Diagonal *p*-permutation functors and blockwise Alperin's weight conjecture

Serge Bouc

CNRS-LAMFA Université de Picardie

International Workshop on Algebra and Representation Theory in honor of Alexander Zimmermann

ECNU, Shanghai

Serge Bouc (CNRS-LAMFA) Functorial equivalence of blocks and BAWC ECNU, Shanghai, January 21, 2024

Serge Bouc (CNRS-LAMFA) Functorial equivalence of blocks and BAWC ECNU, Shanghai, January 21, 2024

イロト イヨト イヨト イヨト

€ 990

Joint work with Deniz Yılmaz

Serge Bouc (CNRS-LAMFA) Functorial equivalence of blocks and BAWC ECNU, Shanghai, January 21, 2024

э

Joint work with Robert Boltje and Deniz Yılmaz

Serge Bouc (CNRS-LAMFA) Functorial equivalence of blocks and BAWC ECNU, Shanghai, January 21, 2024

Serge Bouc (CNRS-LAMFA) Functorial equivalence of blocks and BAWC ECNU, Shanghai, January 21, 2024

・ロト ・四ト ・ヨト ・ヨト

æ

Category: Objects + Morphisms.

• = • • = •

э

Category: Morphisms.

• In fact, objects don't matter much!

э

Category: Morphisms.

Category: Morphisms.

- In fact, objects don't matter much! More precisely:
 - The axioms of category theory can be formulated only in terms of morphisms.

Category: Morphisms.

- In fact, objects don't matter much! More precisely:
 - The axioms of category theory can be formulated only in terms of morphisms.
 - Equivalent categories may have completely different objects.

Category: Morphisms.

- The axioms of category theory can be formulated only in terms of morphisms.
- Equivalent categories may have completely different objects.
- Conversely, some mathematical objects come equipped with a natural notion of morphism

Category: Morphisms.

- The axioms of category theory can be formulated only in terms of morphisms.
- Equivalent categories may have completely different objects.
- Conversely, some mathematical objects come equipped with a natural notion of morphism, which is not always the only possible one

Category:

- In fact, objects don't matter much! More precisely:
 - The axioms of category theory can be formulated only in terms of morphisms.
 - Equivalent categories may have completely different objects.
 - Conversely, some mathematical objects come equipped with a natural notion of morphism, which is not always the only possible one, nor the best one.

Category: Morphisms.

- The axioms of category theory can be formulated only in terms of morphisms.
- Equivalent categories may have completely different objects.
- Conversely, some mathematical objects come equipped with a natural notion of morphism, which is not always the only possible one, nor the best one.
- In some cases, it may be interesting to

Category: Morphisms.

- The axioms of category theory can be formulated only in terms of morphisms.
- Equivalent categories may have completely different objects.
- Conversely, some mathematical objects come equipped with a natural notion of morphism, which is not always the only possible one, nor the best one.
- In some cases, it may be interesting to change the morphisms!

Category: Morphisms.

- The axioms of category theory can be formulated only in terms of morphisms.
- Equivalent categories may have completely different objects.
- Conversely, some mathematical objects come equipped with a natural notion of morphism, which is not always the only possible one, nor the best one.
- In some cases, it may be interesting to change the morphisms!
 - Category of finite groups

Category: Morphisms.

- The axioms of category theory can be formulated only in terms of morphisms.
- Equivalent categories may have completely different objects.
- Conversely, some mathematical objects come equipped with a natural notion of morphism, which is not always the only possible one, nor the best one.
- In some cases, it may be interesting to change the morphisms!
 - Category of finite groups and bisets.

Category: Mor

- In fact, objects don't matter much! More precisely:
 - The axioms of category theory can be formulated only in terms of morphisms.
 - Equivalent categories may have completely different objects.
 - Conversely, some mathematical objects come equipped with a natural notion of morphism, which is not always the only possible one, nor the best one.
- In some cases, it may be interesting to change the morphisms!
 - Category of finite groups and bisets.
 - Category of finite sets

Category: Morp

- In fact, objects don't matter much! More precisely:
 - The axioms of category theory can be formulated only in terms of morphisms.
 - Equivalent categories may have completely different objects.
 - Conversely, some mathematical objects come equipped with a natural notion of morphism, which is not always the only possible one, nor the best one.
- In some cases, it may be interesting to change the morphisms!
 - Category of finite groups and bisets.
 - Category of finite sets and correspondences (with Jacques Thévenaz).

Category: Mor

- In fact, objects don't matter much! More precisely:
 - The axioms of category theory can be formulated only in terms of morphisms.
 - Equivalent categories may have completely different objects.
 - Conversely, some mathematical objects come equipped with a natural notion of morphism, which is not always the only possible one, nor the best one.
- In some cases, it may be interesting to change the morphisms!
 - Category of finite groups and bisets.
 - Category of finite sets and correspondences (with Jacques Thévenaz).
 - Category of rings

Category: Mor

- In fact, objects don't matter much! More precisely:
 - The axioms of category theory can be formulated only in terms of morphisms.
 - Equivalent categories may have completely different objects.
 - Conversely, some mathematical objects come equipped with a natural notion of morphism, which is not always the only possible one, nor the best one.
- In some cases, it may be interesting to change the morphisms!
 - Category of finite groups and bisets.
 - Category of finite sets and correspondences (with Jacques Thévenaz).
 - Category of rings and bimodules.

Category: Mor

- In fact, objects don't matter much! More precisely:
 - The axioms of category theory can be formulated only in terms of morphisms.
 - Equivalent categories may have completely different objects.
 - Conversely, some mathematical objects come equipped with a natural notion of morphism, which is not always the only possible one, nor the best one.
- In some cases, it may be interesting to change the morphisms!
 - Category of finite groups and bisets.
 - Category of finite sets and correspondences (with Jacques Thévenaz).
 - Category of rings and bimodules.
 - Theory of motives

Category: Mor

- In fact, objects don't matter much! More precisely:
 - The axioms of category theory can be formulated only in terms of morphisms.
 - Equivalent categories may have completely different objects.
 - Conversely, some mathematical objects come equipped with a natural notion of morphism, which is not always the only possible one, nor the best one.
- In some cases, it may be interesting to change the morphisms!
 - Category of finite groups and bisets.
 - Category of finite sets and correspondences (with Jacques Thévenaz).
 - Category of rings and bimodules.
 - Theory of motives, (Co)bordism and Topological Quantum Field Theories

Category: Mor

- In fact, objects don't matter much! More precisely:
 - The axioms of category theory can be formulated only in terms of morphisms.
 - Equivalent categories may have completely different objects.
 - Conversely, some mathematical objects come equipped with a natural notion of morphism, which is not always the only possible one, nor the best one.
- In some cases, it may be interesting to change the morphisms!
 - Category of finite groups and bisets.
 - Category of finite sets and correspondences (with Jacques Thévenaz).
 - Category of rings and bimodules.
 - Theory of motives, (Co)bordism and Topological Quantum Field Theories, Categories of fractions

Category: Mor

- In fact, objects don't matter much! More precisely:
 - The axioms of category theory can be formulated only in terms of morphisms.
 - Equivalent categories may have completely different objects.
 - Conversely, some mathematical objects come equipped with a natural notion of morphism, which is not always the only possible one, nor the best one.
- In some cases, it may be interesting to change the morphisms!
 - Category of finite groups and bisets.
 - Category of finite sets and correspondences (with Jacques Thévenaz).
 - Category of rings and bimodules.
 - Theory of motives, (Co)bordism and Topological Quantum Field Theories, Categories of fractions, categories of spans

Category: Mor

- In fact, objects don't matter much! More precisely:
 - The axioms of category theory can be formulated only in terms of morphisms.
 - Equivalent categories may have completely different objects.
 - Conversely, some mathematical objects come equipped with a natural notion of morphism, which is not always the only possible one, nor the best one.
- In some cases, it may be interesting to change the morphisms!
 - Category of finite groups and bisets.
 - Category of finite sets and correspondences (with Jacques Thévenaz).
 - Category of rings and bimodules.
 - Theory of motives, (Co)bordism and Topological Quantum Field Theories, Categories of fractions, categories of spans, quotient categories

Category: Mor

- In fact, objects don't matter much! More precisely:
 - The axioms of category theory can be formulated only in terms of morphisms.
 - Equivalent categories may have completely different objects.
 - Conversely, some mathematical objects come equipped with a natural notion of morphism, which is not always the only possible one, nor the best one.
- In some cases, it may be interesting to change the morphisms!
 - Category of finite groups and bisets.
 - Category of finite sets and correspondences (with Jacques Thévenaz).
 - Category of rings and bimodules.
 - Theory of motives, (Co)bordism and Topological Quantum Field Theories, Categories of fractions, categories of spans, quotient categories, localizations

Category: Mor

- In fact, objects don't matter much! More precisely:
 - The axioms of category theory can be formulated only in terms of morphisms.
 - Equivalent categories may have completely different objects.
 - Conversely, some mathematical objects come equipped with a natural notion of morphism, which is not always the only possible one, nor the best one.
- In some cases, it may be interesting to change the morphisms!
 - Category of finite groups and bisets.
 - Category of finite sets and correspondences (with Jacques Thévenaz).
 - Category of rings and bimodules.
 - Theory of motives, (Co)bordism and Topological Quantum Field Theories, Categories of fractions, categories of spans, quotient categories, localizations, derived categories

Category: Mor

- In fact, objects don't matter much! More precisely:
 - The axioms of category theory can be formulated only in terms of morphisms.
 - Equivalent categories may have completely different objects.
 - Conversely, some mathematical objects come equipped with a natural notion of morphism, which is not always the only possible one, nor the best one.
- In some cases, it may be interesting to change the morphisms!
 - Category of finite groups and bisets.
 - Category of finite sets and correspondences (with Jacques Thévenaz).
 - Category of rings and bimodules.
 - Theory of motives, (Co)bordism and Topological Quantum Field Theories, Categories of fractions, categories of spans, quotient categories, localizations, derived categories, ...

Serge Bouc (CNRS-LAMFA) Functorial equivalence of blocks and BAWC ECNU, Shanghai, January 21, 2024

イロト イポト イヨト イヨト

æ

Aim:

Serge Bouc (CNRS-LAMFA) Functorial equivalence of blocks and BAWC ECNU, Shanghai, January 21, 2024

イロト イポト イヨト イヨト

æ

Aim: Build a category of finite groups with other types of morphisms?

∃ >

Aim: Build a category of finite groups with other types of morphisms? Using group algebras and bimodules?

.∋...>

Let k be an algebraically closed field, of characteristic $p \ge 0$, and G be a finite group. Let kG be the group algebra of G over k

Let k be an algebraically closed field, of characteristic $p \ge 0$, and G be a finite group. Let kG be the group algebra of G over k, and kG-mod be the category of finite dimensional kG-modules.

Let k be an algebraically closed field, of characteristic $p \ge 0$, and G be a finite group. Let kG be the group algebra of G over k, and kG-mod be the category of finite dimensional kG-modules.

• If *p* ∤ |*G*|
Let k be an algebraically closed field, of characteristic $p \ge 0$, and G be a finite group. Let kG be the group algebra of G over k, and kG-mod be the category of finite dimensional kG-modules.

• If $p \nmid |G|$, the category kG-mod is semisimple:

Let k be an algebraically closed field, of characteristic $p \ge 0$, and G be a finite group. Let kG be the group algebra of G over k, and kG-mod be the category of finite dimensional kG-modules.

If p ∤ |G|, the category kG-mod is semisimple: Any kG-module is a direct sum of simple ones

Let k be an algebraically closed field, of characteristic $p \ge 0$, and G be a finite group. Let kG be the group algebra of G over k, and kG-mod be the category of finite dimensional kG-modules.

 If p ∤ |G|, the category kG-mod is semisimple: Any kG-module is a direct sum of simple ones. These are characterized by their character.

Let k be an algebraically closed field, of characteristic $p \ge 0$, and G be a finite group. Let kG be the group algebra of G over k, and kG-mod be the category of finite dimensional kG-modules.

- If p ∤ |G|, the category kG-mod is semisimple: Any kG-module is a direct sum of simple ones. These are characterized by their character.
- If p||G|, this is no longer true:

Let k be an algebraically closed field, of characteristic $p \ge 0$, and G be a finite group. Let kG be the group algebra of G over k, and kG-mod be the category of finite dimensional kG-modules.

