy — F).

Then we have

(C1) Im(F; — Ey) =Im(Fy — E)

(C2) Tm(Fy — Es) = Im(F; — E»)

(C3) Ey — Fy — E5 is exact

(C4) Im(E; — Fy) =Im(Fy — F3) and Fy & F} 2 F,
(C5) Ey — Fy — Ej is exact.

Proof : Choose a direct decomposition Fy = U @ V such that

E() = KGI'(E(] — F()) eU .

Given (H1) and the fact that the triangle (Ey, F1, Fp) is commutative, the
horizontal map in this triangle induces an isomorphism between Im(Ey — F})
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and Im(Ey — Fp). Similarly, (H2) and the fact that the triangle (E, Fy, F»)
is commutative, implies that the vertical map in this triangle induces an
isomorphism between Im(E; — Fy) and Im(E; — Fy).

Moreover, one has Im(Ey — Fy) = U and, using (H4) and the exactness
of the sequence Ey — Fy — Fy, that Im(F; — F}) = V.

Moreover Im(F; — Fy) = Ker(Fy — Ey) = Im(Ey — Fy) = U. Thus
we have F} =2 Im(E, — Fy) @ Im(Fy; — Fy) = V@ U, and it follows that
Im(Fy — F») = Fy/Im(Ey — F) =V and

Im(F; — E)) 2 F/Im(Fp — )2 UaV)/VU .
Since the sequence F; — F, — E is exact, one gets
FE2Vaolm(F, — E) .
By the commutativity of the triangle (Fy, Fy, F}),
Im(Fy — Ey) ClIm(Fy, — E,) =U .
Since the sequence E; — F, — F} is exact, we get that
FE2Vaolm(F, — F) .
By the commutativity of the triangle (Fy, F, F}), we have
Im(Fo — F)) DIm(Ey — F1) = U .

Hence F3 is contained in and, respectively contains a k-vector space isomor-
phic to U & V implying that F, = U & V and that the previous inclusions
are equalities.

In particular Im(Fy — E7) = U, hence (C1). Moreover, Im(E, — F,) =
Im(F; — F5) =V, and (C4) follows. Also

and, using (H3), we have Im(Fy — Fy) = Fy/Im(Ey — Fy) = V. The
commutativity of the triangle (Es, Fy, F}) implies then (C2). In the triangle
(Eo, F1, F»), we have Im(Ey — F) = Im(F, — F}) and, from the exactness
of the sequence Fy, — F| — F5, we have Im(Fy — Fy) = Ker(F; — Ej).
Now (C3) follows. Lastly, Im(E, — Fy) = Im(F) — Fy) = Ker(Fy, — Ey)
and (C5) follows. 0

5.2. First we fix some notation : we set Fy(n) := Extye ) (T, ST). In
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particular, Eg(n) = Fi(n) and L(n) = F,_5(n). Applying Hompye @) (—, S¥)
to the short exact sequences of Mackey functors in 4.4, yields two long exact
sequences

0 — Eg(0) = Foi1(0) = F,(0) = Eg(1) — ...

and
0 — F,(0) = Foy1(0) = Eg(0) — Fo(1) — ...

In what follows Eg(n — 1) — F,(n), Eg(n) — F,(n), F,(n) — Eg(n),
F,(n) = Eqg(n+1), Fy(n) — F,11(n) or Fyy1(n) — F,(n) are the maps in
the long exact sequences above.

W5.3. Proposition : Let p > 5. Then, for all n, the sequence
Eg(n) — L(n) — Eg(n)
given as above is exact and dim L(n) = dim Eg(n). Moreover, the sequence
E¢(n) = Eg(n+1) — Eg(n+2)

giwven by multiplication from the right with 7,, is exact, for any non trivial
homomorphism ¢ : G — kT and we have a direct decomposition of Eg(n)
inductively given by

Ec(n) = Ef(n) ®  Ejn -1,
@ Ef(n—2)s, @ Ef(n—3)7,s,
®  Efj(n—4)s ®  Efj(n—5)1,s2
o ...
® EB Eq(n —2)yx S @ Eg(n —3)yxT,
Xex Xex
& (D Ealn—Dsprx & €D Ealn —5)spxre
Xex Xex
&) @ Eg(n — 6)53,%( S @ Eg(n — 7)53,%(719
Xex Xex
D
G — 4G G/Y :
where Ef(m) := og yIsog " Ex(m) and s, := > 7x.
XeKg(H)

5.4. We do the proof by simultaneous induction on n and |G|. The cases
n =0 or G = 1 are trivial so we have the starting point for the induction.
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We suppose the proposition true for all the proper subgroups K of GG and all
m, and, respectively, for K = G and m < n, and we prove it for G and n+ 1.

