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1. Introduction

Let G be a finite group, let p be a prime number, and let K be a field of
characteristic 0 and k be a field of characteristic p, both large enough. In this
note we state explicit formulae for the primitive idempotents of K⊗Zppk(G),
where ppk(G) is the ring of p-permutation kG-modules (also called the trivial
source ring).

To obtain these formulae, we first use induction and restriction to reduce
to the case where G is cyclic modulo p, i.e. G has a normal Sylow p-subgroup
with cyclic quotient. Then we solve the easy and well known case where G
is a cyclic p′-group. Finally we conclude by using the natural ring homo-
momorphism from the Burnside ring B(G) of G to ppk(G), and the classical
formulae for the primitive idempotents of K ⊗Z B(G).

Our formulae are an essential tool in [2], where Cartan matrices of Mackey
algebras are considered, and some invariants of these matrices (determinant,
rank) are explicitly computed.

2. p-permutation modules

2.1. Notation.

• Throughout the paper, G will be a fixed finite group and p a fixed prime
number. We consider a field k of characteristic p and we denote by kG the
group algebra of G over k. We assume that k is large enough in the sense
that it is a splitting field for every group algebra k

(
NG(P )/P

)
, where P runs

through the set of all p-subgroups of G.

1



•We let K be a field of characteristic 0 and we assume that K is large enough
in the sense that it contains the values of all the Brauer characters of the
groups NG(P )/P , where P runs through the set of all p-subgroups of G.

We recall quickly how Brauer characters are defined. We let k be an
extension of k containing all the n-th roots of unity, where n is the p′-part of
the exponent of G. We choose an isomorphism θ : µn(k) → µn(C) from the
group of n-th roots of unity in k and the corresponding group in C. If V is an
r-dimensional kH-module for the group H = NG(P )/P and if s is an element
of the set Hp′ of all p′-elements of H, the matrix of the action of s on V has
eigenvalues (λ1, . . . , λr) in the group µn(k). The Brauer character φV of V is
the central function defined on Hp′ , with values in the field Q[µn(C)], sending
s to

∑r
i=1 θ(λi). The actual values of Brauer characters may lie in a subfield

of Q[µn(C)] and we simply require that K contains all these values.

2.2. Remark : Let V be as above and let W be a t-dimensional kH-module.
If s has eigenvalues (µ1, . . . , µt) on W , its eigenvalues for the diagonal ac-
tion of H on V ⊗k W are (λiµj)1≤i≤r, 1≤j≤t. It follows that φV⊗kW (s) =∑r

i=1

∑t
j=1 θ(λiµj) = φV (s)φW (s).

• When H is a subgroup of G, and M is a kG-module, we denote by ResGHM
the kH-module obtained by restricting the action of G to H. When L is a
kH-module, we denote by IndGHL the induced kG-module.

• When M is a kG-module, and P is a subgroup of G, the k-vector space
of fixed points of P on M is denoted by MP . When Q ≤ P are subgroups
of G, the relative trace is the map trPQ : MQ → MP defined by trPQ(m) =∑

x∈[P/Q] x ·m.

• When M is a kG-module, the Brauer quotient of M at P is the k-vector
space

M [P ] = MP/
∑
Q<P

trPQM
Q .

This k-vector space has a natural structure of kNG(P )-module, where as
usual NG(P ) = NG(P )/P . It is equal to zero if P is not a p-group.

• If P is a normal p-subgroup of G and M is a k(G/P )-module, denote by
InfGG/PM the kG-module obtained from M by inflation to G. Then there is
an isomorphism

(InfGG/PM)[P ] ∼= M

of k(G/P )-modules.

• When G acts on a set X (on the left), and x, y ∈ X, we write x =G y if
x and y are in the same G-orbit. We denote by [G\X] a set of representatives
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of G-orbits on X, and by XG the set of fixed points of G on X. For x ∈ X,
we denote by Gx its stabilizer in G.

