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Abstract : Bisets can be considered as categories. This note uses this point of view to
give a simple proof of a Mackey-like formula expressing the tensor product of two induced
bimodules.
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1. Introduction

Let R be a commutative ring, let G and H be finite groups, let X be a
subgroup of H x G, and M be an RX-module. If m € M and (h, g) € X, set
h-m-g=' = (h,g)-m : this is a slight extension of the usual correspondence
between R(H x G)-modules and (RH, RG)-bimodules.

The object of this note is to give a simple proof of the following result :

1.1. Theorem : Let R be a commutative ring, let G, H, and K be finite
groups, let X be a subgroup of H X G and'Y be a subgroup of K x H. Let M
be an RX-module, and N be an RY -module. Then there is an isomorphism

of (RK, RG)-bimodules

(Indy " N) @ gy (Ind§““ M) i[m(y)%/m&ﬁdi{ﬁflw(N Dy (v)rik (x) M)

where the notation is as follows (cf. [1]) :
n(X)={he H|3geC, (hyg)c X}, h(X)={hecH](h]1)ecX}

p(V) = {he H|Fhe K, (hh) eV}, k(Y)={heH|(1,h)eY}
YV« EUX ={(k,g) € KxG|3heH, (k,h) €Y, (h',g) € X} .
The action of (k,g) € Y x BV X on N ®u,ovynen, (x) BV M is given by

k-(neom) gt =(k-n-h™)@ {0 m-g"),

if h € H is chosen such that (k,h) €Y and (h',g) € X.



2. Functors over bisets

Recall that when G and H are groups, an (H,G)-biset U is a set equipped
with a left action of H and a right action of G which commute, i.e. such that
(hu)g = h(ug) for any h € H, uw € U, and g € G.

2.1. Notation : Let G and H be groups. When U is an (H, G)-biset, let
(U) denote the following category :

e The objects of (U) are the elements of U.
o [fu,veU, then

Hom iy (u,v) = {(h,9) € H x G | hu =vg} .

o [fu,v,w € U, the composition of the morphisms (h,g) : u — v and
(W,q') : v — w is the morphism (hW'h,q'g) : u — w.

o [fu € U, the identity morphism Id, : u — w is the pair (1,1) € G X G.

Note that the category (U) is a groupoid (any morphism is an isomor-
phism), and that for any u € U, the group

A(u) = Homy(u,u) = {(h,9) € H x G | hu = ug}

is a subgroup of H x G.
A functor M from (U) to a category C consists of a collection of objects
M (u) of C, for u € U, together with morphisms

M(h,g) : M(u) — M(hug™")

in the category C, for (h,g) € H x G, fulfilling the usual functorial conditions.
In particular, for each u € U, there is a group homomorphism A(u) —
Aute M (u).

Functors from (U) to C are the objects of a category Fun({U),C), in which
the morphisms are natural transformation of functors.

2.2. Notation : When C is a subcategory of the category Sets of sets,
and M is a functor (U) — C, the image of m € M(u) by the map M(h,g) :
M(u) — M(hug™'), for (h,g9) € H x G, will be denoted by hmg™.

In this case, a functor M : (U) — C is a collection of objects M (u) of C,
for u € U, together with morphisms m — hmg=': M(u) — M (hug™') in C,



for (h,g) € H x G, such that h'(hmg=1) g~ = (Wh)m(g'g)~" and 1m1 =m,
for any (h,g), (W/,¢') in H x G, any u € U, and any m € M (u).

2.3. Example : Suppose that C = Sets. Then the disjoint union | | M =

|| M(u) becomes an (H, G)-biset, and the map | | M — U sending elements
uclU

of M(u) to u, for u € U, is a map of (H, G)-bisets. Conversely, if 7: S — U
is a map of (H, G)-bisets, then the assignment u +— 7 '(u) is a functor from
(U) to Sets.

In other words, a functor (U) — Sets is just an (H,G)-biset over U.
More precisely, the category Fun((U), Sets) is equivalent to the category of
(H, G)-bisets over U.

2.4. Example : Let R be a commutative ring. In the remainder of this
note, the category C will be the category R-Mod of (left) R-modules. If M
is functor from (U) to R-Mod, then for each u € U, the R-module M (u) has
a natural structure of RA(u)-module.

Conversely, let [H\U/G] be a set of representatives of (H, G)-orbits on U.
Equivalently [H\U/G] is a set of representatives of isomorphism classes in the
category (U). Since (U) is a groupoid, it is equivalent to its full subcategory
[H\U/G]. In particular, this yields an equivalence of categories

(2.5) Fun((U), R-Mod) =[] RA(u)-Mod .
u€[H\U/G]

2.6. Remark : In the situation of Example 2.4, the direct sum
E(M)= & M(u)
uelU

has a natural structure of (RH, RG)-bimodule, i.e. using the usual group
isomorphism (h,g) — (h,g™') from H x G to H x G, of left R(H x G)-
module.