- If p ∤ |G|, the category kG-mod is semisimple: Any kG-module is a direct sum of simple ones. These are characterized by their character.
- If p||G|, this is no longer true: There are non simple indecomposable kG-modules

Let k be an algebraically closed field, of characteristic $p \ge 0$, and G be a finite group. Let kG be the group algebra of G over k, and kG-mod be the category of finite dimensional kG-modules.

- If p ∤ |G|, the category kG-mod is semisimple: Any kG-module is a direct sum of simple ones. These are characterized by their character.
- If p||G|, this is no longer true: There are non simple indecomposable kG-modules, and in general there are infinitely many isomorphism classes of such modules.

Let k be an algebraically closed field, of characteristic $p \ge 0$, and G be a finite group. Let kG be the group algebra of G over k, and kG-mod be the category of finite dimensional kG-modules.

- If p ∤ |G|, the category kG-mod is semisimple: Any kG-module is a direct sum of simple ones. These are characterized by their character.
- If p||G|, this is no longer true: There are non simple indecomposable kG-modules, and in general there are infinitely many isomorphism classes of such modules.

The group algebra kG splits as a direct product $B_1 \times B_2 \times \ldots \times B_n$ of indecomposable k-algebras

Let k be an algebraically closed field, of characteristic $p \ge 0$, and G be a finite group. Let kG be the group algebra of G over k, and kG-mod be the category of finite dimensional kG-modules.

- If p ∤ |G|, the category kG-mod is semisimple: Any kG-module is a direct sum of simple ones. These are characterized by their character.
- If p||G|, this is no longer true: There are non simple indecomposable kG-modules, and in general there are infinitely many isomorphism classes of such modules.

The group algebra kG splits as a direct product $B_1 \times B_2 \times \ldots \times B_n$ of indecomposable k-algebras, called the blocks of kG.

Let k be an algebraically closed field, of characteristic $p \ge 0$, and G be a finite group. Let kG be the group algebra of G over k, and kG-mod be the category of finite dimensional kG-modules.

- If p ∤ |G|, the category kG-mod is semisimple: Any kG-module is a direct sum of simple ones. These are characterized by their character.
- If p||G|, this is no longer true: There are non simple indecomposable kG-modules, and in general there are infinitely many isomorphism classes of such modules.

The group algebra kG splits as a direct product $B_1 \times B_2 \times \ldots \times B_n$ of indecomposable k-algebras, called the blocks of kG. They are the ideals kGb

Let k be an algebraically closed field, of characteristic $p \ge 0$, and G be a finite group. Let kG be the group algebra of G over k, and kG-mod be the category of finite dimensional kG-modules.

- If p ∤ |G|, the category kG-mod is semisimple: Any kG-module is a direct sum of simple ones. These are characterized by their character.
- If p||G|, this is no longer true: There are non simple indecomposable kG-modules, and in general there are infinitely many isomorphism classes of such modules.

The group algebra kG splits as a direct product $B_1 \times B_2 \times \ldots \times B_n$ of indecomposable k-algebras, called the blocks of kG. They are the ideals kGb, where b is a primitive idempotent of the center of kG.

Let k be an algebraically closed field, of characteristic $p \ge 0$, and G be a finite group. Let kG be the group algebra of G over k, and kG-mod be the category of finite dimensional kG-modules.

- If p ∤ |G|, the category kG-mod is semisimple: Any kG-module is a direct sum of simple ones. These are characterized by their character.
- If p||G|, this is no longer true: There are non simple indecomposable kG-modules, and in general there are infinitely many isomorphism classes of such modules.

The group algebra kG splits as a direct product $B_1 \times B_2 \times \ldots \times B_n$ of indecomposable *k*-algebras, called the blocks of *kG*. They are the ideals *kGb*, where *b* is a block idempotent of *kG*.

Let k be an algebraically closed field, of characteristic $p \ge 0$, and G be a finite group. Let kG be the group algebra of G over k, and kG-mod be the category of finite dimensional kG-modules.

- If p ∤ |G|, the category kG-mod is semisimple: Any kG-module is a direct sum of simple ones. These are characterized by their character.
- If p||G|, this is no longer true: There are non simple indecomposable kG-modules, and in general there are infinitely many isomorphism classes of such modules.

The group algebra kG splits as a direct product $B_1 \times B_2 \times \ldots \times B_n$ of indecomposable *k*-algebras, called the blocks of *kG*. They are the ideals *kGb*, where *b* is a block idempotent of *kG*.

For a block idempotent b of kG

Let k be an algebraically closed field, of characteristic $p \ge 0$, and G be a finite group. Let kG be the group algebra of G over k, and kG-mod be the category of finite dimensional kG-modules.

- If p ∤ |G|, the category kG-mod is semisimple: Any kG-module is a direct sum of simple ones. These are characterized by their character.
- If p||G|, this is no longer true: There are non simple indecomposable kG-modules, and in general there are infinitely many isomorphism classes of such modules.

The group algebra kG splits as a direct product $B_1 \times B_2 \times \ldots \times B_n$ of indecomposable *k*-algebras, called the blocks of *kG*. They are the ideals *kGb*, where *b* is a block idempotent of *kG*.

For a block idempotent b of kG, a minimal subgroup D of G such that there exists $c \in (kG)^D$ with $b = \sum_{g \in G/D} gcg^{-1}$

Let k be an algebraically closed field, of characteristic $p \ge 0$, and G be a finite group. Let kG be the group algebra of G over k, and kG-mod be the category of finite dimensional kG-modules.

- If p ∤ |G|, the category kG-mod is semisimple: Any kG-module is a direct sum of simple ones. These are characterized by their character.
- If p||G|, this is no longer true: There are non simple indecomposable kG-modules, and in general there are infinitely many isomorphism classes of such modules.

The group algebra kG splits as a direct product $B_1 \times B_2 \times \ldots \times B_n$ of indecomposable *k*-algebras, called the blocks of *kG*. They are the ideals *kGb*, where *b* is a block idempotent of *kG*.

For a block idempotent b of kG, a minimal subgroup D of G such that there exists $c \in (kG)^D$ with $b = \sum_{g \in G/D} gcg^{-1}$ is called a defect group

of *b*.

イロト イヨト イヨト ・

3

Let k be an algebraically closed field, of characteristic $p \ge 0$, and G be a finite group. Let kG be the group algebra of G over k, and kG-mod be the category of finite dimensional kG-modules.

- If p ∤ |G|, the category kG-mod is semisimple: Any kG-module is a direct sum of simple ones. These are characterized by their character.
- If p||G|, this is no longer true: There are non simple indecomposable kG-modules, and in general there are infinitely many isomorphism classes of such modules.

The group algebra kG splits as a direct product $B_1 \times B_2 \times \ldots \times B_n$ of indecomposable *k*-algebras, called the blocks of *kG*. They are the ideals *kGb*, where *b* is a block idempotent of *kG*. For a block idempotent *b* of *kG*, a minimal subgroup *D* of *G* such that

there exists $c \in (kG)^D$ with $b = \sum_{g \in G/D} gcg^{-1}$ is called a defect group

of *b*. It is a *p*-group

イロト イヨト イヨト ・

3

Let k be an algebraically closed field, of characteristic $p \ge 0$, and G be a finite group. Let kG be the group algebra of G over k, and kG-mod be the category of finite dimensional kG-modules.

- If p ∤ |G|, the category kG-mod is semisimple: Any kG-module is a direct sum of simple ones. These are characterized by their character.
- If p||G|, this is no longer true: There are non simple indecomposable kG-modules, and in general there are infinitely many isomorphism classes of such modules.

The group algebra kG splits as a direct product $B_1 \times B_2 \times \ldots \times B_n$ of indecomposable *k*-algebras, called the blocks of *kG*. They are the ideals *kGb*, where *b* is a block idempotent of *kG*.

For a block idempotent b of kG, a minimal subgroup D of G such that there exists $c \in (kG)^D$ with $b = \sum_{g \in G/D} gcg^{-1}$ is called a defect group

of b. It is a p-group, unique up to conjugation in G.

イロト 不得 ト イヨト イヨト

3

Let k be an algebraically closed field, of characteristic $p \ge 0$, and G be a finite group. Let kG be the group algebra of G over k, and kG-mod be the category of finite dimensional kG-modules.

- If p ∤ |G|, the category kG-mod is semisimple: Any kG-module is a direct sum of simple ones. These are characterized by their character.
- If p||G|, this is no longer true: There are non simple indecomposable kG-modules, and in general there are infinitely many isomorphism classes of such modules.

The group algebra kG splits as a direct product $B_1 \times B_2 \times \ldots \times B_n$ of indecomposable *k*-algebras, called the blocks of *kG*. They are the ideals *kGb*, where *b* is a block idempotent of *kG*. For a block idempotent *b* of *kG*, a minimal subgroup *D* of *G* such that

there exists $c \in (kG)^D$ with $b = \sum_{g \in G/D} gcg^{-1}$ is called a defect group

of *b*. We denote it by D(b).

3

イロト イヨト イヨト ・

Serge Bouc (CNRS-LAMFA) Functorial equivalence of blocks and BAWC ECNU, Shanghai, January 21, 2024

イロト イポト イヨト イヨト

æ

Aim:

Serge Bouc (CNRS-LAMFA) Functorial equivalence of blocks and BAWC ECNU, Shanghai, January 21, 2024

イロト イポト イヨト イヨト

æ

• Use bimodules: For groups G and H, a (kH, kG)-bimodule M is a $k(H \times G)$ -module

• Use bimodules: For groups G and H, a (kH, kG)-bimodule M is a $k(H \times G)$ -module with action written differently

Use bimodules: For groups G and H, a (kH, kG)-bimodule M is a k(H × G)-module with action written differently, that is ∀(h,g) ∈ H × G, ∀m ∈ M, h ⋅ m ⋅ g := (h,g⁻¹) ⋅ m.

• One could consider the category where objects are finite groups, and morphisms are isomorphism classes of bimodules.

• One could consider the category where objects are finite groups, and morphisms are isomorphism classes of bimodules. We need to restrict to more specific classes of bimodules.

- One could consider the category where objects are finite groups, and morphisms are isomorphism classes of bimodules. We need to restrict to more specific classes of bimodules.
- For a finite group G, a permutation kG-module is a kG-module admitting a G-invariant k-basis.

- One could consider the category where objects are finite groups, and morphisms are isomorphism classes of bimodules. We need to restrict to more specific classes of bimodules.
- For a finite group G, a permutation kG-module is a kG-module admitting a G-invariant k-basis.
- A *p*-permutation *kG*-module

- One could consider the category where objects are finite groups, and morphisms are isomorphism classes of bimodules. We need to restrict to more specific classes of bimodules.
- For a finite group G, a permutation kG-module is a kG-module admitting a G-invariant k-basis.
- A trivial source kG-module

- One could consider the category where objects are finite groups, and morphisms are isomorphism classes of bimodules. We need to restrict to more specific classes of bimodules.
- For a finite group G, a permutation kG-module is a kG-module admitting a G-invariant k-basis.
- A permutation projective kG-module

- One could consider the category where objects are finite groups, and morphisms are isomorphism classes of bimodules. We need to restrict to more specific classes of bimodules.
- For a finite group G, a permutation kG-module is a kG-module admitting a G-invariant k-basis.
- A *p*-permutation *kG*-module

- One could consider the category where objects are finite groups, and morphisms are isomorphism classes of bimodules. We need to restrict to more specific classes of bimodules.
- For a finite group G, a permutation kG-module is a kG-module admitting a G-invariant k-basis.
- A *p*-permutation *kG*-module is a direct summand of a permutation *kG*-module.

- One could consider the category where objects are finite groups, and morphisms are isomorphism classes of bimodules. We need to restrict to more specific classes of bimodules.
- For a finite group G, a permutation kG-module is a kG-module admitting a G-invariant k-basis.
- A *p*-permutation *kG*-module is a direct summand of a permutation *kG*-module. A *kG*-module is a *p*-permutation module if and only if

- One could consider the category where objects are finite groups, and morphisms are isomorphism classes of bimodules. We need to restrict to more specific classes of bimodules.
- For a finite group G, a permutation kG-module is a kG-module admitting a G-invariant k-basis.
- A *p*-permutation *kG*-module is a direct summand of a permutation *kG*-module. A *kG*-module is a *p*-permutation module if and only if its restriction to a Sylow *p*-subgroup of *G* is a permutation module.

