The primitive idempotents of the *p*-permutation ring

Serge Bouc and Jacques Thévenaz

Abstract: Let G be a finite group, let p be a prime number, and let K be a field of characteristic 0 and k be a field of characteristic p, both large enough. In this note we state explicit formulae for the primitive idempotents of $K \otimes_{\mathbb{Z}} pp_k(G)$, where $pp_k(G)$ is the ring of p-permutation kG-modules.

AMS Subject Classification : 19A22, 20C20. **Key words :** *p*-permutation, idempotent, trivial source.

1. Introduction

Let G be a finite group, let p be a prime number, and let K be a field of characteristic 0 and k be a field of characteristic p, both large enough. In this note we state explicit formulae for the primitive idempotents of $K \otimes_{\mathbb{Z}} pp_k(G)$, where $pp_k(G)$ is the ring of p-permutation kG-modules (also called the trivial source ring).

To obtain these formulae, we first use induction and restriction to reduce to the case where G is cyclic modulo p, i.e. G has a normal Sylow p-subgroup with cyclic quotient. Then we solve the easy and well known case where G is a cyclic p'-group. Finally we conclude by using the natural ring homomomorphism from the Burnside ring B(G) of G to $pp_k(G)$, and the classical formulae for the primitive idempotents of $K \otimes_{\mathbb{Z}} B(G)$.

Our formulae are an essential tool in [2], where Cartan matrices of Mackey algebras are considered, and some invariants of these matrices (determinant, rank) are explicitly computed.

2. *p*-permutation modules

2.1. Notation.

• Throughout the paper, G will be a fixed finite group and p a fixed prime number. We consider a field k of characteristic p and we denote by kG the group algebra of G over k. We assume that k is large enough in the sense that it is a splitting field for every group algebra $k(N_G(P)/P)$, where P runs through the set of all p-subgroups of G. • We let K be a field of characteristic 0 and we assume that K is large enough in the sense that it contains the values of all the Brauer characters of the groups $N_G(P)/P$, where P runs through the set of all p-subgroups of G.

We recall quickly how Brauer characters are defined. We let \overline{k} be an extension of k containing all the n-th roots of unity, where n is the p'-part of the exponent of G. We choose an isomorphism $\theta : \mu_n(\overline{k}) \to \mu_n(\mathbb{C})$ from the group of n-th roots of unity in \overline{k} and the corresponding group in \mathbb{C} . If V is an r-dimensional kH-module for the group $H = N_G(P)/P$ and if s is an element of the set $H_{p'}$ of all p'-elements of H, the matrix of the action of s on V has eigenvalues $(\lambda_1, \ldots, \lambda_r)$ in the group $\mu_n(\overline{k})$. The Brauer character ϕ_V of V is the central function defined on $H_{p'}$, with values in the field $\mathbb{Q}[\mu_n(\mathbb{C})]$, sending s to $\sum_{i=1}^r \theta(\lambda_i)$. The actual values of Brauer characters may lie in a subfield of $\mathbb{Q}[\mu_n(\mathbb{C})]$ and we simply require that K contains all these values.

2.2. Remark : Let V be as above and let W be a t-dimensional kH-module. If s has eigenvalues (μ_1, \ldots, μ_t) on W, its eigenvalues for the diagonal action of H on $V \otimes_k W$ are $(\lambda_i \mu_j)_{1 \leq i \leq r, 1 \leq j \leq t}$. It follows that $\phi_{V \otimes_k W}(s) = \sum_{i=1}^r \sum_{j=1}^t \theta(\lambda_i \mu_j) = \phi_V(s) \phi_W(s)$.

• When H is a subgroup of G, and M is a kG-module, we denote by $\operatorname{Res}_{H}^{G}M$ the kH-module obtained by restricting the action of G to H. When L is a kH-module, we denote by $\operatorname{Ind}_{H}^{G}L$ the induced kG-module.

• When M is a kG-module, and P is a subgroup of G, the k-vector space of fixed points of P on M is denoted by M^P . When $Q \leq P$ are subgroups of G, the *relative trace* is the map $\operatorname{tr}_Q^P : M^Q \to M^P$ defined by $\operatorname{tr}_Q^P(m) = \sum_{x \in [P/Q]} x \cdot m$.

• When M is a kG-module, the Brauer quotient of M at P is the k-vector space

$$M[P] = M^P / \sum_{Q < P} \operatorname{tr}_Q^P M^Q \,.$$

This k-vector space has a natural structure of $k\overline{N}_G(P)$ -module, where as usual $\overline{N}_G(P) = N_G(P)/P$. It is equal to zero if P is not a p-group.

• If P is a normal p-subgroup of G and M is a k(G/P)-module, denote by $\operatorname{Inf}_{G/P}^G M$ the kG-module obtained from M by inflation to G. Then there is an isomorphism

$$(\operatorname{Inf}_{G/P}^G M)[P] \cong M$$

of k(G/P)-modules.

• When G acts on a set X (on the left), and $x, y \in X$, we write $x =_G y$ if x and y are in the same G-orbit. We denote by $[G \setminus X]$ a set of representatives

of G-orbits on X, and by X^G the set of fixed points of G on X. For $x \in X$, we denote by G_x its stabilizer in G.