2.3. Review of p-permutation modules. We begin by recalling some
definitions and basic results. We refer to [3], and to [1] Sections 3.11 and 5.5
for details :

2.4. Definition. A permutation kG-module is a kG-module admitting a G-
invariant k-basis. A p-permutation kG-module M is a kG-module such that
ResGSM is a permutation kS-module, where S is a Sylow p-subgroup of G.

The p-permutation kG-modules are also called trivial source modules,
because the indecomposable ones coincide with the indecomposable modules
having a trivial source (see [3] 0.4). Moreover, the p-permutation modules
also coincide with the direct summands of permutation modules (see [1],
Lemma 3.11.2).

2.5. Proposition.

1. If H is a subgroup of G, and M is a p-permutation kG-module, then
the restriction ResGHM of M to H is a p-permutation kH-module.

2. If H is a subgroup of G, and L is a p-permutation kH-module, then
the induced module IndGHL is a p-permutation kG-module.

3. If N is a normal subgroup of G, and L is a p-permutation k(G/N)-
module, the inflated module InfGG/NL is a p-permutation kG-module.

4. If P is a p-group, and M is a permutation kP -module with P -invariant
basis X, then the image of the set XP in M [P ] is a k-basis of M [P ].

5. If P is a p-subgroup of G, and M is a p-permutation kG-module, then
the Brauer quotient M [P ] is a p-permutation kNG(P )-module.

6. If M and N are p-permutation kG-modules, then their tensor product
M ⊗k N is again a p-permutation kG-module.

Proof : Assertions 1,2,3, and 6 are straightforward consequences of the
same assertions for permutation modules. For Assertion 4, see [3] 1.1.(3).
Assertion 5 follows easily from Assertion 4 (see also [3] 3.1).

This leads to the following definition :

2.6. Definition. The p-permutation ring ppk(G) is the Grothendieck group
of the category of p-permutation kG-modules, with relations corresponding to
direct sum decompositions, i.e. [M ] + [N ] = [M ⊕ N ]. The ring structure
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on ppk(G) is induced by the tensor product of modules over k. The identity
element of ppk(G) is the class of the trivial kG-module k.

As the Krull-Schmidt theorem holds for kG-modules, the additive group
ppk(G) is a free (abelian) group on the set of isomorphism classes of inde-
composable p-permutation kG-modules. These modules have the following
properties :

2.7. Theorem. [ [3] Theorem 3.2]

1. The vertices of an indecomposable p-permutation kG-module M are the
maximal p-subgroups P of G such that M [P ] 6= {0}.

2. An indecomposable p-permutation kG-module has vertex P if and only
if M [P ] is a non-zero projective kNG(P )-module.

3. The correspondence M 7→M [P ] induces a bijection between the isomor-
phism classes of indecomposable p-permutation kG-modules with ver-
tex P and the isomorphism classes of indecomposable projective kNG(P )-
modules.

2.8. Notation. Let PG,p denote the set of pairs (P,E), where P is a
p-subgroup of G, and E is an indecomposable projective kNG(P )-module.
The group G acts on PG,p by conjugation, and we denote by [PG,p] a set of
representatives of G-orbits on PG,p.

For (P,E) ∈ PG,p, let MP,E denote the (unique up to isomorphism) inde-
composable p-permutation kG-module such that MP,E[P ] ∼= E.

2.9. Corollary. The classes of the modules MP,E, for (P,E) ∈ [PG,p] form
a Z-basis of ppk(G).

2.10. Notation. The operations ResGH , IndGH , InfGG/N extend linearly to
maps between the corresponding p-permutations rings, denoted with the same
symbol.

The maps ResGH and InfGG/N are ring homomorphisms, whereas IndGH is
not in general. Similarly :

2.11. Proposition. Let P be a p-subgroup of G. Then the correspondence
M 7→M [P ] induces a ring homomorphism BrGP : ppk(G) → ppk

(
NG(P )

)
.