- One could consider the category where objects are finite groups, and morphisms are isomorphism classes of bimodules. We need to restrict to more specific classes of bimodules.
- For a finite group G, a permutation kG-module is a kG-module admitting a G-invariant k-basis.
- A *p*-permutation *kG*-module is a direct summand of a permutation *kG*-module. There are finitely many indecomposable *p*-permutation *kG*-modules (up to isomorphism)

- One could consider the category where objects are finite groups, and morphisms are isomorphism classes of bimodules. We need to restrict to more specific classes of bimodules.
- For a finite group G, a permutation kG-module is a kG-module admitting a G-invariant k-basis.
- A *p*-permutation *kG*-module is a direct summand of a permutation *kG*-module. There are finitely many indecomposable *p*-permutation *kG*-modules [Broué 1985].
- One could consider the category where objects are finite groups, and morphisms are isomorphism classes of bimodules. We need to restrict to more specific classes of bimodules.
- For a finite group G, a permutation kG-module is a kG-module admitting a G-invariant k-basis.
- A *p*-permutation *kG*-module is a direct summand of a permutation *kG*-module. There are finitely many indecomposable *p*-permutation *kG*-modules.

Examples:

- One could consider the category where objects are finite groups, and morphisms are isomorphism classes of bimodules. We need to restrict to more specific classes of bimodules.
- For a finite group G, a permutation kG-module is a kG-module admitting a G-invariant k-basis.
- A *p*-permutation *kG*-module is a direct summand of a permutation *kG*-module. There are finitely many indecomposable *p*-permutation *kG*-modules.

Examples: Projective *kG*-modules

- One could consider the category where objects are finite groups, and morphisms are isomorphism classes of bimodules. We need to restrict to more specific classes of bimodules.
- For a finite group G, a permutation kG-module is a kG-module admitting a G-invariant k-basis.
- A *p*-permutation *kG*-module is a direct summand of a permutation *kG*-module. There are finitely many indecomposable *p*-permutation *kG*-modules.

Examples: Projective kG-modules, modules inflated from projective k(G/N)-modules ($N \leq G$)

- One could consider the category where objects are finite groups, and morphisms are isomorphism classes of bimodules. We need to restrict to more specific classes of bimodules.
- For a finite group G, a permutation kG-module is a kG-module admitting a G-invariant k-basis.
- A *p*-permutation *kG*-module is a direct summand of a permutation *kG*-module. There are finitely many indecomposable *p*-permutation *kG*-modules.

Examples: Projective kG-modules, modules inflated from projective k(G/N)-modules ($N \leq G$), modules induced from *p*-permutation kH-modules ($H \leq G$).

Serge Bouc (CNRS-LAMFA) Functorial equivalence of blocks and BAWC ECNU, Shanghai, January 21, 2024

ヨト イヨト

• kG is a permutation (kG, kG)-bimodule.

Serge Bouc (CNRS-LAMFA) Functorial equivalence of blocks and BAWC ECNU, Shanghai, January 21, 2024

• *kG* is a permutation (*kG*, *kG*)-bimodule. Moreover, it is free as a left *kG*-module and a right *kG*-module.

- *kG* is a permutation (*kG*, *kG*)-bimodule. Moreover, it is free as a left *kG*-module and a right *kG*-module.
- If b is a central idempotent of kG

- *kG* is a permutation (*kG*, *kG*)-bimodule. Moreover, it is free as a left *kG*-module and a right *kG*-module.
- If *b* is a central idempotent of *kG*, then *kGb* is a direct summand of *kG* as (*kG*, *kG*)-bimodule

- *kG* is a permutation (*kG*, *kG*)-bimodule. Moreover, it is free as a left *kG*-module and a right *kG*-module.
- If b is a central idempotent of kG, then kGb is a direct summand of kG as (kG, kG)-bimodule, so it is a p-permutation bimodule.

- *kG* is a permutation (*kG*, *kG*)-bimodule. Moreover, it is free as a left *kG*-module and a right *kG*-module.
- If b is a central idempotent of kG, then kGb is a direct summand of kG as (kG, kG)-bimodule, so it is a p-permutation bimodule.
- Moreover, viewed as a left (or right) kG-module

- *kG* is a permutation (*kG*, *kG*)-bimodule. Moreover, it is free as a left *kG*-module and a right *kG*-module.
- If b is a central idempotent of kG, then kGb is a direct summand of kG as (kG, kG)-bimodule, so it is a p-permutation bimodule.
- Moreover, viewed as a left (or right) *kG*-module, it is a direct summand of the free module *kG*

- *kG* is a permutation (*kG*, *kG*)-bimodule. Moreover, it is free as a left *kG*-module and a right *kG*-module.
- If b is a central idempotent of kG, then kGb is a direct summand of kG as (kG, kG)-bimodule, so it is a p-permutation bimodule.
- Moreover, viewed as a left (or right) *kG*-module, it is a direct summand of the free module *kG*, hence it is projective.

- *kG* is a permutation (*kG*, *kG*)-bimodule. Moreover, it is free as a left *kG*-module and a right *kG*-module.
- If b is a central idempotent of kG, then kGb is a direct summand of kG as (kG, kG)-bimodule, so it is a p-permutation bimodule.
- Moreover, viewed as a left (or right) *kG*-module, it is a direct summand of the free module *kG*, hence it is projective.
- More generally for finite groups G and H, a diagonal *p*-permutation (*kH*, *kG*)-bimodule

- *kG* is a permutation (*kG*, *kG*)-bimodule. Moreover, it is free as a left *kG*-module and a right *kG*-module.
- If b is a central idempotent of kG, then kGb is a direct summand of kG as (kG, kG)-bimodule, so it is a p-permutation bimodule.
- Moreover, viewed as a left (or right) *kG*-module, it is a direct summand of the free module *kG*, hence it is projective.
- More generally for finite groups G and H, a diagonal p-permutation (kH, kG)-bimodule is a p-permutation bimodule which is projective as a left kH-module and a right kG-module.

- *kG* is a permutation (*kG*, *kG*)-bimodule. Moreover, it is free as a left *kG*-module and a right *kG*-module.
- If b is a central idempotent of kG, then kGb is a direct summand of kG as (kG, kG)-bimodule, so it is a p-permutation bimodule.
- Moreover, viewed as a left (or right) *kG*-module, it is a direct summand of the free module *kG*, hence it is projective.
- More generally for finite groups G and H, a diagonal p-permutation (kH, kG)-bimodule is a p-permutation bimodule which is projective as a left kH-module and a right kG-module. An indecomposable such bimodule is a direct summand of a module induced from a twisted diagonal subgroup of H × G.

- *kG* is a permutation (*kG*, *kG*)-bimodule. Moreover, it is free as a left *kG*-module and a right *kG*-module.
- If b is a central idempotent of kG, then kGb is a direct summand of kG as (kG, kG)-bimodule, so it is a p-permutation bimodule.
- Moreover, viewed as a left (or right) *kG*-module, it is a direct summand of the free module *kG*, hence it is projective.
- More generally for finite groups G and H, a diagonal p-permutation (kH, kG)-bimodule is a p-permutation bimodule which is projective as a left kH-module and a right kG-module.

- kG is a permutation (kG, kG)-bimodule. Moreover, it is free as a left kG-module and a right kG-module.
- If b is a central idempotent of kG, then kGb is a direct summand of kG as (kG, kG)-bimodule, so it is a p-permutation bimodule.
- Moreover, viewed as a left (or right) *kG*-module, it is a direct summand of the free module *kG*, hence it is projective.
- More generally for finite groups G and H, a diagonal p-permutation (kH, kG)-bimodule is a p-permutation bimodule which is projective as a left kH-module and a right kG-module.
- If G, H, K are finite groups

- *kG* is a permutation (*kG*, *kG*)-bimodule. Moreover, it is free as a left *kG*-module and a right *kG*-module.
- If b is a central idempotent of kG, then kGb is a direct summand of kG as (kG, kG)-bimodule, so it is a p-permutation bimodule.
- Moreover, viewed as a left (or right) *kG*-module, it is a direct summand of the free module *kG*, hence it is projective.
- More generally for finite groups G and H, a diagonal p-permutation (kH, kG)-bimodule is a p-permutation bimodule which is projective as a left kH-module and a right kG-module.
- If G, H, K are finite groups,
 if M is a diagonal p-permutation (kH, kG)-bimodule

- *kG* is a permutation (*kG*, *kG*)-bimodule. Moreover, it is free as a left *kG*-module and a right *kG*-module.
- If b is a central idempotent of kG, then kGb is a direct summand of kG as (kG, kG)-bimodule, so it is a p-permutation bimodule.
- Moreover, viewed as a left (or right) *kG*-module, it is a direct summand of the free module *kG*, hence it is projective.
- More generally for finite groups G and H, a diagonal p-permutation (kH, kG)-bimodule is a p-permutation bimodule which is projective as a left kH-module and a right kG-module.
- If G, H, K are finite groups,
 if M is a diagonal p-permutation (kH, kG)-bimodule,
 if N is a diagonal p-permutation (kK, kH)-bimodule

- *kG* is a permutation (*kG*, *kG*)-bimodule. Moreover, it is free as a left *kG*-module and a right *kG*-module.
- If b is a central idempotent of kG, then kGb is a direct summand of kG as (kG, kG)-bimodule, so it is a p-permutation bimodule.
- Moreover, viewed as a left (or right) *kG*-module, it is a direct summand of the free module *kG*, hence it is projective.
- More generally for finite groups G and H, a diagonal p-permutation (kH, kG)-bimodule is a p-permutation bimodule which is projective as a left kH-module and a right kG-module.
- If G, H, K are finite groups,
 if M is a diagonal p-permutation (kH, kG)-bimodule,
 if N is a diagonal p-permutation (kK, kH)-bimodule,
 then N ⊗_{kH} M is a diagonal p-permutation (kK, kG)-bimodule.

Serge Bouc (CNRS-LAMFA) Functorial equivalence of blocks and BAWC ECNU, Shanghai, January 21, 2024

Let R be a commutative ring (with 1).

Let *R* be a commutative ring (with 1). For finite groups *G* and *H*, let $RT^{\Delta}(H, G)$ be the free *R*-module with basis the set of isomorphism classes of indecomposable diagonal *p*-permutation (kH, kG)-bimodules.

Let R be a commutative ring (with 1).

For finite groups G and H, let $RT^{\Delta}(H, G)$ be the free R-module with basis the set of isomorphism classes of indecomposable diagonal p-permutation (kH, kG)-bimodules.

A diagonal *p*-permutation (kH, kG)-bimodule M splits as a direct sum of indecomposable ones

Let R be a commutative ring (with 1).

For finite groups G and H, let $RT^{\Delta}(H, G)$ be the free R-module with basis the set of isomorphism classes of indecomposable diagonal p-permutation (kH, kG)-bimodules.

A diagonal *p*-permutation (kH, kG)-bimodule *M* splits as a direct sum of indecomposable ones, and we let [*M*] denote the corresponding element of $RT^{\Delta}(H, G)$.

Let R be a commutative ring (with 1). For finite groups G and H, let $RT^{\Delta}(H, G)$ be the free R-module with basis the set of isomorphism classes of indecomposable diagonal p-permutation (kH, kG)-bimodules.

For finite groups G, H, K, there is a well defined bilinear map

Let R be a commutative ring (with 1). For finite groups G and H, let $RT^{\Delta}(H, G)$ be the free R-module with basis the set of isomorphism classes of indecomposable diagonal p-permutation (kH, kG)-bimodules.

For finite groups G, H, K, there is a well defined bilinear map DTA(H, C) = DTA(H, C)

 $\circ: RT^{\Delta}(K, H) \times RT^{\Delta}(H, G) \to RT^{\Delta}(K, G)$

Let R be a commutative ring (with 1). For finite groups G and H, let $RT^{\Delta}(H, G)$ be the free R-module with basis the set of isomorphism classes of indecomposable diagonal p-permutation (kH, kG)-bimodules.

For finite groups G, H, K, there is a well defined bilinear map $\circ: RT^{\Delta}(K, H) \times RT^{\Delta}(H, G) \to RT^{\Delta}(K, G)$ induced by ([M] [M]) $\mapsto [N \otimes ... M]$

induced by $([N], [M]) \mapsto [N \otimes_{kH} M]$.

Let R be a commutative ring (with 1). For finite groups G and H, let $RT^{\Delta}(H, G)$ be the free R-module with basis the set of isomorphism classes of indecomposable diagonal p-permutation (kH, kG)-bimodules.