2.3. Review of p-permutation modules. We begin by recalling some definitions and basic results. We refer to [3], and to [1] Sections 3.11 and 5.5 for details :

2.4. Definition. A permutation kG-module is a kG-module admitting a G-invariant k-basis. A p-permutation kG-module M is a kG-module such that $\operatorname{Res}_{S}^{G}M$ is a permutation kS-module, where S is a Sylow p-subgroup of G.

The *p*-permutation kG-modules are also called *trivial source modules*, because the indecomposable ones coincide with the indecomposable modules having a trivial source (see [3] 0.4). Moreover, the *p*-permutation modules also coincide with the direct summands of permutation modules (see [1], Lemma 3.11.2).

2.5. Proposition.

- 1. If H is a subgroup of G, and M is a p-permutation kG-module, then the restriction $\operatorname{Res}_{H}^{G}M$ of M to H is a p-permutation kH-module.
- 2. If H is a subgroup of G, and L is a p-permutation kH-module, then the induced module $\operatorname{Ind}_{H}^{G}L$ is a p-permutation kG-module.
- 3. If N is a normal subgroup of G, and L is a p-permutation k(G/N)-module, the inflated module $\operatorname{Inf}_{G/N}^G L$ is a p-permutation kG-module.
- 4. If P is a p-group, and M is a permutation kP-module with P-invariant basis X, then the image of the set X^P in M[P] is a k-basis of M[P].
- 5. If P is a p-subgroup of G, and M is a p-permutation kG-module, then the Brauer quotient M[P] is a p-permutation $k\overline{N}_G(P)$ -module.
- 6. If M and N are p-permutation kG-modules, then their tensor product $M \otimes_k N$ is again a p-permutation kG-module.

Proof: Assertions 1,2,3, and 6 are straightforward consequences of the same assertions for *permutation* modules. For Assertion 4, see [3] 1.1.(3). Assertion 5 follows easily from Assertion 4 (see also [3] 3.1).

This leads to the following definition :

2.6. Definition. The p-permutation ring $pp_k(G)$ is the Grothendieck group of the category of p-permutation kG-modules, with relations corresponding to direct sum decompositions, i.e. $[M] + [N] = [M \oplus N]$. The ring structure

on $pp_k(G)$ is induced by the tensor product of modules over k. The identity element of $pp_k(G)$ is the class of the trivial kG-module k.

As the Krull-Schmidt theorem holds for kG-modules, the additive group $pp_k(G)$ is a free (abelian) group on the set of isomorphism classes of indecomposable *p*-permutation kG-modules. These modules have the following properties :

2.7. Theorem. [3] Theorem 3.2]

- 1. The vertices of an indecomposable p-permutation kG-module M are the maximal p-subgroups P of G such that $M[P] \neq \{0\}$.
- 2. An indecomposable p-permutation kG-module has vertex P if and only if M[P] is a non-zero projective $k\overline{N}_G(P)$ -module.
- 3. The correspondence $M \mapsto M[P]$ induces a bijection between the isomorphism classes of indecomposable p-permutation kG-modules with vertex P and the isomorphism classes of indecomposable projective $k\overline{N}_G(P)$ -modules.

2.8. Notation. Let $\mathcal{P}_{G,p}$ denote the set of pairs (P, E), where P is a p-subgroup of G, and E is an indecomposable projective $k\overline{N}_G(P)$ -module. The group G acts on $\mathcal{P}_{G,p}$ by conjugation, and we denote by $[\mathcal{P}_{G,p}]$ a set of representatives of G-orbits on $\mathcal{P}_{G,p}$.

For $(P, E) \in \mathcal{P}_{G,p}$, let $M_{P,E}$ denote the (unique up to isomorphism) indecomposable p-permutation kG-module such that $M_{P,E}[P] \cong E$.

2.9. Corollary. The classes of the modules $M_{P,E}$, for $(P, E) \in [\mathcal{P}_{G,p}]$ form a \mathbb{Z} -basis of $pp_k(G)$.

2.10. Notation. The operations $\operatorname{Res}_{H}^{G}$, $\operatorname{Ind}_{H}^{G}$, $\operatorname{Inf}_{G/N}^{G}$ extend linearly to maps between the corresponding *p*-permutations rings, denoted with the same symbol.

The maps Res_{H}^{G} and $\text{Inf}_{G/N}^{G}$ are ring homomorphisms, whereas Ind_{H}^{G} is not in general. Similarly :

2.11. Proposition. Let P be a p-subgroup of G. Then the correspondence $M \mapsto M[P]$ induces a ring homomorphism $\operatorname{Br}_P^G : pp_k(G) \to pp_k(\overline{N}_G(P))$.

Proof: Let M and N be p-permutation kG-modules. The canonical bilinear map $M \times N \to M \otimes_k N$ is G-equivariant, hence it induces a bilinear map $\beta_P : M[P] \times N[P] \to (M \otimes_k N)[P]$ (see [3] 1.2), which is $\overline{N}_G(P)$ -equivariant. Now if X is a P-invariant k-basis of M, and Y a P-invariant k-basis of N,

then $X \times Y$ is a *P*-invariant basis of $M \otimes_k N$. The images of the sets X^P , Y^P , and $(X \times Y)^P$ are bases of M[P], N[P], and $(M \otimes_k N)[P]$, respectively, and the restriction of β_P to these bases is the canonical bijection $X^P \times Y^P \to$ $(X \times Y)^P$. It follows that β_P induces an isomorphism $M[P] \otimes_k N[P] \to$ $(M \otimes_k N)[P]$ of $k\overline{N}_G(P)$ -modules. Proposition 2.11 follows.