Proof : Let M and N be p-permutation kG-modules. The canonical bilinear
map M × N → M ⊗k N is G-equivariant, hence it induces a bilinear map
βP : M [P ]×N [P ] → (M ⊗kN)[P ] (see [3] 1.2), which is NG(P )-equivariant.
Now if X is a P -invariant k-basis of M , and Y a P -invariant k-basis of N ,
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then X×Y is a P -invariant basis of M⊗kN . The images of the sets XP , Y P ,
and (X × Y )P are bases of M [P ], N [P ], and (M ⊗k N)[P ], respectively, and
the restriction of βP to theses bases is the canonical bijection XP × Y P →
(X × Y )P . It follows that βP induces an isomorphism M [P ] ⊗k N [P ] →
(M ⊗k N)[P ] of kNG(P )-modules. Proposition 2.11 follows.

2.12. Notation. Let QG,p denote the set of pairs (P, s), where P is a
p-subgroup of G, and s is a p′-element of NG(P ). The group G acts on QG,p,
and we denote by [QG,p] a set of representatives of G-orbits on QG,p.

If (P, s) ∈ QG,p, we denote by NG(P, s) the stabilizer of (P, s) in G, and
by <Ps> the subgroup of NG(P ) generated by Ps (i.e. the inverse image in
NG(P ) of the cyclic group <s> of NG(P )).

2.13. Remarks :

• When H is a subgroup of G, there is a natural inclusion of QH,p into
QG,p, as NH(P ) ≤ NG(P ) for any p-subgroup P of H. We will consider
QH,p as a subset of QG,p.

• When (P, s) ∈ QG,p, the group NG(P, s) is the set of elements g in
NG(P ) whose image in NG(P ) centralizes s. In other words, there is a
short exact sequence of groups

(2.14) 1 → P → NG(P, s) → CNG(P )(s) → 1 .

In particular NG(P, s) is a subgroup of NG(<Ps>).

2.15. Notation. Let (P, s) ∈ QG,p. Let τGP,s denote the additive map from
ppk(G) to K sending the class of a p-permutation kG-module M to the value
at s of the Brauer character of the NG(P )-module M [P ].

2.16. Remarks :

• It is clear that τGP,s(M) only depends on the restriction of M to the
group <Ps>. In other words

τGP,s = τ<Ps>P,s ◦ ResG<Ps> .

Furthermore, it is clear from the definition that

(2.17) τGP,s = τ
<Ps>/P
1,s ◦ Br<Ps>P ◦ ResG<Ps> .

• It is easy to see that τGP,s only depends on the G-orbit of (P, s), that is,
τGP g ,sg = τGP,s for every g ∈ G.

The following proposition is Corollary 5.5.5 in [1], but our construction
of the species is slightly different (but equivalent, of course). For this reason,
we sketch an independent proof :
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2.18. Proposition.

1. The map τGP,s is a ring homomorphism ppk(G) → K and extends to a
K-algebra homomorphism (a species) τGP,s : K ⊗Z ppk(G) → K.

2. The set {τGP,s | (P, s) ∈ [QG,p]} is the set of all distinct species from
K ⊗Z ppk(G) to K. These species induce a K-algebra isomorphism

T =
∏

(P,s)∈[QG,p]

τGP,s : K ⊗Z ppk(G) →
∏

(P,s)∈[QG,p]

K .

Proof : By 2.17, to prove Assertion 1, it suffices to prove that τ
<Ps>/P
1,s is

a ring homomorphism, since both ResG<Ps> and Br<Ps>P are ring homomor-
phisms. In other words, we can assume that P = 1. Now the value of τG1,s
on the class of a kG-module M is the value φM(s) of the Brauer character
of M at s, so Assertion 1 follows from Remark 2.2.

For Assertion 2, it suffices to prove that T is an isomorphism. Since
[PG,p| and [QG,p] have the same cardinality, the matrix M of T is a square
matrix. Let (P,E) ∈ PG,p, and (Q, s) ∈ QG,p. Then τQ,s(MP,E) is equal to
zero if Q is not contained in P up to G-conjugation, because in this case
MP,E(Q) = {0} by Theorem 2.7. It follows that M is block triangular.
As moreover MP,E[P ] ∼= E, we have that τP,s(MP,E) = φE(s). This means
that the diagonal block of M corresponding to P is the matrix of Brauer
characters of projective kNG(P )-modules, and these are linearly independent
by Lemma 5.3.1 of [1]. It follows that all the diagonal blocks of M are non
singular, so M is invertible, and T is an isomorphism.

