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1. Introduction

It is an old idea to try to describe representations of a finite group G by means
of induction from a subgroup A, as small as possible. Green’s theory of vertices
and sources is a classical instance of this procedure. A more general situation
consists of starting from a subquotient A/B (where B is a normal subgroup
of A), and apply first inflation from A/B to A, and then induction from A to G.
This appears in Harish-Chandra induction for reductive groups (see for instance
[DiDu]), and in a more general setting in Sections 5 and 6 of [Bo1]. Such theories
also use operations going in the reverse direction, namely restriction from G to a
subgroup S followed by deflation from S to S/T (where T is a normal subgroup
of S).

In the situations just mentioned, there is always the procedure of allowing
for a direct summand of the representation obtained by the operations of in-
flation and induction (respectively restriction and deflation). In this paper, we
investigate the same ideas, but without allowing for direct summands. This
appears naturally when the above operations are written in terms of bisets and
when one simply requires that a biset stabilizes a representation.

More precisely, we let L be an indecomposable RG-module, where R is a
commutative ring, and we require that a (G,G)-biset U stabilizes L, in the
sense that RU ⊗RG L ∼= L. We can assume that U is transitive, hence of the
form U ∼= IndinfGA/B Isoφ DefresGS/T , where A, B, S, T are as above and where
φ : S/T → A/B is an isomorphism. We then see that L ∼= IndinfGA/B

(
Isoφ(M)

)

where M = DefresGS/T (L) and Isoφ(M) denotes the module M transported by
the isomorphism φ.

When U is minimal in the sense that |S/T | is as small as possible, we prove
a uniqueness result which has the same flavor as the uniqueness of vertices
and sources up to conjugation but is a bit more complicated. In particular,
the isomorphism types of the group S/T and the module M are unique. This
immediately raises the question of the type of minimal group S/T which can be
obtained, but this is not at all easy. In fact, it is not easy in general to obtain
stabilizing bisets, although many examples show that they occur.

We prove various results which provide on the one hand some specific prop-
erties of stabilizing bisets and on the other hand partial information on the
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possibility of obtaining stabilizing bisets. In particular, we give two methods
for constructing them in suitable cases. The first method is to obtain idem-
potent bisets, which obviously are stabilizing bisets, and we characterize them
completely. The second source which yields stabilizing bisets occurs when a
subgroup T is expansive, by which we mean that it has some special behaviour
with respect to its conjugates (see Section 6 for a precise definition). If T is ex-
pansive and S = NG(T ), then the biset IndinfGS/T DefresGS/T is a stabilizing biset
for suitable modules. Note that, more generally, expansive subgroups appear
naturally in the study of biset functors (see [Bo4]).

Using the method of expansive subgroups, we prove that a simple module
is stabilized by a biset of the form IndinfGS/T DefresGS/T , where T is expansive,
S = NG(T ), and S/T is a Roquette group, in the sense that all normal abelian
subgroups of S/T are cyclic. As a corollary, it follows that any minimal biset
stabilizing a simple module must go down to a Roquette group. This result has
some analogy with the theory of cuspidal characters in the context of Harish-
Chandra induction and restriction. However, there are no restrictions on the
groups or the field, hence we cannot expect to obtain an extremely strong result
in general (for instance, any non-abelian simple group is a Roquette group).

In the special case of p-groups in coprime characteristic, we have an essen-
tially complete description of minimal stabilizing bisets by showing that they
can be obtained by the method of expansive subgroups. So we do get a strong
result in this case and we actually recover some of the results proved in [Bo2]
(which originated in the work of Roquette, hence the terminology). In contrast,
for a p-group in characteristic p, the minimal bisets stabilizing an indecompos-
able module are all obtained as idempotent bisets.

Let us end this introduction with a short description of the organization of
the paper. In Section 2, we review some basic facts about bisets and introduce
in particular the notion of a butterfly , which is a biset providing the passage
from a section of a group to another. The main uniqueness result for minimal
stabilizing bisets is proved in Section 3 and then a few elementary properties are
gathered in Section 4. In Section 5 and 6, we discuss the two constructions of
stabilizing bisets, namely idempotent bisets and bisets associated to expansive
subgroups. The main theorem showing that, for a simple module, one can go
down to a Roquette group is proved in Section 7. A few other results about
stabilizing bisets for simple modules appear in Section 8. The case of p-groups
in coprime characteristic is presented in Section 9, while Section 10 deals with p-
groups in characteristic p. Finally, various examples are presented in Section 11,
illustrating some of the previous results or providing answers to other natural
questions.

2. Bisets

Throughout this paper, we let G and H denote finite groups and we let R be a
commutative ring. Recall that a (G,H)-biset is a set U which is both a left G-set
and a right H-set, such that both actions commute (that is, (g·u)·h = g·(u·h)
for all g ∈ G, h ∈ H and u ∈ U). If U is a (G,H)-biset, then RU denotes the
free R-module with basis U . Clearly RU is an (RG,RH)-bimodule. Moreover,
if U is a disjoint union of bisets U = U1 ∪ U2, then RU = RU1 ⊕RU2.
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If U is a (G,H)-biset and V an (H,J)-biset (where J is another finite group),
then the product U ×H V denotes the (G, J)-biset defined by

U ×H V := (U × V )/∼ ,
where ∼ is the equivalence relation defined by (uh, v) ∼ (u, hv) for all u ∈ U ,
v ∈ V , h ∈ H. The left action of G on U ×H V is induced by the left action
on U and the right action of J is induced by the right action on V . Clearly,
R(U ×H V ) ∼= RU ⊗RH RV . We often write simply U V instead of U ×H V .

We now give a list of basic bisets which play an essential role. A section of
a group H is a pair (S, T ) of subgroups of H such that T /S. The group S/T
will be called the subquotient of H corresponding to the section (S, T ). If (S, T )
is a section of H, then the following bisets are defined:
• the (S, S/T )-biset InfSS/T := S/T (inflation);
• the (H,S)-biset IndHS := H (induction);
• the (S/T, S)-biset DefSS/T := T\S (deflation);
• the (S,H)-biset ResHS := H (restriction);
• whenever α : H → Q is a group isomorphism, the (Q,H)-biset Isoα := H
(isomorphism) with left action of Q via α−1. In particular, if x ∈ H, then
conjugation by x is an isomorphism cx : S/T → xS/xT and Conjx denotes the
corresponding ( xS/xT , S/T )-biset Isocx (conjugation by x).
• the (H,S/T )-biset IndinfHS/T := IndHS InfSS/T = H ×S (S/T ) ∼= H/T ;
• the (S/T,H)-biset DefresHS/T := DefSS/TResHS = (T\S)×S H ∼= T\H.

Every biset decomposes uniquely as a disjoint union of transitive bisets. We
recall the structure of transitive bisets.

2.1. Lemma. Let U be a transitive (G,H)-biset. Then there exist a section
(A,B) of G, a section (S, T ) of H, and an isomorphism φ : S/T → A/B such
that

U ∼= G/B ×A/B Isoφ ×S/T T\H ∼= G×A A/B ×A/B Isoφ ×S/T S/T ×S H .

In other words
U ∼= IndinfGA/B Isoφ DefresHS/T .

Moreover, the triple
(
(A,B), (S, T ), φ

)
is unique up to conjugation.

Proof : See [Bo1], Lemma 3, or [BoTh1], Lemma 7.4.

We shall need to relate two different sections (S, T ) and (C,D) of the same
group G. First we say that a section (S′, T ′) is a subsection of (S, T ) if we have
T ≤ T ′ ≤ S′ ≤ S. Next we consider the following easy case.

2.2. Definition. Two sections (S, T ) and (C,D) of a group G are said to be
linked if the following two conditions hold :
• The inclusion α : S ∩ C → S induces an isomorphism

α : (S ∩ C)/(T ∩D) → S/T .

• The inclusion β : S ∩ C → C induces an isomorphism

β : (S ∩ C)/(T ∩D) → C/D .

3



If (S, T ) and (C,D) are linked, then the isomorphism induced by the linking is
the composed isomorphism α (β)−1 : C/D → S/T .

The linking is shown in the following diagram :

S

FF
FF

FF
FF

F C

xx
xx

xx
xx

x

T

FF
FF

FF
FF

F S ∩ C D

xx
xx

xx
xx

x

T ∩D
It is easy to see that (S, T ) and (C,D) are linked if and only if (S ∩ C)T = S,
(S ∩ C)D = C, and S ∩D = T ∩ C.

Our next lemma is well-known (see for instance Chapter 4 in [La]) and is
illustrated in the following diagram.
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T

HHHHHHHHHH (T ∩ C)(S ∩D)

nnnnnnnnnnnn

QQQQQQQQQQQQ D

uuuuuuuuuu

T ∩ C S ∩D

2.3. Lemma (Zassenhaus). Let (S, T ) and (C,D) be two sections of a
group G. Then the subsection

(
(S ∩ C)T, (S ∩ D)T

)
of (S, T ) is linked to the

subsection
(
(S ∩C)D, (T ∩C)D

)
of (C,D). The isomorphism corresponding to

the linking is the composite

(S ∩ C)D/(T ∩ C)D −→ (S ∩ C)/(T ∩ C)(S ∩D) −→ (S ∩ C)T/(S ∩D)T .