For finite groups G, H, K, there is a well defined bilinear map $DT\Delta(K, U) = DT\Delta(K, C)$

 $\circ: RT^{\Delta}(K, H) \times RT^{\Delta}(H, G) \to RT^{\Delta}(K, G)$

induced by $([N], [M]) \mapsto [N \otimes_{kH} M]$.

Definition

Let R be a commutative ring (with 1). For finite groups G and H, let $RT^{\Delta}(H, G)$ be the free R-module with basis the set of isomorphism classes of indecomposable diagonal p-permutation (kH, kG)-bimodules.

For finite groups G, H, K, there is a well defined bilinear map $A = BT^{A}(K, U) \times BT^{A}(H, C) \to BT^{A}(K, C)$

 $\circ: RT^{\Delta}(K, H) \times RT^{\Delta}(H, G) \to RT^{\Delta}(K, G)$

induced by $([N], [M]) \mapsto [N \otimes_{kH} M]$.

Definition

Let Rpp_k^{Δ} be the following category:

• The objects of Rpp_k^{Δ} are the finite groups.

Let R be a commutative ring (with 1). For finite groups G and H, let $RT^{\Delta}(H, G)$ be the free R-module with basis the set of isomorphism classes of indecomposable diagonal p-permutation (kH, kG)-bimodules.

For finite groups G, H, K, there is a well defined bilinear map DTA(K, U) = DTA(K, C)

 $\circ: RT^{\Delta}(K, H) \times RT^{\Delta}(H, G) \to RT^{\Delta}(K, G)$

induced by $([N], [M]) \mapsto [N \otimes_{kH} M]$.

Definition

- The objects of Rpp_k^{Δ} are the finite groups.
- For finite groups G and H

Let R be a commutative ring (with 1). For finite groups G and H, let $RT^{\Delta}(H, G)$ be the free R-module with basis the set of isomorphism classes of indecomposable diagonal p-permutation (kH, kG)-bimodules.

For finite groups G, H, K, there is a well defined bilinear map DTA(H, G) = DTA(H, G)

$$: RT^{\Delta}(K, H) \times RT^{\Delta}(H, G) \to RT^{\Delta}(K, G)$$

induced by $([N], [M]) \mapsto [N \otimes_{kH} M]$.

Definition

- The objects of Rpp_k^{Δ} are the finite groups.
- For finite groups G and H, let $Hom_{Rpp_{L}^{\Delta}}(G, H) := RT^{\Delta}(H, G)$.

Let R be a commutative ring (with 1). For finite groups G and H, let $RT^{\Delta}(H, G)$ be the free R-module with basis the set of isomorphism classes of indecomposable diagonal p-permutation (kH, kG)-bimodules.

For finite groups G, H, K, there is a well defined bilinear map DTA(K, U) = DTA(K, C)

 $\circ: RT^{\Delta}(K, H) \times RT^{\Delta}(H, G) \to RT^{\Delta}(K, G)$

induced by $([N], [M]) \mapsto [N \otimes_{kH} M]$.

Definition

- The objects of Rpp_k^{Δ} are the finite groups.
- For finite groups G and H, let $Hom_{Rpp^{\Delta}}(G, H) := RT^{\Delta}(H, G)$.
- The composition in Rpp_k^{Δ} is the above map \circ .

Let R be a commutative ring (with 1). For finite groups G and H, let $RT^{\Delta}(H, G)$ be the free R-module with basis the set of isomorphism classes of indecomposable diagonal p-permutation (kH, kG)-bimodules.

For finite groups G, H, K, there is a well defined bilinear map $\circ: RT^{\Delta}(K, H) \times RT^{\Delta}(H, G) \rightarrow RT^{\Delta}(K, G)$

 $\circ: RI^{-}(K, H) \times RI^{-}(H, G) \to RI^{-}$

induced by $([N], [M]) \mapsto [N \otimes_{kH} M]$.

Definition

- The objects of Rpp_k^{Δ} are the finite groups.
- For finite groups G and H, let $Hom_{Rpp^{\Delta}}(G, H) := RT^{\Delta}(H, G)$.
- The composition in Rpp_k^{Δ} is the above map \circ .
- The identity morphism of G is $[kG] \in RT^{\Delta}(G, G)$.

Let *R* be a commutative ring (with 1). For finite groups *G* and *H*, let $RT^{\Delta}(H, G)$ be the free *R*-module with basis the set of isomorphism classes of indecomposable diagonal *p*-permutation (*kH*, *kG*)-bimodules.

For finite groups G, H, K, there is a well defined bilinear map $DT^{\Delta}(K, U) = DT^{\Delta}(K, C)$

 $\circ: RT^{\Delta}(K, H) \times RT^{\Delta}(H, G) \to RT^{\Delta}(K, G)$

induced by $([N], [M]) \mapsto [N \otimes_{kH} M]$.

Definition

Let Rpp_k^{Δ} be the following category:

- The objects of Rpp_k^{Δ} are the finite groups.
- For finite groups G and H, let $Hom_{Rpp^{\Delta}}(G, H) := RT^{\Delta}(H, G)$.
- The composition in Rpp_k^{Δ} is the above map \circ .
- The identity morphism of G is $[kG] \in RT^{\Delta}(G, G)$.

A diagonal p-permutation functor over R is an R-linear functor from Rpp_k^{Δ} to R-Mod.
Diagonal *p*-permutation functors (joint with Deniz Yılmaz)

Let *R* be a commutative ring (with 1). For finite groups *G* and *H*, let $RT^{\Delta}(H, G)$ be the free *R*-module with basis the set of isomorphism classes of indecomposable diagonal *p*-permutation (*kH*, *kG*)-bimodules.

For finite groups G, H, K, there is a well defined bilinear map $DT^{A}(K, U) = DT^{A}(K, C)$

 $\circ: RT^{\Delta}(K, H) \times RT^{\Delta}(H, G) \to RT^{\Delta}(K, G)$

induced by $([N], [M]) \mapsto [N \otimes_{kH} M]$.

Definition

Let Rpp_k^{Δ} be the following category:

- The objects of Rpp_k^{Δ} are the finite groups.
- For finite groups G and H, let $Hom_{Rpp_{L}^{\Delta}}(G, H) := RT^{\Delta}(H, G)$.
- The composition in Rpp_k^{Δ} is the above map \circ .
- The identity morphism of G is $[kG] \in RT^{\Delta}(G, G)$.

A diagonal p-permutation functor over R is an R-linear functor from Rpp_k^{Δ} to R-Mod. These functors form an abelian category $\mathcal{F}_{Rpp_k}^{\Delta}$.

Serge Bouc (CNRS-LAMFA) Functorial equivalence of blocks and BAWC ECNU, Shanghai, January 21, 2024

イロト イポト イヨト イヨト

æ

Theorem

Serge Bouc (CNRS-LAMFA) Functorial equivalence of blocks and BAWC ECNU, Shanghai, January 21, 2024

イロト イヨト イヨト イヨト

э

Let \mathbb{F} be an algebraically closed field of characteristic 0.

Theorem

Let \mathbb{F} be an algebraically closed field of characteristic 0. Then the category $\mathcal{F}_{\mathbb{F}pp_{k}}^{\Delta}$ of diagonal p-permutation functors over \mathbb{F} is semisimple.

• A D^{Δ} -pair (L, u) consists of

Theorem

Let \mathbb{F} be an algebraically closed field of characteristic 0. Then the category $\mathcal{F}_{\mathbb{F}pp_{\nu}}^{\Delta}$ of diagonal p-permutation functors over \mathbb{F} is semisimple.

• A D^{Δ} -pair (L, u) consists of a finite *p*-group *L* and

Theorem

Let \mathbb{F} be an algebraically closed field of characteristic 0. Then the category $\mathcal{F}_{\mathbb{F}pp_{\nu}}^{\Delta}$ of diagonal p-permutation functors over \mathbb{F} is semisimple.

A D[△]-pair (L, u) consists of a finite p-group L and a p'-automorphism u of L acting faithfully on L.

Theorem

- A D^Δ-pair (L, u) consists of a finite p-group L and a p'-automorphism u of L acting faithfully on L.
- An isomorphism of D^{Δ} -pairs $\varphi: (L, u) \rightarrow (M, v)$

Theorem

- A D^Δ-pair (L, u) consists of a finite p-group L and a p'-automorphism u of L acting faithfully on L.
- An isomorphism of D^Δ-pairs φ : (L, u) → (M, v) is a group isomorphism φ : L ⋊ ⟨u⟩ → M ⋊ ⟨v⟩

Theorem

- A D^Δ-pair (L, u) consists of a finite p-group L and a p'-automorphism u of L acting faithfully on L.
- An isomorphism of D^Δ-pairs φ : (L, u) → (M, v) is a group isomorphism φ : L ⋊ ⟨u⟩ → M ⋊ ⟨v⟩ such that φ(u) is conjugate to v.

- A D[△]-pair (L, u) consists of a finite p-group L and a p'-automorphism u of L acting faithfully on L.
- An isomorphism of D^Δ-pairs φ : (L, u) → (M, v) is a group isomorphism φ : L ⋊ ⟨u⟩ → M ⋊ ⟨v⟩ such that φ(u) is conjugate to v.
- We denote by Aut(L, u) the automorphism group of a D^{Δ} -pair (L, u)

- A D[△]-pair (L, u) consists of a finite p-group L and a p'-automorphism u of L acting faithfully on L.
- An isomorphism of D^Δ-pairs φ : (L, u) → (M, v) is a group isomorphism φ : L ⋊ ⟨u⟩ → M ⋊ ⟨v⟩ such that φ(u) is conjugate to v.
- We denote by Aut(L, u) the automorphism group of a D^Δ-pair (L, u), and we set Out(L, u) = Aut(L, u) / Inn(L ⋊ ⟨u⟩).

Let \mathbb{F} be an algebraically closed field of characteristic 0. Then the category $\mathcal{F}_{\mathbb{F}pp_{k}}^{\Delta}$ of diagonal p-permutation functors over \mathbb{F} is semisimple.

- A D[△]-pair (L, u) consists of a finite p-group L and a p'-automorphism u of L acting faithfully on L.
- An isomorphism of D^Δ-pairs φ : (L, u) → (M, v) is a group isomorphism φ : L ⋊ ⟨u⟩ → M ⋊ ⟨v⟩ such that φ(u) is conjugate to v.
- We denote by Aut(L, u) the automorphism group of a D^Δ-pair (L, u), and we set Out(L, u) = Aut(L, u) / Inn(L ⋊ ⟨u⟩).

Theorem

Let \mathbb{F} be an algebraically closed field of characteristic 0. Then the category $\mathcal{F}_{\mathbb{F}pp_{k}}^{\Delta}$ of diagonal p-permutation functors over \mathbb{F} is semisimple.

- A D[△]-pair (L, u) consists of a finite p-group L and a p'-automorphism u of L acting faithfully on L.
- An isomorphism of D^Δ-pairs φ : (L, u) → (M, v) is a group isomorphism φ : L ⋊ ⟨u⟩ → M ⋊ ⟨v⟩ such that φ(u) is conjugate to v.
- We denote by Aut(L, u) the automorphism group of a D^Δ-pair (L, u), and we set Out(L, u) = Aut(L, u) / Inn(L ⋊ ⟨u⟩).

Theorem

The simple diagonal p-permutation functors over $\mathbb F$

Let \mathbb{F} be an algebraically closed field of characteristic 0. Then the category $\mathcal{F}_{\mathbb{F}pp_{k}}^{\Delta}$ of diagonal p-permutation functors over \mathbb{F} is semisimple.

- A D[△]-pair (L, u) consists of a finite p-group L and a p'-automorphism u of L acting faithfully on L.
- An isomorphism of D^Δ-pairs φ : (L, u) → (M, v) is a group isomorphism φ : L ⋊ ⟨u⟩ → M ⋊ ⟨v⟩ such that φ(u) is conjugate to v.
- We denote by Aut(L, u) the automorphism group of a D^Δ-pair (L, u), and we set Out(L, u) = Aut(L, u) / Inn(L ⋊ ⟨u⟩).

Theorem

The simple diagonal p-permutation functors over \mathbb{F} are parametrized by isomorphism classes of triples (L, u, V)

Let \mathbb{F} be an algebraically closed field of characteristic 0. Then the category $\mathcal{F}_{\mathbb{F}pp_{k}}^{\Delta}$ of diagonal p-permutation functors over \mathbb{F} is semisimple.