2.12. Notation. Let $\mathcal{Q}_{G,p}$ denote the set of pairs (P,s), where P is a p-subgroup of G, and s is a p'-element of $\overline{N}_G(P)$. The group G acts on $\mathcal{Q}_{G,p}$, and we denote by $[\mathcal{Q}_{G,p}]$ a set of representatives of G-orbits on $\mathcal{Q}_{G,p}$.

If $(P, s) \in \mathcal{Q}_{G,p}$, we denote by $N_G(P, s)$ the stabilizer of (P, s) in G, and by $\langle Ps \rangle$ the subgroup of $N_G(P)$ generated by Ps (i.e. the inverse image in $N_G(P)$ of the cyclic group $\langle s \rangle$ of $\overline{N}_G(P)$).

2.13. Remarks :

- When H is a subgroup of G, there is a natural inclusion of $\mathcal{Q}_{H,p}$ into $\mathcal{Q}_{G,p}$, as $\overline{N}_H(P) \leq \overline{N}_G(P)$ for any p-subgroup P of H. We will consider $\mathcal{Q}_{H,p}$ as a subset of $\mathcal{Q}_{G,p}$.
- When $(P, s) \in \mathcal{Q}_{G,p}$, the group $N_G(P, s)$ is the set of elements g in $N_G(P)$ whose image in $\overline{N}_G(P)$ centralizes s. In other words, there is a short exact sequence of groups

2.14)
$$\mathbf{1} \to P \to N_G(P, s) \to C_{\overline{N}_G(P)}(s) \to \mathbf{1}$$

In particular $N_G(P, s)$ is a subgroup of $N_G(\langle Ps \rangle)$.

2.15. Notation. Let $(P, s) \in \mathcal{Q}_{G,p}$. Let $\tau_{P,s}^G$ denote the additive map from $pp_k(G)$ to K sending the class of a p-permutation kG-module M to the value at s of the Brauer character of the $\overline{N}_G(P)$ -module M[P].

2.16. Remarks :

(

• It is clear that $\tau_{P,s}^G(M)$ only depends on the restriction of M to the group $\langle Ps \rangle$. In other words

$$\tau_{P,s}^G = \tau_{P,s}^{\langle Ps \rangle} \circ \operatorname{Res}_{\langle Ps \rangle}^G .$$

Furthermore, it is clear from the definition that

(2.17)
$$\tau_{P,s}^G = \tau_{\mathbf{1},s}^{\langle Ps \rangle / P} \circ \operatorname{Br}_P^{\langle Ps \rangle} \circ \operatorname{Res}_{\langle Ps \rangle}^G.$$

• It is easy to see that $\tau_{P,s}^G$ only depends on the *G*-orbit of (P, s), that is, $\tau_{Pg,sg}^G = \tau_{P,s}^G$ for every $g \in G$.

The following proposition is Corollary 5.5.5 in [1], but our construction of the species is slightly different (but equivalent, of course). For this reason, we sketch an independent proof :

2.18. Proposition.

- 1. The map $\tau_{P,s}^G$ is a ring homomorphism $pp_k(G) \to K$ and extends to a *K*-algebra homomorphism (a species) $\tau_{P,s}^G : K \otimes_{\mathbb{Z}} pp_k(G) \to K$.
- 2. The set $\{\tau_{P,s}^G \mid (P,s) \in [\mathcal{Q}_{G,p}]\}$ is the set of all distinct species from $K \otimes_{\mathbb{Z}} pp_k(G)$ to K. These species induce a K-algebra isomorphism

$$T = \prod_{(P,s)\in[\mathcal{Q}_{G,p}]} \tau_{P,s}^G : K \otimes_{\mathbb{Z}} pp_k(G) \to \prod_{(P,s)\in[\mathcal{Q}_{G,p}]} K$$

Proof: By 2.17, to prove Assertion 1, it suffices to prove that $\tau_{1,s}^{\langle Ps \rangle/P}$ is a ring homomorphism, since both $\operatorname{Res}_{\langle Ps \rangle}^{G}$ and $\operatorname{Br}_{P}^{\langle Ps \rangle}$ are ring homomorphisms. In other words, we can assume that $P = \mathbf{1}$. Now the value of $\tau_{1,s}^{G}$ on the class of a kG-module M is the value $\phi_M(s)$ of the Brauer character of M at s, so Assertion 1 follows from Remark 2.2.