5.5. By induction, we have that the sequence
Ex(m—1) — Exg(m) — Ex(m+1)

given by multiplication from the right with 7, is exact, for K and m as in
the previous paragraph, and for any non trivial homomorphism ¢ : K — k*.
To ease notation, we set E(n) := Eg(n), while still writing Ex(n) when K
is different from G.

5.6. The four exterior triangles and the triangle (E(n—1), Fyi2(n), Fyy1(n))
in the following diagram

Fd+2 Fd+1 n

\\ "

n—l

Fd+1

are commutative for all n and 1 < d < p —4. Setting E; = E(n+i— 1) and
F, = Fyyi(n) for i € {0,1,2}, for d = 1 the corresponding hypothesis (H3)
in Lemma 5.1 is the fact that E(n—1) — E(n) — E(n+1) is exact and the
hypotheses (H1), (H2), (H4) are easy to check. This starts the induction on d.
Then, (H1) to (H4) are satisfied for all d < p — 4. Indeed, the conclusions
(C3) and (C4) for F; = Fyy;(n) in the same Lemma 5.1 are the hypotheses
(H3) and (H4) for F; = Fj;41(n). Also, we have

Ker(E(n) — F,(n+1)) = Ker(E(n) — Fy(n+1)), Va,b € {1,...,p—3} and
Ker(E(n+1) — F,(n+1)) = Ker(E(n+1) — Fy(n+1)), Va,b € {2,...,p—2}.
Hence (H1)-(H2) for F; = F,;4:1(n) are obtained from (C1) and (C2) for
F; = Fyyi(n) and the long exact sequences in 5.2:

Im(F,(n) — E(n)) = Ker(E(n) — F,_1(n+1)),Va € {2,...,p— 2} and

Im(F,(n) — E(n+1)) =Ker(E(n+1) — F,11(n+1)),Va e {1,...,p—3}.
5.7. Thus, by induction on d and using Lemma 5.1, (C4) and (C5) are true
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for all d € {1,...,p —4}. In particular, (C5) for d = p — 4, in which case
Fy = F, 5(n) = L(n), together with the last part of (C4), for any integer
de{l,...,p— 4}, give the first two claims in Proposition 5.3.

5.8. The last ingredient we need to continue the induction on n is that the
sequence E(n) — E(n+ 1) — E(n + 2) is exact. These maps are given
by multiplication from the right by 7, in Yoneda’s notation. To prove the
exactness of the sequence at E(n + 1), we fix a decomposition G = H ® Y,
where Y has order p, and we explicitly decompose E(n + 1) with respect to
E(m) for m <n and to E(m) := ag/ylsog/YEH(m) for m <n+1.

5.9. Recall that we have the following properties:

o E(n+1)=L(n)r,® EB E(n—1)yx ® ES(n+1), where we have set
Xex

X = Ke(H)\ {Y}.
e the multiplication by vx induces an injective map from E(m) to E(m + 2).
e FE(n) — L(n) — E(n) is exact and dim L(n) = dim E(n).

e the multiplication by 7, induces an injective map from L(m — 1) to
E(m).

5.10. Let’s concentrate on L(n)71s .. It is easy to check that
Im(E(n) — L(n))1, = E(n)7, .
Moreover from the last diagram of the induction on d we have
L(n) =Im(E(n—1) — L(n)) + Im(E(n) — L(n)) .
In terms of Yoneda’s composition of extensions, this becomes

L(n)t, = E(n)1, + E(n — 1)1y 171 = E(n)1, + E(n — 1)( Z Yx) -
XeKq(H)

The above sum is not direct but we have a description of the intersection of
the two terms. This is given in the following proposition.

