Gluing endo-permutation modules

Serge Bouc

CNRS - Université de Picardie

March 8, 2007

1) The gluing problem for endo-permutation modules

Endo-permutation modules

- Endo-permutation modules
- The Dade group

- Endo-permutation modules
- The Dade group
- Functorial structure

- Endo-permutation modules
- The Dade group
- Functorial structure
- Gluing data

The gluing problem for endo-permutation modules

- Endo-permutation modules
- The Dade group
- Functorial structure
- Gluing data

The gluing problem for endo-permutation modules

- Endo-permutation modules
- The Dade group
- Functorial structure
- Gluing data

2 Two partial answers

The poset A_{≥2}(P)

The gluing problem for endo-permutation modules

- Endo-permutation modules
- The Dade group
- Functorial structure
- Gluing data

- The poset A_{≥2}(P)
- The torsion case

The gluing problem for endo-permutation modules

- Endo-permutation modules
- The Dade group
- Functorial structure
- Gluing data

- The poset A_{≥2}(P)
- The torsion case
- The general case

The gluing problem for endo-permutation modules

- Endo-permutation modules
- The Dade group
- Functorial structure
- Gluing data

- The poset A_{≥2}(P)
- The torsion case
- The general case
- Construction of the maps

The gluing problem for endo-permutation modules

- Endo-permutation modules
- The Dade group
- Functorial structure
- Gluing data

2 Two partial answers

- The poset A_{≥2}(P)
- The torsion case
- The general case
- Construction of the maps

3 A sectional characterization of the Dade group

Endo-permutation modules

Let k be a field of characteristic p > 0, and P be a finite p-group. A finitely generated kP-module M is an endo-permutation module if $End_k(M)$ is a permutation module, i.e. admits a P-invariant k-basis.

• Endo-permutation modules appear in many different places in representation theory of finite groups (e.g. sources of simple modules, or equivalences of blocks).

- Endo-permutation modules appear in many different places in representation theory of finite groups (e.g. sources of simple modules, or equivalences of blocks).
- This notion was introduced by E.C. Dade in 1978,

- Endo-permutation modules appear in many different places in representation theory of finite groups (e.g. sources of simple modules, or equivalences of blocks).
- This notion was introduced by E.C. Dade in 1978, as a generalization of the notion of endo-trivial module.

- Endo-permutation modules appear in many different places in representation theory of finite groups (e.g. sources of simple modules, or equivalences of blocks).
- This notion was introduced by E.C. Dade in 1978, as a generalization of the notion of endo-trivial module.
- Other examples are the relative syzygies of the trivial module (Alperin) : $0 \rightarrow \Omega_X \rightarrow kX \rightarrow k \rightarrow 0$, where X is a non empty finite *P*-set.

• One focuses on capped endo-permutation modules, i.e. those admitting a indecomposable summand with vertex *P*. Such a direct summand is unique up to isomorphism, called the cap of the module.

- One focuses on capped endo-permutation modules, i.e. those admitting a indecomposable summand with vertex *P*. Such a direct summand is unique up to isomorphism, called the cap of the module.
- This gives an equivalence relation on the class of capped endo-permutation modules.

- One focuses on capped endo-permutation modules, i.e. those admitting a indecomposable summand with vertex *P*. Such a direct summand is unique up to isomorphism, called the cap of the module.
- This gives an equivalence relation on the class of capped endo-permutation modules.

The set of equivalence classes is a group for the "sum"

$$[M] + [N] = [M \otimes_k N] ,$$

called the Dade group of P, denoted by $D(P) (= D_k(P))$.

- One focuses on capped endo-permutation modules, i.e. those admitting a indecomposable summand with vertex *P*. Such a direct summand is unique up to isomorphism, called the cap of the module.
- This gives an equivalence relation on the class of capped endo-permutation modules.

The set of equivalence classes is a group for the "sum"

$$[M] + [N] = [M \otimes_k N]$$

called the Dade group of P, denoted by D(P) (= $D_k(P)$). The zero element is [k], and $-[M] = [M^*]$.

- One focuses on capped endo-permutation modules, i.e. those admitting a indecomposable summand with vertex *P*. Such a direct summand is unique up to isomorphism, called the cap of the module.
- This gives an equivalence relation on the class of capped endo-permutation modules.

The set of equivalence classes is a group for the "sum"

$$[M] + [N] = [M \otimes_k N]$$

called the Dade group of P, denoted by $D(P) (= D_k(P))$. The zero element is [k], and $-[M] = [M^*]$.

• Two important subgroups of D(P) are T(P) and $D^{\Omega}(P)$.

- One focuses on capped endo-permutation modules, i.e. those admitting a indecomposable summand with vertex *P*. Such a direct summand is unique up to isomorphism, called the cap of the module.
- This gives an equivalence relation on the class of capped endo-permutation modules.

The set of equivalence classes is a group for the "sum"

$$[M] + [N] = [M \otimes_k N] ,$$

called the Dade group of P, denoted by $D(P) (= D_k(P))$. The zero element is [k], and $-[M] = [M^*]$.