2.4. Definition. Let (S, T ) and (C,D) be two sections of a group G. The
butterfly associated to (S, T ) and (C,D) is the (S/T,C/D)-biset defined as
follows :

Btf (S, T, C,D) := IndinfS/T(S∩C)T/(S∩D)T Isoψ DefresC/D(S∩C)D/(T∩C)D ,

where Isoψ is the biset corresponding to the isomorphism of the Zassenhaus
lemma :

ψ : (S ∩ C)D/(T ∩ C)D −→ (S ∩ C)T/(S ∩D)T .
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We say that ψ is the isomorphism associated to the butterfly.
The Zassenhaus lemma is also called the butterfly lemma and this explains

the terminology. In the special case where the two sections (S, T ) and (C,D)
are linked, the corresponding butterfly reduces to

Btf (S, T, C,D) = Isoψ ,

where ψ : C/D → S/T is the isomorphism induced by the linking, passing
through the middle group (S ∩ C)/(T ∩D).

We shall need the generalized Mackey formula. This formula appears as
Proposition A.1 in [BoTh2] and is the following :

2.5. Lemma (generalized Mackey formula). Let (A,B) and (S, T ) be two
sections of a finite group G. Then there is the following decomposition as a
disjoint union :

DefresGS/T IndinfGA/B ∼=
⋃

g∈[S\G/A]

Btf (S, T, gA, gB)Conjg .

3. Stabilizing Bisets

Bisets act on modules as follows. If U is a (G,H)-biset and L is a (left) RH-
module, then we define

U(L) = RU ⊗RH L ,

and this is clearly an RG-module. We also say that U is applied to L. This
notation is consistent with the notion of biset functor, where bisets act on the
left (see [Bo1], [Bo3], [Bo4]). If U is one of the basic bisets (inflation, induction,
deflation, restriction, isomorphism), then U(L) is obtained from L by applying
the corresponding operation with the same name (hence the name of the basic
bisets). We only recall here the operation of deflation, induced by the (G/N,G)-
biset DefGG/N := N\G, where N is a normal subgroup of G. The deflation
DefGG/N (L) is the R-module LN of coinvariants under the action of N (that is,
the largest quotient of L on which N acts trivially), viewed as an R(G/N)-
module.

The action of bisets has some elementary properties. First if U = U1 ∪U2 is
a disjoint union of two (G,H)-bisets, then

U(L) ∼= U1(L)⊕ U2(L) .

The composition of the action of bisets corresponds to the action of the product
of bisets, as follows. If U is a (G,H)-biset, V is an (H,J)-biset, and M is an
RJ-module, then

U
(
V (M)

)
= RU ⊗RH (RV ⊗RJ M) ∼= (RU ⊗RH RV )⊗RJ M
∼= R(U ×H V )⊗RJ M = (U ×H V )(M) .

This explains why we often write U V instead of U ×H V .
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3.1. Definition. Let U be a (G,G)-biset and let L be an RG-module. Then
U is said to stabilize L if U(L) ∼= L.

Note first that the identity biset Isoid stabilizes any module. More generally,
for any automorphism φ of G, the biset Isoφ stabilizes a kG-module L whenever
L is invariant under φ. So the notion of stabilizing biset generalizes the well-
known and widely used notion of invariance under an automorphism.

We are interested in bisets stabilizing an indecomposable module (and later
a simple module). If U =

⋃
i Ui is a decomposition of U as a disjoint union

of transitive bisets and if L is an indecomposable RG-module stabilized by U ,
then

L ∼= U(L) ∼=
⊕

i

Ui(L) .

Therefore we must have L ∼= Ui(L) for some i. For this reason, we shall assume
that the biset U is transitive, hence of the form (see Lemma 2.1)

U = IndinfGA/B Isoφ DefresGS/T

for some sections (A,B) and (S, T ) of G and some isomorphism φ : S/T → A/B.

3.2. Definition. Let U = IndinfGA/B Isoφ DefresGS/T be a (G,G)-biset stabi-
lizing an indecomposable RG-module L. Then U is said to be minimal if, for
any transitive (G,G)-biset U ′ = IndinfGA′/B′ Isoφ′ DefresGS′/T ′ stabilizing L, we
have |S/T | ≤ |S′/T ′| (or equivalently |A/B| ≤ |A′/B′|, because A/B ∼= S/T
and A′/B′ ∼= S′/T ′).

Now we come to our main uniqueness result.

3.3. Theorem. Consider two transitive (G,G)-bisets

U = IndinfGA/B Isoφ DefresGS/T and U ′ = IndinfGA′/B′ Isoφ′ DefresGS′/T ′

and assume that U and U ′ stabilize an indecomposable RG-module L. Let M =
DefresGS/T (L) and M ′ = DefresGS′/T ′(L).

1. There exists a unique double coset S′gA such that

Btf (S′, T ′, gA, gB)Conjg Isoφ(M) 6= {0} .

2. Suppose that U is a minimal biset stabilizing L. Let g belong to the unique
double coset of part (1). Then :

• The section ( gA, gB) is linked to the subsection
(
(S′∩ gA)T ′, (S′∩ gB)T ′

)
of (S′, T ′).

• Btf (S′, T ′, gA, gB) = IndinfS
′/T ′

(S′∩ gA)T ′/(S′∩ gB)T ′Isoβ, where β : gA/ gB →
(S′ ∩ gA)T ′/(S′ ∩ gB)T ′ is the isomorphism corresponding to the linking.

• M ′ ∼= IndinfS
′/T ′

(S′∩ gA)T ′/(S′∩ gB)T ′Isoβ Conjg Isoφ(M).

• If h ∈ G does not belong to the same double coset as g, the section
( hA, hB) is not linked to a subsection of (S′, T ′).

3. Suppose that U and U ′ are both minimal bisets stabilizing L. Let g belong
to the unique double coset of part (1). Then :

• The sections ( gA, gB) and (S′, T ′) are linked.
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• Btf (S′, T ′, gA, gB) = Isoβ, where β : gA/ gB → S′/T ′ is the isomor-
phism corresponding to the linking.

• M ′ ∼= Isoβ Conjg Isoφ(M).

• If h ∈ G does not belong to the same double coset as g, the section
( hA, hB) is not linked to (S′, T ′).

Proof : (1) Applying successively U and U ′, we obtain

L ∼= U ′
(
U(L)

) ∼= IndinfGA′/B′ Isoφ′ DefresGS′/T ′ IndinfGA/B Isoφ DefresGS/T (L) .

The middle composition DefresGS′/T ′ IndinfGA/B is applied to Isoφ(M) and we
decompose it according to the generalized Mackey formula (Lemma 2.5) :

DefresGS′/T ′ IndinfGA/B Isoφ(M) ∼=
⊕

g∈[S′\G/A]

Btf (S′, T ′, gA, gB)Conjg Isoφ(M) .

But this module is indecomposable because by applying IndinfGA′/B′ Isoφ′ to it we
obtain the indecomposable module L. Therefore, there exists a unique double
coset S′gA such that

Btf (S′, T ′, gA, gB)Conjg Isoφ(M) 6= {0} ,
proving (1). For later use, note that we have

DefresGS′/T ′ IndinfGA/B Isoφ(M) ∼= Btf (S′, T ′, gA, gB)Conjg Isoφ(M) .

(2) Let g be as in (1). Let

β : (S′ ∩ gA) gB/(T ′ ∩ gA) gB −→ (S′ ∩ gA)T ′/(S′ ∩ gB)T ′

denote the isomorphism associated to the butterfly Btf (S′, T ′, gA, gB). Let
(A′′, B′′) be the image of the section

(
(S′ ∩ gA)T ′, (S′ ∩ gB)T ′

)
of the group S′/T ′

under the isomorphism φ′ : S′/T ′ → A′/B′. Then φ′ induces an isomorphism
between the corresponding subquotients

φ′ : (S′ ∩ gA)T ′/(S′ ∩ gB)T ′ −→ A′′/B′′ .

Similarly let (S′′, T ′′) be the image of the section
(
(S′ ∩ gA) gB, (T ′ ∩ gA) gB

)
of the group gA/ gB

under the isomorphism φ−1 cg−1 : gA/ gB → S/T and let

φ : S′′/T ′′ −→ (S′g ∩A)B/(T ′g ∩A)B

be the isomorphism induced by φ : S/T → A/B. We then have

IndinfGA′/B′ Isoφ′ IndinfS
′/T ′

(S′∩ gA)T ′/(S′∩ gB)T ′

∼= IndinfGA′/B′ IndinfA
′/B′

A′′/B′′ Isoφ′ ∼= IndinfGA′′/B′′ Isoφ′
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and similarly

Defres
gA/ gB
(S′∩ gA) gB/(T ′∩ gA) gB Conjg Isoφ DefresGS/T

∼= Conjg Isoφ DefresS/TS′′/T ′′ DefresGS/T ∼= Conjg Isoφ DefresGS′′/T ′′ .

Using all these observations as well as part (1), we obtain

L ∼= IndinfGA′/B′ Isoφ′ DefresGS′/T ′ IndinfGA/B Isoφ DefresGS/T (L)
∼= IndinfGA′/B′ Isoφ′ Btf (S′, T ′, gA, gB)Conjg Isoφ DefresGS/T (L)

∼= IndinfGA′/B′ Isoφ′ IndinfS
′/T ′

(S′∩ gA)T ′/(S′∩ gB)T ′ Isoβ

Defres
gA/ gB
(S′∩ gA) gB/(T ′∩ gA) gB Conjg Isoφ DefresGS/T (L)

∼= IndinfGA′′/B′′ Isoφ′ Isoβ Conjg Isoφ DefresGS′′/T ′′(L) .

Thus L is stabilized by a (G,G)-biset with corresponding subquotients A′′/B′′ ∼=
S′′/T ′′. By minimality of U , we must have (S′′, T ′′) = (S, T ), and so (via cgφ) :

(
(S′ ∩ gA) gB, (T ′ ∩ gA) gB

)
= ( gA, gB) .

Therefore the isomorphism β associated to the butterfly Btf (S′, T ′, gA, gB) is
actually an isomorphism

β : gA/ gB −→ (S′ ∩ gA)T ′/(S′ ∩ gB)T ′ .

