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1. Introduction

Let GG be a finite group, let p be a prime number, and let K be a field of
characteristic 0 and k be a field of characteristic p, both large enough. In this
note we state explicit formulae for the primitive idempotents of K ®zppr(G),
where ppy(G) is the ring of p-permutation kG-modules (also called the trivial
source ring).

To obtain these formulae, we first use induction and restriction to reduce
to the case where G is cyclic modulo p, i.e. G has a normal Sylow p-subgroup
with cyclic quotient. Then we solve the easy and well known case where G
is a cyclic p’-group. Finally we conclude by using the natural ring homo-
momorphism from the Burnside ring B(G) of G to ppx(G), and the classical
formulae for the primitive idempotents of K ®z B(G).

Our formulae are an essential tool in [2], where Cartan matrices of Mackey
algebras are considered, and some invariants of these matrices (determinant,
rank) are explicitly computed.

2. p-permutation modules

2.1. Notation.

e Throughout the paper, G will be a fixed finite group and p a fixed prime
number. We consider a field k of characteristic p and we denote by kG the
group algebra of G over k. We assume that k is large enough in the sense
that it is a splitting field for every group algebra k(Ng(P)/P), where P runs
through the set of all p-subgroups of G.



e We let K be a field of characteristic 0 and we assume that K is large enough
in the sense that it contains the values of all the Brauer characters of the
groups Ng(P)/P, where P runs through the set of all p-subgroups of G.
We recall quickly how Brauer characters are defined. We let k& be an
extension of k£ containing all the n-th roots of unity, where n is the p’-part of
the exponent of G. We choose an isomorphism 6 : 1, (k) — p,,(C) from the
group of n-th roots of unity in k and the corresponding group in C. If V is an
r-dimensional kH-module for the group H = Ng(P)/P and if s is an element
of the set H, of all p’-elements of H, the matrix of the action of s on V' has
eigenvalues (\y, ..., A,) in the group yu, (k). The Brauer character ¢y of V is
the central function defined on H,,, with values in the field Q[u,,(C)], sending
sto Y ;_, 0()\;). The actual values of Brauer characters may lie in a subfield

of Q[u,(C)] and we simply require that K contains all these values.

2.2. Remark : Let V be as above and let W be a t-dimensional & H-module.
If s has eigenvalues (uq,..., 1) on W, its eigenvalues for the diagonal ac-

B

Yot X 0Nig) = by (s)ow (s).

e When H is a subgroup of GG, and M is a kG-module, we denote by Reng
the kH-module obtained by restricting the action of G to H. When L is a
kH-module, we denote by Ind% L the induced kG-module.

e When M is a kG-module, and P is a subgroup of GG, the k-vector space
of fixed points of P on M is denoted by M*. When () < P are subgroups
of G, the relative trace is the map trg : MQ — M?F defined by trg(m) =
Zme[P/Q] LM

e When M is a kG-module, the Brauer quotient of M at P is the k-vector
space

M[P]=M"/ Y " trh MO .
Q<P

This k-vector space has a natural structure of kN g(P)-module, where as
usual Ng(P) = Ng(P)/P. It is equal to zero if P is not a p-group.

e If P is a normal p-subgroup of G and M is a k(G /P)-module, denote by
Infé /pM the kG-module obtained from M by inflation to G. Then there is
an isomorphism

(Infg;, pM)[P] = M
of k(G/P)-modules.

e When G acts on a set X (on the left), and z,y € X, we write x =¢ y if
x and y are in the same G-orbit. We denote by [G\ X]| a set of representatives



of G-orbits on X, and by X the set of fixed points of G on X. For z € X,
we denote by G, its stabilizer in G.

2.3. Review of p-permutation modules. We begin by recalling some
definitions and basic results. We refer to [3], and to [1] Sections 3.11 and 5.5
for details :

2.4. Definition. A permutation kG-module is a kG-module admitting a G-
invariant k-basis. A p-permutation kG-module M is a kG-module such that
Reng 1s a permutation kS-module, where S is a Sylow p-subgroup of G.

The p-permutation kG-modules are also called trivial source modules,
because the indecomposable ones coincide with the indecomposable modules
having a trivial source (see [3] 0.4). Moreover, the p-permutation modules
also coincide with the direct summands of permutation modules (see [1],
Lemma 3.11.2).