- Two important subgroups of D(P) are T(P) and $D^{\Omega}(P)$.
- The description of the structure of D(P) for an arbitrary finite *p*-group *P* has been completed recently (2006).

Functorial operations and bisets

 If Q ≤ P, the restriction of kP-modules to kQ-modules induces a group homomorphism Res^P_Q : D(P) → D(Q),

Functorial operations and bisets

If Q ≤ P, the restriction of kP-modules to kQ-modules induces a group homomorphism Res^P_Q: D(P) → D(Q), and tensor induction induces a group homomorphism Ten^P_Q: D(Q) → D(P).

Functorial operations and bisets

- If $Q \leq P$, the restriction of kP-modules to kQ-modules induces a group homomorphism $Res_Q^P : D(P) \rightarrow D(Q)$, and tensor induction induces a group homomorphism $Ten_Q^P : D(Q) \rightarrow D(P)$.
- If N ≤ P, then inflation of k(P/N)-modules to kP-modules induces a group homomorphism Inf^P_{P/N}: D(P/N) → D(P).

- If Q ≤ P, the restriction of kP-modules to kQ-modules induces a group homomorphism Res^P_Q : D(P) → D(Q), and tensor induction induces a group homomorphism Ten^P_Q : D(Q) → D(P).
- If N ≤ P, then inflation of k(P/N)-modules to kP-modules induces a group homomorphism Inf^P_{P/N} : D(P/N) → D(P).
 There is also a deflation operation Def^P_{P/N} : D(P) → D(P/N) (Dade's slash construction).

- If $Q \leq P$, the restriction of kP-modules to kQ-modules induces a group homomorphism $Res_Q^P : D(P) \rightarrow D(Q)$, and *tensor* induction induces a group homomorphism $Ten_Q^P : D(Q) \rightarrow D(P)$.
- If N ≤ P, then inflation of k(P/N)-modules to kP-modules induces a group homomorphism Inf^P_{P/N} : D(P/N) → D(P).
 There is also a deflation operation Def^P_{P/N} : D(P) → D(P/N) (Dade's slash construction).
- If φ : P → P' is a group isomorphism, there is an obvious associated isomorphism Iso(φ) : D(P) → D(P').

- If $Q \leq P$, the restriction of kP-modules to kQ-modules induces a group homomorphism $Res_Q^P : D(P) \rightarrow D(Q)$, and *tensor* induction induces a group homomorphism $Ten_Q^P : D(Q) \rightarrow D(P)$.
- If N ≤ P, then inflation of k(P/N)-modules to kP-modules induces a group homomorphism Inf^P_{P/N} : D(P/N) → D(P).
 There is also a deflation operation Def^P_{P/N} : D(P) → D(P/N) (Dade's slash construction).
- If φ : P → P' is a group isomorphism, there is an obvious associated isomorphism Iso(φ) : D(P) → D(P').
- These operations can be unified using the notion of biset : to each finite (Q, P)-biset U is associated a map D(U) : D(P) → D(Q).

- If $Q \leq P$, the restriction of kP-modules to kQ-modules induces a group homomorphism $Res_Q^P : D(P) \rightarrow D(Q)$, and tensor induction induces a group homomorphism $Ten_Q^P : D(Q) \rightarrow D(P)$.
- If N ≤ P, then inflation of k(P/N)-modules to kP-modules induces a group homomorphism Inf^P_{P/N} : D(P/N) → D(P).
 There is also a deflation operation Def^P_{P/N} : D(P) → D(P/N) (Dade's slash construction).
- If φ : P → P' is a group isomorphism, there is an obvious associated isomorphism Iso(φ) : D(P) → D(P').
- These operations can be unified using the notion of biset : to each finite (Q, P)-biset U is associated a map D(U) : D(P) → D(Q). If p > 2, the correspondence P → D(P) is a biset functor.

Let P be a group. A section of P is a pair (T, S) of subgroups of P such that $S \leq T$. The corresponding subquotient is the group T/S.

- **(())) (())) ())**

Let P be a group. A section of P is a pair (T, S) of subgroups of P such that $S \leq T$. The corresponding subquotient is the group T/S.

Notation

If (T, S) is a section of the finite p-group P, denote by $\text{Defres}_{T/S}^P$ the composition $D(P) \xrightarrow{\text{Res}_T^P} D(T) \xrightarrow{\text{Def}_{T/S}^T} D(T/S)$

Let P be a group. A section of P is a pair (T, S) of subgroups of P such that $S \leq T$. The corresponding subquotient is the group T/S.

Notation

If (T, S) is a section of the finite p-group P, denote by $Defres_{T/S}^P$ the composition $D(P) \xrightarrow{Res_T^P} D(T) \xrightarrow{Def_{T/S}^T} D(T/S)$

• Let S be a family of subgroups of P. If $u \in D(P)$, define a sequence $r_P(u) = (v_Q)_{Q \in S}$, where $v_Q \in D(N_P(Q)/Q)$, by

$$v_Q = Defres^P_{N_P(Q)/Q} u$$
 .

