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(joint work with J. Thévenaz [BoTh2], [BoTh3], [BoTh4])

1 The gluing problem for endo-permutation modules

Endo-permutation modules
The Dade group
Functorial structure
Gluing data

2 Two partial answers
The poset A≥2(P)
The torsion case
The general case
Construction of the maps

3 A sectional characterization of the Dade group
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Endo-permutation modules

Definition

Let k be a field of characteristic p > 0, and P be a finite p-group. A
finitely generated kP-module M is an endo-permutation module if
Endk(M) is a permutation module, i.e. admits a P-invariant k-basis.

Endo-permutation modules appear in many different places in
representation theory of finite groups (e.g. sources of simple modules,
or equivalences of blocks).

This notion was introduced by E.C. Dade in 1978, as a generalization
of the notion of endo-trivial module.

Other examples are the relative syzygies of the trivial module
(Alperin) : 0→ ΩX → kX → k → 0 , where X is a non empty
finite P-set.
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The Dade group of endo-permutation modules

One focuses on capped endo-permutation modules, i.e. those
admitting a indecomposable summand with vertex P. Such a direct
summand is unique up to isomorphism, called the cap of the module.

This gives an equivalence relation on the class of capped
endo-permutation modules.
The set of equivalence classes is a group for the “sum”

[M] + [N] = [M ⊗k N] ,

called the Dade group of P, denoted by D(P)
(

= Dk(P)
)
.

The zero element is [k], and −[M] = [M∗].

Two important subgroups of D(P) are T (P) and DΩ(P).

The description of the structure of D(P) for an arbitrary finite
p-group P has been completed recently (2006).
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Functorial operations and bisets

If Q ≤ P, the restriction of kP-modules to kQ-modules induces a
group homomorphism ResP

Q : D(P)→ D(Q), and tensor induction

induces a group homomorphism TenP
Q : D(Q)→ D(P).

If N E P, then inflation of k(P/N)-modules to kP-modules induces a
group homomorphism Inf P

P/N : D(P/N)→ D(P).

There is also a deflation operation Def P
P/N : D(P)→ D(P/N)

(Dade’s slash construction).

If ϕ : P → P ′ is a group isomorphism, there is an obvious associated
isomorphism Iso(ϕ) : D(P)→ D(P ′).

These operations can be unified using the notion of biset : to each
finite (Q,P)-biset U is associated a map D(U) : D(P)→ D(Q).
If p > 2, the correspondence P 7→ D(P) is a biset functor.
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Serge Bouc (CNRS - Université de Picardie) Gluing endo-permutation modules March 8, 2007 5 / 17



Functorial operations and bisets

If Q ≤ P, the restriction of kP-modules to kQ-modules induces a
group homomorphism ResP

Q : D(P)→ D(Q), and tensor induction

induces a group homomorphism TenP
Q : D(Q)→ D(P).

If N E P, then inflation of k(P/N)-modules to kP-modules induces a
group homomorphism Inf P

P/N : D(P/N)→ D(P).

There is also a deflation operation Def P
P/N : D(P)→ D(P/N)

(Dade’s slash construction).

If ϕ : P → P ′ is a group isomorphism, there is an obvious associated
isomorphism Iso(ϕ) : D(P)→ D(P ′).

These operations can be unified using the notion of biset : to each
finite (Q,P)-biset U is associated a map D(U) : D(P)→ D(Q).
If p > 2, the correspondence P 7→ D(P) is a biset functor.
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Gluing data

Definition

Let P be a group. A section of P is a pair (T ,S) of subgroups of P such
that S E T . The corresponding subquotient is the group T/S .

Notation

If (T ,S) is a section of the finite p-group P, denote by DefresP
T/S the

composition D(P)
ResP

T−−−−→D(T )
Def T

T/S−−−−→D(T/S)

Let S be a family of subgroups of P. If u ∈ D(P), define a sequence
rP(u) = (vQ)Q∈S , where vQ ∈ D

(
NP(Q)/Q

)
, by

vQ = DefresP
NP(Q)/Qu .
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Gluing data

This sequence must satisfy some obvious compatibility conditions :

1 If Q and xQ ∈ S, for some x ∈ P, then x(vQ) = vxQ .
2 If Q E R are in S, then

Defres
NP (Q)/Q
NP (Q,R)/RvQ = Res

NP (R)/R
NP (Q,R)/RvR .

Conversely, a sequence (vQ)Q∈S fulfilling these two conditions is
called a gluing data sequence for S. The set (group) of gluing data is
denoted by lim←−

Q∈S
D

(
NP(Q)/Q

)
.

Let rP : D(P)→ lim←−
Q∈S

D
(
NP(Q)/Q

)
denote the natural map.

Problem : Is rP surjective ?
An element u ∈ D(P) such that rP(u) = (vQ)Q∈S is called a solution
to the gluing problem corresponding to (vQ)Q∈S .