Moreover, is is easy to see that there is an isomorphism of (RH, RG)-
bimodules

Y(M)2 o Ind?XMw) .
(M) vt AW (u)

3. Product of bisets, and product of functors

Let G, H and K be groups. If U is an (H, G)-biset and V' is a (K, H)-biset,
recall that the product (or composition) of V and U is the set

VxgU=(VxU)/H ,
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where the right action of H on (V x U) is defined by (v,u) - h = (vh, h~'u),
forveV,ueU,and h € H. The set V xy U is a (K, G)-biset for the
following action

Ve K, Ve G, YveV,Yuel, z-(v,,u) z=(2v,,ux) ,

where (v,,, u) denotes the H-orbit of (v, u).

3.1. Definition : Let G, H, and K be finite groups. Let U be an (H,G)-
biset, and V be a (K, H)-biset. If M is a functor (U) — R-Mod and N
is a functor (V) — R-Mod, the tensor product N @y M is the functor
(V xyg U) — R-Mod defined by

(N @y M)(v,, u) = (h?H N(vh) ®r M(h™'w)) /T,

where I, ,, is the R-submodule generated by the elements of the form
[y @ y~'mlpy, — [n@my

where y € H, and where [n®@m);, denotes the element n®@m of the component
indezed by h € H in the direct sum, for n € N(vh), and m € M(h™'u).
If (k,g) € K x G, then by definition

k[n®m|, g = [kn ® mgl, .

3.2. Remark : It follows from this definition that
(N @y M)((v,,u)) = N(v) ®ran,, M(u) |

where H, ,, is the set of elements h € H such that vh = v and hu = u.

W3.3. Lemma : There is an isomorphism of (RK, RG)-bimodules
Y(N)®prg 2(M) 2 S(N @y M)

sending (from right to left) the element [n @ m], to n @ gy m.
“Proof : To be more precise, the map a from

Y(N®@y M) = & ( ©herr N(vh) ®g M(h‘lu))/Iv,u

(v,gW)EV XU



sending the element [n ® m|, in the component indexed by (v,, u) to the
element n ® m of the tensor product

Y(N) @py B(M) = (U?VN(U)) Qrn (& M(w))

uelU

is well defined. To show that it is an isomorphism, define a map

in the following way : choose a set S of representatives of the classes (v,,, u).
Now map the element n @gy m € N(v) ® M(u) C E(N) Qrmg 2(M) to
[n @ m]y,, where h € H is chosen such that (vh™! hu) € S. Again, it is easy
to see that this map is well defined, and that the maps o and § are mutual
inverse isomorphisms of (RK, RG)-bimodules. 0

3.4. Corollary : Let G, H, and K be finite groups. Let X be a subgroup
of Hx G and 'Y be a subgroup of K x H. Let M be an RX-module, and N
be an RY -module. Then there is an isomorphism of (RK, RG)-bimodules

mdE*INY @py (Ind2*CM) > @ IndE*% _(N® , CONYAN
( Y ) RH( X ) reps (V)\H /p1 (X) Y*(t,l)X( ko2 (Y)Ntk1(X) )

Proof : Set U = (H x G)/X. Then U is an (H,G)-biset by h - (t,s)X - g =
(ht,g7's)X, and this biset is transitive. If u is the point X of U, then
A(u) = X, and the equivalence of categories 2.5 reads

Fun({(U), R-Mod) = RX-Mod .

More precisely, for an RX-module M, this equivalence yields a functor M :
(U) — R-Mod in the following way : for any (h,g) € H x G, set

M((h,g)X) =M .

Next, fix a set S of representatives of elements of U, i.e. X-cosets in H x G.
For (t,s) € S, and (h,g) € H x GG, define a map

M(h,g) : M((t,s)X) =M — M((ht,gs)X) =M

by M(h,g)(m) = (y,z)m, where (y, ) is the unique element of X such that
(ht, gs)(y,z)"t €S,

Then it is easy to check that M is indeed a functor, and that there is an
isomorphism of (RH, RG)-bimodules

Y(M) = Ind¥*CM .

>



Similarly, set V = (K x H)/Y, and define a functor N(V) — R-Mod, using
the RY-module N. Then the corollary is a straightforward consequence
of the lemma, applied to the functors M and N, using Remark 2.6 and
Remark 3.2. O
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