・何 ・ ・ ヨ ・ ・ ヨ ・ ・
• This sequence must satisfy some obvious compatibility conditions :

This sequence must satisfy some obvious compatibility conditions :
 If Q and ^xQ ∈ S, for some x ∈ P, then ^x(v_Q) = v_{×Q}.

This sequence must satisfy some obvious compatibility conditions :
If Q and ^xQ ∈ S, for some x ∈ P, then ^x(v_Q) = v_{xQ}.
If Q ≤ R are in S, then

$$Defres_{N_P(Q,R)/R}^{N_P(Q)/Q} v_Q = Res_{N_P(Q,R)/R}^{N_P(R)/R} v_R$$
 .

This sequence must satisfy some obvious compatibility conditions :
If Q and ^xQ ∈ S, for some x ∈ P, then ^x(v_Q) = v_{xQ}.
If Q ≤ R are in S, then

$$Defres_{N_P(Q,R)/R}^{N_P(Q)/Q} v_Q = Res_{N_P(Q,R)/R}^{N_P(R)/R} v_R$$
 .

• Conversely, a sequence $(v_Q)_{Q \in S}$ fulfilling these two conditions is called a gluing data sequence for S.

This sequence must satisfy some obvious compatibility conditions :
If Q and ^xQ ∈ S, for some x ∈ P, then ^x(v_Q) = v_{×Q}.
If Q ≤ R are in S, then

$$Defres_{N_P(Q,R)/R}^{N_P(Q)/Q} v_Q = Res_{N_P(Q,R)/R}^{N_P(R)/R} v_R$$
 .

Conversely, a sequence (v_Q)_{Q∈S} fulfilling these two conditions is called a gluing data sequence for S. The set (group) of gluing data is denoted by lim _{Q∈S} D(N_P(Q)/Q).

This sequence must satisfy some obvious compatibility conditions :
If Q and ^xQ ∈ S, for some x ∈ P, then ^x(v_Q) = v_{xQ}.
If Q ≤ R are in S, then

$$Defres_{N_P(Q,R)/R}^{N_P(Q)/Q} v_Q = Res_{N_P(Q,R)/R}^{N_P(R)/R} v_R$$
 .

- Conversely, a sequence (v_Q)_{Q∈S} fulfilling these two conditions is called a gluing data sequence for S. The set (group) of gluing data is denoted by lim _{Q∈S} D(N_P(Q)/Q).
- Let $r_P: D(P) \to \varprojlim_{Q \in \mathcal{S}} D(N_P(Q)/Q)$ denote the natural map.

This sequence must satisfy some obvious compatibility conditions :
If Q and ^xQ ∈ S, for some x ∈ P, then ^x(v_Q) = v_{xQ}.
If Q ≤ R are in S, then

$$Defres_{N_P(Q,R)/R}^{N_P(Q)/Q} v_Q = Res_{N_P(Q,R)/R}^{N_P(R)/R} v_R$$
 .

- Conversely, a sequence (v_Q)_{Q∈S} fulfilling these two conditions is called a gluing data sequence for S. The set (group) of gluing data is denoted by lim D(N_P(Q)/Q).
- Let $r_P : D(P) \to \varprojlim_{Q \in S} D(N_P(Q)/Q)$ denote the natural map. Problem : ls r_P surjective ?

This sequence must satisfy some obvious compatibility conditions :
If Q and ^xQ ∈ S, for some x ∈ P, then ^x(v_Q) = v_{×Q}.
If Q ≤ R are in S, then

$$Defres_{N_P(Q,R)/R}^{N_P(Q)/Q} v_Q = Res_{N_P(Q,R)/R}^{N_P(R)/R} v_R$$
 .

- Conversely, a sequence (v_Q)_{Q∈S} fulfilling these two conditions is called a gluing data sequence for S. The set (group) of gluing data is denoted by lim _{Q∈S} D(N_P(Q)/Q).
- Let $r_P : D(P) \to \varprojlim_{Q \in S} D(N_P(Q)/Q)$ denote the natural map. Problem : Is r_P surjective ? An element $u \in D(P)$ such that $r_P(u) = (v_Q)_{Q \in S}$ is called a solution

to the gluing problem corresponding to $(v_Q)_{Q \in S}$.

This sequence must satisfy some obvious compatibility conditions :
If Q and ^xQ ∈ S, for some x ∈ P, then ^x(v_Q) = v_{×Q}.
If Q ⊆ R are in S, then

$$Defres_{N_P(Q,R)/R}^{N_P(Q)/Q} v_Q = Res_{N_P(Q,R)/R}^{N_P(R)/R} v_R$$
 .