For Assertion 2, it suffices to prove that T is an isomorphism. Since $[\mathcal{P}_{G,p}]$ and $[\mathcal{Q}_{G,p}]$ have the same cardinality, the matrix \mathcal{M} of T is a square matrix. Let $(P, E) \in \mathcal{P}_{G,p}$, and $(Q, s) \in \mathcal{Q}_{G,p}$. Then $\tau_{Q,s}(M_{P,E})$ is equal to zero if Q is not contained in P up to G-conjugation, because in this case $M_{P,E}(Q) = \{0\}$ by Theorem 2.7. It follows that \mathcal{M} is block triangular. As moreover $M_{P,E}[P] \cong E$, we have that $\tau_{P,s}(M_{P,E}) = \phi_E(s)$. This means that the diagonal block of \mathcal{M} corresponding to P is the matrix of Brauer characters of projective $k\overline{N}_G(P)$ -modules, and these are linearly independent by Lemma 5.3.1 of [1]. It follows that all the diagonal blocks of \mathcal{M} are non singular, so \mathcal{M} is invertible, and T is an isomorphism.

2.19. Corollary. The algebra $K \otimes_{\mathbb{Z}} pp_k(G)$ is a split semisimple commutative K-algebra. Its primitive idempotents $F_{P,s}^G$ are indexed by $[\mathcal{Q}_{G,p}]$, and the idempotent $F_{P,s}^G$ is characterized by

$$\forall (R, u) \in \mathcal{Q}_{G, p}, \ \tau^{G}_{R, u}(F^{G}_{P, s}) = \begin{cases} 1 & if (R, u) =_{G} (P, s) \\ 0 & otherwise. \end{cases}$$

3. Restriction and induction

3.1. Proposition. Let $H \leq G$, and $(P, s) \in \mathcal{Q}_{G,p}$. Then

$$\operatorname{Res}_{H}^{G} F_{P,s}^{G} = \sum_{(Q,t)} F_{Q,t}^{H} ,$$

where (Q, t) runs through a set of representatives of H-conjugacy classes of G-conjugates of (P, s) contained in H.

Proof: Indeed, as $\operatorname{Res}_{H}^{G}$ is an algebra homomorphism, the element $\operatorname{Res}_{H}^{G}F_{P,s}^{G}$ is an idempotent of $K \otimes_{\mathbb{Z}} pp_{k}(H)$, hence it is equal to a sum of some distinct primitive idempotents $F_{Q,t}^{H}$. The idempotent $F_{Q,t}^{H}$ appears in this decomposition if and only if $\tau_{Q,t}^{H}(\operatorname{Res}_{H}^{G}F_{P,s}^{G}) = 1$. By Remark 2.16

$$\begin{aligned} \tau_{Q,t}^{H}(\operatorname{Res}_{H}^{G}F_{P,s}^{G}) &= \tau_{Q,t}^{}(\operatorname{Res}_{}^{H}\operatorname{Res}_{H}^{G}F_{P,s}^{G}) \\ &= \tau_{Q,t}^{}(\operatorname{Res}_{}^{G}F_{P,s}^{G}) \\ &= \tau_{Q,t}^{G}(F_{P,s}^{G}) . \end{aligned}$$

Now $\tau_{Q,t}^G(F_{P,s}^G)$ is equal to 1 if and only if (Q, t) and (P, s) are G-conjugate. This completes the proof.

3.2. Proposition. Let $H \leq G$, and $(Q, t) \in \mathcal{Q}_{H,p}$. Then $\operatorname{Ind}_{H}^{G}F_{Q,t}^{H} = |N_{G}(Q, t) : N_{H}(Q, t)|F_{Q,t}^{G}$.

Proof: Since $K \otimes_{\mathbb{Z}} pp_k(G)$ is a split semisimple commutative K-algebra, any element X in $K \otimes_{\mathbb{Z}} pp_k(G)$ can be written

(3.3)
$$X = \sum_{(P,s) \in [\mathcal{Q}_{G,p}]} \tau_{P,s}^G(X) F_{P,s}^G$$

and moreover for any $(P, s) \in \mathcal{Q}_{G,p}$

$$\tau_{P,s}^G(X)F_{P,s}^G = X \cdot F_{P,s}^G$$

Setting $X = \operatorname{Ind}_{H}^{G} F_{Q,t}^{H}$ in this equation gives

$$\tau_{P,s}^G(\operatorname{Ind}_H^G F_{Q,t}^H)F_{P,s}^G = (\operatorname{Ind}_H^G F_{Q,t}^H) \cdot F_{P,s}^G$$
$$= \operatorname{Ind}_H^G(F_{Q,t}^H \cdot \operatorname{Res}_H^G F_{P,s}^G)$$

By Proposition 3.1, the element $\operatorname{Res}_{H}^{G}F_{P,s}^{G}$ is equal to the sum of the distinct idempotents $F_{P^{y},s^{y}}^{H}$ associated to elements y of G such that $\langle Ps \rangle^{y} \leq H$. The product $F_{Q,t}^{H} \cdot F_{P^{y},s^{y}}^{H}$ is equal to zero, unless (Q,t) is H-conjugate to (P^{y}, s^{y}) , which implies that (Q, t) and (P, s) are G-conjugate. It follows that the only non zero term in the right of Equation 3.3 is the term corresponding to (Q, t). Hence

$$\operatorname{Ind}_{H}^{G} F_{Q,t}^{H} = \tau_{Q,t}^{G} (\operatorname{Ind}_{H}^{G} F_{Q,t}^{H}) F_{Q,t}^{G} .$$