2.5. Proposition.

1. If H s a subgroup of G, and M is a p-permutation kG-module, then
the restriction Resg]\/[ of M to H is a p-permutation kH-module.

2. If H 1is a subgroup of G, and L is a p-permutation kH-module, then
the induced module IndgL is a p-permutation kG-module.

3. If N is a normal subgroup of G, and L is a p-permutation k(G/N)-
module, the inflated module Infg/NL s a p-permutation kG-module.

4. If P is a p-group, and M s a permutation kP-module with P-invariant
basis X, then the image of the set X¥ in M[P] is a k-basis of M[P].

9. If P is a p-subgroup of G, and M is a p-permutation kG-module, then
the Brauer quotient M[P] is a p-permutation kN g(P)-module.

6. If M and N are p-permutation kG-modules, then their tensor product
M ®i N is again a p-permutation kG-module.

Proof : Assertions 1,2,3, and 6 are straightforward consequences of the
same assertions for permutation modules. For Assertion 4, see [3] 1.1.(3).
Assertion 5 follows easily from Assertion 4 (see also [3] 3.1). O

This leads to the following definition :

2.6. Definition. The p-permutation ring ppx(G) is the Grothendieck group
of the category of p-permutation kG-modules, with relations corresponding to
direct sum decompositions, i.e. [M]+ [N] = [M & N]|. The ring structure



on ppr(G) is induced by the tensor product of modules over k. The identity
element of ppx(G) is the class of the trivial kG-module k.

As the Krull-Schmidt theorem holds for kG-modules, the additive group
ppr(G) is a free (abelian) group on the set of isomorphism classes of inde-
composable p-permutation kG-modules. These modules have the following
properties :

2.7. Theorem. [ [3] Theorem 3.2]

1. The vertices of an indecomposable p-permutation kG-module M are the
mazimal p-subgroups P of G such that M[P] # {0}.

2. An indecomposable p-permutation kG-module has vertex P if and only
if M[P] is a non-zero projective kN (P)-module.

3. The correspondence M +— M|[P] induces a bijection between the isomor-
phism classes of indecomposable p-permutation kG-modules with ver-

tex P and the isomorphism classes of indecomposable projective kN g(P)-
modules.

2.8. Notation. Let Pg,, denote the set of pairs (P, E), where P is a
p-subgroup of G, and E is an indecomposable projective kN g(P)-module.
The group G acts on Pg,p by conjugation, and we denote by [Pa,| a set of
representatives of G-orbits on Pg,p.

For (P,E) € Pg,p, let Mp g denote the (unique up to isomorphism) inde-
composable p-permutation kG-module such that Mp[P] = E.

2.9. Corollary. The classes of the modules Mp g, for (P, E) € [Pg,p] form
a Z-basis of ppr(G).

2.10. Notation.  The operations Res$, Ind%, InfS /N extend linearly to
maps between the corresponding p-permutations rings, denoted with the same
symbol.

The maps Res% and Inf& /v are ring homomorphisms, whereas Ind$ is
not in general. Similarly :

2.11. Proposition. Let P be a p-subgroup of G. Then the correspondence
M — M][P] induces a ring homomorphism Br$ : ppp(G) — ppy. (NG(P)).

Proof: Let M and N be p-permutation kG-modules. The canonical bilinear
map M x N — M ®; N is G-equivariant, hence it induces a bilinear map
Bp : M[P] x N[P] — (M ®;, N)[P] (see [3] 1.2), which is Ng(P)-equivariant.
Now if X is a P-invariant k-basis of M, and Y a P-invariant k-basis of NV,
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then X xY is a P-invariant basis of M ®; N. The images of the sets X, Y,
and (X x V) are bases of M[P], N[P], and (M ®j, N)[P], respectively, and
the restriction of 3p to theses bases is the canonical bijection X7 x Y —
(X x Y)P. It follows that 3p induces an isomorphism M[P] @, N[P] —
(M ®; N)[P] of kN ¢(P)-modules. Proposition 2.11 follows. 0

2.12. Notation. Let Qg, denote the set of pairs (P,s), where P is a
p-subgroup of G, and s is a p'-element of Ng(P). The group G acts on Qg .,
and we denote by [Qa,| a set of representatives of G-orbits on Q.