- Conversely, a sequence (v_Q)_{Q∈S} fulfilling these two conditions is called a gluing data sequence for S. The set (group) of gluing data is denoted by lim _{Q∈S} D(N_P(Q)/Q).
- Let $r_P : D(P) \to \varprojlim_{Q \in S} D(N_P(Q)/Q)$ denote the natural map. Problem : Is r_P surjective ?

An element $u \in D(P)$ such that $r_P(u) = (v_Q)_{Q \in S}$ is called a solution to the gluing problem corresponding to $(v_Q)_{Q \in S}$.

• This problem was initially raised by Puig, who solved it when P is abelian.

Notation

Let $A_{\geq 2}(P)$ denote the set of elementary abelian subgroups of P of rank at least 2, ordered by inclusion.

Notation

Let $\mathcal{A}_{\geq 2}(P)$ denote the set of elementary abelian subgroups of P of rank at least 2, ordered by inclusion.

 All but possibly one of the connected components of A≥2(P) consist of isolated points (maximal elementary abelian subgroups of rank 2).

Notation

Let $\mathcal{A}_{\geq 2}(P)$ denote the set of elementary abelian subgroups of P of rank at least 2, ordered by inclusion.

- All but possibly one of the connected components of A≥2(P) consist of isolated points (maximal elementary abelian subgroups of rank 2).
- (BoTh4) The poset A_{≥2}(P) has the homotopy type of a wedge of spheres (of possibly different dimensions).

From now on S is the family of all non trivial subgroups of P, and p > 2.

From now on S is the family of all non trivial subgroups of P, and p > 2.

Theorem (BoTh2)

Let P be a non cyclic p-group, for p > 2. Then there is an exact sequence of abelian groups

$$0 \to D_t(P) \xrightarrow{r_P} \varprojlim_{1 < Q \le P} D_t(N_P(Q)/Q) \xrightarrow{\widetilde{d}_P} \widetilde{H}^0(\mathcal{A}_{\ge 2}(P), \mathbb{F}_2)^P \to 0$$

where $D_t(P)$ is the torsion subgroup of D(P).

From now on S is the family of all non trivial subgroups of P, and p > 2.

Theorem (BoTh2)

Let P be a non cyclic p-group, for p > 2. Then there is an exact sequence of abelian groups

$$0 \to D_t(P) \xrightarrow{r_P} \varprojlim_{1 < Q \le P} D_t(N_P(Q)/Q) \xrightarrow{\widetilde{d}_P} \widetilde{H}^0(\mathcal{A}_{\ge 2}(P), \mathbb{F}_2)^P \to 0$$

where $D_t(P)$ is the torsion subgroup of D(P).

In particular, if $\mathcal{A}_{\geq 2}(P)$ is not connected, then the gluing problem for torsion elements doesn't always have a solution in the torsion subgroup $D_t(P)$.

Theorem

Let P be a finite p-group, for p > 2. Then there is an exact sequence of abelian groups

$$0 \to T(P) \to D(P) \xrightarrow{r_P} \varprojlim_{1 < Q \le P} D(N_P(Q)/Q) \xrightarrow{h_P} H^1(\mathcal{A}_{\ge 2}(P), \mathbb{Z})^{(P)}$$

Theorem

Let P be a finite p-group, for p > 2. Then there is an exact sequence of abelian groups

$$0 \to T(P) \to D(P) \xrightarrow{r_P} \varprojlim_{1 < Q \le P} D(N_P(Q)/Q) \xrightarrow{h_P} H^1(\mathcal{A}_{\ge 2}(P), \mathbb{Z})^{(P)}$$

• It follows that the gluing problem for a torsion gluing data sequence always has a solution, which may be a non torsion element.

Theorem

Let P be a finite p-group, for p > 2. Then there is an exact sequence of abelian groups

$$0 \to T(P) \to D(P) \xrightarrow{r_P} \varprojlim_{1 < Q \le P} D(N_P(Q)/Q) \xrightarrow{h_P} H^1(\mathcal{A}_{\ge 2}(P), \mathbb{Z})^{(P)}$$

- It follows that the gluing problem for a torsion gluing data sequence always has a solution, which may be a non torsion element.
- The map h_P is not surjective in general. In all the examples I have considered, it has finite cokernel.

The map
$$\widetilde{d}_P$$
: $\varprojlim_{1 < Q \le P} D_t \left(N_P(Q)/Q \right) \to \widetilde{H}^0 \left(\mathcal{A}_{\ge 2}(P), \mathbb{F}_2 \right)^P$

◆□ ▶ ◆□ ▶ ◆目 ▶ ◆目 ▶ ◆□ ● ● ● ●

The map
$$\widetilde{d}_P$$
: $\varprojlim_{1 < Q \le P} D_t \left(N_P(Q)/Q \right) \to \widetilde{H}^0 \left(\mathcal{A}_{\ge 2}(P), \mathbb{F}_2 \right)^P$

• Consider the case of an elementary abelian group E, of rank at least 2. Then the map $r_E : D_t(E) \to \varprojlim_{1 \le F \le E} D_t(E/F)$ is an isomorphism.