Now by Remark 2.16 and the Mackey formula

$$\tau_{Q,t}^G(\operatorname{Ind}_H^G F_{Q,t}^H) = \tau_{Q,t}^{\langle Qt \rangle}(\operatorname{Res}_{\langle Qt \rangle}^G \operatorname{Ind}_H^G F_{Q,t}^H)$$

= $\tau_{Q,t}^{\langle Qt \rangle} \left(\sum_{x \in \langle Qt \rangle \backslash G/H} \operatorname{Ind}_{\langle Qt \rangle \cap xH}^{\langle Qt \rangle} \operatorname{Res}_{\langle Qt \rangle^x \cap H}^H F_{Q,t}^H\right).$

By Proposition 3.1, the element $\operatorname{Res}_{\langle Qt \rangle^x \cap H}^H F_{Q,t}^H$ is equal to the sum of the distinct idempotents $F_{Q^y,t^y}^{\langle Qt \rangle^x \cap H}$ corresponding to elements $y \in H$ such that $\langle Qt \rangle^y \leq \langle Qt \rangle^x \cap H$. This implies $\langle Qt \rangle^y = \langle Qt \rangle^x$, i.e. $y \in N_G(\langle Qt \rangle)x$, thus $x \in N_G(\langle Qt \rangle) \cdot H$. This gives

$$\begin{split} \tau_{Q,t}^{G}(\mathrm{Ind}_{H}^{G}F_{Q,t}^{H}) &= & \tau_{Q,t}^{} \Big(\sum_{\substack{x \in N_{G}()H/H \\ y \in N_{H}(Q,t) \setminus N_{G}()x}} {}^{x}F_{Q^{y},t^{y}}^{} \Big) \\ &= & \sum_{\substack{x \in N_{G}()/N_{H}(Q,t) \setminus N_{G}()x \\ y \in N_{H}(Q,t) \setminus N_{G}()x}} \tau_{Q,t}^{} \big(F_{Q^{yx^{-1}},t^{yx^{-1}}}^{}\big) \\ &= & \sum_{z \in N_{H}(Q,t) \setminus N_{G}()x} \tau_{Q,t}^{} \big(F_{Q^{z},t^{z}}^{}\big) \,, \end{split}$$

where $z = yx^{-1}$. Finally $\tau_{Q,t}^{\langle Qt \rangle}(F_{Q^z,t^z}^{\langle Qt \rangle})$ is equal to 1 if (Q^z, t^z) is conjugate to (Q, t) in $\langle Qt \rangle$, and to zero otherwise.

If $u \in \langle Qt \rangle$ is such that $(Q^z, t^z)^u = (Q, t)$, then $zu \in N_G(Q, t)$. But since $[\langle Qt \rangle, t] \leq Q$, we have $\langle Qt \rangle \leq N_G(Q, t)$, so $u \in N_G(Q, t)$, hence $z \in N_G(Q, t)$, and $(Q^z, t^z) = (Q, t)$. It follows that

$$\tau_{Q,t}^G(\mathrm{Ind}_H^G F_{Q,t}^H) = |N_G(Q,t) : N_H(Q,t)|,$$

which completes the proof of the proposition.

3.4. Corollary. Let $(P, s) \in \mathcal{Q}_{G,p}$. Then

$$F_{P,s}^G = \frac{|s|}{|C_{\overline{N}_G(P)}(s)|} \operatorname{Ind}_{}^G F_{P,s}^{}.$$

Proof: Apply Proposition 3.2 with (Q, t) = (P, s) and $H = \langle Ps \rangle$. Then $N_H(Q, t) = \langle Ps \rangle$, thus by Exact sequence 2.14

$$|N_G(Q,t):N_H(Q,t)| = \frac{|P||C_{\overline{N}_G(P)}(s)|}{|P||s|} = \frac{|C_{\overline{N}_G(P)}(s)|}{|s|}$$

and the corollary follows.

4. Idempotents

It follows from Corollary 3.4 that, in order to find formulae for the primitive idempotents $F_{P,s}^G$ of $K \otimes_{\mathbb{Z}} pp_k(G)$, it suffices to find the formula expressing the idempotent $F_{P,s}^{\langle Ps \rangle}$. In other words, we can assume that $G = \langle Ps \rangle$, i.e. that G has a normal Sylow p-subgroup P with cyclic quotient generated by s.

4.1. A morphism from the Burnside ring. When G is an arbitrary finite group, there is an obvious ring homomorphism \mathcal{L}_G from the Burnside ring B(G) to $pp_k(G)$, induced by the *linearization* operation, sending a finite G-set X to the permutation module kX, which is obviously a p-permutation module. This morphism also commutes with restriction and induction : if $H \leq G$, then

(4.2)
$$\mathcal{L}_H \circ \operatorname{Res}_H^G = \operatorname{Res}_H^G \circ \mathcal{L}_G, \qquad \mathcal{L}_G \circ \operatorname{Ind}_H^G = \operatorname{Ind}_H^G \circ \mathcal{L}_H.$$

Indeed, for any G-set X, the kH-modules $k\operatorname{Res}_{H}^{G}X$ and $\operatorname{Res}_{H}^{G}(kX)$ are isomorphic, and for any H-set Y, the kG-modules $k\operatorname{Ind}_{H}^{G}Y$ and $\operatorname{Ind}_{H}^{G}(kY)$ are isomorphic.