5.11. Proposition :

(#) = En)r,NEn—1)s,7x
= E(n—2)1,s,
= E(n—2)s,7,
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Proof : By the induction started in 5.4, the kernel of the multiplication from
the left by 7, from E(n) to E(n+1) is E(n—1)7,. Hence dim(E(n—2)s,7,) =
dim (E(n — 2)s,) — dim (E(n — 1)1, N E(n — 2)s,,)

Also by induction on n one can assume that E(n — 1)7, N E(n — 2)s, =
E(n—3)7,s, and that the multiplication by s, gives an injective map. Thus

dim (E(n — 2)s,7,) = dim (E(n—2)s,) — dim (E(n — 3)7,s,)
= dim E(n — 2) — dim (E(n — 3)7,)
=dim E(n — 2)7,

where the last equality is given by the exactness of the sequence
En—3)— FEn—-2)— En-1)

with maps given by multiplication from the right by 7,. Thus we get that
the multiplication from the right by s, gives a bijection between E(n — 2)7,
and E(n — 2)7,5,.

Moreover E(n —2)7,s, is contained in the intersection (#) which enables
the following computation:

dim (E(n — 2)7,s,) < dim(#)

dim E(n)71, + dim E(n — 1)s, — dim L(n)7 4

= dim E(n)7, + dim E(n — 1)s, — dim L(n)

= dimE(n—1)s, —dim E(n — 1)7,

< dimE(n —1) —dim E(n — 1)1,

dim E(n — 2)7,

We proved that the first and the last expression in the sequence are equal

so all the inequalities are equalities and we get (#) and, moreover, that
dim E(n — 1) = dim E(n — 1)s,. u|

5.12. Making use of the previous two propositions we get the following
decomposition of E(n + 1) as a direct sum :

E(n+1) 2 [Em)r,+En-1)( Y w)]o€P En—-1)yxeEjn+1).

XeKq(H) Xex

5.13. Using this, by induction on n one can get the following direct sum
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decomposition, which has the advantage that for every term, the multiplica-
tions from the right by monomials of type sg’yg(ﬂ;, for a > 0, for 6,¢ € {0, 1},
and («,0) # (0,0), induce bijective maps from F(n + 1 —2a — 2 — ¢) to
E(n+1):

En+1) =2 E%Mn+1) ®  ES(n),

@ Ef(n—1)s, ®  Ef(n—2)1,s,

®  Efj(n—3)s} ©  Efj(n—4)7,s2

o @PEn-1w © P En-2yxm,
Xex Xex

o @PEn-3)s,9x ® P En-Dsyx7,
Xex Xex

s EB E(n— 5)si7X <) @ E(n— G)Siﬁxw
Xex Xex

¥

5.14. Now, for every group homomorphism 1 : G — kT with Kery # H =
Ker ¢, the restriction from E(m) to Ex(m) gives an isomorphism between
the multiplication by 7, on E§(m) and the multiplication by TResG (1) Hence
the short exact sequence Ey(m) — Ey(m + 1) — Eg(m + 2) given by
multiplication from the left by TResG (1) induces a short exact sequence

E%(m) — ES(m+1) —» ES(m +2)

given by the multiplication from the left by 7,. Summing all up we get an
exact sequence E(n) — E(n+ 1) — E(n + 2) given by the multiplication
from the left by 7.

5.15. The duality sends the multiplication from the left by 7, to multipli-
cation from the right by 7, and we can exchange the roles of ¢ and 1 to get
that the exact sequence E(n) — E(n+ 1) — E(n + 2) given by multiplica-
tion from the right by 7, is exact for any homomorphism ¢ : G — k™. This
finishes the induction step on n and the proof of Proposition 5.3.

5.16. Remark that for p = 3 we have T; = s, thus, also in this case, 7, and
s, commute. Now, using in Corollary 3.10 the fact that L(n) = E(n) we get
the following decomposition as a direct sum

E(n+1)=2E(n)r,& P E(n—1)yx ® Ef(n+1) |
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Decomposing F(n) in the same way we get

E(n+1)=E(n—1)s,& @ E(n—2)yx7,@ Ef; (n)7,0 D E(n—1)yx D Ef (n+1)

XeX XeX

Continuing the replacement, we get the same decomposition as in 5.13.

5.17. Following the proof of Theorem 14.2 in [2] we get now the Poincaré
series for Ext’l'(,Iz (G)(SIG , S§) for all odd p. Indeed, the only ingredients needed
in that proof are the exactness of

0—Ln—1)® & Eg(n—2)— Eg(n) — Eg(n) —0 .
Xex
and that dim Eg(n) = dim L(n). These facts are proved in Corollary 3.10,
respectively in Proposition 5.3.