If (P,s) € Qg,p, we denote by Ng(P, s) the stabilizer of (P,s) in G, and
by <Ps> the subgroup of Ng(P) generated by Ps (i.e. the inverse image in
Na(P) of the cyclic group <s> of Ng(P)).

2.13. Remarks :

e When H is a subgroup of G, there is a natural inclusion of Qp ), into
Qcp, as Ny (P) < Ng(P) for any p-subgroup P of H. We will consider
Qnp as a subset of Q¢ .

e When (P,s) € Qg,p, the group Ng(P,s) is the set of elements ¢ in
Ng(P) whose image in Ng(P) centralizes s. In other words, there is a
short exact sequence of groups

(2.14) 1— P — Ng(Ps) = Cxyp(s) = 1.
In particular Ng (P, s) is a subgroup of Ng(<Ps>).

2.15. Notation. Let (P,s) € Qq,. Let 75, denote the additive map from
ppr(G) to K sending the class of a p-permutation kG-module M to the value
at s of the Brauer character of the Ng(P)-module M[P)].

2.16. Remarks :
e It is clear that 7§ (M) only depends on the restriction of M to the

group <Ps>. In other words

G __ ,_<Ps> G
TRS - TP,S © ReS<Ps> :

Furthermore, it is clear from the definition that

G _ _<Ps>/P <Ps> G
(2.17) Ths = T1s oBrp' *7 o ResZp,. .

e It is easy to see that Tgs only depends on the G-orbit of (P, s), that is,

¢ _ .G
Tpss = Tpg fOr every g € G.

The following proposition is Corollary 5.5.5 in [1], but our construction
of the species is slightly different (but equivalent, of course). For this reason,
we sketch an independent proof :



2.18. Proposition.

1. The map Tgs is a ring homomorphism ppy(G) — K and extends to a
K -algebra homomorphism (a species) Tgs K ®zppr(G) — K.

2. The set {75, | (P,s) € [Qayl} is the set of all distinct species from
K ®z ppr(G) to K. These species induce a K -algebra isomorphism

T = H Tgs : K @z ppp(G) — H K.

(P,s)€[Qc p] (P,s)€[Qa p]
Proof : By 2.17, to prove Assertion 1, it suffices to prove that Tf fs>/ Pis
a ring homomorphism, since both Resgps> and Bry™*> are ring homomor-

phisms. In other words, we can assume that P = 1. Now the value of Tfs
on the class of a kG-module M is the value ¢ps(s) of the Brauer character
of M at s, so Assertion 1 follows from Remark 2.2.

For Assertion 2, it suffices to prove that 7' is an isomorphism. Since
[Pyl and [Q¢ | have the same cardinality, the matrix M of T' is a square
matrix. Let (P, E) € Pg,p, and (Q,s) € Qg,. Then 7 (Mpg) is equal to
zero if () is not contained in P up to G-conjugation, because in this case
Mpg(Q) = {0} by Theorem 2.7. It follows that M is block triangular.
As moreover Mpg[P] = E, we have that 7p(Mpg) = ¢gr(s). This means
that the diagonal block of M corresponding to P is the matrix of Brauer
characters of projective kN g (P)-modules, and these are linearly independent
by Lemma 5.3.1 of [1]. It follows that all the diagonal blocks of M are non
singular, so M is invertible, and 7" is an isomorphism. O

2.19. Corollary. The algebra K &z ppi(G) is a split semisimple commuta-
tive K-algebra. Its primitive idempotents ng are indexed by [Qq |, and the
idempotent ng is characterized by

1 if (R,u) =¢ (P, s)

V(R,u) € Qap, Tﬁu(Fﬁs) - { 0 otherwise.