Similarly, when P is a p-subgroup of G, the ring homomorphism Φ_P : $B(G) \to B(\overline{N}_G(P))$ induced by the operation $X \mapsto X^P$ on G-sets, is compatible with the Brauer morphism $\operatorname{Br}_P^G : pp_k(G) \to pp_k(\overline{N}_G(P))$:

(4.3)
$$\mathcal{L}_{\overline{N}_G(P)} \circ \Phi_P = \operatorname{Br}_P^G \circ \mathcal{L}_G$$

This is because for any G-set X, the $k\overline{N}_G(P)$ -modules $k(X^P)$ and (kX)[P] are isomorphic.

The ring homomorphism \mathcal{L}_G extends linearly to a K-algebra homomorphism $K \otimes_{\mathbb{Z}} B(G) \to K \otimes_{\mathbb{Z}} pp_k(G)$, still denoted by \mathcal{L}_G . The algebra $K \otimes_{\mathbb{Z}} B(G)$ is also a split semisimple commutative K-algebra. Its species are the K-algebra maps

$$K \otimes_{\mathbb{Z}} B(G) \to K, \ X \mapsto |X^H|,$$

where H runs through the set of all subgroups of G up to conjugation. Here we denote by $|X^H|$ the number of H-fixed points of a G-set X and this notation is then extended K-linearly to any $X \in K \otimes_{\mathbb{Z}} B(G)$. The primitive idempotents e_H^G of $K \otimes_{\mathbb{Z}} B(G)$ are indexed by subgroups H of G, up to conjugation. They are given by the following formulae, found by Gluck ([4]) and later independently by Yoshida ([5]) :

(4.4)
$$e_H^G = \frac{1}{|N_G(H)|} \sum_{L \le H} |L| \, \mu(L, H) \, G/L \; ,$$

where μ denotes the Möbius function of the poset of subgroups of G. The idempotent e_H^G is characterized by the fact that for any $X \in K \otimes_{\mathbb{Z}} B(G)$

$$X \cdot e_H^G = |X^H| e_H^G \; .$$

4.5. Remark : Since $|X^H|$ only depends on $\operatorname{Res}_H^G X$, it follows in particular that X is a scalar multiple of the "top" idempotent e_G^G if and only if $\operatorname{Res}_H^G X = 0$ for any proper subgroup H of G. In particular, if N is a normal subgroup of G, then

(4.6)
$$(e_G^G)^N = e_{G/N}^{G/N}$$

This is because for any proper subgroup H/N of G/N

$$\operatorname{Res}_{H/N}^{G/N}(e_G^G)^N = (\operatorname{Res}_H^G e_G^G)^N = 0.$$

So $(e_G^G)^N$ is a scalar multiple of $e_{G/N}^{G/N}$. As it is also an idempotent, it is equal to 0 or $e_{G/N}^{G/N}$. Finally

$$|((e_G^G)^N)^{G/N}| = |(e_G^G)^G| = 1$$

so $(e_G^G)^N$ is non zero.

4.7. The case of a cyclic p'-group. Suppose that G is a cyclic p'-group, of order n, generated by an element s. In this case, there are exactly n group homomorphisms from G to the multiplicative group k^{\times} of k. For each of these group homomorphisms φ , let k_{φ} denote the kG-module k on which the generator s acts by multiplication by $\varphi(s)$. As G is a p'-group, this module is simple and projective. The (classes of the) modules k_{φ} , for $\varphi \in \widehat{G} = \operatorname{Hom}(G, k^{\times})$, form a basis of $pp_k(G)$.

Since moreover for $\varphi, \psi \in \widehat{G}$, the modules $k_{\varphi} \otimes_k k_{\psi}$ and $k_{\varphi\psi}$ are isomorphic, the algebra $K \otimes_{\mathbb{Z}} pp_k(G)$ is isomorphic to the group algebra of the group \widehat{G} . This leads to the following classical formula :

4.8. Lemma. Let G be a cyclic p'-group. Then for any $t \in G$,

$$F_{\mathbf{1},t}^G = \frac{1}{n} \sum_{\varphi \in \widehat{G}} \widetilde{\varphi}(t^{-1}) k_{\varphi}$$

where $\tilde{\varphi}$ is the Brauer character of k_{φ} .

Proof : Indeed for $s, t \in G$

$$\tau_{\mathbf{1},t}^{G} \Big(\frac{1}{n} \sum_{\varphi \in \widehat{G}} \widetilde{\varphi}(s^{-1}) k_{\varphi} \Big) = \frac{1}{n} \sum_{\varphi \in \widehat{G}} \widetilde{\varphi}(s^{-1}) \widetilde{\varphi}(t) = \delta_{s,t} ,$$

where $\delta_{s,t}$ is the Kronecker symbol.

4.9. The case $G = \langle Ps \rangle$. Suppose now more generally that $G = \langle Ps \rangle$, where P is a normal Sylow p-subgroup of G and s is a p'-element. In this case, by Proposition 3.1, the restriction of $F_{P,s}^G$ to any proper subgroup of G is equal to zero. Moreover, since $N_G(P,t) = G$ for any $t \in G/P$, the conjugacy class of the pair (P,t) reduces to $\{(P,t)\}$.