6. A presentation of the algebra &£

We are now able to give a presentation of the algebra & = Exty, (G)(SlG , S5,
Our aim is to present an algbra A that, a priori, has £ as quotient and then
to show that the two algebra are isomorphic. Let r be the rank of G and
0=Hy< Hi<---< H,_1 = H < H. = G be a maximal flag in G. We
choose a direct sum decomposition of G

G=YaoYo® - ®Y, 19Y, ,

where Y; is a complement of H;_; in H;. Let ¢, : G — F, be a non-trivial

morphism with kernel € Y;. For every ¢ € {1,...,r} we define an atom
0

7; of degree 1, and for every i € {1,...,r} and for every subgroup X < G of

order p, such that X H, | = H;, we say that X has position 1, and we define

an atom yx of degree 2.

Consider the set A = {7;]1 < i < r}U{ix|X < G, |X| = p}. A word
with atoms in A is obtained in the natural way, by concatenation. The
degree of a word is the sum of the degrees of its atoms. Denote by pos X the
position of X. We say that a word is of type ¢ if the atoms appearing in its
decomposition are among 7; and yx with pos X = ¢. The empty word is of
type i for all i € {1,...,r}.

6.1. For all n > 0, let A,, be the set of words of degree n with the property
that they don’t contain any of the following sequences of two consecutive
atoms:

(S1) 77y, for 1 < j <i <
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(S2) 79x, for 1 < pos X <i <r;

(S3) Ay; Ty, for 1 <i <r;

(S4) AxAy, for 1 < posY < pos X < r;

(Sh) AxTy, for 1 <i < posX <r.

We call pre-admissible the words w that can be written as a product w =
wiws . . . w, where, for 1 < ¢ < r, the word w; is of type i. We call admissible
the pre-admissible words that do not contain any of the sequences 7;7; and
Vv Ti-

6.2. Proposition : Let w be a word of degree n. Then w belongs to the
union of the A,’s for all n if and only if it is admissible.

Proof : The forbidden sequences (S1) for i # 7, (S2), (S4) and (S5) imply
that for j < ¢, the atoms 7; and 4x with pos X = ¢ only appear after 7;
and 4y with posY = j. This gives a pre-admissible form wjws ... w, for w.
Moreover, in each w;, the sequences 7;7; and Ay, 7; are explicitly forbidden by
(S1) for i = j and (S3). 0

6.3. Proposition : Let p be an odd prime and A be the graded k-algebra
with generators

{71 <i <r}in degree 1, and {yx|X < G, |X| = p} in degree 2,

subject to the relations

Tm=— > Axifp=3.
XﬁKergpi
(R2) 7.7+ 77 =0 for 1 <j<i<r, ifp>5, or
TiTj + 1T = > Ix— > x— > Axifp=3.
XfKer((pi—&-cpj) Xj(_Ker wi X LKerp;
(R3) 1, X2 Ax]=0;
XﬁKergoi

(R4) [j(2)T — pi(2)Tj, Y] =0, for 1 <i<j<1,xeG;

(R5) Ax, S Av] =0, forall X <Q <G, |X|=p, |Q|=p*
Y<Q

Then for alln > 1, A, is a basis of the k-vector space of elements of degree n

mn A.

6.4. Remark : In the case p = 3, Relation (R3) is implied by Relation (R1).
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The relations (R1) to (R5) are rather technical. This comes from the need
to have a finite, easy to order set of generators, appropriate for induction
arguments. We can give a more intuitive presentation for the algebra A if
we allow ourselves to increase the set of generators, by taking a generator 7,
for every group homomorphism ¢ : G — ]F;;. Here we identify 7,, with 7;.
The relations are then given by

(L1) 7y + Ty = Tt
(L2) 77, =0 and [f,, > Ax]=0,ifp =5, or
XfKergo
ToTop=— >, Axifp=3.
XfKergp
(L3) [71907:}/)(] = 07 for X S Kergp, ‘X‘ = D.

(L4) Fx, D Ayl =0, forall X <Q <G, |X|=p, |Q| =1
Y<Q

We leave it as an easy exercise to the reader to verify that the two pre-
sentation lead to isomorphic algebras. These two presentations yield Theo-
rem 1.3 and 1.2, respectively.

To prove Proposition 6.3, we need the following sequence of lemmas.

6.5. Lemma : Let [ < m and let X and Y be subgroups of order p of G,
such that pos X = m and posY = 1. Then we have Yxyy = yyyx +W where
W is a sum of admissible words yxyx» of type m and degree 4.