2.19. Corollary. The algebra K⊗Z ppk(G) is a split semisimple commuta-
tive K-algebra. Its primitive idempotents FG

P,s are indexed by [QG,p], and the
idempotent FG

P,s is characterized by

∀(R, u) ∈ QG,p, τGR,u(F
G
P,s) =

{
1 if (R, u) =G (P, s)
0 otherwise.

3. Restriction and induction

3.1. Proposition. Let H ≤ G, and (P, s) ∈ QG,p. Then

ResGHF
G
P,s =

∑

(Q,t)

FH
Q,t ,

where (Q, t) runs through a set of representatives of H-conjugacy classes of
G-conjugates of (P, s) contained in H.
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Proof : Indeed, as ResGH is an algebra homomorphism, the element ResGHF
G
P,s

is an idempotent of K⊗Z ppk(H), hence it is equal to a sum of some distinct
primitive idempotents FH

Q,t. The idempotent FH
Q,t appears in this decompo-

sition if and only if τHQ,t(ResGHF
G
P,s) = 1. By Remark 2.16

τHQ,t(ResGHF
G
P,s) = τ<Qt>Q,t (ResH<Qt>ResGHF

G
P,s)

= τ<Qt>Q,t (ResG<Qt>F
G
P,s)

= τGQ,t(F
G
P,s) .

Now τGQ,t(F
G
P,s) is equal to 1 if and only if (Q, t) and (P, s) are G-conjugate.

This completes the proof.

3.2. Proposition. Let H ≤ G, and (Q, t) ∈ QH,p. Then

IndGHF
H
Q,t = |NG(Q, t) : NH(Q, t)|FG

Q,t .

Proof : Since K ⊗Z ppk(G) is a split semisimple commutative K-algebra,
any element X in K ⊗Z ppk(G) can be written

(3.3) X =
∑

(P,s)∈[QG,p]

τGP,s(X)FG
P,s ,

and moreover for any (P, s) ∈ QG,p

τGP,s(X)FG
P,s = X · FG

P,s .

Setting X = IndGHF
H
Q,t in this equation gives

τGP,s(IndGHF
H
Q,t)F

G
P,s = (IndGHF

H
Q,t) · FG

P,s

= IndGH(FH
Q,t · ResGHF

G
P,s) .

By Proposition 3.1, the element ResGHF
G
P,s is equal to the sum of the distinct

idempotents FH
P y,sy associated to elements y of G such that <Ps>y ≤ H.

The product FH
Q,t · FH

P y,sy is equal to zero, unless (Q, t) is H-conjugate to
(P y, sy), which implies that (Q, t) and (P, s) are G-conjugate. It follows that
the only non zero term in the right hand side of Equation 3.3 is the term
corresponding to (Q, t). Hence

IndGHF
H
Q,t = τGQ,t(IndGHF

H
Q,t)F

G
Q,t .
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Now by Remark 2.16 and the Mackey formula

τGQ,t(IndGHF
H
Q,t) = τ<Qt>Q,t (ResG<Qt>IndGHF

H
Q,t)

= τ<Qt>Q,t

( ∑

x∈<Qt>\G/H
Ind<Qt><Qt>∩xH

xResH<Qt>x∩HF
H
Q,t

)
.