Thus the section ( gA, gB) is linked to the subsection
(
(S′ ∩ gA)T ′, (S′ ∩ gB)T ′

)
of (S′, T ′), and moreover

Btf (S′, T ′, gA, gB) = IndinfS
′/T ′

(S′∩ gA)T ′/(S′∩ gB)T ′ Isoβ .

Note also that if h ∈ G does not belong to the same double coset as g, then the
section ( hA, hB) cannot be linked to a subsection of (S′, T ′), otherwise we would
have an isomorphism γ : hA/ hB → (S′ ∩ hA)T ′/(S′ ∩ hB)T ′ corresponding to
the linking and we would obtain a non-zero module

Btf (S′, T ′, hA, hB)(M̃) = IndinfS
′/T ′

(S′∩ hA)T ′/(S′∩ hB)T ′Isoγ(M̃) ,

where M̃ = Conjh Isoφ(M).
Moreover, the equality of sections (S′′, T ′′) = (S, T ) above, which follows

from the minimality of U , also implies that φ = φ. Therefore we obtain

M ′ = DefresGS′/T ′(L)
∼= DefresGS′/T ′ IndinfGA/B Isoφ DefresGS/T (L)
∼= DefresGS′/T ′ IndinfGA/B Isoφ (M)
∼= Btf (S′, T ′, gA, gB)Conjg Isoφ (M)

∼= IndinfS
′/T ′

(S′∩ gA)T ′/(S′∩ gB)T ′ Isoβ Conjg Isoφ(M) .

This proves (2).
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(3) We continue with the above analysis and use now the minimality of U ′.
Then we must have also (A′′, B′′) = (A′, B′), and so (via φ′−1) :

(
(S′ ∩ gA)T ′, (S′ ∩ gB)T ′

)
= (S′, T ′) .

It follows that the two sections (S′, T ′) and ( gA, gB) are linked and β : gA/ gB →
S′/T ′ is the isomorphism corresponding to the linking. Moreover the corre-
sponding butterfly Btf (S′, T ′, gA, gB) is simply Isoβ . Finally, we also obtain
M ′ ∼= Isoβ Conjg Isoφ(M).

Applying this theorem to the case where U = U ′, we obtain the following
special case.

3.4. Corollary. Let U = IndinfGA/B Isoφ DefresGS/T be a minimal (G,G)-biset
stabilizing an indecomposable RG-module L and let M = DefresGS/T (L).

1. There exists a single double coset SgA such that

Btf (S, T, gA, gB)Conjg Isoφ(M) 6= {0} .

2. Let g belong to the unique double coset of part (1). Then :

• The sections (S, T ) and ( gA, gB) are linked.

• Btf (S, T, gA, gB) = Isoβ, where β : gA/ gB → S/T is the isomorphism
corresponding to the linking.

• The module M is invariant under ρ = β cg φ, where cg : A/B → gA/ gB
denotes the conjugation isomorphism.

• If h ∈ G does not belong to the same double coset as g, the section
( hA, hB) is not linked to (S, T ).

Proof : This follows immediately from the previous theorem.

Consequently, if we replace the section (A,B) by a conjugate (and modify
the middle isomorphism accordingly by composing with a conjugation), then we
can assume that the two sections (A,B) and (S, T ) are linked. Now we show
that the middle isomorphism in a stabilizing biset can always be chosen to be
the isomorphism induced by the linking.

3.5. Corollary. Let U = IndinfGA/B Isoφ DefresGS/T be a minimal (G,G)-biset
stabilizing an indecomposable RG-module L. There exists a section (Ã, B̃) =
( gA, gB) linked to (S, T ) and such that L is stabilized by the biset

Ũ = IndinfGeA/ eB Isoσ DefresGS/T ,

where σ : S/T → Ã/B̃ is the isomorphism corresponding to the linking. More-
over, if h /∈ SÃ, the section ( hÃ, hB̃) is not linked to (S, T ).

Proof : Let M = DefresGS/T (L). Let SgA be the unique double coset of
Corollary 3.4 and let Ã = gA and B̃ = gB. We know that M is invariant under

ρ = β cg φ ,
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where cg : A/B → Ã/B̃ is the conjugation isomorphism and β : Ã/B̃ → S/T is
the isomorphism corresponding to the linking. Thus we have Isoρ−1(M) ∼= M
and therefore

L ∼= U(L)
∼= IndinfGA/B Isoφ DefresGS/T (L)
∼= IndinfGA/B Isoφ(M)
∼= IndinfGA/B Isoφ Isoρ−1(M)
∼= IndinfGA/B Conjg−1 Isoβ−1(M)
∼= IndinfGeA/ eB Isoβ−1 DefresGS/T (L)

∼= Ũ(L) .

The result follows because σ = β−1.

3.6. Remark. Let U = IndinfGA/B Isoφ DefresGS/T be a minimal (G,G)-biset
stabilizing an RG-module L. One can always modify U by inserting an auto-
morphism Isoψ which leaves invariant the module M = DefresGS/T (L). It follows
from Corollary 3.5 that one can always modify U in this way in order to obtain
a middle isomorphism simply induced by the isomorphism corresponding to a
linking between (A,B) and (S, T ).

4. Elementary properties

We establish a few elementary properties of stabilizing bisets.

4.1. Lemma. Let U = IndinfGA/B Isoφ DefresGS/T be a (G,G)-biset stabilizing a
KG-module L, where K is a field. Then we have

dim(L) = |G : A| · dim(LT ) ,

where LT = DefSS/T ResGS (L) is the K-vector space of T -coinvariants under the
action of T .

Proof : The dimension is fixed under Isoφ and under InfAA/B , but it is multiplied
by the index |G : A| under IndGA.

In the special case where the two sections appearing in a stabilizing biset
coincide, we have the following additional information.

4.2. Proposition. Suppose that U = IndinfGS/T Isoφ DefresGS/T is a (not neces-
sarily minimal) (G,G)-biset stabilizing an indecomposable RG-module L. Then
NG(T ) = S.

Proof : The biset Btf (S, T, S, T ) acts as the identity and therefore

Btf (S, T, S, T ) Isoφ(M) = Isoφ(M) 6= {0} ,

10



where M = DefresGS/T (L). Thus the double coset S1S = S is the unique double
coset as in part (1) of Theorem 3.3. Let g ∈ NG(T ). Then the butterfly
associated to (S, T ) and ( gS, gT ) just consists of restriction to the subgroup
(S ∩ gS)/T followed by induction from this subgroup. Therefore we have

Btf (S, T, gS, gT )Conjg Isoφ(M) = Btf (S, T, gS, T )Conjg Isoφ(M)

= IndS/T(S∩ gS)/T Res
gS/T
(S∩ gS)/T Conjg Isoφ(M) ,

and this is non-zero since none of these operations can annihilate a module.
Therefore the double coset SgS must be equal to S. Hence g ∈ S, as was to be
shown.

Another useful fact is the following.

4.3. Proposition. Let U = IndinfGA/B Isoφ DefresGS/T be a minimal (G,G)-
biset stabilizing an RG-module L. Let M = DefresGS/T (L). Then M is a faithful
R(S/T )-module and Isoφ(M) is a faithful R(A/B)-module.

Proof : Let N/T be the kernel of the action of S/T on the module M . Then
M ∼= InfS/TS/N DefS/TS/N (M). It follows that L is stabilized by the biset

IndinfGA/B Isoφ InfS/TS/N DefS/TS/N DefresGS/T ∼= IndinfGA/C Isoφ′ DefresGS/N ,

where C/B is the image of N/T under the isomorphism φ and where φ′ : S/N →
A/C denotes the isomorphism induced by φ. By minimality of U , we must have
|S/N | = |S/T |, hence N = T .

5. Idempotent bisets

In this section, we introduce a first situation which gives rise to stabilizing bisets.
Among transitive (G,G)-bisets, the idempotent bisets turn out to be of special
interest and they are necessarily stabilizing bisets (for modules which may not
be indecomposable). We characterize idempotent bisets by means of a property
of double cosets and of linking of sections.

A (G,G)-biset U is called idempotent if U2 ∼= U , where U2 = U ×G U .

5.1. Proposition. Let U = IndinfGA/B Isoφ DefresGS/T be a (G,G)-biset. Then
U is idempotent if and only if the following three conditions hold:

(a) There is a unique (S,A)-double coset, in other words SA = G.
(b) The sections (S, T ) and (A,B) are linked.
(c) There exist x ∈ NG(A,B) and y ∈ NG(S, T ) such that

φσ−1φ = conjx φ conj−1
y ,

where σ : S/T → A/B is the isomorphism induced by the linking. Here conjx :
A/B → A/B and conjy : S/T → S/T are induced by conjugation by x and y
respectively.

11



Proof : By the generalized Mackey formula (Lemma 2.5), we have

U2 ∼= IndinfGA/B Isoφ DefresGS/T IndinfGA/B Isoφ DefresGS/T
∼=

⋃

g∈[S\G/A]

IndinfGA/B Isoφ Btf (S, T, gA, gB)Conjg Isoφ DefresGS/T .

If U2 ∼= U , then U2 must be transitive and therefore there can be only one term
in this disjoint union. It follows that there is a unique (S,A)-double coset, that
is SA = G. Since the butterfly Btf (S, T,A,B) factorizes by definition through
a subsection of (S, T ), while U cannot factorize through a proper subsection of
(S, T ), the two sections (S, T ) and (A,B) have to be linked and the butterfly
has to be induced by the isomorphism σ−1 : A/B → S/T corresponding to the
linking. Therefore, we are left with

IndinfGA/B Isoφ DefresGS/T = U ∼= U2 ∼= IndinfGA/B Isoφ Isoσ−1 Isoφ DefresGS/T .