Proof : Firstly we prove that all the subgroups of order p of (X, Y), different
from Y, have position m. Indeed, if z is a generator of X and y is a generator
of Y, then denote by X, the subgroup of (X,Y’) generated by x + cy for
1<c¢c<p-1 Asey €Y < H,_1 and XH,,_1 = H,, we get that
X.H,,_1 = H,, so X, has position m.

Secondly we use Relation (R5) with @ = (X,Y) to get

p—1 p—1
Ixfy + > AxYx. = D AxAx + wix
c=1 c=1
Besides x4y, all the words appearing in the above equation are admissible

and, excepting Jy7x, they are all of type m. The result follows. g

HG.G. Lemma : Let | < m and X of order p with pos X = m. Then
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YxTi = Tiyx + W, where W is a linear combination of pre-admissible words
of type m and degree 3.

Proof : Let x be a generator of X. If we set a := ¢;(z) and § := ¢,(x),
relation (R4) gives that

/?X(ﬁ%l - Oﬁ—m) = (ﬁf—l - CmA—m)ﬁ/X

As T1yx, YxTm and 7,,7x are all pre-admissible words of degree 3, the latter
two being of type m, and § # 0 the result follows. The fact that we only get
pre-admissibility (and not admissibility) comes from the fact that we might
have X =Y,,. a
6.7. Lemma : FEvery word in w € A can be written as a finite sum of
pre-admissible words, i.e. w = ijl wj Wy . .. Wy, with wj; of type i for
1 <i <7 (the wj;’s are allowed to be the empty word). Moreover, if w is
composed of atoms of position at least [, then the w;;’s are empty for all i <
and 7 =1,2,...,s.

Proof : We define a quadruple lexicographic order O on the set of words in
A first by their degree then, for equal degrees, by the number of atoms of
degree 1 (i.e. the 7;’s) appearing in the word, then by the degree of the left
term in the decomposition uv, where v is pre-admissible, of maximal possible
degree, then, finally, by the number of atoms in v of higher position than the
rightmost atom in u. We prove the lemma by induction on the order O.
We'll see in the proof that the order by the number of atoms of degree 1
appearing in the word is only needed for the case p = 3.

The lemma is trivial for words of degree 1 and straight forward, using
Relations (R1) and (R2), for words of degree 2. Now take a word w € A
of degree d > 3. Write w = wwv, a concatenation, with v pre-admissible,
of maximal possible degree. If degu = 0, i.e. u is empty, then w is pre-
admissible and we are done. If the number of atoms in v of higher position
than the rightmost atom in w is 0 or the position of the leftmost atom in v is n
then w = v and we are again done. It is very important to remark that all the
manipulations we make in the proof, using the relations in Proposition 6.3,
are not increasing the number of atoms of order 1. Suppose now the lemma
is true for all words smaller than w for the order O. Let a be the rightmost
atom of u i.e. u = wa. If u # a then av is of degree smaller than w
so by the induction hypothesis on the degree av = ijl w; with w; pre-
admissible. Moreover w'w; is s maller than w with respect to the order O,
for all j =1,2,...,s, so, by the induction hypothesis, w'w; is a sum of pre-
admissible elements. Also by the induction hypothesis, the atoms appearing
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in the new words are of higher or equal position than the ones appearing in
w. Thus we can suppose that u = a is an atom of position m so u = 7, or
u = qx with pos X = m.

Case 1. Let u = 4x with X of position m. We distinguish two sub-cases:

i)

i)

v = Ayv" with Y of position [ and [ < m. Then, using Lemma 6.5, we
have yxv = yxYy v = Jyyxv’ + Wv'. We have that yxv" is smaller
than w, hence, by the induction hypothesis, it is equal to a sum of pre-
admissible words, composed of atoms of position at most {. Thus the
words obtained from these by multiplying to the left by 4y are still pre-
admissible. The expression W' is a sum of words of type 4 x4 x»v" with
the first two atoms of position m. Again, by the induction hypothesis
Axnv' is equal to a sum of pre-admissible words w;, which, moreover,
have less atoms of lower position than m than Ayv’. Thus yxw; is
smaller than w for the order O and, by the induction hypothesis, the
former is equal to a sum of pre-admissible words.

v = 7' with [ < m. Then, using Lemma 6.6, there exists a linear
combination W of words of type m such that yxv = yx 70" = anyxv'+
W', with a € k. Proceeding analogously to the part i) above we
obtain that both 7;9xv" and W' are equal to linear combinations of
pre-admissible words.