The map
$$\widetilde{d}_P$$
: $\varprojlim_{1 < Q \le P} D_t \left(N_P(Q)/Q \right) \to \widetilde{H}^0 \left(\mathcal{A}_{\ge 2}(P), \mathbb{F}_2 \right)^P$

Consider the case of an elementary abelian group E, of rank at least 2. Then the map r_E : D_t(E) → lim 1<F≤E D_t(E/F) is an isomorphism.
Let v = (v_Q)_{1<Q≤P} ∈ lim 1<Q≤P D_t(N_P(Q)/Q). If E ∈ A≥2(P), and if 1<F≤E, define w_{E/F} = Res^{N_P(F)/F}_{E/F} v_F.

The map
$$\widetilde{d}_P$$
: $\varprojlim_{1 < Q \le P} D_t \left(N_P(Q)/Q \right) \to \widetilde{H}^0 \left(\mathcal{A}_{\ge 2}(P), \mathbb{F}_2 \right)^P$

Consider the case of an elementary abelian group E, of rank at least 2. Then the map r_E : D_t(E) → lim 1<F≤E D_t(E/F) is an isomorphism.
Let v = (v_Q)_{1<Q≤P} ∈ lim 0t (N_P(Q)/Q). If E ∈ A≥2(P), and if 1<F≤E define w_{E/F} = Res^{N_P(F)/F}_{E/F} v_F. This is an element res^P_Ev of lim 1<F≤E D_t(E/F).

The map
$$\widetilde{d}_P$$
: $\varprojlim_{1 < Q \le P} D_t \left(N_P(Q)/Q \right) \to \widetilde{H}^0 \left(\mathcal{A}_{\ge 2}(P), \mathbb{F}_2 \right)^P$

Consider the case of an elementary abelian group E, of rank at least 2. Then the map r_E : D_t(E) → lim 1<F≤E D_t(E/F) is an isomorphism.
Let v = (v_Q)_{1<Q≤P} ∈ lim 1<Q≤P</sub> D_t(N_P(Q)/Q). If E ∈ A≥2(P), define an element res^P_Ev of lim 1<F≤E D_t(E/F).
Fix a subgroup Z of order p in Z(P).

The map
$$\widetilde{d}_P$$
: $\varprojlim_{1 < Q \le P} D_t \left(N_P(Q)/Q \right) \to \widetilde{H}^0 \left(\mathcal{A}_{\ge 2}(P), \mathbb{F}_2 \right)^P$

Consider the case of an elementary abelian group E, of rank at least 2. Then the map r_E : D_t(E) → lim 1<F≤E D_t(E/F) is an isomorphism.
 Let v = (v_Q)_{1<Q≤P} ∈ lim 1<Q≤P</sub> D_t(N_P(Q)/Q). If E ∈ A_{≥2}(P), define an element res^P_Ev

of
$$\varprojlim_{1 < F \le E} D_t(E/F)$$
.

 Fix a subgroup Z of order p in Z(P). Define d_P(v)(E) = Res^{EZ}_Z r⁻¹_{EZ} res^P_{EZ}(v) ∈ D(Z) ≅ Z/2Z ≅ F₂.

The map
$$\widetilde{d}_P$$
: $\varprojlim_{1 < Q \le P} D_t \left(N_P(Q)/Q \right) \to \widetilde{H}^0 \left(\mathcal{A}_{\ge 2}(P), \mathbb{F}_2 \right)^P$

Consider the case of an elementary abelian group E, of rank at least 2. Then the map $r_E : D_t(E) \rightarrow \lim_{t \to \infty} D_t(E/F)$ is an isomorphism. $1 < F \leq E$ $\ \ \, \textbf{O} \ \ \, \textbf{Let} \ \, v=(v_Q)_{1< Q\leq P}\in \quad \underbrace{\lim} \quad D_t\big(N_P(Q)/Q\big). \ \, \textbf{If} \ \, E\in \mathcal{A}_{\geq 2}(P),$ $1 < Q \leq P$ define ν

of
$$\varprojlim_{1 < F \le E} D_t(E/F)$$
.

Fix a subgroup Z of order p in Z(P). Define $d_P(v)(E) = \operatorname{Res}_{Z}^{EZ} r_{EZ}^{-1} \operatorname{res}_{EZ}^{P}(v) \in D(Z) \cong \mathbb{Z}/2\mathbb{Z} \cong \mathbb{F}_2.$ Then $d_P(v): \mathcal{A}_{\geq 2}(P) \to \mathbb{F}_2$ is an element of $H^0(\mathcal{A}_{\geq 2}(P), \mathbb{F}_2)^P$.