- A D[△]-pair (L, u) consists of a finite p-group L and a p'-automorphism u of L acting faithfully on L.
- An isomorphism of D^Δ-pairs φ : (L, u) → (M, v) is a group isomorphism φ : L ⋊ ⟨u⟩ → M ⋊ ⟨v⟩ such that φ(u) is conjugate to v.
- We denote by Aut(L, u) the automorphism group of a D^Δ-pair (L, u), and we set Out(L, u) = Aut(L, u) / Inn(L ⋊ ⟨u⟩).

Theorem

The simple diagonal p-permutation functors over \mathbb{F} are parametrized by isomorphism classes of triples (L, u, V), where (L, u) is a D^{Δ} -pair

Let \mathbb{F} be an algebraically closed field of characteristic 0. Then the category $\mathcal{F}_{\mathbb{F}pp_{k}}^{\Delta}$ of diagonal p-permutation functors over \mathbb{F} is semisimple.

- A D[△]-pair (L, u) consists of a finite p-group L and a p'-automorphism u of L acting faithfully on L.
- An isomorphism of D^Δ-pairs φ : (L, u) → (M, v) is a group isomorphism φ : L ⋊ ⟨u⟩ → M ⋊ ⟨v⟩ such that φ(u) is conjugate to v.
- We denote by Aut(L, u) the automorphism group of a D^Δ-pair (L, u), and we set Out(L, u) = Aut(L, u) / Inn(L ⋊ ⟨u⟩).

Theorem

The simple diagonal p-permutation functors over \mathbb{F} are parametrized by isomorphism classes of triples (L, u, V), where (L, u) is a D^{Δ} -pair, and V is a simple $\mathbb{F}Out(L, u)$ -module.

Let \mathbb{F} be an algebraically closed field of characteristic 0. Then the category $\mathcal{F}_{\mathbb{F}pp_{k}}^{\Delta}$ of diagonal p-permutation functors over \mathbb{F} is semisimple.

- A D[△]-pair (L, u) consists of a finite p-group L and a p'-automorphism u of L acting faithfully on L.
- An isomorphism of D^Δ-pairs φ : (L, u) → (M, v) is a group isomorphism φ : L ⋊ ⟨u⟩ → M ⋊ ⟨v⟩ such that φ(u) is conjugate to v.
- We denote by Aut(L, u) the automorphism group of a D^Δ-pair (L, u), and we set Out(L, u) = Aut(L, u) / Inn(L ⋊ ⟨u⟩).

Theorem

The simple diagonal p-permutation functors over \mathbb{F} are parametrized by isomorphism classes of triples (L, u, V), where (L, u) is a D^{Δ} -pair, and V is a simple $\mathbb{F}Out(L, u)$ -module. Notation: $(L, u, V) \mapsto S_{L,u,V}$.

Let \mathbb{F} be an algebraically closed field of characteristic 0. Then the category $\mathcal{F}_{\mathbb{F}pp_{k}}^{\Delta}$ of diagonal p-permutation functors over \mathbb{F} is semisimple.

- A D[△]-pair (L, u) consists of a finite p-group L and a p'-automorphism u of L acting faithfully on L.
- An isomorphism of D^Δ-pairs φ : (L, u) → (M, v) is a group isomorphism φ : L ⋊ ⟨u⟩ → M ⋊ ⟨v⟩ such that φ(u) is conjugate to v.
- We denote by Aut(L, u) the automorphism group of a D^Δ-pair (L, u), and we set Out(L, u) = Aut(L, u) / Inn(L ⋊ ⟨u⟩).

Theorem

The simple diagonal p-permutation functors over \mathbb{F} are parametrized by isomorphism classes of triples (L, u, V), where (L, u) is a D^{Δ} -pair, and V is a simple $\mathbb{F}Out(L, u)$ -module. Notation: $(L, u, V) \mapsto S_{L,u,V}$.

Blocks as idempotents

Serge Bouc (CNRS-LAMFA) Functorial equivalence of blocks and BAWC ECNU, Shanghai, January 21, 2024

▶ < ∃ >

Blocks as idempotents

• Let G be a finite group

Serge Bouc (CNRS-LAMFA) Functorial equivalence of blocks and BAWC ECNU, Shanghai, January 21, 2024

• Let G be a finite group and b be a central idempotent of kG.

• Let G be a finite group and b be a central idempotent of kG. Then $[kGb] \in RT^{\Delta}(G, G)$ is an endomorphism of G in Rpp_k^{Δ} .

- Let G be a finite group and b be a central idempotent of kG. Then $[kGb] \in RT^{\Delta}(G, G)$ is an endomorphism of G in Rpp_{k}^{Δ} .
- Moreover, since $kGb \otimes_{kG} kGb \cong kGb$ as (kG, kG)-bimodules

- Let G be a finite group and b be a central idempotent of kG. Then $[kGb] \in RT^{\Delta}(G, G)$ is an endomorphism of G in Rpp_k^{Δ} .
- Moreover, since kGb ⊗_{kG} kGb ≅ kGb as (kG, kG)-bimodules, we have [kGb] ∘ [kGb] = [kGb] in RT^Δ(G, G)

- Let G be a finite group and b be a central idempotent of kG. Then $[kGb] \in RT^{\Delta}(G, G)$ is an endomorphism of G in Rpp_k^{Δ} .
- Moreover, since kGb ⊗_{kG} kGb ≃ kGb as (kG, kG)-bimodules, we have [kGb] ∘ [kGb] = [kGb] in RT^Δ(G, G), so [kGb] is an idempotent endomorphism of G in Rpp^Δ_k.

- Let G be a finite group and b be a central idempotent of kG. Then $[kGb] \in RT^{\Delta}(G, G)$ is an endomorphism of G in Rpp_k^{Δ} .
- Moreover, since kGb ⊗_{kG} kGb ≅ kGb as (kG, kG)-bimodules, we have [kGb] ∘ [kGb] = [kGb] in RT^Δ(G, G), so [kGb] is an idempotent endomorphism of G in Rpp^Δ_k.
- If b and b' are orthogonal central idempotents of kG

- Let G be a finite group and b be a central idempotent of kG. Then $[kGb] \in RT^{\Delta}(G, G)$ is an endomorphism of G in Rpp_k^{Δ} .
- Moreover, since kGb ⊗_{kG} kGb ≃ kGb as (kG, kG)-bimodules, we have [kGb] ∘ [kGb] = [kGb] in RT^Δ(G, G), so [kGb] is an idempotent endomorphism of G in Rpp^Δ_k.
- If b and b' are orthogonal central idempotents of kG, then $kGb \otimes_{kG} kGb' = \{0\}$

- Let G be a finite group and b be a central idempotent of kG. Then $[kGb] \in RT^{\Delta}(G, G)$ is an endomorphism of G in Rpp_k^{Δ} .
- Moreover, since kGb ⊗_{kG} kGb ≃ kGb as (kG, kG)-bimodules, we have [kGb] ∘ [kGb] = [kGb] in RT^Δ(G, G), so [kGb] is an idempotent endomorphism of G in Rpp^Δ_k.
- If b and b' are orthogonal central idempotents of kG, then kGb ⊗_{kG} kGb' = {0}, so [kGb] and [kGb'] of G are orthogonal idempotents.

- Let G be a finite group and b be a central idempotent of kG. Then $[kGb] \in RT^{\Delta}(G, G)$ is an endomorphism of G in Rpp_{k}^{Δ} .
- Moreover, since kGb ⊗_{kG} kGb ≃ kGb as (kG, kG)-bimodules, we have [kGb] ∘ [kGb] = [kGb] in RT^Δ(G, G), so [kGb] is an idempotent endomorphism of G in Rpp^Δ_k.
- If b and b' are orthogonal central idempotents of kG, then kGb ⊗_{kG} kGb' = {0}, so [kGb] and [kGb'] of G are orthogonal idempotents.
- If b_1, \ldots, b_n are the block idempotents of kG

- Let G be a finite group and b be a central idempotent of kG. Then $[kGb] \in RT^{\Delta}(G, G)$ is an endomorphism of G in Rpp_{k}^{Δ} .
- Moreover, since kGb ⊗_{kG} kGb ≃ kGb as (kG, kG)-bimodules, we have [kGb] ∘ [kGb] = [kGb] in RT^Δ(G, G), so [kGb] is an idempotent endomorphism of G in Rpp^Δ_k.
- If b and b' are orthogonal central idempotents of kG, then kGb ⊗_{kG} kGb' = {0}, so [kGb] and [kGb'] of G are orthogonal idempotents.
- If b₁,..., b_n are the block idempotents of kG, we get an orthogonal decomposition [kG] = [kGb₁] + ... + [kGb_n]

- Let G be a finite group and b be a central idempotent of kG. Then $[kGb] \in RT^{\Delta}(G, G)$ is an endomorphism of G in Rpp_{k}^{Δ} .
- Moreover, since kGb ⊗_{kG} kGb ≃ kGb as (kG, kG)-bimodules, we have [kGb] ∘ [kGb] = [kGb] in RT^Δ(G, G), so [kGb] is an idempotent endomorphism of G in Rpp^Δ_k.
- If b and b' are orthogonal central idempotents of kG, then kGb ⊗_{kG} kGb' = {0}, so [kGb] and [kGb'] of G are orthogonal idempotents.
- If b_1, \ldots, b_n are the block idempotents of kG, we get an orthogonal decomposition $[kG] = [kGb_1] + \ldots + [kGb_n]$ of the identity element of $RT^{\Delta}(G, G) = End_{Rpp_{k}^{\Delta}}(G, G)$.

- Let G be a finite group and b be a central idempotent of kG. Then $[kGb] \in RT^{\Delta}(G, G)$ is an endomorphism of G in Rpp_{k}^{Δ} .
- Moreover, since kGb ⊗_{kG} kGb ≃ kGb as (kG, kG)-bimodules, we have [kGb] ∘ [kGb] = [kGb] in RT^Δ(G, G), so [kGb] is an idempotent endomorphism of G in Rpp^Δ_k.
- If b and b' are orthogonal central idempotents of kG, then kGb ⊗_{kG} kGb' = {0}, so [kGb] and [kGb'] of G are orthogonal idempotents.
- If b_1, \ldots, b_n are the block idempotents of kG, we get an orthogonal decomposition $[kG] = [kGb_1] + \ldots + [kGb_n]$ of the identity element of $RT^{\Delta}(G, G) = End_{Rpp_{k}^{\Delta}}(G, G)$.

Blocks as functors

Serge Bouc (CNRS-LAMFA) Functorial equivalence of blocks and BAWC ECNU, Shanghai, January 21, 2024

∃ ► < ∃ ►</p>
• For a pair (G, b) of a finite group G and a central idempotent b of kG

Serge Bouc (CNRS-LAMFA) Functorial equivalence of blocks and BAWC ECNU, Shanghai, January 21, 2024

For a pair (G, b) of a finite group G and a central idempotent b of kG, we denote by RT[∆]_{G,b}

For a pair (G, b) of a finite group G and a central idempotent b of kG, we denote by RT[∆]_{G,b} (or RT[∆]_G if b = 1)

For a pair (G, b) of a finite group G and a central idempotent b of kG, we denote by RT[∆]_{G,b} (or RT[∆]_G if b = 1) the diagonal p-permutation functor H → RT[∆](H, G) ∘ [kGb]

For a pair (G, b) of a finite group G and a central idempotent b of kG, we denote by RT[∆]_{G,b} (or RT[∆]_G if b = 1) the diagonal p-permutation functor H → RT[∆](H, G) ∘ [kGb] =: RT[∆](H, G)b.

- For a pair (G, b) of a finite group G and a central idempotent b of kG, we denote by RT[∆]_{G,b} (or RT[∆]_G if b = 1) the diagonal p-permutation functor H → RT[∆](H, G) ∘ [kGb] =: RT[∆](H, G)b.
- The functor $RT_{G,b}^{\Delta}$ is a direct summand of the representable functor RT_{G}^{Δ}

- For a pair (G, b) of a finite group G and a central idempotent b of kG, we denote by RT[∆]_{G,b} (or RT[∆]_G if b = 1) the diagonal p-permutation functor H → RT[∆](H, G) ∘ [kGb] =: RT[∆](H, G)b.
- The functor RT^Δ_{G,b} is a direct summand of the representable functor RT^Δ_G, hence it is a projective object of F^Δ_{Rppk}.