Since two transitive bisets are isomorphic if and only if the corresponding
stabilizers in G × G are conjugate, this isomorphism implies the existence of
(x, y) ∈ G × G conjugating one stabilizer into the other. Here, x must nor-
malize both A and B, and y must normalize both S and T , while the iso-
morphism φσ−1φ : S/T → A/B must differ from φ by the two conjugations
conjx and conj−1

y . Thus we have x ∈ NG(A,B) and y ∈ NG(S, T ) such that
φσ−1φ = conjx φ conj−1

y .
Conversely, assume that (a), (b), (c) hold. Then the computation of U2

as above yields only one term, because of (a), with a butterfly Btf (S, T,A,B)
equal to Isoσ−1 , because of (b). Therefore, using (c), we obtain

U2 ∼= IndinfGA/B Isoφ Isoσ−1 Isoφ DefresGS/T
∼= IndinfGA/B Conjx Isoφ Conjy−1 DefresGS/T
∼= Conjx IndinfGA/B Isoφ DefresGS/T Conjy−1

∼= IndinfGA/B Isoφ DefresGS/T = U ,

because as (G,G)-bisets, Conjx and Conjy are isomorphic to the identity.

By Corollary 3.5, we can always assume that a minimal stabilizing biset has
the form U = IndinfPA/B Isoσ DefresPS/T , where the two sections are linked and
where σ : S/T → A/B is the isomorphism induced by the linking. With this
harmless assumption, we obtain the following corollary.

5.2. Corollary. Suppose that the sections (S, T ) and (A,B) are linked and
let σ : S/T → A/B be the isomorphism induced by the linking. If there
is a unique (S,A)-double coset (i.e. SA = G), then the (G,G)-biset U =
IndinfGA/B Isoσ DefresGS/T is idempotent.

Proof : Choosing x = y = 1 in Proposition 5.1, condition (c) becomes σσ−1σ =
conj1 σ conj1, which is obviously satisfied.
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5.3. Example. As instances of this, we have the following special cases:
• If N is a normal subgroup of G, then U = InfGG/N DefGG/N is idempotent.
• If G is a semi-direct product G = N o A, then U = IndGA Isoφ DefGG/N is

idempotent, where φ : G/N → A is the obvious isomorphism.
• Both cases can be unified by considering a normal subgroup N , a subgroup

A such that NA = G and B = A ∩ N . Then U = IndinfGA/B Isoφ DefGG/N is
idempotent, where φ : G/N → A/B is the obvious isomorphism.

Finally, we emphasize the following obvious result.

5.4. Proposition. Let U be an idempotent (G,G)-biset. For any RG-module L′,
the RG-module L = U(L′) is stabilized by U .

Note that if L′ is indecomposable, L = U(L′) need not be indecomposable
(it may also be zero), and that two non-isomorphic modules L′ and L′′ may
yield isomorphic modules U(L′) ∼= U(L′′). In the last two sections 10 and 11,
we shall see examples where such idempotents bisets appear.

6. Expansive subgroups

In this section, we introduce a second situation which yields stabilizing bisets.
We consider the case where the two sections appearing in a stabilizing biset
coincide and we describe one case where a biset of the form

U = IndinfGS/T Isoφ DefresGS/T

can stabilize a module. By Corollary 3.5, we can replace φ by the isomorphism
induced by the linking between (S, T ) and itself, namely the identity, so we
can assume that U = IndinfGS/T DefresGS/T . By Proposition 4.2, we must have
S = NG(T ), so we just need a condition on T . Recall that the G-core of a
subgroup H of G is the largest normal subgroup of G contained in H, that is,
the intersection of all the G-conjugates of H. The following definition appears
in [Bo4].

6.1. Definition. A subgroup T of G is called expansive in G if, for every
g /∈ NG(T ), theNG(T )-core of the subgroup

(
gT∩NG(T )

)
T contains T properly.

Note first that any normal subgroup of G is expansive in G. The role of
expansive subgroups in the study of biset functors is explained in [Bo4], but
we do not need this generality here. For our purposes, the use of expansive
subgroups appears in the following result.

6.2. Proposition. Let T be an expansive subgroup of G and let S = NG(T ).
Suppose that M is an R(S/T )-module such that, for any non-trivial normal
subgroup N/T of S/T , we have DefS/TS/N (M) = {0}. Let L = IndinfGS/T (M).

1. DefresGS/T (L) ∼= M .

2. The biset U = IndinfGS/T DefresGS/T stabilizes L.

3. EndRG(L) ∼= EndR(S/T )(M) as R-algebras.

4. L is indecomposable if and only if M is indecomposable. In particular, if
R is a field of characteristic prime to |G|, then L is simple if and only if
M is simple.
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Proof : By the generalized Mackey formula (Lemma 2.5), we have

DefresGS/T (L) = DefresGS/T IndinfGS/T (M)

∼=
⊕

g∈[S\G/S]

Btf (S, T, gS, gT ) Conjg(M)

∼=
⊕

g∈[S\G/S]

Conjg Btf (Sg, T g, S, T )(M)

∼= M ⊕
( ⊕

g∈[S\G/S]
g/∈S

Conjg Btf (Sg, T g, S, T )(M)
)
.

Now we have

Btf (Sg, T g, S, T ) = IndinfS
g/T g

(Sg∩S)T g/(Sg∩T )T g Isoψ DefresS/T(Sg∩S)T/(T g∩S)T

and we need to prove that DefresS/T(Sg∩S)T/(T g∩S)T (M) = {0} whenever g /∈ S.
Since T is expansive and g /∈ S = NG(T ), the S-coreN of the subgroup (T g∩S)T
contains T properly. In other words, N/T is a non-trivial normal subgroup
of S/T contained in (T g ∩ S)T/T . But we have

DefresS/T(Sg∩S)T/(T g∩S)T = DefresS/N(Sg∩S)T/(T g∩S)T DefS/TS/N .

Since DefS/TS/N (M) = {0} by assumption, DefresS/T(Sg∩S)T/(T g∩S)T (M) = {0}. This
proves (1) and (2) follows immediately.

By adjunction properties of induction and inflation, we have isomorphisms
of R-modules

EndRG(L) ∼= HomRG

(
L, IndinfGS/T (M)

)

∼= HomRS

(
ResGS (L), InfSS/T (M)

)

∼= HomR(S/T )

(
DefresGS/T (L),M

)
∼= HomR(S/T )(M,M) .

It is elementary to check that if α ∈ EndR(S/T )(M), then the corresponding
endomorphism in EndRG(L) is just the induced homomorphism IndGS (α). It
follows that the above isomorphism preserves products and hence is an isomor-
phism of R-algebras. This proves (3). Finally (4) follows from the fact that a
module is indecomposable if and only if there are no non-trivial idempotents in
its endomorphism algebra.

6.3. Corollary. Let T be an expansive subgroup of G and let S = NG(T ). Let
K be a field and suppose that M is a faithful simple K(S/T )-module. Then
the KG-module L = IndinfGS/T (M) is indecomposable and the conclusions of
Theorem 6.2 hold.

Proof : Let N/T be a non-trivial normal subgroup of S/T . Since M is simple
and faithful, the largest quotient of M with trivial action of N/T must be zero.
Thus we have DefS/TS/N (M) = {0} and Proposition 6.2 applies.
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7. Simple modules and genetic subgroups

In this section, we analyze further the situation of the previous section in the case
of a simple module. Thus we work with an expansive subgroup T and a biset
IndinfGS/T DefresGS/T where S = NG(T ). We prove the existence of a suitable
stabilizing biset of this form in the case of a simple module. We can work over
a field K, because any simple RG-module is in fact a simple KG-module for
some field K (a quotient of R).

The following definitions are inspired by [Bo2], [Bo3], [Bo4] and [Ba]. We
shall see later that the second definition agrees with the one given in [Bo3] (see
Remark 7.7).

7.1. Definition. (a) A finite group H is called a Roquette group if all its
normal abelian subgroups are cyclic. In other words, for any prime p, any
normal elementary abelian p-subgroup of H has order 1 or p.

(b) A subgroup T of a finite group G is called a genetic subgroup if T is an
expansive subgroup of G and NG(T )/T is a Roquette group.

Before stating the main result, we first prove the following lemma.

7.2. Lemma. Let G be a finite group, let N be a cyclic normal subgroup of G of
square-free order, and let K be a field whose characteristic does not divide |N |.
Let W be an indecomposable KG-module of the form W = IndinfGS/T (Y ), where
(S, T ) is a section of G and Y is a faithful simple K(S/T )-module. If T∩N = 1,
then T centralizes N and N ≤ S.

Proof : Since the order of N is coprime to the characteristic of K, the re-
striction ResGN (W ) is a semi-simple KN -module. Its isotypic components are
permuted by the action of G, and since W is indecomposable, they are permuted
transitively. In particular, the kernels of all simple summands of ResGN (W ) are
conjugate under G. But N is cyclic, so that any subgroup of N is characteristic
in N , hence normal in G. It follows that all the simple summands of ResGN (W )
have the same kernel, equal to the intersection N ∩Ker(W ).

Now Ker(Y ) = 1 because Y is faithful, and so Ker(W ) =
⋂
g∈G

gT . Therefore

N ∩Ker(W ) =
⋂

g∈G
(N ∩ gT ) =

⋂

g∈G

g(N ∩ T ) = 1

by assumption. It follows that ResGN (W ) is a direct sum of faithful simple KN -
modules. For any such simple KN -module X and any subgroup C of N , the
module DefNN/C(X) is a quotient of X, hence either {0} or X itself. But it
cannot be X if C is non-trivial because C acts trivially on DefNN/C(X) while X
is faithful. It follows that DefNN/C(X) = {0}, hence DefNN/C ResGN (W ) = {0}, for
any non-trivial subgroup C of N .