The map
$$\widetilde{d}_P$$
: $\varprojlim_{1 < Q \le P} D_t \left(N_P(Q)/Q \right) \to \widetilde{H}^0 \left(\mathcal{A}_{\ge 2}(P), \mathbb{F}_2 \right)^P$

• Consider the case of an elementary abelian group E, of rank at least 2. Then the map $r_E : D_t(E) \to \varprojlim_{1 \le F \le E} D_t(E/F)$ is an isomorphism.

$$e Let v = (v_Q)_{1 < Q \le P} \in \varprojlim_{1 < Q \le P} D_t(N_P(Q)/Q). \text{ If } E \in \mathcal{A}_{\ge 2}(P),$$

an element $\operatorname{res}_{F}^{P}v$

of
$$\varprojlim_{1 \le F \le E} D_t(E/F)$$
.

define

 Fix a subgroup Z of order p in Z(P). Define d_P(v)(E) = Res^{EZ}_Zr⁻¹_{EZ}res^P_{EZ}(v) ∈ D(Z) ≅ Z/2Z ≅ F₂. Then d_P(v) : A_{≥2}(P) → F₂ is an element of H⁰(A_{≥2}(P), F₂)^P. Denote by d̃_P(v) its image in H⁰(A_{≥2}(P), F₂)^P.

The map
$$h_P$$
: $\varprojlim_{1 < Q \le P} D(N_P(Q)/Q) \to H^1(\mathcal{A}_{\ge 2}(P),\mathbb{Z})^{(P)}$

◆□ ▶ ◆□ ▶ ◆目 ▶ ◆目 ▶ ◆□ ● ● ● ●

The map h_P : $\varprojlim_{1 < Q \le P} D(N_P(Q)/Q) \rightarrow H^1(\mathcal{A}_{\ge 2}(P),\mathbb{Z})^{(P)}$

• Let $E \in \mathcal{A}_{\geq 2}(P)$. There is an exact sequence

$$0 \to T(E) \to D(E) \xrightarrow{r_E} \varprojlim_{1 < F \le E} D(E/F) \to 0$$

-

.

The map h_P : $\varprojlim_{1 < Q \le P} D(N_P(Q)/Q) \to H^1(\mathcal{A}_{\ge 2}(P),\mathbb{Z})^{(P)}$

• Let $E \in \mathcal{A}_{\geq 2}(P)$. There is an exact sequence

$$0 \to T(E) \to D(E) \xrightarrow{r_E} \lim_{\substack{1 < F \le E}} D(E/F) \to 0 \quad .$$

$$\text{ Let } v = (v_Q)_{1 < Q \le P} \in \varprojlim_{\substack{1 < Q \le P}} D(N_P(Q)/Q). \text{ If } E \in \mathcal{A}_{\ge 2}(P), \text{ and if }$$

$$\mathbf{1} < F \le E, \text{ define } w_{E/F} = \operatorname{Res}_{E/F}^{N_P(F)/F} v_F.$$

The map h_P : $\varprojlim_{1 < Q \le P} D(N_P(Q)/Q) \to H^1(\mathcal{A}_{\ge 2}(P),\mathbb{Z})^{(P)}$

• Let $E \in \mathcal{A}_{\geq 2}(P)$. There is an exact sequence

$$0 \to T(E) \to D(E) \xrightarrow{r_E} \varprojlim_{1 < F \le E} D(E/F) \to 0 .$$

$$\text{ Let } v = (v_Q)_{1 < Q \le P} \in \varprojlim_{1 < Q \le P} D(N_P(Q)/Q). \text{ If } E \in \mathcal{A}_{\ge 2}(P), \text{ and if } 1 < F \le E, \text{ define } w_{E/F} = \operatorname{Res}_{E/F}^{N_P(F)/F} v_F. \text{ This is an element } \operatorname{res}_E^P v \text{ of } \varprojlim_{1 < F \le E} D(E/F).$$

The map h_P : $\varprojlim_{1 < Q \le P} \overline{D(N_P(Q)/Q)} \to H^1(\mathcal{A}_{\ge 2}(P),\mathbb{Z})^{(P)}$

• Let $E \in \mathcal{A}_{\geq 2}(P)$. There is an exact sequence

$$0 \to T(E) \to D(E) \xrightarrow{r_E} \varprojlim_{1 < F \le E} D(E/F) \to 0 .$$

$$\text{ Let } v = (v_Q)_{1 < Q \le P} \in \varprojlim_{1 < Q \le P} D(N_P(Q)/Q). \text{ If } E \in \mathcal{A}_{\ge 2}(P),$$

$$\text{ define} \qquad \text{ an element res}_E^P v$$

$$\text{ of } \varprojlim_{1 < F \le E} D(E/F). \text{ Choose } s_E(v) \in r_E^{-1}(\operatorname{res}_E^P v). \text{ Then } s_E(v) \text{ is well}$$

$$\text{ defined up to } T(E) \cong \mathbb{Z}.$$

The map h_P : $\varprojlim_{1 < Q \le P} D(N_P(Q)/Q) \to H^1(\mathcal{A}_{\ge 2}(P),\mathbb{Z})^{(P)}$