Case 2. Let u = 7,,,. We distinguish two sub-cases.

i)

i)

v = Ay with posY =1l and [ < m. Then Y < Kery,, and, using
Relation (R4), we have 7,7y v’ = 4y 7,,v". Moreover 7,,v" is of degree
smaller than w so, by the induction hypothesis, 7,,v" is a linear com-
bination of pre-admissible words having only atoms of position greater
or equal than [. So multiplying by 4y to the left still keeps these words
pre-admissible.

v = 7" with [ < m. Then, for p > 5, using Relation (R2) we have

TV = TmTv' = —7;7,v" and the result as in part i) of Case 2. When

p = 3 the proof is more difficult. Using also Relation (R2), we have

Tl = Ty TV = > Axv'— >0 Axv'— D> AxV—RTav.
Xj(_Ker(gpm—i-gol) XﬁKer ©m XﬁKer w1

Moreover pos X > [ for all 4x appearing in the right hand side term of
this equality. Now 7,0’ has smaller degree than w, so, by the induction
hypothesis, it is equal to a linear combination of pre-admissible words.
The other words appearing in the right hand side term have all a smaller
number number of atoms of degree 1 than w, so, by the induction
hypothesis, they are all equal to linear combinations of pre-admissible
words. Remark here that Case 1 and Case 2 i) are complet ely solving
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the case of words having at most one atom of degree 1, without needing
the Case 2 ii). So there is no problem in starting the induction process.

O

Proof : [of Proposition 6.3] Firstly we prove that A, is a set of generators
in degree n. Using Lemma 6.7 we have that any word of degree n can be
written as a linear combination of pre-admissible words wyws . . . w,., i.e. with
w; of type i for 1 <4 < r. Let w = wyws ... w, be one of these words. By
Lemma 6.2, it remains to show that, possibly using new linear combinations,
we also eliminate the expressions 7;7; and Ay, 7; that might appear in the
words w;. Let ¢ be lowest index such that w; has forbidden sequences, with
the convention that ¢ = r 41 is w contains no forbidden sequence. We define
a triple lexicographic order O on the words, given by decreasing order on
the index ¢ defined previously, then by the number of atoms of position %
and, finally, by the decreasing order of the degree of the its admissible prefix
of maximal degree. We proceed by induction on O. If the degree of the
word is at most one or there are no atoms of degree 1 or the word is already
admissible, then there is nothing to prove. Else, denote w_, := wijw, ... w;—;
and by w_, := wit w42 ... w,. Let f be the leftmost forbidden sequence in
w;. There are two kinds of forbidden sequences to consider.

i) f =77, Write w = u; fus. Using Relation (R1), we have f = 0 when

p>5and f= > Ax when p = 3. So, the case p > 5 is trivial
Xj{Ker @i

,and in the following we study the case p = 3. Now for X £ Ker ¢; we
have pos X' > 4. If pos X = ¢ then the word w_,u;%x doesn’t have any
forbidden sequence, and, by induction hypothesis, yxusw_, is equal to a
linear combination of admissible words. Suppose now that pos X > 1.
Using Lemma 6.7, 4xusw_, is equal to a linear combination of pre-
admissible words with atoms of position at least 7. Let v;...v, be one
of these words. Then w_,ujv;...v, is a pre-admissible word with less
atoms position ¢ than w. By the induction hypothesis, w_,uiv; ... v, is
equal to a linear combination of admissible words.

ii) f = Ay, 7. Write w = uy fus. Relation (R3) gives
X £Ker ; X #Ker p;—{Y;}

As H; 1 < Ker p; we have that any X ﬁ Ker ; is of position at least i.
The words w_,u1 7%y, w_,u17iyx and w_,uyx7; with X of position i
contain no forbidden sequence and are of degree bigger than w_,u;, so,
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by the induction hypothesis these words multiplied by w_, are equal to
linear combinations of admissible words. In the case of the u;7;yx and
u1yx7; with X of position greater than 7, using Lemma 6.7, 4xTusw._,
and 7 yxusw_, are equal to a linear combination of pre-admissible words
with atoms of position at least . Let v;...v, be one of these words.
Then w_,u1v; ... v, has less atoms of position ¢ than w, hence, by the
induction hypothesis, it is equal to a linear combination of admissible
words.

This proves that the algebra A is generated as k-module in degree n by A,,.