On the other hand, the restriction of W to N is equal to

ResGN (W ) =
⊕

g∈[G/NS]

IndNN∩ gS Conjg ResSN∩S InfSS/T (Y ) .

ButN∩ gS = g(N∩S) = N∩S becauseN is cyclic. So ResGN (W ) = IndNN∩S(M),
for a suitable K

(
N ∩ S)

-module M .
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Since the order of N is square-free, the subgroup N ∩ S has a complement
C in N . Thus

DefNN/C IndNN∩S = IsoN/CN∩S .

It follows that DefNN/C ResGN (W ) = IsoN/CN∩S(M) 6= {0}, since M 6= {0}. There-
fore C = 1, hence N ∩ S = N and N ≤ S. Now N and T normalize each other
and intersect trivially, so they centralize each other, as was to be shown.

7.3. Theorem. Let K be a field and let G be a finite group. If V is a simple
KG-module, then there exist a genetic subgroup T of G and a faithful simple
K

(
NG(T )/T

)
-module Y such that

V ∼= IndinfGNG(T )/T (Y ) .

We have Y ∼= DefresGNG(T )/T (V ), so that V is stabilized by the biset

U = IndinfGNG(T )/T DefresGNG(T )/T .

Moreover EndKG(V ) ∼= End
K

(
NG(T )/T

)(Y ) as K-algebras.

Proof : We only need to prove the existence of T and Y such that V ∼=
IndinfGNG(T )/T (Y ), because all the other statements then follow from Corol-
lary 6.3. We prove the existence of T and Y by induction on the order of G. As-
sume first that V is not faithful. Then V = InfG

G
(V ), where G = G/N for some

non-trivial normal subgroup of N of G and some simple KG-module V . Then
there is a genetic subgroup T = T/N of G and a faithful simple K(NG(T )/T )-
module Y such that

V ∼= IndinfG
NG(T )/T

(Y ) .

Moreover NG(T )/T ∼= NG(T )/T and it is straightforward to check that T is an
expansive subgroup of G if T is an expansive subgroup of G. It follows that T
is a genetic subgroup of G. Moreover we have V ∼= IndinfGNG(T )/T (Y ) in this
case. Therefore we can now assume that V is faithful.

If all the abelian normal subgroups of G are cyclic, then G is a Roquette
group and 1 is a genetic subgroup of G. In this case V ∼= IndinfGNG(1)/1(V ), and
V is faithful, so there is nothing to prove.

Now let E be any non-trivial abelian normal subgroup of G and assume that
E is non-cyclic. Replacing E by its socle (which is characteristic in E, hence
normal in G), we can assume that E is a direct product of elementary abelian
p-subgroups for various primes p.

Since E /G, the restriction ResGE(V ) is semi-simple. Let L be a simple sum-
mand of ResGE(V ), let I be the stabilizer of L in G, and let L̃ be the isotypic
component of ResGE(V ) containing L (that is, the sum of all submodules isomor-
phic to L). Then I acts on L̃, which is a simple KI-module, and V ∼= IndGI (L̃).

Let F denote the kernel of L. Then F /E, and E/F is cyclic, since it is
isomorphic to a multiplicative subgroup of the field EndKE(L). (Note that
EndKE(L) is a commutative field because L ∼= (KE)/M for some maximal
ideal M of KE and EndKE(L) ∼= (KE)/M as a K-algebra.) In particular F
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is non-trivial because E is not cyclic. Note also that the cyclic group E/F has
square-free order, because E is a product of elementary abelian groups.

Set H = NG(F ). Then I ≤ H, and V = IndGH(W̃ ), where W̃ = IndHI (L̃).
Then W̃ is a simple KH-module, since for any proper KH-submodule W̃ ′ of W̃ ,
the induced module IndGH(W̃ ′) is a proper KG-submodule of V , hence equal to
{0} because V is simple. Thus W̃ ′ = {0}. Moreover F acts trivially on W̃ , for
F acts trivially on L̃ and F /H. Setting W = DefHH/F (W̃ ), we obtain that

V ∼= IndinfGH/F (W ) .

Since F is non-trivial, the induction hypothesis implies that there exists a
genetic subgroup T/F of H/F and a faithful simple K

(
NH/F (T/F )/(T/F )

)
-

module Y such that W is obtained from Y by inflation followed by induction
to H/F from the group

NH/F (T/F )/(T/F ) ∼= NH(T )/T .

In other words
W ∼= IndinfH/FNH(T )/T (Y ) .

It follows that
W̃ ∼= IndinfHNH(T )/T (Y ) ,

and that
V ∼= IndinfGNH(T )/T (Y ) .

7.4. Claim. The following conditions hold :
(a) E ∩ T = F ;
(b) E ≤ NG(T );
(c) NG(T ) ≤ H, that is, NG(T ) = NH(T );
(d) The characteristic of K does not divide |E/F |.

The kernel of W̃ is equal to the intersection of the H-conjugates of the kernel of
InfNH(T )

NH(T )/T (Y ), which is equal to T since Y is a faithful K
(
NH(T )/T

)
-module.

Thus
Ker(W̃ ) =

⋂

h∈H

hT .

It follows that

E ∩Ker(W̃ ) =
⋂

h∈H
(E ∩ hT ) =

⋂

h∈H

h(E ∩ T ) .

Now the group (E ∩ T )/F is a subgroup of the cyclic group E/F , hence it is a
characteristic subgroup. Since H = NG(F ), it follows that H normalizes E ∩T .
Thus

E ∩Ker(W̃ ) = E ∩ T .
On the other hand W̃ = IndHI (L̃), so Ker(W̃ ) is the intersection of the H-
conjugates of the kernel of L̃. Thus

E ∩Ker(W̃ ) =
⋂

h∈H

(
E ∩ hKer(L̃)

)
=

⋂

h∈H

h
(
E ∩Ker(L̃)

)
.
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But E ∩Ker(L̃) is the kernel of the restriction ResIE(L̃), which is the L-isotypic
component of ResGE(V ). In particular, its kernel is equal to the kernel F of L.
This shows that E ∩ Ker(W̃ ) =

⋂
h∈H

hF = F . Thus we finally get E ∩ T = F ,

proving (a). It follows in particular that NG(T ) ≤ NG(F ) = H, i.e. NG(T ) =
NH(T ), so (c) holds.

Now we prove that the characteristic p of K does not divide |E/F |. This is
obvious if p = 0. If p > 0, any p-subgroup of the cyclic group E/F acts trivially
on any simple K(E/F )-module. But since E/F admits a simple faithful module
over K, it follows that p does not divide |E/F |. Thus (d) holds.

Finally, we can apply Lemma 7.2 to the normal cyclic subgroup N = E/F
of H/F , the section (NH(T )/F, T/F ), and the simple module

W ∼= IndinfH/FNH(T )/T (Y ) .

Note that condition (d), which we have just proved, is part of the assumption
of the lemma, and that condition (a) implies that (E/F ) ∩ (T/F ) = 1. Note
also that |E/F | is square-free as mentioned before when F was introduced.
Lemma 7.2 asserts that T/F centralizes E/F and that E/F ≤ NH(T )/F . In
particular, E ≤ NG(T ) and (b) holds.

7.5. Claim. The subgroup T is a genetic subgroup of G.
We know that T/F is a genetic subgroup of H/F . First notice that NG(T )/T =
NH(T )/T ∼= NH/F (T/F )

/
(T/F ) is a Roquette group. So we only have to show

that T is an expansive subgroup of G. Let x ∈ G such that x /∈ NG(T ). Assume
first that x ∈ H. Then, since T/F is an expansive subgroup of H/F , there
exists a normal subgroup M/F of NG(T )/F = NH(T )/F such that

T/F < M/F ≤ (
xT ∩NG(T )

)
T/F .

It follows that T < M ≤ (
xT ∩NG(T )

)
T and M is a normal subgroup of NG(T ),

as required. Assume now that x /∈ H. We have xF 6= F because x /∈ H, hence
F < xF ·F ≤ E and also T ≤ xF ·T ≤ ET . But by Claim 7.4, E ≤ NG(T ) and
E ∩ T = F , so the normal cyclic subgroup E/F of H/F is isomorphic to the
normal subgroup ET/T of NG(T )/T . Consequently, xF ·T/T ∼= xF ·F/F 6= 1.
Since any subgroup of a cyclic normal subgroup is also normal, xF ·T is a normal
subgroup of NG(T ), contained in

(
xT ∩NG(T )

)
T and containing T properly, as

was to be shown.

7.6. Remark. Using the method of this proof, we can actually prove more and
we briefly indicate the additional conclusions. We write Σ(G) for the socle of G,
that is, the product of all minimal normal subgroups of G. This decomposes
as Σ(G) ∼= Σna(G) × Σab(G), where Σna(G) is isomorphic to a direct product
of non-abelian simple groups and Σab(G) is isomorphic to a direct product of
groups of prime order.

Now the fact that T is expansive means that, for every x /∈ NG(T ), there
exists a subgroup Mx ≤ T such that x(Mx) ≤ NG(T ) and x(Mx)T has an
NG(T )-core containing T properly. We can obtain further that Mx is normal
in T and that x(Mx)T/T is contained in Σab

(
NG(T )/T

)
.

18



On the other hand, assuming that V is faithful, we can also obtain that
Σ(G) normalizes T , that Σna(G) ∩ T is a direct factor of Σna(G), and that its
complement centralizes T .