• Let $E \in \mathcal{A}_{\geq 2}(P)$. There is an exact sequence

$$0 \to T(E) \to D(E) \xrightarrow{r_E} \varprojlim_{1 < F \le E} D(E/F) \to 0 \quad .$$

$$\text{e} \text{ Let } v = (v_Q)_{1 < Q \le P} \in \varprojlim_{1 < Q \le P} D(N_P(Q)/Q). \text{ If } E \in \mathcal{A}_{\ge 2}(P),$$

$$\text{ define} \qquad \text{ an element } \operatorname{res}_E^P v$$

$$\text{ of } \varprojlim_{1 < F \le E} D(E/F). \text{ Choose } s_E(v) \in r_E^{-1}(\operatorname{res}_E^P v). \text{ Then } s_E(v) \text{ is well}$$

$$\text{ defined up to } T(E) \cong \mathbb{Z}.$$

$$\text{ If } E \le E' \text{ in } \mathcal{A}_{\ge 2}(P), \text{ then}$$

$$\eta_{E,E'}(v) = \operatorname{Res}_E^{E'} s_{E'}(v) - s_E(v) \in T(E) \cong \mathbb{Z}.$$

• • = • • = • = •

The map h_P : $\varprojlim_{1 < Q \le P} D(N_P(Q)/Q) \to H^1(\mathcal{A}_{\ge 2}(P),\mathbb{Z})^{(P)}$

• Let $E \in \mathcal{A}_{\geq 2}(P)$. There is an exact sequence

$$0 \to T(E) \to D(E) \xrightarrow{r_E} \varprojlim_{1 < F \le E} D(E/F) \to 0 .$$

$$\text{ Let } v = (v_Q)_{1 < Q \le P} \in \varprojlim_{1 < Q \le P} D(N_P(Q)/Q). \text{ If } E \in \mathcal{A}_{\ge 2}(P),$$

$$\text{ define} \qquad \text{ an element } \operatorname{res}_E^P v$$

$$\text{ of } \varprojlim_{1 < F \le E} D(E/F). \text{ Choose } s_E(v) \in r_E^{-1}(\operatorname{res}_E^P v). \text{ Then } s_E(v) \text{ is well}$$

$$\text{ defined up to } T(E) \cong \mathbb{Z}.$$

$$\text{ If } E \le E' \text{ in } \mathcal{A}_{\ge 2}(P), \text{ then}$$

$$\eta_{E,E'}(v) = \operatorname{Res}_E^{E'} s_{E'}(v) - s_E(v) \in T(E) \cong \mathbb{Z}. \text{ This yields}$$

$$\eta(v) \in Z^1(\mathcal{A}_{\ge 2}(P), \mathbb{Z})^P,$$

The map h_P : $\varprojlim_{1 < Q \le P} D(N_P(Q)/Q) \rightarrow H^1(\mathcal{A}_{\ge 2}(P),\mathbb{Z})^{(P)}$

• Let $E \in \mathcal{A}_{\geq 2}(P)$. There is an exact sequence

$$0 \to T(E) \to D(E) \xrightarrow{r_E} \lim_{1 < F \le E} D(E/F) \to 0 .$$

$$1 < F \le E \qquad D(R/F) \to 0 .$$

$$1 < F \le E \qquad D(R/F) \to 0 .$$

$$1 < F \le E \qquad D(R/F) = D(R/F) = D(R/F) = C(R) =$$

March 8, 2007 12 / 17

Definition

A class \mathcal{X} of finite groups is said to be closed under taking subquotients if any group isomorphic to a subquotient of an element of \mathcal{X} is in \mathcal{X} .

Definition

A class \mathcal{X} of finite groups is said to be closed under taking subquotients if any group isomorphic to a subquotient of an element of \mathcal{X} is in \mathcal{X} .

If P is a p-group, denote by $\mathcal{X}(P)$ the set of sections (T, S) of P for which $T/S \in \mathcal{X}$.
Definition

A class \mathcal{X} of finite groups is said to be closed under taking subquotients if any group isomorphic to a subquotient of an element of \mathcal{X} is in \mathcal{X} .

If P is a p-group, denote by $\mathcal{X}(P)$ the set of sections (T, S) of P for which $T/S \in \mathcal{X}$.

Example : the family of elementary abelian p-groups is closed under taking subquotients.

Let F be a biset functor. Denote by $\varprojlim_{(T,S)\in\mathcal{X}(P)} F(T/S)$ the set of sequences $(u_{T,S})_{(T,S)\in\mathcal{X}(P)}$, where $u_{T,S}\in F(T/S)$, such that :

Let F be a biset functor. Denote by $\lim_{\substack{(T,S)\in\mathcal{X}(P)\\ \text{sequences }(u_{T,S})\in\mathcal{X}(P)}} F(T/S) \text{ the set of }$ sequences $(u_{T,S})_{(T,S)\in\mathcal{X}(P)}$, where $u_{T,S} \in F(T/S)$, such that : If $x \in P$ and $(T,S) \in \mathcal{X}(P)$, then $u_{x_{T,xS}} = {}^{x}u_{T,S}$.