Secondly, to prove the k-linear independence of the words in A,,, we con-
struct k-algebra homomorphism © from A onto &, by setting: O(7;) = 7,,,
O(9x) := vx. This is indeed a surjective algebra homomorphism given that
the relations in A between the k-generators are all satisfied by their im-
ages through © inside Ext(Sy,S1) as showed in Lemma 4.9, Lemma 4.10,
Lemma 4.13 and Lemma 4.14 in this paper, and in [2, Proposition 12.9]. 0

6.8. This gives a presentation by generators and relations of £ as stated in
Conjecture 3.7.

6.9. Theorem : The morphism © is an algebra isomorphism from A to
Extiye (ST ST)-

Proof : ©: 4 — Ext;‘(,li(g)(Sf, S¢) is surjective and, in every degree n, the
algebra Ext"i(G)(Sf ,S¢) has at least the dimension over k of A". Hence

Exty. () (Sf,5¢) and A" have the same dimension over k and © is an iso-
morphism. a

A. Arithmetics of extensions in an abelian cat-
egory

This Appendix contain a series of classical results on computations in the
graded algebra of extensions in an abelian category. We present the general
framework and include the proofs of those results.

Let A be an abelian category. Consider following exact sequences in A

0 X Ay Ay e A, Y 0

and

0 X By By T B, Y 0
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representing the elements 7, € Ext’ (Y, X). Then n + ¢ is represented by
the exact sequence

0 X O Ay@By— - — A1 @ B, Ch Y 0

where Cf, respectively C,,, is pushout, respectively pullback, of the following
diagrams.

71‘1+ﬂ'2i l T TA
X Cy Ch Y

When n = 1 there is an ambiguity of this construction, given by the order
in which we take the pullback and the pushout. In fact, both choices lead
to equivalent exact sequences. To show this we need the following technical
lemma in abelian categories. Recall that if X is the pullback of the diagram

X—Y

L,

72T

one also says that the square (X,Y, Z,T) is cartesian and we have that X is
isomorphic to the kernel of Y @ Z e T . Analogously, if T" is the pushout

of the diagram

X—=Y
-
Z—T

one also says that the square (X,Y,Z,T) is co-cartesian and and we have

that T is isomorphic to the cokernel of X o9t Yoo Z.
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A.1. Lemma : Let A be an abelian category, and let

o B

0 A B C 0
A anyd
0 pD—-2 E—° F 0
@ P X
0 L—2> M—2 N 0
7—/ om// p/
T /// 0
0 P Q R 0

be a commutative diagram with exact rows, such that the square (A, B, D, E)
is co-cartesian, (Q,R,E,F) and (M, N, B,C) are cartesian, and the mor-
phism n : N — R is an isomorphism.

Then there exists a unique morphism m : M — L such that nu = Om
and by = om. Moreover, the square (L, M, P,Q) is commutative, and co-
cartesian, and the morphisms 7, and c are isomorphisms.

Proof : Via the universal properties of pullback/pushout and using that the
horizontal sequences are exact, one gets that ¢, 7 and ¢ are isomorphisms,
(A, B, D, E) is cartesian and, (@, R, E, F') and (M, N, B, C) are co-cartesian.
Now set u = 0y and v = nu. Then

eu =) = cfY = cxpu = pnp = pv .

Since the square (Q, R, E, F') is cartesian, there exists a unique morphism
m : M — ( such that

u=om and v=~60m .
Now setting s = mA and t = «l, we have
0s = om\ = u\ = b\ = bay = dap = o7l = ol = ot .

Moreover
0s =0mA =vA=nu\=0 |,

and
Ot =0rl=0 .

Thus s = 0t, and os = ot. As the square (Q, R, E, F') is cartesian, this
implies s = t, hence the square (L, M, P, Q) is commutative.
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Now let X be any object of A, and let f: X — M and g : X — P be
morphisms such that 7g = mf. Setting w = ¢ f and r = 7¢g, we have that

bw=b)f =omf =o0rg=0drg=90r .

As (A, B, D, E) is cartesian, there is a unique morphism y : X — A such
that

w=ay and r=ay .
Setting z = ¢ 'y : X — L, we have that

lz=lply=1tay=7"1r=9g .