All these additional properties can be realized, but they do not seem to
improve in any useful way our analysis of minimal stabilizing bisets.

7.7. Remark. Suppose that G is a p-group and K = Q. In that case, the
definition of a genetic section given in [Bo2] and [Bo3] is different from the one
given here and requires that the conclusions of Theorem 7.3 are satisfied. But
Proposition 4.4 in [Bo3] asserts exactly that T is a genetic subgroup in the sense
given here if and only if (NG(T ), T ) is a genetic section in the sense of [Bo2]
and [Bo3].

In Theorem 7.3, the two sections appearing in the stabilizing biset are the
same section (NG(T ), T ). It is not clear if one can always find a minimal biset
stabilizing a simple module with this additional property. However, the theorem
has at least the following consequence for minimal bisets stabilizing a simple
module.

7.8. Corollary. Let U = IndinfGA/B Isoφ DefresGS/T be a minimal (G,G)-biset
stabilizing a simple KG-module V . Then S/T is a Roquette group.

Proof : Let W = DefresGS/T (V ). It is clear that W is a simple K(S/T )-
module, because V is simple by assumption and V ∼= IndinfGA/B Isoφ(W ). By
Theorem 7.3 applied to the group S/T and the simple module W , there exists
a section (Q,R) of S/T such that Q/R is a Roquette group and

W ∼= IndinfS/TQ/R DefresS/TQ/R(W ) .

It follows that V is stabilized by the biset

IndinfGA/B Isoφ IndinfS/TQ/R DefresS/TQ/R DefresGS/T ∼= IndinfGA′/B′ Isoφ′ DefresGQ/R ,

where (A′, B′) is the image of (Q,R) under the isomorphism φ and where φ′

denotes the restriction of φ to Q/R. By minimality of the biset U of the state-
ment, we must have |Q/R| = |S/T |, hence Q = S and R = T . Thus S/T is a
Roquette group.

8. Further results on simple modules

We now return to the case of an arbitrary stabilizing biset, but we continue to
consider simple modules. Our purpose is to obtain results on the section (A,B)
when there is a minimal biset U = IndinfGA/B Isoφ DefresGS/T stabilizing a simple
KG-module V . We first obtain a inequality of sizes.
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8.1. Proposition. Let K be a field and let U = IndinfGA/B Isoφ DefresGS/T be
a (not necessarily minimal) biset stabilizing a simple KG-module V . Then
|A| ≥ |NG(T )| and in particular |A| ≥ |S|.

Proof : We have DefresGNG(T )/T (V ) = VT , the largest quotient of V with trivial
action of T (viewed as a module for NG(T )/T ). Therefore there is a surjective
homomorphism

ψ : ResGNG(T )(V ) −→ VT ,

where VT is viewed as a module for NG(T ) by inflation. It follows that there is
a non-zero homomorphism of KG-modules

ψ̃ : V −→ IndGNG(T )(VT ) ,

and this is injective by simplicity of V . Therefore

dim(V ) ≤ |G : NG(T )| dim(VT ) .

By Lemma 4.1, we also have dim(V ) = |G : A| dim(VT ) (where VT is actually
restricted to S/T , but this does not change its dimension). The result follows.

Now we want to obtain information on the section (A,B).

8.2. Lemma. Let K be a field and let (A,B) be a section of G.

1. Assume that there exists a section (Â, B̂) such that A < Â and the inclu-
sion A→ Â induces an isomorphism A/B ∼= Â/B̂. Then IndinfGA/B(Y ) is
not simple, for any K(A/B)-module Y .

2. Assume that there exists a K(A/B)-module Y such that IndinfGA/B(Y ) is
simple (hence Y is simple too). For any subgroup H of G normalized by A,
we have H ∩A ≤ B if and only if H ≤ B.

Proof : (1) Let Ŷ be theK(Â/B̂)-module obtained from Y via the isomorphism
A/B ∼= Â/B̂. Then we have

Res
bA
A Inf

bA
bA/ bB(Ŷ ) ∼= InfAA/B(Y ) .

Therefore

IndinfGA/B(Y ) = IndGA InfAA/B(Y )

∼= IndGA Res
bA
A Inf

bA
bA/ bB(Ŷ )

∼= IndGbA Ind
bA
A Res

bA
A Inf

bA
bA/ bB(Ŷ )

∼= IndGbA
(
Inf

bA
bA/ bB(Ŷ )⊗ Ind

bA
A(K)

)
.

The module Ind
bA
A(K) has a trivial submodule K, and this is a proper submodule

of Ind
bA
A(K) because A < Â. Tensoring with Inf

bA
bA/ bB(Ŷ ) and then inducing to G,

we see that IndGbA
(
Inf

bA
bA/ bB(Ŷ ) ⊗ Ind

bA
A(K)

)
has a proper submodule isomorphic

to IndinfGbA/ bB(Ŷ ). It follows that IndinfGA/B(Y ) is not simple.
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(2) One implication is clear, so assume that H ∩ A ≤ B. We have A ≤ AH
and H is a normal subgroup of AH because A normalizes H by assumption.
Now the inclusion A → AH induces an isomorphism A/B ∼= AH/BH because
H ∩A ≤ B, hence BH ∩A = B. Since IndinfGA/B(Y ) is simple, (1) implies that
A = AH and B = BH, that is H ≤ B.

8.3. Proposition. Let U = IndinfGA/B Isoφ DefresGS/T be a (not necessarily
minimal) (G,G)-biset stabilizing a simple KG-module V . Then any non-trivial
subgroup of NG(B)/B normalized by A/B intersects A/B non-trivially.

Proof : If H/B is a non-trivial subgroup of NG(B)/B normalized by A/B,
then H 6≤ B. Since IndinfGA/B Isoφ DefresGS/T (V ) ∼= V is simple, Lemma 8.2
applies. Therefore H ∩A 6≤ B, that is, (H/B) ∩ (A/B) is non-trivial.

For a stablizing biset where both sections coincide, we have seen that the top
subgroup of the section is necessarily the normalizer of the bottom subgroup
(see Proposition 4.2). Here is another case where this happens.

8.4. Proposition. Let U = IndinfGA/B Isoφ DefresGS/T be a minimal (G,G)-biset
stabilizing a simple KG-module V . If B is a normal subgroup of G, then A = G
(that is, A is the normalizer of B).

Proof : Let M = DefresGS/T (V ). Then V ∼= IndinfGA/B Isoφ(M) and since B
is a normal subgroup of G, it must act trivially on V . Therefore B ∩ S acts
trivially on ResGS (V ) and we have equality of the coinvariants

ResGS (V )T = ResGS (V )(B∩S)T .

By definition, the left hand side is M = DefresGS/T (V ) and so (B ∩ S)T/T acts
trivially on M . But M is a faithful K(S/T )-module by Proposition 4.3, using
the minimality of U . It follows that (B ∩ S)T/T is trivial, so that B∩S = B∩T .

Now we have BT ∩S = (B∩S)T = (B∩T )T = T and therefore the inclusion
S → BS induces an isomorphism α : S/T → BS/BT . Moreover, since B acts
trivially on V , we have VBT = VT , hence

DefresGBS/BT (V ) ∼= IsoαDefresGS/T (V ) .

It follows that V is stabilized by the biset

U ′ = IndinfGA/B Isoψ DefresGBS/BT ,

where ψ = φα−1. By Corollary 3.5, V is also stabilized by the biset

Ũ = IndinfGgA/B Isoσ DefresGBS/BT ,

where ( gA,B) = ( gA, gB) is linked to (BS,BT ) and σ : BS/BT → gA/B is
the isomorphism corresponding to the linking. But since BT contains B, the
isomorphism of the linking σ−1 : gA/B → BS/BT is induced by an inclusion
gA→ BS. It follows that BT ∩ gA = B.
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Now we apply Proposition 8.3. The subgroup BT/B is normalized by
gA/B, because gA ≤ BS. Since BT/B intersects gA/B trivially, we must
have BT/B = 1, hence BT = B. Finally, by Lemma 4.1, we have

dim(V ) = |G : gA| · dim(VBT ) = |G : gA| · dim(VB) = |G : gA| · dim(V )

because B acts trivially on V . Therefore |G : gA| = 1, hence A = G.

We end this section with an easy observation which is in the same vein as
Lemma 8.2.
8.5. Proposition. Let U = IndinfGA/B Isoφ DefresGS/T be a (G,G)-biset stabiliz-
ing a simple KG-module V and let M = Isoφ DefresGS/T (V ). If M is the trivial
K(A/B)-module, then V is the trivial KG-module and A = G.

Proof : We have V ∼= IndGA(K), where K denotes the trivial module of the
group A (inflated from M). Since the trivial KG-module is always a submodule
of IndGA(K), this module can be simple only if A = G, and then V is the trivial
module.

9. p-groups in coprime characteristic

Suppose that G is a p-group and K is a field of characteristic different from p. In
that case, we show that the stabilizing biset obtained in Theorem 7.3 is minimal.
In fact, we recover one of the main results obtained by the first author [Bo2]
when K = Q and generalized by Barker [Ba] when K has characteristic 0.

An important ingredient is the classification of all Roquette p-groups, which
we first recall.
9.1. Lemma. Let p be a prime and let P be a Roquette p-group of order pn.

1. If p is odd, then P is cyclic.

2. If p = 2, then P is cyclic, generalized quaternion (with n ≥ 3), dihedral
with n ≥ 4, or semi-dihedral (with n ≥ 4).

3. If P is cyclic or generalized quaternion, there is a unique subgroup Z of
order p. Any non-trivial subgroup contains Z.