3. Restriction and induction
3.1. Proposition. Let H <G, and (P,s) € Qg,. Then

G G
RGSHFRS - Fé{t 5
(Qt)

where (Q,t) runs through a set of representatives of H-conjugacy classes of
G-conjugates of (P, s) contained in H.
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Proof : Indeed, as Res{; is an algebra homomorphism, the element Res% F’ 5
is an idempotent of K ®z ppx(H ), hence it is equal to a sum of some distinct
primitive idempotents F§,. The idempotent F{J, appears in this decompo-

sition if and only if Tgt(Renggs) = 1. By Remark 2.16

Tgt (Renggs) = 7'5?t> (ReszbRenggs)
¢ G G
= TQ<,? >(ReS<Qt>FP,s)
G (G
= TQ,t(FP,s) :
Now 75,(FF,) is equal to 1 if and only if (Q,t) and (P, s) are G-conjugate.
This completes the proof. O

3.2. Proposition. Let H <G, and (Q.,t) € Qu,. Then

md§; FY, = [Na(Q,t) : Ng(Q,)|FS, .

Proof : Since K ®z ppr(G) is a split semisimple commutative K-algebra,
any element X in K ®z ppi(G) can be written

(3.3) X= > 18X)Ff,,
(Pv’s)e[QG»P}
and moreover for any (P,s) € Qg
o (X)Fg, =X - F5, .

Setting X = IndfFJ, in this equation gives

8 (dGFY)FS, = (nd$GFY,) - FS,
— Indg(th . Renggs) .

By Proposition 3.1, the element Res% F gs is equal to the sum of the distinct
idempotents F/ ﬁy,sy associated to elements y of G such that <Ps>Y < H.
The product F(gt . Fﬁy’sy is equal to zero, unless (Q,t) is H-conjugate to
(PY,s¥), which implies that (Q,t) and (P, s) are G-conjugate. It follows that
the only non zero term in the right hand side of Equation 3.3 is the term
corresponding to (Q,t). Hence

Indgth - Tg’t(lndgth)th .
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Now by Remark 2.16 and the Mackey formula

G GpHY _ _<Qt> G G H
TQJ(IndHFQ’t) = To; (Res<Qt>IndHFQ7t)
<Qt> <Qt> H H
Tot ( Z Ind<Qt>ﬂxHIReS<Qt>zﬂHFQﬂf) .
ze<Qt>\G/H

By Proposition 3.1, the element ReSiIQDmHth is equal to the sum of the
distinct idempotents ngfo "nH corresponding to elements y € H such that
<Qt>Y < <Qt>"NH. This implies <Qt>Y = <Qt>",i.e. y € Ng(<Qt>)z,

thus x € Ng(<@Qt>) - H. This gives

G G pH <Qt> <Qt>
TQ,t(IndHFQ,t> = TQ,? ( Z IFQ%?,ty)
TENG(<Qt>)H/H
YENH (Q,t)\Nc(<Qt>)z

_ <Qt> [ <Qt>

- Z TQ,t (FQy171 ,ty:cfl )
TENG(<Qt>)/Ny(<Qt>)
YENH (Q,t)\Na(<Qt>)z

= Z TQ<,(22t> (Fggff) )
2ENH(Q:t)\Ng (<Qt>)
where z = yz~!. Finally 757?t>(FQ<gfz>) is equal to 1 if (Q?,t%) is conjugate
to (Q,t) in <@Qt>, and to zero otherwise.
If w € <Qt> is such that (Q* t*)* = (Q,1), then zu € Ng(Q,t). But
since [<Qt>,t] < @, we have <Qt> < Ng(Q,t), so u € Ng(Q,t), hence
z € Ng(Q,1), and (Q*,t%) = (Q,t). It follows that

76.(Indi F5,) = [Na(Q, 1) : Nu(Q,1)]

which completes the proof of the proposition. O

3.4. Corollary. Let (P,s) € Qg,p. Then
5]

F<Ps> )
1Cx e ()]

G __ G
FP,S - Ind<P5> P,s

Proof : Apply Proposition 3.2 with (Q,t) = (P,s) and H = <Ps>. Then
Ny (Q,t) = <Ps>, thus by Exact sequence 2.14

|P||CNG(P)(3)| _ |CNG(P)(3)|
P[5 sl

and the corollary follows. O

INa(Q,t) : Nu(Q,t)| =



4. Idempotents

It follows from Corollary 3.4 that, in order to find formulae for the primi-
tive idempotents F' gs of K®yzppr(G), it suffices to find the formula expressing
the idempotent F§55>. In other words, we can assume that G = <Ps>, i.e.
that G has a normal Sylow p-subgroup P with cyclic quotient generated by s.