Let F be a biset functor. Denote by $\lim_{(T,S)\in\mathcal{X}(P)} F(T/S) \text{ the set of}$ sequences $(u_{T,S})_{(T,S)\in\mathcal{X}(P)}$, where $u_{T,S}\in F(T/S)$, such that : 1 If $x \in P$ and $(T,S) \in \mathcal{X}(P)$, then $u_{x_{T,x_{S}}} = {}^{x}u_{T,S}$. 2 If (T,S) and $(T',S') \in \mathcal{X}(P)$ with $S \leq S' \leq T' \leq T$, then $Defres_{T',S'}^{T/S} u_{T,S} = u_{T',S'}$.

Let F be a biset functor. Denote by
$$\lim_{\substack{(T,S)\in\mathcal{X}(P)\\(T,S)\in\mathcal{X}(P)}} F(T/S) \text{ the set of}$$

sequences $(u_{T,S})_{(T,S)\in\mathcal{X}(P)}$, where $u_{T,S} \in F(T/S)$, such that :
If $x \in P$ and $(T,S) \in \mathcal{X}(P)$, then $u_{x_{T,x_S}} = {}^{x}u_{T,S}$.
If (T,S) and $(T',S') \in \mathcal{X}(P)$ with $S \leq S' \leq T' \leq T$, then
 $Defres_{T',S'}^{T/S} u_{T,S} = u_{T',S'}$.

Remark : There is a natural deflation-restriction map

$$\varepsilon_P: F(P) \to \varprojlim_{(T,S)\in\mathcal{X}(P)} F(T/S)$$

2

Theorem (BoTh2)

Let \mathcal{E} denote the class of finite elementary abelian p-groups. Let F be a biset functor, and P be a finite p-group. Let $\varepsilon_P: F(P) \rightarrow \varprojlim_{\substack{(T,S) \in \mathcal{E}(P)}} F(T/S)$ denote the deflation-restriction map. Then there exists a map $\sigma_P: \underset{\substack{(T,S) \in \mathcal{E}(P)}}{\underset{\substack{(T,S) \in \mathcal{E}(P)}}}} F(T/S) \rightarrow F(P)$ such that

Theorem (BoTh2)

Let \mathcal{E} denote the class of finite elementary abelian p-groups. Let F be a biset functor, and P be a finite p-group. Let $\varepsilon_P: F(P) \rightarrow \varprojlim_{\substack{(T,S) \in \mathcal{E}(P)}} F(T/S)$ denote the deflation-restriction map. Then there exists a map $\sigma_P: \underset{\substack{(T,S) \in \mathcal{E}(P)}}{\underset{\substack{(T,S) \in \mathcal{E}(P)}}}} F(T/S) \rightarrow F(P)$ such that

Remark : The map σ_P is defined by an explicit formula.

Theorem (BoTh2)

Let \mathcal{E} denote the class of finite elementary abelian p-groups. Let F be a biset functor, and P be a finite p-group. Let $\varepsilon_P: F(P) \rightarrow \varprojlim_{\substack{(T,S) \in \mathcal{E}(P)}} F(T/S)$ denote the deflation-restriction map. Then there exists a map $\sigma_P: \underset{\substack{(T,S) \in \mathcal{E}(P)}}{\underset{\substack{(T,S) \in \mathcal{E}(P)}}{\underset{\substack{(T,S) \in \mathcal{E}(P)}}{\underset{\substack{(T,S) \in \mathcal{E}(P)}}{\underset{\substack{(T,S) \in \mathcal{E}(P)}}{\underset{\substack{(T,S) \in \mathcal{E}(P)}}}} F(T/S) \rightarrow F(P)$ such that

Remark : The map σ_P is defined by an explicit formula.

Corollary

Suppose
$$p > 2$$
. Then the map $\varepsilon_P : D_t(P) \to \varprojlim_{(T,S) \in \mathcal{E}(P)} D_t(T/S)$ is an

isomorphism.

イロト 不得 トイヨト イヨト 二月

Let \mathcal{X}_3 denote the class of finite p-groups which are either elementary abelian of rank at most 3, or extraspecial of order p^3 and exponent p.

Let \mathcal{X}_3 denote the class of finite p-groups which are either elementary abelian of rank at most 3, or extraspecial of order p^3 and exponent p.

Remark : The class X_3 is also the class of groups of order dividing p^3 and exponent dividing p.

Let \mathcal{X}_3 denote the class of finite p-groups which are either elementary abelian of rank at most 3, or extraspecial of order p^3 and exponent p.

Remark : The class X_3 is also the class of groups of order dividing p^3 and exponent dividing p.

Theorem (BoTh3)

Let P be a p-group for p > 2. Then the deflation-restriction map

$$D(P) \rightarrow \varprojlim_{(T,S)\in\mathcal{X}_3(P)} D(T/S)$$

is an isomorphism.

Serge Bouc (CNRS - Université de Picardie) Gluing endo-permutation modules

三 のへで

メロト メポト メヨト メヨト