By Proposition 3.1, the element ResH<Qt>x∩HF
H
Q,t is equal to the sum of the

distinct idempotents F<Qt>x∩H
Qy ,ty corresponding to elements y ∈ H such that

<Qt>y ≤ <Qt>x∩H. This implies <Qt>y = <Qt>x, i.e. y ∈ NG(<Qt>)x,
thus x ∈ NG(<Qt>) ·H. This gives

τGQ,t(IndGHF
H
Q,t) = τ<Qt>Q,t

( ∑

x∈NG(<Qt>)H/H
y∈NH(Q,t)\NG(<Qt>)x

xF<Qt>
Qy ,ty

)

=
∑

x∈NG(<Qt>)/NH(<Qt>)
y∈NH(Q,t)\NG(<Qt>)x

τ<Qt>Q,t (F<Qt>

Qyx−1
,tyx−1 )

=
∑

z∈NH(Q,t)\NG(<Qt>)

τ<Qt>Q,t (F<Qt>
Qz ,tz ) ,

where z = yx−1. Finally τ<Qt>Q,t (F<Qt>
Qz ,tz ) is equal to 1 if (Qz, tz) is conjugate

to (Q, t) in <Qt>, and to zero otherwise.
If u ∈ <Qt> is such that (Qz, tz)u = (Q, t), then zu ∈ NG(Q, t). But

since [<Qt>, t] ≤ Q, we have <Qt> ≤ NG(Q, t), so u ∈ NG(Q, t), hence
z ∈ NG(Q, t), and (Qz, tz) = (Q, t). It follows that

τGQ,t(IndGHF
H
Q,t) = |NG(Q, t) : NH(Q, t)| ,

which completes the proof of the proposition.

3.4. Corollary. Let (P, s) ∈ QG,p. Then

FG
P,s =

|s|
|CNG(P )(s)|

IndG<Ps>F
<Ps>
P,s .

Proof : Apply Proposition 3.2 with (Q, t) = (P, s) and H = <Ps>. Then
NH(Q, t) = <Ps>, thus by Exact sequence 2.14

|NG(Q, t) : NH(Q, t)| = |P ||CNG(P )(s)|
|P ||s| =

|CNG(P )(s)|
|s| ,

and the corollary follows.
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4. Idempotents

It follows from Corollary 3.4 that, in order to find formulae for the primi-
tive idempotents FG

P,s ofK⊗Zppk(G), it suffices to find the formula expressing

the idempotent F<Ps>
P,s . In other words, we can assume that G = <Ps>, i.e.

that G has a normal Sylow p-subgroup P with cyclic quotient generated by s.

4.1. A morphism from the Burnside ring. When G is an arbitrary
finite group, there is an obvious ring homomorphism LG from the Burnside
ring B(G) to ppk(G), induced by the linearization operation, sending a finite
G-set X to the permutation module kX, which is obviously a p-permutation
module. This morphism also commutes with restriction and induction : if
H ≤ G, then

(4.2) LH ◦ ResGH = ResGH ◦ LG , LG ◦ IndGH = IndGH ◦ LH .

Indeed, for any G-set X, the kH-modules kResGHX and ResGH(kX) are iso-
morphic, and for any H-set Y , the kG-modules kIndGHY and IndGH(kY ) are
isomorphic.

Similarly, when P is a p-subgroup of G, the ring homomorphism ΦP :
B(G) → B

(
NG(P )

)
induced by the operation X 7→ XP on G-sets, is com-

patible with the Brauer morphism BrGP : ppk(G) → ppk
(
NG(P )

)
:

(4.3) LNG(P ) ◦ ΦP = BrGP ◦ LG .

This is because for any G-set X, the kNG(P )-modules k(XP ) and (kX)[P ]
are isomorphic.

The ring homomorphism LG extends linearly to a K-algebra homomor-
phism K ⊗Z B(G) → K ⊗Z ppk(G), still denoted by LG. The algebra
K ⊗Z B(G) is also a split semisimple commutative K-algebra. Its species
are the K-algebra maps

K ⊗Z B(G) → K, X 7→ |XH | ,
where H runs through the set of all subgroups of G up to conjugation. Here
we denote by |XH | the number of H-fixed points of a G-set X and this
notation is then extended K-linearly to any X ∈ K ⊗Z B(G). The primitive
idempotents eGH of K ⊗Z B(G) are indexed by subgroups H of G, up to
conjugation. They are given by the following formulae, found by Gluck ([4])
and later independently by Yoshida ([5]) :

(4.4) eGH =
1

|NG(H)|
∑
L≤H

|L|µ(L,H)G/L ,
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where µ denotes the Möbius function of the poset of subgroups of G. The
idempotent eGH is characterized by the fact that for any X ∈ K ⊗Z B(G)

X · eGH = |XH |eGH .