- For a pair (G, b) of a finite group G and a central idempotent b of kG, we denote by RT[∆]_{G,b} (or RT[∆]_G if b = 1) the diagonal p-permutation functor H → RT[∆](H, G) ∘ [kGb] =: RT[∆](H, G)b.
- The functor $RT_{G,b}^{\Delta}$ is a direct summand of the representable functor RT_{G}^{Δ} , hence it is a projective object of $\mathcal{F}_{Rpp_{k}}^{\Delta}$. If b_{1}, \ldots, b_{n} are the block idempotents of kG

- For a pair (G, b) of a finite group G and a central idempotent b of kG, we denote by RT[∆]_{G,b} (or RT[∆]_G if b = 1) the diagonal p-permutation functor H → RT[∆](H, G) ∘ [kGb] =: RT[∆](H, G)b.
- The functor $RT_{G,b}^{\Delta}$ is a direct summand of the representable functor RT_{G}^{Δ} , hence it is a projective object of $\mathcal{F}_{Rpp_k}^{\Delta}$. If b_1, \ldots, b_n are the block idempotents of kG, then

$$RT^{\Delta}(-,G)\cong$$

- For a pair (G, b) of a finite group G and a central idempotent b of kG, we denote by RT[∆]_{G,b} (or RT[∆]_G if b = 1) the diagonal p-permutation functor H → RT[∆](H, G) ∘ [kGb] =: RT[∆](H, G)b.
- The functor $RT_{G,b}^{\Delta}$ is a direct summand of the representable functor RT_{G}^{Δ} , hence it is a projective object of $\mathcal{F}_{Rpp_k}^{\Delta}$. If b_1, \ldots, b_n are the block idempotents of kG, then

$$RT_G^{\Delta} \cong$$

- For a pair (G, b) of a finite group G and a central idempotent b of kG, we denote by RT[∆]_{G,b} (or RT[∆]_G if b = 1) the diagonal p-permutation functor H → RT[∆](H, G) ∘ [kGb] =: RT[∆](H, G)b.
- The functor $RT_{G,b}^{\Delta}$ is a direct summand of the representable functor RT_{G}^{Δ} , hence it is a projective object of $\mathcal{F}_{Rpp_{k}}^{\Delta}$. If b_{1}, \ldots, b_{n} are the block idempotents of kG, then

$$RT_G^{\Delta} \cong RT_{G,b_1}^{\Delta} \oplus \ldots \oplus RT_{G,b_n}^{\Delta}$$
 in $\mathcal{F}_{Rpp_k}^{\Delta}$.

- For a pair (G, b) of a finite group G and a central idempotent b of kG, we denote by RT[∆]_{G,b} (or RT[∆]_G if b = 1) the diagonal p-permutation functor H → RT[∆](H, G) ∘ [kGb] =: RT[∆](H, G)b.
- The functor $RT_{G,b}^{\Delta}$ is a direct summand of the representable functor RT_{G}^{Δ} , hence it is a projective object of $\mathcal{F}_{Rpp_{k}}^{\Delta}$. If b_{1}, \ldots, b_{n} are the block idempotents of kG, then

$$RT_G^{\Delta} \cong RT_{G,b_1}^{\Delta} \oplus \ldots \oplus RT_{G,b_n}^{\Delta}$$
 in $\mathcal{F}_{Rpp_k}^{\Delta}$.

Definition

- For a pair (G, b) of a finite group G and a central idempotent b of kG, we denote by RT[∆]_{G,b} (or RT[∆]_G if b = 1) the diagonal p-permutation functor H → RT[∆](H, G) ∘ [kGb] =: RT[∆](H, G)b.
- The functor $RT_{G,b}^{\Delta}$ is a direct summand of the representable functor RT_{G}^{Δ} , hence it is a projective object of $\mathcal{F}_{Rpp_{k}}^{\Delta}$. If b_{1}, \ldots, b_{n} are the block idempotents of kG, then

$$RT_G^{\Delta} \cong RT_{G,b_1}^{\Delta} \oplus \ldots \oplus RT_{G,b_n}^{\Delta}$$
 in $\mathcal{F}_{Rpp_k}^{\Delta}$.

Definition

Let G and H be finite groups, let b be a block idempotent of kG, and c be a block idempotent of kH.

- For a pair (G, b) of a finite group G and a central idempotent b of kG, we denote by RT[∆]_{G,b} (or RT[∆]_G if b = 1) the diagonal p-permutation functor H → RT[∆](H, G) ∘ [kGb] =: RT[∆](H, G)b.
- The functor $RT_{G,b}^{\Delta}$ is a direct summand of the representable functor RT_{G}^{Δ} , hence it is a projective object of $\mathcal{F}_{Rpp_k}^{\Delta}$. If b_1, \ldots, b_n are the block idempotents of kG, then

$$RT_G^{\Delta} \cong RT_{G,b_1}^{\Delta} \oplus \ldots \oplus RT_{G,b_n}^{\Delta}$$
 in $\mathcal{F}_{Rpp_k}^{\Delta}$.

Definition

Let G and H be finite groups, let b be a block idempotent of kG, and c be a block idempotent of kH. We say that (G, b) and (H, c) are functorially equivalent over R

- For a pair (G, b) of a finite group G and a central idempotent b of kG, we denote by RT[∆]_{G,b} (or RT[∆]_G if b = 1) the diagonal p-permutation functor H → RT[∆](H, G) ∘ [kGb] =: RT[∆](H, G)b.
- The functor $RT_{G,b}^{\Delta}$ is a direct summand of the representable functor RT_{G}^{Δ} , hence it is a projective object of $\mathcal{F}_{Rpp_k}^{\Delta}$. If b_1, \ldots, b_n are the block idempotents of kG, then

$$RT_G^{\Delta} \cong RT_{G,b_1}^{\Delta} \oplus \ldots \oplus RT_{G,b_n}^{\Delta}$$
 in $\mathcal{F}_{Rpp_k}^{\Delta}$.

Definition

Let G and H be finite groups, let b be a block idempotent of kG, and c be a block idempotent of kH. We say that (G, b) and (H, c) are functorially equivalent over R if the functors $RT^{\Delta}_{G,b}$ and $RT^{\Delta}_{H,c}$ are isomorphic in $\mathcal{F}^{\Delta}_{Rpp_k}$.

- For a pair (G, b) of a finite group G and a central idempotent b of kG, we denote by RT[∆]_{G,b} (or RT[∆]_G if b = 1) the diagonal p-permutation functor H → RT[∆](H, G) ∘ [kGb] =: RT[∆](H, G)b.
- The functor $RT_{G,b}^{\Delta}$ is a direct summand of the representable functor RT_{G}^{Δ} , hence it is a projective object of $\mathcal{F}_{Rpp_k}^{\Delta}$. If b_1, \ldots, b_n are the block idempotents of kG, then

$$RT_G^{\Delta} \cong RT_{G,b_1}^{\Delta} \oplus \ldots \oplus RT_{G,b_n}^{\Delta}$$
 in $\mathcal{F}_{Rpp_k}^{\Delta}$.

Definition

Let G and H be finite groups, let b be a block idempotent of kG, and c be a block idempotent of kH. We say that (G, b) and (H, c) are functorially equivalent over R if the functors $RT^{\Delta}_{G,b}$ and $RT^{\Delta}_{H,c}$ are isomorphic in $\mathcal{F}^{\Delta}_{Rpp_k}$.

This is equivalent to saying that there exists $\sigma \in cRT^{\Delta}(H, G)b$ and $\tau \in bRT^{\Delta}(G, H)c$ such that $\sigma \circ \tau = [kHc]$ and $\tau \circ \sigma = [kGb]$.

Serge Bouc (CNRS-LAMFA) Functorial equivalence of blocks and BAWC ECNU, Shanghai, January 21, 2024

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

э

Let \mathbb{F} be as before.

- ∢ ⊒ →

Let \mathbb{F} be as before. If (G, b) is a pair of a finite group G and a block idempotent b of kG

-∢ ∃ ▶

Let \mathbb{F} be as before. If (G, b) is a pair of a finite group G and a block idempotent b of kG, the functor $\mathbb{F}T_{G,b}^{\Delta}$ splits as a direct sum of simple functors $S_{L,u,V}$ in the category $\mathcal{F}_{\mathbb{F}pp_{V}}^{\Delta}$.

Let \mathbb{F} be as before. If (G, b) is a pair of a finite group G and a block idempotent b of kG, the functor $\mathbb{F}T_{G,b}^{\Delta}$ splits as a direct sum of simple functors $S_{L,u,V}$ in the category $\mathcal{F}_{\mathbb{F}pp_{V}}^{\Delta}$. How?

Let \mathbb{F} be as before. If (G, b) is a pair of a finite group G and a block idempotent b of kG, the functor $\mathbb{F}T_{G,b}^{\Delta}$ splits as a direct sum of simple functors $S_{L,u,V}$ in the category $\mathcal{F}_{\mathbb{F}pp_k}^{\Delta}$. How? We get three formulas for the multiplicity of $S_{L,u,V}$ as a summand of $\mathbb{F}T_{G,b}^{\Delta}$:

Let \mathbb{F} be as before. If (G, b) is a pair of a finite group G and a block idempotent b of kG, the functor $\mathbb{F}T^{\Delta}_{G,b}$ splits as a direct sum of simple functors $S_{L,u,V}$ in the category $\mathcal{F}^{\Delta}_{\mathbb{F}pp_k}$. How? We get three formulas for the multiplicity of $S_{L,u,V}$ as a summand of $\mathbb{F}T^{\Delta}_{G,b}$:

() One in terms of fixed points of some subgroups of Out(L, u) on V.

Let \mathbb{F} be as before. If (G, b) is a pair of a finite group G and a block idempotent b of kG, the functor $\mathbb{F}T^{\Delta}_{G,b}$ splits as a direct sum of simple functors $S_{L,u,V}$ in the category $\mathcal{F}^{\Delta}_{\mathbb{F}pp_k}$. How? We get three formulas for the multiplicity of $S_{L,u,V}$ as a summand of $\mathbb{F}T^{\Delta}_{G,b}$:

- **(**) One in terms of fixed points of some subgroups of Out(L, u) on V.
- **2** One in terms of "u-invariant" (G, b)-Brauer pairs (P, e).

Let \mathbb{F} be as before. If (G, b) is a pair of a finite group G and a block idempotent b of kG, the functor $\mathbb{F}T_{G,b}^{\Delta}$ splits as a direct sum of simple functors $S_{L,u,V}$ in the category $\mathcal{F}_{\mathbb{F}pp_k}^{\Delta}$. How? We get three formulas for the multiplicity of $S_{L,u,V}$ as a summand of $\mathbb{F}T_{G,b}^{\Delta}$:

- **(**) One in terms of fixed points of some subgroups of Out(L, u) on V.
- **2** One in terms of "*u*-invariant" (G, b)-Brauer pairs (P, e).
- Solution One in terms of the "u-invariant" local pointed groups P_{γ} on kGb.

Let \mathbb{F} be as before. If (G, b) is a pair of a finite group G and a block idempotent b of kG, the functor $\mathbb{F}T_{G,b}^{\Delta}$ splits as a direct sum of simple functors $S_{L,u,V}$ in the category $\mathcal{F}_{\mathbb{F}pp_k}^{\Delta}$. How? We get three formulas for the multiplicity of $S_{L,u,V}$ as a summand of $\mathbb{F}T_{G,b}^{\Delta}$:

- **(**) One in terms of fixed points of some subgroups of Out(L, u) on V.
- **2** One in terms of "*u*-invariant" (G, b)-Brauer pairs (P, e).
- Solution One in terms of the "u-invariant" local pointed groups P_{γ} on kGb.

Theorem

Let \mathbb{F} be as before. If (G, b) is a pair of a finite group G and a block idempotent b of kG, the functor $\mathbb{F}T_{G,b}^{\Delta}$ splits as a direct sum of simple functors $S_{L,u,V}$ in the category $\mathcal{F}_{\mathbb{F}pp_k}^{\Delta}$. How? We get three formulas for the multiplicity of $S_{L,u,V}$ as a summand of $\mathbb{F}T_{G,b}^{\Delta}$:

- **(**) One in terms of fixed points of some subgroups of Out(L, u) on V.
- **2** One in terms of "u-invariant" (G, b)-Brauer pairs (P, e).
- **③** One in terms of the "u-invariant" local pointed groups P_{γ} on kGb.

Theorem

Let b a block idempotent of kG with defect group D.