4.1. A morphism from the Burnside ring. When G is an arbitrary
finite group, there is an obvious ring homomorphism Ls from the Burnside
ring B(G) to ppr(G), induced by the linearization operation, sending a finite
G-set X to the permutation module kX, which is obviously a p-permutation

module. This morphism also commutes with restriction and induction : if
H < G, then

(4.2) L o Resy = Res% o L, LgoInd$ =IndS o Ly .

Indeed, for any G-set X, the kH-modules kRes% X and Res% (kX) are iso-
morphic, and for any H-set Y, the kG-modules kInd%Y and Ind%(kY) are
isomorphic.

Similarly, when P is a p-subgroup of G, the ring homomorphism ®p :
B(G) — B(Ng(P)) induced by the operation X — X* on G-sets, is com-
patible with the Brauer morphism Br&% : ppr(G) — ppx (NG(P)) :

(4.3) Ly o®p=BrgoLls.

This is because for any G-set X, the kN g(P)-modules k(XT) and (kX)[P]
are isomorphic.

The ring homomorphism L extends linearly to a K-algebra homomor-
phism K ®z B(G) — K ®gz ppp(G), still denoted by Ls. The algebra
K ®7 B(G) is also a split semisimple commutative K-algebra. Its species
are the K-algebra maps

K ®; B(G) — K, X —|X"],

where H runs through the set of all subgroups of G' up to conjugation. Here
we denote by |X| the number of H-fixed points of a G-set X and this
notation is then extended K-linearly to any X € K ®z B(G). The primitive
idempotents e of K ®; B(G) are indexed by subgroups H of G, up to
conjugation. They are given by the following formulae, found by Gluck ([4])
and later independently by Yoshida ([5]) :

(4.4 G = g 3 [E (L ) /L
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where p denotes the Mdbius function of the poset of subgroups of G. The
idempotent €% is characterized by the fact that for any X € K ®z B(G)

X e = | X% .

4.5. Remark : Since | X¥| only depends on Res$ X, it follows in partic-
ular that X is a scalar multiple of the “top” idempotent €& if and only if
Res$ X = 0 for any proper subgroup H of G. In particular, if N is a normal
subgroup of GG, then

G/N
(4.6) (eS)N = eGéN .

This is because for any proper subgroup H/N of G/N
G/N
ResHéN(eg)N = (Res%e5)N = 0.

So (€5)N is a scalar multiple of eg%. As it is also an idempotent, it is equal

to 0 or eg%. Finally

(€M) ™M) = |(e8)9) =1,

so (e4)N is non zero.

4.7. The case of a cyclic p’-group. Suppose that G is a cyclic p’-group,
of order n, generated by an element s. In this case, there are exactly n
group homomorphisms from G to the multiplicative group £* of k. For
each of these group homomorphisms ¢, let k, denote the kG-module k on
which the generator s acts by multiplication by ¢(s). As G is a p’-group,
this module is simple and projective. The (classes of the) modules k,, for
¢ € G = Hom(G, k), form a basis of pp;(G).

Since moreover for p, 1 € G , the modules k,®k, and £, are isomorphic,
the algebra K ®gz ppr(G) is isomorphic to the group algebra of the group G.
This leads to the following classical formula :

4.8. Lemma. Let G be a cyclic p'-group. Then for any t € G,

1 i
FlG,t:EZQO(t l)kwa

e

where ¢ is the Brauver character of k.

10



Proof : Indeed for s,t € G

(SR = - S BB =

goea peG

where 9, is the Kronecker symbol. g

4.9. The case G = <Ps>. Suppose now more generally that G = <Ps>,
where P is a normal Sylow p-subgroup of G and s is a p/-element. In this
case, by Proposition 3.1, the restriction of F' gs to any proper subgroup of G is
equal to zero. Moreover, since Ng(P,t) = G for any t € G/ P, the conjugacy
class of the pair (P, t) reduces to {(P,t)}.

4.10. Lemma. Suppose G = <Ps>, and set ES = Lg(e&). Then

E¢= > Ff .

<t>=<s>

Proof : By 4.2 and by Remark 4.5, the restriction of ES to any proper
subgroup of G is equal to zero. Let (Q,t) € Qg,, such that the group
L = <@t> is a proper subgroup of G. By Proposition 3.2, there is a rational
number r such that
F§,=rdfF5, .
It follows that
EZ - F§, =rInd? ((ResfEG) - F5,) =0.