4.5. Remark : Since |XH | only depends on ResGHX, it follows in partic-
ular that X is a scalar multiple of the “top” idempotent eGG if and only if
ResGHX = 0 for any proper subgroup H of G. In particular, if N is a normal
subgroup of G, then

(4.6) (eGG)N = e
G/N
G/N .

This is because for any proper subgroup H/N of G/N

Res
G/N
H/N(eGG)N = (ResGHe

G
G)N = 0 .

So (eGG)N is a scalar multiple of e
G/N
G/N . As it is also an idempotent, it is equal

to 0 or e
G/N
G/N . Finally

|((eGG)N
)G/N | = |(eGG)G| = 1 ,

so (eGG)N is non zero.

4.7. The case of a cyclic p′-group. Suppose that G is a cyclic p′-group,
of order n, generated by an element s. In this case, there are exactly n
group homomorphisms from G to the multiplicative group k× of k. For
each of these group homomorphisms ϕ, let kϕ denote the kG-module k on
which the generator s acts by multiplication by ϕ(s). As G is a p′-group,
this module is simple and projective. The (classes of the) modules kϕ, for

ϕ ∈ Ĝ = Hom(G, k×), form a basis of ppk(G).

Since moreover for ϕ, ψ ∈ Ĝ, the modules kϕ⊗kkψ and kϕψ are isomorphic,

the algebra K ⊗Z ppk(G) is isomorphic to the group algebra of the group Ĝ.
This leads to the following classical formula :

4.8. Lemma. Let G be a cyclic p′-group. Then for any t ∈ G,

FG
1,t =

1

n

∑

ϕ∈ bG
ϕ̃(t−1)kϕ ,

where ϕ̃ is the Brauer character of kϕ.
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Proof : Indeed for s, t ∈ G

τG1,t
( 1

n

∑

ϕ∈ bG
ϕ̃(s−1)kϕ

)
=

1

n

∑

ϕ∈ bG
ϕ̃(s−1)ϕ̃(t) = δs,t ,

where δs,t is the Kronecker symbol.

4.9. The case G = <Ps>. Suppose now more generally that G = <Ps>,
where P is a normal Sylow p-subgroup of G and s is a p′-element. In this
case, by Proposition 3.1, the restriction of FG

P,s to any proper subgroup of G is
equal to zero. Moreover, since NG(P, t) = G for any t ∈ G/P , the conjugacy
class of the pair (P, t) reduces to {(P, t)}.
4.10. Lemma. Suppose G = <Ps>, and set EG

G = LG(eGG). Then

EG
G =

∑
<t>=<s>

FG
P,t .

Proof : By 4.2 and by Remark 4.5, the restriction of EG
G to any proper

subgroup of G is equal to zero. Let (Q, t) ∈ QG,p, such that the group
L = <Qt> is a proper subgroup of G. By Proposition 3.2, there is a rational
number r such that

FG
Q,t = r IndGLF

L
Q,t .

It follows that

EG
G · FG

Q,t = r IndGL
(
(ResGLE

G
G) · FL

Q,t

)
= 0 .

Now EG
G is an idempotent of K ⊗Z ppk(G), hence is it a sum of some of the

primitive idempotents FG
Q,t associated to pairs (Q, t) for which <Qt> = G.

This condition is equivalent to Q = P and <t> = <s>.
It remains to show that all these idempotents FG

P,t appear in the decompo-
sition of EG

G , i.e. equivalently that τGP,t(E
G
G) = 1 for any generator t of <s>.

Now by 4.6 and Remark 2.16

τGP,t(E
G
G) = τ

G/P
1,t

(
BrGP (EG

G)
)

= τ<s>1,t (E<s>
<s>) .