This problem was initially raised by Puig, who solved it when P is
abelian.
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Serge Bouc (CNRS - Université de Picardie) Gluing endo-permutation modules March 8, 2007 7 / 17



Gluing data

This sequence must satisfy some obvious compatibility conditions :
1 If Q and xQ ∈ S, for some x ∈ P, then x(vQ) = vxQ .
2 If Q E R are in S, then

Defres
NP (Q)/Q
NP (Q,R)/RvQ = Res

NP (R)/R
NP (Q,R)/RvR .

Conversely, a sequence (vQ)Q∈S fulfilling these two conditions is
called a gluing data sequence for S. The set (group) of gluing data is
denoted by lim←−

Q∈S
D

(
NP(Q)/Q

)
.

Let rP : D(P)→ lim←−
Q∈S

D
(
NP(Q)/Q

)
denote the natural map.

Problem : Is rP surjective ?
An element u ∈ D(P) such that rP(u) = (vQ)Q∈S is called a solution
to the gluing problem corresponding to (vQ)Q∈S .

This problem was initially raised by Puig, who solved it when P is
abelian.
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The poset A≥2(P)

Notation

Let A≥2(P) denote the set of elementary abelian subgroups of P of rank
at least 2, ordered by inclusion.

All but possibly one of the connected components of A≥2(P) consist
of isolated points (maximal elementary abelian subgroups of rank 2).

(BoTh4) The poset A≥2(P) has the homotopy type of a wedge of
spheres (of possibly different dimensions).
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Serge Bouc (CNRS - Université de Picardie) Gluing endo-permutation modules March 8, 2007 8 / 17



The poset A≥2(P)

Notation

Let A≥2(P) denote the set of elementary abelian subgroups of P of rank
at least 2, ordered by inclusion.

All but possibly one of the connected components of A≥2(P) consist
of isolated points (maximal elementary abelian subgroups of rank 2).

(BoTh4) The poset A≥2(P) has the homotopy type of a wedge of
spheres (of possibly different dimensions).
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The exact sequence in the torsion case

From now on S is the family of all non trivial subgroups of P, and p > 2.

Theorem (BoTh2)

Let P be a non cyclic p-group, for p > 2. Then there is an exact sequence
of abelian groups

0→ Dt(P)
rP→ lim←−

1<Q≤P

Dt

(
NP(Q)/Q

) edP→ H̃0
(
A≥2(P), F2

)P → 0 ,

where Dt(P) is the torsion subgroup of D(P).

In particular, if A≥2(P) is not connected, then the gluing problem for
torsion elements doesn’t always have a solution in the torsion subgroup
Dt(P).
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The exact sequence in the general case

Theorem

Let P be a finite p-group, for p > 2. Then there is an exact sequence of
abelian groups

0→ T (P)→ D(P)
rP→ lim←−

1<Q≤P

D
(
NP(Q)/Q

) hP→ H1
(
A≥2(P), Z

)(P)
.

It follows that the gluing problem for a torsion gluing data sequence
always has a solution, which may be a non torsion element.

The map hP is not surjective in general. In all the examples I have
considered, it has finite cokernel.
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The map d̃P : lim←−
1<Q≤P

Dt

(
NP(Q)/Q

)
→H̃0

(
A≥2(P),F2

)P

1 Consider the case of an elementary abelian group E , of rank at least 2.
Then the map rE : Dt(E )→ lim←−

1<F≤E

Dt(E/F ) is an isomorphism.

2 Let v = (vQ)1<Q≤P ∈ lim←−
1<Q≤P

Dt

(
NP(Q)/Q

)
. If E ∈ A≥2(P),

and if

1 < F ≤ E ,

define

wE/F = Res
NP(F )/F
E/F vF . This is

an element resPEv

of lim←−
1<F≤E

Dt(E/F ).

3 Fix a subgroup Z of order p in Z (P). Define
dP(v)(E ) = ResEZ

Z r−1
EZ resPEZ (v) ∈ D(Z ) ∼= Z/2Z ∼= F2.

Then dP(v) : A≥2(P)→ F2 is an element of H0
(
A≥2(P), F2

)P
.

Denote by d̃P(v) its image in H̃0
(
A≥2(P), F2

)P
.
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Serge Bouc (CNRS - Université de Picardie) Gluing endo-permutation modules March 8, 2007 11 / 17



The map d̃P : lim←−
1<Q≤P

Dt

(
NP(Q)/Q

)
→H̃0

(
A≥2(P),F2

)P

1 Consider the case of an elementary abelian group E , of rank at least 2.
Then the map rE : Dt(E )→ lim←−

1<F≤E

Dt(E/F ) is an isomorphism.

2 Let v = (vQ)1<Q≤P ∈ lim←−
1<Q≤P

Dt

(
NP(Q)/Q

)
. If E ∈ A≥2(P), and if

1 < F ≤ E , define wE/F = Res
NP(F )/F
E/F vF . This is an element resPEv

of lim←−
1<F≤E

Dt(E/F ).