Now ES is an idempotent of K ®z ppi(G), hence is it a sum of some of the
primitive idempotents Fg , associated to pairs (@, t) for which <Qt> = G.
This condition is equivalent to ) = P and <t> = <s>.

It remains to show that all these idempotents F Jg’:t appear in the decompo-
sition of Eg, i.e. equivalently that 75,(E§G) = 1 for any generator ¢ of <s>.
Now by 4.6 and Remark 2.16

G/P s s
TS(BS) = 07 (BrG(ES)) = 7557 (BS2)

Now the value at t of the Brauer character of a permutation module kX is
equal to the number of fixed points of ¢ on X. By K-linearity, this gives
T (B52) = [(e22)',

and this is equal to 1 if ¢ generates <s>, and to 0 otherwise, as was to be
shown. O
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4.11. Proposition. Let (P, s) € Q¢,, and suppose that G = <Ps>. Then

F§, = ES - nfg, pFy" .

Proof: Set E, = Eg-lnfg/PFf/P. Then Ej is an idempotent of K ®zppy(G),

S

as it is the product of two (commuting) idempotents. Let (Q,t) € Qg,. If
<Qt> # G, then 7§ (E§) = 0 by Lemma 4.10, thus 75 ,(E,) = 0. And if
<Q@t> = G, then Q = P and <t> = <s>. In this case

s

G
7§ (By) = 8,(ES) - 75,(InfS 1T

By Lemma 4.10, the first factor in the right hand side is equal to 1. The
second factor is equal to

G/P G/P G/P
5, (Inf p YTy = i TBiE(Itg,  FyT)
G/P G/P
= Tl,t/ (Fls/ ) =0t 5

where ¢, 5 is the Kronecker symbol. Hence Tgt(ES) = 05, and this completes
the proof. O

4.12. Theorem. Let G be a finite group, and let (P,s) € Qg,. Then the
primitive idempotent ng of the p-permutation algebra K ®gz ppx(G) is given
by the following formula :

1
F§, = > (s THIL(L, <Ps>) Indf kD>
T PIsCrvem @ = ’
L<<Ps>
PL=<Ps>

<Ps> __ <Ps> <Ps>
where kp 7 = Resp *7InfZ 27 k.

Proof : By Corollary 3.4, and Proposition 4.11

5]

E<Ps> . Inf<P5>
|ONG(P) (s)]

G _ G <s>
FP,s = Ind<Ps>( <Ps> <s> Fl,s ) -

By Equation 4.4, this gives

1
Fg=— 1l g0

TP Ly > |L|p(L, <Ps>)Ind; " k-Infsls” Fe>
No(p)(5)] [P1lsl

L<<Ps>
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Moreover for each L < <Ps>

IndEPs>k, X Inf<Ps>F1<ss> ~ IndfPs> (RQSEPS>IHf<Ps>F1<§>)

<s> <s>
~ <Ps>7. ¢L L/LNP <s8>  <s>
= Ind; InfL/LﬂPISOLP/P Respp pF1,~ -

Here we have used the fact that if L and P are subgroups of a group H, with
P < H, then there is an isomorphism of functors

Res? o Inf2 p = Infk /1P © IsoﬁéL/;P o Resfl/jp ,

which follows from the isomorphism of (L, H/P)-bisets
H Xy (H/P) gL([’I/P))H/p = (L/LOP) XL/LOP (LP/P) XLp/p (H/P) .

Now Proposition 3.1 implies that ResE;7prj> = 0if LP/P # <s>, ie.
equivalently if PL # <Ps>. It follows that

1 S S S
F§ = Bt ] Y |L|p(L, <Ps>)Indf (Resy "> Infsls” Ffe>)
Ng(P) L<<Ps>
PL=<Ps>

By Lemma 4.8, this gives

1
FS.= (s V| LIu(L, <Ps>)IndS ks>
P Plsl|Crrg ) (9)] Z\ Fihe

pels>

L<<Ps>

PL=<Ps>

where k;0%> = Res;"*"InfS {27k, as was to be shown. u|
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