4. If P is dihedral and Z = Z(P ), then any non-trivial subgroup contains Z,
except for two conjugacy classes of non-central subgroups of order 2. If T
is a non-central subgroup of order 2, then S = NP (T ) = TZ is a Klein
4-group and NP (S) is a (dihedral) group of order 8.

5. If P is semi-dihedral and Z = Z(P ), then any non-trivial subgroup con-
tains Z, except for one conjugacy class of non-central subgroups of order 2.
If T is a non-central subgroup of order 2, then S = NP (T ) = TZ is a Klein
4-group and NP (S) is a (dihedral) group of order 8.

Proof : See Chapter 5, Section 4, in [Go].

We have seen in Corollary 7.8 that a minimal biset stabilizing a simple
module factors through a subquotient which is a Roquette group. We now
show conversely that Roquette groups are minimal for p-groups in characteristic
different from p.
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9.2. Theorem. Let p be a prime, let P be a Roquette p-group, let K be a field
of characteristic different from p, and let Y be a simple faithful KP -module. If
Y is stabilized by a biset U = IndinfPA/B Isoφ DefresPS/T , then (A,B) = (S, T ) =
(P,1).

Proof : There is nothing to prove if P = 1. We now assume that P 6= 1, so that
Y is non-trivial. Let M = Isoφ DefresPS/T (Y ). Then Y ∼= IndinfPA/B(M), and M
is a simple K(A/B)-module. Moreover M is non-trivial, by Proposition 8.5.

Since B acts trivially on M , the group B ∩ Z(P ) acts trivially on Y , thus
B∩Z(P ) = 1 because Y is faithful. It follows from Lemma 9.1 that B is trivial,
except possibly if p = 2, P is dihedral or semi-dihedral, and B is a non-central
subgroup of order 2.

Similarly, setting Z = T ∩ Z(P ), we have

DefresP/ZS/T DefPP/Z(Y ) = DefresPS/T (Y ) = Isoφ−1(M) 6= {0} ,

and therefore YZ = DefPP/Z(Y ) 6= {0}. But YZ is a quotient of Y and Z acts
trivially on YZ . Since Y is simple and faithful, it follows that Z = 1. Thus
T = 1, except possibly if p = 2, P is dihedral or semidihedral, and T is a
non-central subgroup of order 2.

Assume first that T = 1. In this case dimK(Y ) = |P : A| dimK(Y ) by
Lemma 4.1, thus A = P . Therefore B is a normal subgroup of P and it cannot
be a non-central subgroup of order 2. It follows that B = 1, and (A,B) = (P,1).
Since S/T ∼= A/B, we also have (S, T ) = (P,1).

So we can assume that T is non-trivial and we need to show that this case is
impossible. We have p = 2, P is dihedral or semidihedral, and T is a non central
subgroup of order 2. Note that P has order at least 16, because the dihedral
group of order 8 is not Roquette. Moreover, we have NP (T ) = TZ, where Z
is the center of P , of order 2. Thus S = T or S/T has order 2. But the first
case is impossible because S/T ∼= A/B and M is a non-trivial K(A/B)-module.
Hence S/T has order 2 and S = NP (T ) = TZ. Moreover A/B has order 2 as
well and M must be the sign representation of A/B.

If B = 1, then A has order 2 and is necessarily contained in some Klein 4-
group V . Now Y ∼= IndPA(M) is simple, hence IndVA(M) is simple too. But this
is impossible, because IndVA(M) is a direct sum of two one-dimensional modules.
Thus we can assume that B is a non-central subgroup of order 2. It follows that
A = NP (B) = BZ.

If B and T are conjugate, then in the biset U we can insert a conjugation and
replace (A,B) by (S, T ). Thus we can assume that (A,B) = (S, T ). We know
from Theorem 3.3 that for any g /∈ S, the section (Sg, T g) cannot be linked
to (S, T ). Since NP (S) is (dihedral) of order 8 and P has order at least 16, we
can choose g /∈ NP (S). But then Sg ∩S = Z (because Sg 6= S) and T g ∩T = 1,
so that (Sg, T g) is linked to (S, T ), a contradiction.

If B and T are not conjugate (so that in fact P must be dihedral), then
A∩S = BZ∩TZ = Z and B∩T = 1 and we see that (A,B) is linked to (S, T ).
Now the double coset AS has cardinality 8 and we can choose g /∈ AS. Then
Bg ∩ T = 1 and Ag ∩ S = BgZ ∩ TZ = Z, so (Ag, Bg) is still linked to (S, T ).
This contradicts again Theorem 3.3.
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Now we come to the main result of this section, proved by the first au-
thor [Bo2] when K = Q and generalized by Barker [Ba] when K has character-
istic 0.

9.3. Theorem. Let p be a prime, let G be a finite p-group, let K be a field of
characteristic different from p, and let V be a simple KG-module. There exists
a genetic subgroup T of G such that the biset U = IndinfGS/T DefresGS/T is a
minimal biset stabilizing V , where S = NG(T ). Moreover, if Y = DefresGS/T (V ),
then EndKG(V ) ∼= EndK(S/T )(Y ) as K-algebras.

Proof : All the statements follow immediately from Theorem 7.3, except the
minimality of U . Note in particular that Y is a faithful simple K(S/T )-module.

Let U ′ = IndinfGA′/B′ Isoφ′ DefresGS′/T ′ be a minimal biset stabilizing V . By
minimality of U ′, we have |S′/T ′| ≤ |S/T |. Moreover, we have

Y = DefresGS/T (V ) ∼= DefresGS/T U
′(V )

∼= DefresGS/T U
′ IndinfGS/T DefresGS/T (V )

∼= DefresGS/T U
′ IndinfGS/T (Y )

and therefore W := DefresGS/T U ′ IndinfGS/T is an (S/T, S/T )-biset stabilizing Y .
Then W decomposes as a disjoint union of transitive (S/T, S/T )-bisets and
one of them, say W1, stabilizes Y (by indecomposability of Y ). Moreover, since
S′/T ′ is the subquotient corresponding to U ′ and since W factorizes through U ′,
the subquotient S′′/T ′′ corresponding to W1 must be isomorphic to a subquo-
tient of S′/T ′ (by applying the generalized Mackey formula). Thus we obtain
|S′′/T ′′| ≤ |S′/T ′| ≤ |S/T |.

Now Theorem 9.2 asserts that the faithful simple module Y for the Roquette
group S/T cannot be stabilized by a (S/T, S/T )-biset whose corresponding sub-
quotient has cardinality strictly smaller than S/T . Thus |S′′/T ′′| = |S/T | and
it follows that |S′/T ′| = |S/T |. This shows that U is also a minimal biset
stabilizing V .

10. p-groups in characteristic p

Specific results can be proved involving a p-group in characteristic p. They are
based on the following well-known phenomenon.

10.1. Lemma. Let K be a field of characteristic p and let (S, P ) be a section of
G such that P is a p-subgroup. For any non-zero KG-module W , the K(S/P )-
module DefresGS/P (W ) is non-zero.

Proof : Since the trivial module is the only simple KP -module, ResGP (W ) must
have a non-zero quotient with trivial action. In other words, WP 6= {0}, hence
DefresGS/P (W ) 6= {0}.

By Corollary 3.5 (see also Remark 3.6), we can always assume that a minimal
stabilizing biset has the form U = IndinfPA/B Isoσ DefresPS/T , where the two
sections are linked and where σ : S/T → A/B is the isomorphism induced by
the linking. We make this harmless assumption in the following result, which
describes completely what happens with p-groups in characteristic p.
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10.2. Proposition. Let K be a field of characteristic p and let P be a p-group.
Let U = IndinfPA/B Isoσ DefresPS/T be a (P, P )-biset where the two sections are
linked and where σ : S/T → A/B is the isomorphism induced by the linking.

1. If U is a minimal (P, P )-biset stabilizing an indecomposable KP -module L,
then U is idempotent. In other words SA = P .

2. Suppose that SA = P , so that U is an idempotent biset. Let M be any
K(S/T )-module and let L = IndinfPA/B Isoσ(M). Then DefresPS/T (L) ∼= M
and L is stabilized by U . Moreover, if K is algebraically closed, then L is
indecomposable if and only if M is indecomposable.

Proof : (1) By Corollary 3.4, there is a unique double coset SgA such that

Btf (S, T, gA, gB)Conjg Isoσ(M) 6= {0} ,

where M = DefresPS/T (L). But for any h ∈ P , we have

Btf (S, T, hA, hB)Conjh Isoσ(M) 6= {0} ,

because the deflation involved in Btf (S, T, hA, hB) does not annihilate any non-
zero module, by Lemma 10.1. Therefore there is a unique (S,A)-double coset,
that is, SA = P . By Corollary 5.2, this means that U is idempotent.

(2) Now we assume that SA = P and that L = IndinfPA/B Isoσ(M). Then

DefresPS/T (L) = DefresPS/T IndinfPA/B Isoσ(M)

∼=
⋃

g∈[S\P/A]

Btf (S, T, gA, gB) Conjg Isoσ(M)

∼= Btf (S, T,A,B) Isoσ(M)
∼= Isoσ−1 Isoσ(M) = M

and it follows that L is stabilized by U .
If M = M1⊕M2, then L = IndinfPA/B Isoσ(M1)⊕ IndinfPA/B Isoσ(M2). Con-

versely, if M is indecomposable, then so is L = IndinfPA/B Isoσ(M) by Green’s
indecomposability theorem (which applies when K is algebraically closed).

We know that stabilizing bisets occur with expansive subgroups (see Propo-
sition 6.1 and Corollary 6.3) and this also has some relevance for p-groups in
characteristic p. We show that, for an arbitrary finite group G, very few p-
subgroups can be expansive.