Let \mathbb{F} be as before. If (G, b) is a pair of a finite group G and a block idempotent b of kG, the functor $\mathbb{F}T_{G,b}^{\Delta}$ splits as a direct sum of simple functors $S_{L,u,V}$ in the category $\mathcal{F}_{\mathbb{F}pp_k}^{\Delta}$. How? We get three formulas for the multiplicity of $S_{L,u,V}$ as a summand of $\mathbb{F}T_{G,b}^{\Delta}$:

- **(**) One in terms of fixed points of some subgroups of Out(L, u) on V.
- **2** One in terms of "*u*-invariant" (G, b)-Brauer pairs (P, e).
- **③** One in terms of the "u-invariant" local pointed groups P_{γ} on kGb.

Theorem

Let \mathbb{F} be as before. If (G, b) is a pair of a finite group G and a block idempotent b of kG, the functor $\mathbb{F}T_{G,b}^{\Delta}$ splits as a direct sum of simple functors $S_{L,u,V}$ in the category $\mathcal{F}_{\mathbb{F}pp_k}^{\Delta}$. How? We get three formulas for the multiplicity of $S_{L,u,V}$ as a summand of $\mathbb{F}T_{G,b}^{\Delta}$:

- **(**) One in terms of fixed points of some subgroups of Out(L, u) on V.
- **2** One in terms of "u-invariant" (G, b)-Brauer pairs (P, e).
- **③** One in terms of the "u-invariant" local pointed groups P_{γ} on kGb.

Theorem

Let b a block idempotent of kG with defect group D. The following are equivalent:

The block b is nilpotent.

Let \mathbb{F} be as before. If (G, b) is a pair of a finite group G and a block idempotent b of kG, the functor $\mathbb{F}T_{G,b}^{\Delta}$ splits as a direct sum of simple functors $S_{L,u,V}$ in the category $\mathcal{F}_{\mathbb{F}pp_k}^{\Delta}$. How? We get three formulas for the multiplicity of $S_{L,u,V}$ as a summand of $\mathbb{F}T_{G,b}^{\Delta}$:

- **(**) One in terms of fixed points of some subgroups of Out(L, u) on V.
- **2** One in terms of "*u*-invariant" (G, b)-Brauer pairs (P, e).
- Solution One in terms of the "u-invariant" local pointed groups P_{γ} on kGb.

Theorem

Let b a block idempotent of kG with defect group D. The following are equivalent:

• The block b is nilpotent. [Broué-Puig 1980]

Let \mathbb{F} be as before. If (G, b) is a pair of a finite group G and a block idempotent b of kG, the functor $\mathbb{F}T_{G,b}^{\Delta}$ splits as a direct sum of simple functors $S_{L,u,V}$ in the category $\mathcal{F}_{\mathbb{F}pp_k}^{\Delta}$. How? We get three formulas for the multiplicity of $S_{L,u,V}$ as a summand of $\mathbb{F}T_{G,b}^{\Delta}$:

- **(**) One in terms of fixed points of some subgroups of Out(L, u) on V.
- **2** One in terms of "u-invariant" (G, b)-Brauer pairs (P, e).
- **③** One in terms of the "u-invariant" local pointed groups P_{γ} on kGb.

Theorem

Let b a block idempotent of kG with defect group D. The following are equivalent:

The block b is nilpotent.

2 If $S_{L,u,V}$ is a simple summand of $\mathbb{F}T_{G,b}^{\Delta}$

Let \mathbb{F} be as before. If (G, b) is a pair of a finite group G and a block idempotent b of kG, the functor $\mathbb{F}T_{G,b}^{\Delta}$ splits as a direct sum of simple functors $S_{L,u,V}$ in the category $\mathcal{F}_{\mathbb{F}pp_k}^{\Delta}$. How? We get three formulas for the multiplicity of $S_{L,u,V}$ as a summand of $\mathbb{F}T_{G,b}^{\Delta}$:

- **(**) One in terms of fixed points of some subgroups of Out(L, u) on V.
- **2** One in terms of "*u*-invariant" (G, b)-Brauer pairs (P, e).
- **③** One in terms of the "u-invariant" local pointed groups P_{γ} on kGb.

Theorem

Let b a block idempotent of kG with defect group D. The following are equivalent:

The block b is nilpotent.

2 If $S_{L,u,V}$ is a simple summand of $\mathbb{F}T_{G,b}^{\Delta}$, then u = 1.

Let \mathbb{F} be as before. If (G, b) is a pair of a finite group G and a block idempotent b of kG, the functor $\mathbb{F}T_{G,b}^{\Delta}$ splits as a direct sum of simple functors $S_{L,u,V}$ in the category $\mathcal{F}_{\mathbb{F}pp_k}^{\Delta}$. How? We get three formulas for the multiplicity of $S_{L,u,V}$ as a summand of $\mathbb{F}T_{G,b}^{\Delta}$:

- **(**) One in terms of fixed points of some subgroups of Out(L, u) on V.
- **2** One in terms of "*u*-invariant" (G, b)-Brauer pairs (P, e).
- **③** One in terms of the "u-invariant" local pointed groups P_{γ} on kGb.

Theorem

- The block b is nilpotent.
- **2** If $S_{L,u,V}$ is a simple summand of $\mathbb{F}T_{G,b}^{\Delta}$, then u = 1.
- If $S_{L,u,\mathbb{F}}$ is a simple summand of $\mathbb{F}T_{G,b}^{\Delta}$

Let \mathbb{F} be as before. If (G, b) is a pair of a finite group G and a block idempotent b of kG, the functor $\mathbb{F}T_{G,b}^{\Delta}$ splits as a direct sum of simple functors $S_{L,u,V}$ in the category $\mathcal{F}_{\mathbb{F}pp_k}^{\Delta}$. How? We get three formulas for the multiplicity of $S_{L,u,V}$ as a summand of $\mathbb{F}T_{G,b}^{\Delta}$:

- **(**) One in terms of fixed points of some subgroups of Out(L, u) on V.
- **2** One in terms of "*u*-invariant" (G, b)-Brauer pairs (P, e).
- **③** One in terms of the "u-invariant" local pointed groups P_{γ} on kGb.

Theorem

- The block b is nilpotent.
- **2** If $S_{L,u,V}$ is a simple summand of $\mathbb{F}T_{G,b}^{\Delta}$, then u = 1.
- **3** If $S_{L,u,\mathbb{F}}$ is a simple summand of $\mathbb{F}T_{G,b}^{\Delta}$, then u = 1.

Let \mathbb{F} be as before. If (G, b) is a pair of a finite group G and a block idempotent b of kG, the functor $\mathbb{F}T_{G,b}^{\Delta}$ splits as a direct sum of simple functors $S_{L,u,V}$ in the category $\mathcal{F}_{\mathbb{F}pp_k}^{\Delta}$. How? We get three formulas for the multiplicity of $S_{L,u,V}$ as a summand of $\mathbb{F}T_{G,b}^{\Delta}$:

- **(**) One in terms of fixed points of some subgroups of Out(L, u) on V.
- **2** One in terms of "*u*-invariant" (G, b)-Brauer pairs (P, e).
- **③** One in terms of the "u-invariant" local pointed groups P_{γ} on kGb.

Theorem

- The block b is nilpotent.
- **2** If $S_{L,u,V}$ is a simple summand of $\mathbb{F}T_{G,b}^{\Delta}$, then u = 1.
- **3** If $S_{L,u,\mathbb{F}}$ is a simple summand of $\mathbb{F}T_{G,b}^{\Delta}$, then u = 1.
- The functor $\mathbb{F}T_{G,b}^{\Delta}$ is isomorphic to $\mathbb{F}T_{D}^{\Delta}$.

Let \mathbb{F} be as before. If (G, b) is a pair of a finite group G and a block idempotent b of kG, the functor $\mathbb{F}T_{G,b}^{\Delta}$ splits as a direct sum of simple functors $S_{L,u,V}$ in the category $\mathcal{F}_{\mathbb{F}pp_k}^{\Delta}$. How? We get three formulas for the multiplicity of $S_{L,u,V}$ as a summand of $\mathbb{F}T_{G,b}^{\Delta}$:

- **(**) One in terms of fixed points of some subgroups of Out(L, u) on V.
- **2** One in terms of "*u*-invariant" (G, b)-Brauer pairs (P, e).
- Solution One in terms of the "u-invariant" local pointed groups P_{γ} on kGb.

Theorem

- The block b is nilpotent.
- **2** If $S_{L,u,V}$ is a simple summand of $\mathbb{F}T_{G,b}^{\Delta}$, then u = 1.
- **3** If $S_{L,u,\mathbb{F}}$ is a simple summand of $\mathbb{F}T_{G,b}^{\Delta}$, then u = 1.
- **(**G, b) is functorially equivalent to (D, 1) over \mathbb{F} .
Serge Bouc (CNRS-LAMFA) Functorial equivalence of blocks and BAWC ECNU, Shanghai, January 21, 2024

(B)

< 行

æ

• Functorial equivalence over \mathbb{Z} implies functorial equivalence over any R.

- Functorial equivalence over \mathbb{Z} implies functorial equivalence over any R.
- There are other types of equivalences of blocks.

- Functorial equivalence over \mathbb{Z} implies functorial equivalence over any R.
- There are other types of equivalences of blocks. Functorial equivalence (over \mathbb{Z}) is the weakest in the chain

- Functorial equivalence over \mathbb{Z} implies functorial equivalence over any R.
- \bullet There are other types of equivalences of blocks. Functorial equivalence (over $\mathbb{Z})$ is the weakest in the chain

Splendid Rickard equivalence

- Functorial equivalence over \mathbb{Z} implies functorial equivalence over any R.
- There are other types of equivalences of blocks. Functorial equivalence (over \mathbb{Z}) is the weakest in the chain

Splendid Rickard equivalence [Rickard 1996]

- Functorial equivalence over \mathbb{Z} implies functorial equivalence over any R.
- There are other types of equivalences of blocks. Functorial equivalence (over \mathbb{Z}) is the weakest in the chain

Splendid Rickard equivalence \Downarrow

- Functorial equivalence over \mathbb{Z} implies functorial equivalence over any R.
- There are other types of equivalences of blocks. Functorial equivalence (over \mathbb{Z}) is the weakest in the chain

Splendid Rickard equivalence ↓ p-permutation equivalence

- Functorial equivalence over \mathbb{Z} implies functorial equivalence over any R.
- There are other types of equivalences of blocks. Functorial equivalence (over Z) is the weakest in the chain

Splendid Rickard equivalence ↓ p-permutation equivalence [Boltje-Xu 2008]

- Functorial equivalence over \mathbb{Z} implies functorial equivalence over any R.
- There are other types of equivalences of blocks. Functorial equivalence (over \mathbb{Z}) is the weakest in the chain

Splendid Rickard equivalence $\[mu]{}$ p-permutation equivalence $\[mu]{}$

- Functorial equivalence over \mathbb{Z} implies functorial equivalence over any R.
- There are other types of equivalences of blocks. Functorial equivalence (over Z) is the weakest in the chain

Splendid Rickard equivalence $\downarrow \downarrow$ *p*-permutation equivalence $\downarrow \downarrow$ Functorial equivalence over \mathbb{Z}

- Functorial equivalence over \mathbb{Z} implies functorial equivalence over any R.
- There are other types of equivalences of blocks. Functorial equivalence (over Z) is the weakest in the chain

Splendid Rickard equivalence $\downarrow \downarrow$ *p*-permutation equivalence $\downarrow \downarrow$ Functorial equivalence over \mathbb{Z}

Proposition

Serge Bouc (CNRS-LAMFA) Functorial equivalence of blocks and BAWC ECNU, Shanghai, January 21, 2024

- Functorial equivalence over \mathbb{Z} implies functorial equivalence over any R.
- There are other types of equivalences of blocks. Functorial equivalence (over Z) is the weakest in the chain

Splendid Rickard equivalence $\downarrow \downarrow$ *p*-permutation equivalence $\downarrow \downarrow$ Functorial equivalence over \mathbb{Z}

Proposition

Let (G, b) and (H, c) be functorially equivalent over \mathbb{F} .

- Functorial equivalence over \mathbb{Z} implies functorial equivalence over any R.
- There are other types of equivalences of blocks. Functorial equivalence (over Z) is the weakest in the chain

Splendid Rickard equivalence $\downarrow \downarrow$ *p*-permutation equivalence $\downarrow \downarrow$ Functorial equivalence over \mathbb{Z}

Proposition

Let (G, b) and (H, c) be functorially equivalent over \mathbb{F} . Then: • b and c have isomorphic defect groups.