4.10. Lemma. Suppose $G = \langle Ps \rangle$, and set $E_G^G = \mathcal{L}_G(e_G^G)$. Then

$$E_G^G = \sum_{\langle t \rangle = \langle s \rangle} F_{P,t}^G$$

Proof: By 4.2 and by Remark 4.5, the restriction of E_G^G to any proper subgroup of G is equal to zero. Let $(Q,t) \in \mathcal{Q}_{G,p}$, such that the group $L = \langle Qt \rangle$ is a proper subgroup of G. By Proposition 3.2, there is a rational number r such that

$$F_{Q,t}^G = r \operatorname{Ind}_L^G F_{Q,t}^L$$
.

It follows that

$$E_G^G \cdot F_{Q,t}^G = r \operatorname{Ind}_L^G \left((\operatorname{Res}_L^G E_G^G) \cdot F_{Q,t}^L \right) = 0 .$$

Now E_G^G is an idempotent of $K \otimes_{\mathbb{Z}} pp_k(G)$, hence is it a sum of some of the primitive idempotents $F_{Q,t}^G$ associated to pairs (Q,t) for which $\langle Qt \rangle = G$. This condition is equivalent to Q = P and $\langle t \rangle = \langle s \rangle$.

It remains to show that all these idempotents $F_{P,t}^G$ appear in the decomposition of E_G^G , i.e. equivalently that $\tau_{P,t}^G(E_G^G) = 1$ for any generator t of $\langle s \rangle$. Now by 4.6 and Remark 2.16

$$\tau_{P,t}^G(E_G^G) = \tau_{\mathbf{1},t}^{G/P} \left(\operatorname{Br}_P^G(E_G^G) \right) = \tau_{\mathbf{1},t}^{~~}(E_{~~}^{~~})~~~~~~$$

Now the value at t of the Brauer character of a permutation module kX is equal to the number of fixed points of t on X. By K-linearity, this gives

$$\tau_{\mathbf{1},t}^{~~}(E_{~~}^{~~}) = |(e_{~~}^{~~})^t| ,~~~~~~~~~~$$

and this is equal to 1 if t generates $\langle s \rangle$, and to 0 otherwise, as was to be shown.

4.11. Proposition. Let $(P, s) \in \mathcal{Q}_{G,p}$, and suppose that $G = \langle Ps \rangle$. Then

$$F_{P,s}^G = E_G^G \cdot \operatorname{Inf}_{G/P}^G F_{\mathbf{1},s}^{G/P}$$

Proof: Set $E_s = E_G^G \cdot \operatorname{Inf}_{G/P}^G F_{\mathbf{1},s}^{G/P}$. Then E_s is an idempotent of $K \otimes_{\mathbb{Z}} pp_k(G)$, as it is the product of two (commuting) idempotents. Let $(Q, t) \in \mathcal{Q}_{G,p}$. If $\langle Qt \rangle \neq G$, then $\tau_{Q,t}^G(E_G^G) = 0$ by Lemma 4.10, thus $\tau_{Q,t}^G(E_s) = 0$. And if $\langle Qt \rangle = G$, then Q = P and $\langle t \rangle = \langle s \rangle$. In this case

$$\tau_{Q,t}^G(E_s) = \tau_{P,t}^G(E_G^G) \cdot \tau_{P,t}^G(\mathrm{Inf}_{G/P}^G F_{\mathbf{1},s}^{G/P})$$
.

By Lemma 4.10, the first factor in the right hand side is equal to 1. The second factor is equal to

$$\begin{aligned} \tau^{G}_{P,t}(\mathrm{Inf}^{G}_{G/P}F^{G/P}_{\mathbf{1},s}) &= \tau^{G/P}_{\mathbf{1},t}\mathrm{Br}^{G}_{P}(\mathrm{Inf}^{G}_{G/P}F^{G/P}_{\mathbf{1},s}) \\ &= \tau^{G/P}_{\mathbf{1},t}(F^{G/P}_{\mathbf{1},s}) = \delta_{t,s} \;, \end{aligned}$$

where $\delta_{t,s}$ is the Kronecker symbol. Hence $\tau_{P,t}^G(E_s) = \delta_{t,s}$, and this completes the proof.

4.12. Theorem. Let G be a finite group, and let $(P, s) \in \mathcal{Q}_{G,p}$. Then the primitive idempotent $F_{P,s}^G$ of the p-permutation algebra $K \otimes_{\mathbb{Z}} pp_k(G)$ is given by the following formula :

$$F_{P,s}^{G} = \frac{1}{|P||s||C_{\overline{N}_{G}(P)}(s)|} \sum_{\substack{\varphi \in \widehat{\langle s \rangle} \\ L \leq \langle Ps \rangle \\ PL = \langle Ps \rangle}} \widetilde{\varphi}(s^{-1})|L|\mu(L, \langle Ps \rangle) \operatorname{Ind}_{L}^{G} k_{L,\varphi}^{\langle Ps \rangle}$$

where $k_{L,\varphi}^{\langle Ps \rangle} = \operatorname{Res}_{L}^{\langle Ps \rangle} \operatorname{Inf}_{\langle s \rangle}^{\langle Ps \rangle} k_{\varphi}.$