10.3. Proposition. Let K be a field of characteristic p and let P be a p-
subgroup of G. Assume that there exists a faithful simple K(NG(P )/P )-module.
If P is an expansive subgroup of G, then P = Op(G).

Proof : Let S = NG(P ) and let M be a faithful simple K(S/P )-module.
Suppose there exists g /∈ S. Since P is expansive, the S-core N of the subgroup
(P g ∩ S)P contains P properly. Thus N/P is a non-trivial normal p-subgroup
of S/P . By Lemma 10.1, DefS/PS/N (M) 6= {0}, but the simple faithful module M
cannot have a non-zero quotient with trivial action of N/P . Therefore g does
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not exist and so S = G, that is, P is a normal subgroup of G. Again the normal
p-subgroup Op(G)/P acts trivially on M and since M is faithful, we must have
Op(G) = P .

We know that any normal subgroup is always an expansive subgroup. Propo-
sition 10.3 shows that the converse may happen under suitable hypotheses.

11. Examples

We illustrate various results of this paper by means of a few examples. They
also allow us to answer some obvious questions. We first start with an easy case.
11.1. Example. Suppose that G is abelian. Let U = IndinfGA/B Isoσ DefresGS/T
be a minimal (G,G)-biset stabilizing an indecomposable module L. By Corol-
lary 3.5, we can assume that σ : S/T → A/B is induced by the linking between
A/B and S/T . By Corollary 3.4, there is a unique double coset SgA such that

Btf (S, T, gA, gB) Isoφ Conjg(M) 6= {0} ,
where M = DefresGS/T (L). But Btf (S, T, gA, gB) = Btf (S, T,A,B) for all g, so
there is a unique double coset SA = G and it follows that U is idempotent.
If we assume that L is simple, then we must have A = G by Proposition 8.4
and so L is just inflated from G/B. Since the two sections are linked, we have
G/T ∼= B/T ×S/T and B/T acts trivially. Hence the stabilizing biset is rather
trivial.

If we work now with an indecomposable module in characteristic p and
assume for simplicity that our abelian group G is a p-group, then the situation
is fully described in Proposition 9.3.

11.2. Example. Let G = S3 be the symmetric group on 3 letters, let C3

be its normal subgroup of order 3, and let A be a subgroup of order 2. Then
(S3, C3) is linked to (A,1), via an isomorphism σ : S3/C3 → A. Let K be
a field of characteristic 3 and consider the indecomposable projective module
L = IndS3

A (M), where M is the sign representation of A. Then L is stabilized
by the idempotent biset

U = IndS3
A Isoσ DefS3

S3/C3
,

which is easily seen to be minimal. This shows that Proposition 8.4 does not
hold for non-simple modules, since here B = 1, but A is not equal to S3. Also
we have |A| < |S3|, so we see that Proposition 8.1 does not hold for non-simple
modules.

For simple modules, we often have minimal stabilizing bisets of the form
IndinfGS/T DefresGS/T (in particular for p-groups as in Section 9 and in several
examples below), but we don’t know if this happens or not in general. This
certainly need not happen for non-simple modules, because this example shows
that the two sections in any minimal biset stabilizing L are bound to be different.

If we consider the same example, but over a field of characteristic 0, then
L = IndS3

A (M) decomposes as L = L1 ⊕L2, where L1 is the sign representation
and L2 is the two-dimensional simple module. Then DefS3

S3/C3
(L1) = M and

DefS3
S3/C3

(L2) = {0}. We see here that the idempotent biset U stabilizes a
decomposable module L, but neither L1 nor L2 is stabilized by U .

26



11.3. Example. By Theorem 9.2, we know that Roquette p-groups are
“minimal” for simple faithful modules. This does not hold anymore for solvable
groups, as the following example shows. Let G = GL2(F3) ∼= Q8oS3, where Q8

denotes the quaternion group of order 8, and let Z = Z(Q8) = Z(G). Then G is
Roquette and one can check that the subgroup S3 is expansive. Now NG(S3) =
Z×S3, so NG(S3)/S3

∼= Z is Roquette and S3 is a genetic subgroup of G. Let Y
be the sign representation of (Z×S3)/S3 (over a field of characteristic different
from 2 and 3) and let V = IndinfG(Z×S3)/S3

(Y ). Then V is a 4-dimensional simple
module and it is stabilized by IndinfG(Z×S3)/S3

DefresG(Z×S3)/S3
, by Corollary 6.3.

Hence the group G is Roquette but is not minimal.

11.4. Example. Let n ≥ 2, 1 ≤ k ≤ n− 1, and q ≥ 3 a prime power. Let
T be the subgroup of G = GLn(Fq) defined by

T =
(

SLk(Fq) Mk,n−k(Fq)
0 GLn−k(Fq)

)
.

We claim that T is a genetic subgroup of G, with NG(T )/T cyclic. Therefore,
if we let Y be any faithful simple K(S/T )-module, where S = NG(T ) and K is
a field of characteristic 0 (for simplicity), then by Corollary 6.3 the KG-module
V = IndinfGS/T (Y ) is simple and stabilized by the biset IndinfGS/T DefresGS/T ,
which is clearly minimal since Y cannot be obtained from a proper subsection
of S/T .

It is easy to see that the normaliser of T is the subgroup

S = NG(T ) =
(

GLk(Fq) Mk,n−k(Fq)
0 GLn−k(Fq)

)
.

In other words, S is the stabilizer of the subspace V generated by {v1, · · · , vk},
where {v1, · · · , vn} is the canonical basis of E = Fnq . The quotient S/T is
isomorphic to F×q , hence cyclic of order q − 1.

We are left with the proof that T is an expansive subgroup of G. If g ∈ G,
the S-core of ( gT ∩ S)T is the subgroup ( gT ∩ S)T itself because S/T is cyclic.
We have to prove that gT = T whenever gT ∩ S ≤ T .

The subgroup gT is contained in the stabilizer of g(V ). We choose another
basis {w1, · · · , wn} of E such that {w1, · · · , wh} is a basis of g(V )∩V (for some
h ≤ k), {w1, · · · , wk} is a basis of V , and {w1, · · · , w2k−h} is a basis of g(V )+V .
The subgroup gS ∩ S is the intersection of the stabilizers of V and g(V ). With
respect to this new basis, an element x ∈ gS ∩ S can be written in the form

x =




A X Y Z
0 B 0 T
0 0 C U
0 0 0 D


 ,

where A,B,C,D are invertible square matrices of size h, k−h, k−h, n−2k+h
respectively. The action of x on g(V ) is given by the matrix

(
A Y
0 C

)
,
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hence x ∈ gT if and only if det(A) ·det(C) = 1. On the other hand x ∈ T if and
only if det(A) · det(B) = 1. The assumption gT ∩ S ≤ T means that

det(A) · det(C) = 1 ⇒ det(A) · det(B) = 1 .

Since we can choose freely B, this implication can hold only if B is an empty
matrix, i.e. if k = h. In that case g(V ) = V , i.e. g ∈ S = NG(T ). This proves
that T is an expansive subgroup of G.

11.5. Example. For simplicity, let K = C. We give a few examples of a
simple group G with an expansive subgroup T of index 2 in its normalizer S
(hence genetic). In each case, we take the sign representation Y of S/T and we
let V = IndinfGS/T (Y ). Then V is a simple KG-module, Y ∼= DefresGS/T (V ) and
V is stabilized by IndinfGS/T DefresGS/T , by Corollary 6.3.

G = PSL2(F7), S = S4, T = A4.
G = M11, S = M10, and T = A6 of index 2 in S.
G = M11, S of order 144, and T of order 72.
G = A8, S of order 576, and T of order 288.

However, no non-trivial expansive subgroup exists in A5, A6, A7, PSL2(F11),
so no such example can occur.

11.6. Example. Idempotent bisets also occur in simple groups. For instance,
let q be a power of 2 and consider the group G = Sp4(Fq). Then G has a
subgroup B ∼= Ω−4 (q) ∼= SL2(Fq2) of index 2 in its normalizer A ∼= O−4 (q), as
well as a subgroup T ∼= Sp2(Fq2) ∼= SL2(Fq2) of index 2 in its normalizer S.
By Theorem A in [LPS], this is an example of a factorization G = SA. More-
over, the sections (A,B) and (S, T ) are linked (with B ∩ T dihedral of order
2(q2+1)), so we obtain an idempotent biset U = IndinfGA/B Isoσ DefresGS/T where
σ : S/T → A/B is the isomorphism induced by the linking. If Y is the sign rep-
resentation of A/B and V = IndinfGA/B(Y ), then V is stabilized by U . However,
V is not simple.

11.7. Example. Both types of bisets studied in this paper can occur simul-
taneously. Let the p-group P be either dihedral of order 8 or extraspecial of
order p3 and exponent p with p odd. Let T be a non-central subgroup of or-
der p and let S be its normalizer, hence S = T × Z where Z = Z(P ). Then
T is easily seen to be expansive, hence genetic because S/T is cyclic. If Y is
a one-dimensional faithful representation of S/T (in characteristic prime to p),
then V = IndinfPS/T (Y ) is simple and stabilized by U = IndinfPS/T DefresPS/T .
On the other hand, we can also choose another subgroup B of order p, not
conjugate to T , and let A = NP (B) = B × Z. Then SA = P and the sec-
tions (A,B) and (S, T ) are linked, so we obtain an idempotent biset U ′ =
IndinfPA/B Isoσ DefresPS/T where σ : S/T → A/B is the isomorphism induced by
the linking. The simple module V is also stabilized by U ′, and both U and U ′

are minimal. Our main uniqueness theorem applies of course and tells us that
the sections in U are linked to those in U ′, which is obvious in this case. But
it should be emphasized that one of the bisets is obtained from an expansive
subgroup, while the other is idempotent.
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