Now the value at t of the Brauer character of a permutation module kX is
equal to the number of fixed points of t on X. By K-linearity, this gives

τ<s>1,t (E<s>
<s>) = |(e<s><s>)t| ,

and this is equal to 1 if t generates <s>, and to 0 otherwise, as was to be
shown.
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4.11. Proposition. Let (P, s) ∈ QG,p, and suppose that G = <Ps>. Then

FG
P,s = EG

G · InfGG/PF
G/P
1,s .

Proof : Set Es = EG
G ·InfGG/PF

G/P
1,s . Then Es is an idempotent ofK⊗Zppk(G),

as it is the product of two (commuting) idempotents. Let (Q, t) ∈ QG,p. If
<Qt> 6= G, then τGQ,t(E

G
G) = 0 by Lemma 4.10, thus τGQ,t(Es) = 0. And if

<Qt> = G, then Q = P and <t> = <s>. In this case

τGQ,t(Es) = τGP,t(E
G
G) · τGP,t(InfGG/PF

G/P
1,s ) .

By Lemma 4.10, the first factor in the right hand side is equal to 1. The
second factor is equal to

τGP,t(InfGG/PF
G/P
1,s ) = τ

G/P
1,t BrGP (InfGG/PF

G/P
1,s )

= τ
G/P
1,t (F

G/P
1,s ) = δt,s ,

where δt,s is the Kronecker symbol. Hence τGP,t(Es) = δt,s, and this completes
the proof.

4.12. Theorem. Let G be a finite group, and let (P, s) ∈ QG,p. Then the
primitive idempotent FG

P,s of the p-permutation algebra K ⊗Z ppk(G) is given
by the following formula :

FG
P,s =

1

|P ||s||CNG(P )(s)|
∑

ϕ∈d<s>
L≤<Ps>
PL=<Ps>

ϕ̃(s−1)|L|µ(L,<Ps>) IndGLk
<Ps>
L,ϕ ,

where k<Ps>L,ϕ = Res<Ps>L Inf<Ps><s> kϕ.

Proof : By Corollary 3.4, and Proposition 4.11

FG
P,s =

|s|
|CNG(P )(s)|

IndG<Ps>(E<Ps>
<Ps> · Inf<Ps><s> F<s>

1,s ) .

By Equation 4.4, this gives

FG
P,s=

|s|
|CNG(P )(s)|

IndG<Ps>
1

|P ||s|
∑

L≤<Ps>
|L|µ(L,<Ps>)Ind<Ps>L k·Inf<Ps><s> F<s>

1,s .
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Moreover for each L ≤ <Ps>

Ind<Ps>L k · Inf<Ps><s> F<s>
1,s

∼= Ind<Ps>L (Res<Ps>L Inf<Ps><s> F<s>
1,s )

∼= Ind<Ps>L InfLL/L∩P Iso
L/L∩P
LP/P Res<s>LP/PF

<s>
1,s .

Here we have used the fact that if L and P are subgroups of a group H, with
P /H, then there is an isomorphism of functors

ResHL ◦ InfHH/P
∼= InfLL/L∩P ◦ Iso

L/L∩P
LP/P ◦ Res

H/P
LP/P ,

which follows from the isomorphism of (L,H/P )-bisets

H ×H (H/P ) ∼= L(H/P )H/P ∼= (L/L ∩ P )×L/L∩P (LP/P )×LP/P (H/P ) .

Now Proposition 3.1 implies that Res<s>LP/PF
<s>
1,s = 0 if LP/P 6= <s>, i.e.

equivalently if PL 6= <Ps>. It follows that

FG
P,s=

1

|P ||CNG(P )(s)|
∑

L≤<Ps>
PL=<Ps>

|L|µ(L,<Ps>)IndGL(Res<Ps>L Inf<Ps><s> F<s>
1,s ) .

By Lemma 4.8, this gives

FG
P,s=

1

|P ||s||CNG(P )(s)|
∑

ϕ∈<̂s>
L≤<Ps>
PL=<Ps>

ϕ̃(s−1)|L|µ(L,<Ps>)IndGLk
<Ps>
L,ϕ ,

where k<Ps>L,ϕ = Res<Ps>L Inf<Ps><s> kϕ, as was to be shown.
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