Similarly
YAz =AYy =appTly=ay =w=1f .
Moreover
Az =0
and

nuf =0mf=0rg=0 .
On the other hand

xpf=Pvf=pay=0 .
As the morphism (y,n) : N — C @& R is an monomorphism, it follows
that uf = 0 = pAz. Since moreover YAz = ¥ f, and since (M, N, B,C) is
cartesian, it follows that Az = f.

If there is another morphism 2z’ : X — L such that (2’ = g and \z' = f,

then the morphism x = z — 2’ is such that [x = 0 and Az = 0. Then

apr =PIr =0 ,

and
apr =Tlr =0 .

Since (A, B, D, E) is cartesian, it follows that pz = 0, hence x = 0.
This shows that the square (L, M, P, Q) is cartesian. Thus, to show that

this square is also co-cartesian it is enough to have that P @ M men, Q is
an epimorphism. To prove this, suppose that we haveY € Aand f: Q) — Y
such that fm =0 and fm = 0. Then f factors through the cokernel of 7 so
there exist g : R — Y such that f = gf#. Then 0 = fm = gfm = gnu. As
( is an epimorphism and n is an isomorphism, the morphism nu is also an
epimorphism, so g = 0 and, thus f = 0. O

When considering A as a module category we have an explicit description
of the sum in Ext!,(Y, X).
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A.2. Lemma : Letn,¢ € Exty (Y, X). When constructing a representative
for n + & both choices for the order pullback, pushout lead to the same con-

struction. Moreover, if 0 X—A—>Y 0 s a representative

forn and 0 X B Y 0 s a representative of &. Then a
representative for n+ £ is given by 0 X C Y 0 with

J t

C ~{(a,b,x) € A®B®X]|s(a) =t(b)}/{(i(x1), j(x2), —x1—x2)|T1, 22 € X }.

Proof : To simplify notation, in the proof will be understood that a, b, z,y
run through A, B, X, respectively Y. Also let

I =A{(i(z1),j(xa), —x1 — x3)|x1, 20 € X }.

Consider 0 X Cop Y 0 be the representative for n + &
given by taking first the pushout and then the pullback. We have
XexaeB, Lvey.
7r1+7r2l l T TA
X C’ Cop Y

with C" ~ A@® B ® X/I and, thus,

Cor = {(c,y)lc € C,y € YV,5 BT = Aly)} = {(a,b,)[s(a) = t(B)}/T .

Similarly, consider () X Cho Y 0 be the representative
for n + £ given by taking first the pullback and then pushout. We have
AeB vy Xaox Lo
R e
C/l Y X Cbo

with € ~ {(a,b,y)|s(a) = y = i(b)} ~ {(a,b)|s(a) = (b)} and, thus,
Cho >~ {(a,b,z)|s(a) = t(b)}/I. Hence we obtain C,, = Cj, and there is no
ambiguity in the construction of a representative of n + &. O

We introduce here a notation we extensively use in the paper. Let

Cok
X AN A—2>Y bean exact sequence at A. Then we write A ~ < I(; o f) :
erg
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In particular, we have a short exact sequence
0 X r Y 0
X .
and a representative in Ext? (Y, X) can be written as

ex () ()

With this notation we have an easy way to compute the exact sequence
representing the sum in Exti(Y, X). The computation is an easy consequence
of the following technical lemma whose proofs are left to the reader.

A.3. Lemma : Let A be an abelian category, and let

0——xax—(Nea(?) Paap_ 0
e vely o

| :

0 X C z A®B—0

a

be a commutative diagram with exact rows, such that the square on the left
A® B)

1s co-cartesian. Then c is an isomorphism and, hence, C' ~ ( X

and its dual

A.4. Lemma : Let A be an abelian category, and let
0—AeB—(" Vo (L) Lovay —0
5] A B 53]

! Tg

0—=A®B C’ < Y 0

h

be a commutative diagram with exact rows, such that the square on the right

Y
is cartesian. Then f is an isomorphism and, hence, C" ~ (A ® B)'

A® B A B
Remark that, in the above notation, ( i'? ) has (X) and (X) as
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Y Y Y
subobjects and ( Ao C’> has ( A> and < C’) as factors. We conclude with

the computation of the exact sequence representing the sum in Exti\(Y, X).

A.5. Lemma : Letn, & € Exti(Y,X) be represented by

0 X Z Y Y 0
X A ’

respectively by

0 X % Y Y 0
X 7, '

Then n + & is represented by
AR Y
o—x—(P5) (L ) —r—0.

Proof : Apply Lemma A.3 and Lemma A .4. O
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