Proof: By Corollary 3.4, and Proposition 4.11

. .

$$F_{P,s}^{G} = \frac{|s|}{|C_{\overline{N}_{G}(P)}(s)|} \operatorname{Ind}_{< Ps>}^{G} (E_{< Ps>}^{< Ps>} \cdot \operatorname{Inf}_{< s>}^{< Ps>} F_{\mathbf{1},s}^{< s>}) .$$

By Equation 4.4, this gives

$$F_{P,s}^{G} = \frac{|s|}{|C_{\overline{N}_{G}(P)}(s)|} \operatorname{Ind}_{}^{G} \frac{1}{|P||s|} \sum_{L \leq } |L| \mu(L,) \operatorname{Ind}_{L}^{} k \cdot \operatorname{Inf}_{~~}^{} F_{\mathbf{1},s}^{~~} .~~~~$$

Moreover for each $L \leq \langle Ps \rangle$

$$\begin{aligned} \operatorname{Ind}_{L}^{\langle Ps \rangle} k \cdot \operatorname{Inf}_{\langle s \rangle}^{\langle Ps \rangle} F_{\mathbf{1},s}^{\langle s \rangle} &\cong \operatorname{Ind}_{L}^{\langle Ps \rangle} (\operatorname{Res}_{L}^{\langle Ps \rangle} \operatorname{Inf}_{\langle s \rangle}^{\langle Ps \rangle} F_{\mathbf{1},s}^{\langle s \rangle}) \\ &\cong \operatorname{Ind}_{L}^{\langle Ps \rangle} \operatorname{Inf}_{L/L\cap P}^{L} \operatorname{Iso}_{LP/P}^{L/L\cap P} \operatorname{Res}_{LP/P}^{\langle s \rangle} F_{\mathbf{1},s}^{\langle s \rangle}. \end{aligned}$$

Here we have used the fact that if L and P are subgroups of a group H, with $P \leq H$, then there is an isomorphism of functors

$$\operatorname{Res}_{L}^{H} \circ \operatorname{Inf}_{H/P}^{H} \cong \operatorname{Inf}_{L/L \cap P}^{L} \circ \operatorname{Iso}_{LP/P}^{L/L \cap P} \circ \operatorname{Res}_{LP/P}^{H/P},$$

which follows from the isomorphism of (L, H/P)-bisets

$$H \times_H (H/P) \cong {}_L(H/P)_{H/P} \cong (L/L \cap P) \times_{L/L \cap P} (LP/P) \times_{LP/P} (H/P) .$$

Now Proposition 3.1 implies that $\operatorname{Res}_{LP/P}^{<s>} F_{\mathbf{1},s}^{<s>} = 0$ if $LP/P \neq <s>$, i.e. equivalently if $PL \neq <Ps>$. It follows that

$$F_{P,s}^{G} = \frac{1}{|P||C_{\overline{N}_{G}(P)}(s)|} \sum_{\substack{L \le \\ PL = }} |L|\mu(L,) \operatorname{Ind}_{L}^{G}(\operatorname{Res}_{L}^{} \operatorname{Inf}_{~~}^{} F_{\mathbf{1},s}^{~~}) .~~~~$$

By Lemma 4.8, this gives

$$F_{P,s}^{G} = \frac{1}{|P||s||C_{\overline{N}_{G}(P)}(s)|} \sum_{\substack{\varphi \in \widehat{\langle s \rangle} \\ L \leq \langle Ps \rangle \\ PL = \langle Ps \rangle \\ PL = \langle Ps \rangle}} \widetilde{\varphi}(s^{-1})|L|\mu(L, \langle Ps \rangle) \operatorname{Ind}_{L}^{G} k_{L,\varphi}^{\langle Ps \rangle} ,$$

where $k_{L,\varphi}^{\langle Ps \rangle} = \text{Res}_{L}^{\langle Ps \rangle} \text{Inf}_{\langle s \rangle}^{\langle Ps \rangle} k_{\varphi}$, as was to be shown.

References

- [1] D. Benson. *Representations and cohomology I*, volume 30 of *Cambridge studies in advanced mathematics*. Cambridge University Press, 1991.
- [2] S. Bouc. On the Cartan matrix of Mackey algebras. Preprint, 2009.
- [3] M. Broué. On Scott modules and *p*-permutation modules: an approach through the Brauer morphism. *Proc.AMS*, 93(3):401–408, March 1985.
- [4] D. Gluck. Idempotent formula for the Burnside ring with applications to the *p*-subgroup simplicial complex. *Illinois J. Math.*, 25:63–67, 1981.

[5] T. Yoshida. Idempotents in Burnside rings and Dress induction theorem. J. Algebra, 80:90–105, 1983.

Serge Bouc, CNRS-LAMFA, Université de Picardie - Jules Verne, 33, rue St Leu, F-80039 Amiens Cedex 1, France. serge.bouc@u-picardie.fr

Jacques Thévenaz, Institut de Géométrie, Algèbre et Topologie, EPFL, Bâtiment BCH, CH-1015 Lausanne, Switzerland. Jacques.Thevenaz@epfl.ch