3 Fix a subgroup Z of order p in Z (P). Define
dP(v)(E ) = ResEZ

Z r−1
EZ resPEZ (v) ∈ D(Z ) ∼= Z/2Z ∼= F2.

Then dP(v) : A≥2(P)→ F2 is an element of H0
(
A≥2(P), F2

)P
.

Denote by d̃P(v) its image in H̃0
(
A≥2(P), F2

)P
.

Serge Bouc (CNRS - Université de Picardie) Gluing endo-permutation modules March 8, 2007 11 / 17



The map d̃P : lim←−
1<Q≤P

Dt

(
NP(Q)/Q

)
→H̃0

(
A≥2(P),F2

)P

1 Consider the case of an elementary abelian group E , of rank at least 2.
Then the map rE : Dt(E )→ lim←−

1<F≤E

Dt(E/F ) is an isomorphism.

2 Let v = (vQ)1<Q≤P ∈ lim←−
1<Q≤P

Dt

(
NP(Q)/Q

)
. If E ∈ A≥2(P),

and if

1 < F ≤ E ,

define

wE/F = Res
NP(F )/F
E/F vF . This is

an element resPEv

of lim←−
1<F≤E

Dt(E/F ).

3 Fix a subgroup Z of order p in Z (P).

Define
dP(v)(E ) = ResEZ

Z r−1
EZ resPEZ (v) ∈ D(Z ) ∼= Z/2Z ∼= F2.

Then dP(v) : A≥2(P)→ F2 is an element of H0
(
A≥2(P), F2

)P
.

Denote by d̃P(v) its image in H̃0
(
A≥2(P), F2

)P
.
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The map hP : lim←−
1<Q≤P

D
(
NP(Q)/Q

)
→H1

(
A≥2(P),Z

)(P)

1 Let E ∈ A≥2(P). There is an exact sequence

0→ T (E )→ D(E )
rE→ lim←−

1<F≤E

D(E/F )→ 0 .

2 Let v = (vQ)1<Q≤P ∈ lim←−
1<Q≤P

D
(
NP(Q)/Q

)
. If E ∈ A≥2(P),

and if

1 < F ≤ E ,

define

wE/F = Res
NP(F )/F
E/F vF . This is

an element resPEv

of lim←−
1<F≤E

D(E/F ). Choose sE (v) ∈ r−1
E (resPEv). Then sE (v) is well

defined up to T (E ) ∼= Z.

3 If E ≤ E ′ in A≥2(P), then
ηE ,E ′(v) = ResE ′

E sE ′(v)− sE (v) ∈ T (E ) ∼= Z. This yields

η(v) ∈ Z 1
(
A≥2(P), Z

)P
, and a well defined

hP(v) ∈ H1
(
A≥2(P), Z

)(P)
.
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Sections and subquotients

Definition

A class X of finite groups is said to be closed under taking subquotients if
any group isomorphic to a subquotient of an element of X is in X .

If P is a p-group, denote by X (P) the set of sections (T ,S) of P for
which T/S ∈ X .

Example : the family of elementary abelian p-groups is closed under taking
subquotients.
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Sectional limits

Notation

Let F be a biset functor. Denote by lim←−
(T ,S)∈X (P)

F (T/S) the set of

sequences (uT ,S)(T ,S)∈X (P), where uT ,S ∈ F (T/S), such that :

1 If x ∈ P and (T ,S) ∈ X (P), then uxT ,xS = xuT ,S .

2 If (T ,S) and (T ′,S ′) ∈ X (P) with S ≤ S ′ ≤ T ′ ≤ T, then

Defres
T/S
T ′/S ′uT ,S = uT ′,S ′ .

Remark : There is a natural deflation-restriction map

εP : F (P)→ lim←−
(T ,S)∈X (P)

F (T/S)
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Elementary abelian sections

Theorem (BoTh2)

Let E denote the class of finite elementary abelian p-groups. Let F be a
biset functor, and P be a finite p-group. Let
εP : F (P)→ lim←−

(T ,S)∈E(P)

F (T/S) denote the deflation-restriction map.

Then there exists a map σP : lim←−
(T ,S)∈E(P)

F (T/S)→ F (P) such that

εP ◦ σP = |P|Id.

Remark : The map σP is defined by an explicit formula.

Corollary

Suppose p > 2. Then the map εP : Dt(P)→ lim←−
(T ,S)∈E(P)

Dt(T/S) is an

isomorphism.
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A sectional characterization of D(P)

Notation

Let X3 denote the class of finite p-groups which are either elementary
abelian of rank at most 3, or extraspecial of order p3 and exponent p.

Remark : The class X3 is also the class of groups of order dividing p3 and
exponent dividing p.

Theorem (BoTh3)

Let P be a p-group for p > 2. Then the deflation-restriction map

D(P)→ lim←−
(T ,S)∈X3(P)

D(T/S)

is an isomorphism.
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