- Functorial equivalence over \mathbb{Z} implies functorial equivalence over any R.
- There are other types of equivalences of blocks. Functorial equivalence (over Z) is the weakest in the chain

Splendid Rickard equivalence $\downarrow \downarrow$ *p*-permutation equivalence $\downarrow \downarrow$ Functorial equivalence over \mathbb{Z}

Proposition

Let (G, b) and (H, c) be functorially equivalent over \mathbb{F} . Then:

- **1** *b* and *c* have isomorphic defect groups.
- Solution (2) In the same number of simple modules (up to isomorphism)

- Functorial equivalence over \mathbb{Z} implies functorial equivalence over any R.
- There are other types of equivalences of blocks. Functorial equivalence (over Z) is the weakest in the chain

Splendid Rickard equivalence $\downarrow \downarrow$ *p*-permutation equivalence $\downarrow \downarrow$ Functorial equivalence over \mathbb{Z}

Proposition

Let (G, b) and (H, c) be functorially equivalent over \mathbb{F} . Then:

- **1** *b* and *c* have isomorphic defect groups.
- If and kHc have the same number of simple modules (up to isomorphism), and the same number of irreducible ordinary characters.

A finiteness theorem

Serge Bouc (CNRS-LAMFA) Functorial equivalence of blocks and BAWC ECNU, Shanghai, January 21, 2024

э.

Conjecture (Donovan [\leq 1980])

-

Conjecture (Donovan)

Let D be a finite p-group.

Conjecture (Donovan)

Let D be a finite p-group. Then there is only a finite number of equivalence classes of module categories of block algebras over k with defect groups isomorphic to D.

Conjecture (Donovan)

Let D be a finite p-group. Then there is only a finite number of equivalence classes of module categories of block algebras over k with defect groups isomorphic to D.

Theorem

Serge Bouc (CNRS-LAMFA) Functorial equivalence of blocks and BAWC ECNU, Shanghai, January 21, 2024

Conjecture (Donovan)

Let D be a finite p-group. Then there is only a finite number of equivalence classes of module categories of block algebras over k with defect groups isomorphic to D.

Theorem

Let D be a finite p-group.

Conjecture (Donovan)

Let D be a finite p-group. Then there is only a finite number of equivalence classes of module categories of block algebras over k with defect groups isomorphic to D.

Theorem

Let D be a finite p-group. Then there is only a finite number of pairs (G, b)

Conjecture (Donovan)

Let D be a finite p-group. Then there is only a finite number of equivalence classes of module categories of block algebras over k with defect groups isomorphic to D.

Theorem

Let D be a finite p-group. Then there is only a finite number of pairs (G, b), where G is a finite group and a b is block idempotent of kG with defect groups isomorphic to D

Conjecture (Donovan)

Let D be a finite p-group. Then there is only a finite number of equivalence classes of module categories of block algebras over k with defect groups isomorphic to D.

Theorem

Let D be a finite p-group. Then there is only a finite number of pairs (G, b), where G is a finite group and a b is block idempotent of kG with defect groups isomorphic to D, up to functorial equivalence over \mathbb{F} .

Serge Bouc (CNRS-LAMFA) Functorial equivalence of blocks and BAWC ECNU, Shanghai, January 21, 2024

• For a finite group G

• For a finite group G and a central idempotent b of kG

Serge Bouc (CNRS-LAMFA) Functorial equivalence of blocks and BAWC ECNU, Shanghai, January 21, 2024

• For a finite group G and a central idempotent b of kG, let $\ell(G, b)$ denote the number of simple kGb-modules (up to isomorphism)

• For a finite group G and a central idempotent b of kG, let $\ell(G, b)$ denote the number of simple kGb-modules (up to isomorphism), and $f_0(G, b)$ denote the number of projective simple kGb-modules.

- For a finite group G and a central idempotent b of kG, let $\ell(G, b)$ denote the number of simple kGb-modules (up to isomorphism), and $f_0(G, b)$ denote the number of projective simple kGb-modules.
- Blockwise Alperin's weight conjecture

- For a finite group G and a central idempotent b of kG, let $\ell(G, b)$ denote the number of simple kGb-modules (up to isomorphism), and $f_0(G, b)$ denote the number of projective simple kGb-modules.
- Blockwise Alperin's weight conjecture [Alperin 1987]

- For a finite group G and a central idempotent b of kG, let $\ell(G, b)$ denote the number of simple kGb-modules (up to isomorphism), and $f_0(G, b)$ denote the number of projective simple kGb-modules.
- Blockwise Alperin's weight conjecture is the following:

- For a finite group G and a central idempotent b of kG, let $\ell(G, b)$ denote the number of simple kGb-modules (up to isomorphism), and $f_0(G, b)$ denote the number of projective simple kGb-modules.
- Blockwise Alperin's weight conjecture is the following: (BAWC) If b is a block idempotent of kG, then

- For a finite group G and a central idempotent b of kG, let $\ell(G, b)$ denote the number of simple kGb-modules (up to isomorphism), and $f_0(G, b)$ denote the number of projective simple kGb-modules.
- Blockwise Alperin's weight conjecture is the following: (BAWC) If *b* is a block idempotent of *kG*, then

$$\ell(G, b) = \sum_{Q \in [s_p(G)]} f_0(N_G(Q)/Q, Br_Q(b)),$$

- For a finite group G and a central idempotent b of kG, let $\ell(G, b)$ denote the number of simple kGb-modules (up to isomorphism), and $f_0(G, b)$ denote the number of projective simple kGb-modules.
- Blockwise Alperin's weight conjecture is the following: (BAWC) If *b* is a block idempotent of *kG*, then

$$\ell(G,b) = \sum_{Q \in [s_p(G)]} f_0(N_G(Q)/Q, Br_Q(b)),$$

where $[s_p(G)]$ is a set of representatives of conjugacy classes of *p*-subgroups of *G*
- For a finite group G and a central idempotent b of kG, let $\ell(G, b)$ denote the number of simple kGb-modules (up to isomorphism), and $f_0(G, b)$ denote the number of projective simple kGb-modules.
- Blockwise Alperin's weight conjecture is the following: (BAWC) If *b* is a block idempotent of *kG*, then

$$\ell(G,b) = \sum_{Q \in [s_p(G)]} f_0(N_G(Q)/Q, Br_Q(b)),$$

where $[s_p(G)]$ is a set of representatives of conjugacy classes of *p*-subgroups of *G*, and is Br_Q the Brauer morphism at *Q*.

- For a finite group G and a central idempotent b of kG, let $\ell(G, b)$ denote the number of simple kGb-modules (up to isomorphism), and $f_0(G, b)$ denote the number of projective simple kGb-modules.
- Blockwise Alperin's weight conjecture is the following: (BAWC) If *b* is a block idempotent of *kG*, then

$$\ell(G,b) = \sum_{Q \in [s_p(G)]} f_0(N_G(Q)/Q, Br_Q(b)),$$

where $[s_p(G)]$ is a set of representatives of conjugacy classes of *p*-subgroups of *G*, and is Br_Q the Brauer morphism at *Q*.

• It has been reformulated by Knörr and Robinson [1989]

- For a finite group G and a central idempotent b of kG, let $\ell(G, b)$ denote the number of simple kGb-modules (up to isomorphism), and $f_0(G, b)$ denote the number of projective simple kGb-modules.
- Blockwise Alperin's weight conjecture is the following: (BAWC) If *b* is a block idempotent of *kG*, then

$$\ell(G,b) = \sum_{Q \in [s_p(G)]} f_0(N_G(Q)/Q, Br_Q(b)),$$

where $[s_p(G)]$ is a set of representatives of conjugacy classes of *p*-subgroups of *G*, and is Br_Q the Brauer morphism at *Q*.

• It has been reformulated by Knörr and Robinson as:

- For a finite group G and a central idempotent b of kG, let $\ell(G, b)$ denote the number of simple kGb-modules (up to isomorphism), and $f_0(G, b)$ denote the number of projective simple kGb-modules.
- Blockwise Alperin's weight conjecture is the following: (BAWC) If *b* is a block idempotent of *kG*, then

$$\ell(G,b) = \sum_{Q \in [s_p(G)]} f_0(N_G(Q)/Q, Br_Q(b)),$$

where $[s_p(G)]$ is a set of representatives of conjugacy classes of *p*-subgroups of *G*, and is Br_Q the Brauer morphism at *Q*.

• It has been reformulated by Knörr and Robinson as: If *b* is a block idempotent of *kG*

- For a finite group G and a central idempotent b of kG, let $\ell(G, b)$ denote the number of simple kGb-modules (up to isomorphism), and $f_0(G, b)$ denote the number of projective simple kGb-modules.
- Blockwise Alperin's weight conjecture is the following: (BAWC) If *b* is a block idempotent of *kG*, then

$$\ell(G,b) = \sum_{Q \in [s_p(G)]} f_0(N_G(Q)/Q, Br_Q(b)),$$

where $[s_p(G)]$ is a set of representatives of conjugacy classes of *p*-subgroups of *G*, and is Br_Q the Brauer morphism at *Q*.

It has been reformulated by Knörr and Robinson as:
 If b is a block idempotent of kG then,

$$\sum_{\sigma\in [\Sigma_
ho(G)]} (-1)^{|\sigma|} \ell(\mathit{G}_\sigma, b_\sigma) =$$

- For a finite group G and a central idempotent b of kG, let $\ell(G, b)$ denote the number of simple kGb-modules (up to isomorphism), and $f_0(G, b)$ denote the number of projective simple kGb-modules.
- Blockwise Alperin's weight conjecture is the following: (BAWC) If *b* is a block idempotent of *kG*, then

$$\ell(G,b) = \sum_{Q \in [s_p(G)]} f_0(N_G(Q)/Q, Br_Q(b)),$$

where $[s_p(G)]$ is a set of representatives of conjugacy classes of *p*-subgroups of *G*, and is Br_Q the Brauer morphism at *Q*.

It has been reformulated by Knörr and Robinson as:
 If b is a block idempotent of kG then,

$$\sum_{\sigma\in[\Sigma_{\rho}(G)]} (-1)^{|\sigma|} \ell(G_{\sigma}, b_{\sigma}) = \begin{cases} 0 \text{ if } D(b) \neq \{1\}\\ 1 \text{ if } D(b) = \{1\}, \end{cases}$$

- For a finite group G and a central idempotent b of kG, let $\ell(G, b)$ denote the number of simple kGb-modules (up to isomorphism), and $f_0(G, b)$ denote the number of projective simple kGb-modules.
- Blockwise Alperin's weight conjecture is the following: (BAWC) If *b* is a block idempotent of *kG*, then

$$\ell(G,b) = \sum_{Q \in [s_p(G)]} f_0(N_G(Q)/Q, Br_Q(b)),$$

where $[s_p(G)]$ is a set of representatives of conjugacy classes of *p*-subgroups of *G*, and is Br_Q the Brauer morphism at *Q*.

It has been reformulated by Knörr and Robinson as:
 If b is a block idempotent of kG then, (a) if D(b) (12)

$$\sum_{\sigma \in [\Sigma_{\rho}(G)]} (-1)^{|\sigma|} \ell(G_{\sigma}, b_{\sigma}) = \begin{cases} 0 \text{ if } D(b) \neq \{1\} \\ 1 \text{ if } D(b) = \{1\}, \end{cases}$$

where $[\Sigma_p(G)]$ is a set of representatives of conjugacy classes of chains $\sigma = (\{1\} = P_0 < P_1 < \ldots < P_n)$ of *p*-subgroups of *G* of dimension $|\sigma| = n$

- For a finite group G and a central idempotent b of kG, let $\ell(G, b)$ denote the number of simple kGb-modules (up to isomorphism), and $f_0(G, b)$ denote the number of projective simple kGb-modules.
- Blockwise Alperin's weight conjecture is the following: (BAWC) If *b* is a block idempotent of *kG*, then

$$\ell(G,b) = \sum_{Q \in [s_p(G)]} f_0(N_G(Q)/Q, Br_Q(b)),$$

where $[s_p(G)]$ is a set of representatives of conjugacy classes of *p*-subgroups of *G*, and is Br_Q the Brauer morphism at *Q*.

It has been reformulated by Knörr and Robinson as:
 If b is a block idempotent of kG then, (a) if D(b) (12)

$$\sum_{\sigma \in [\Sigma_{\rho}(G)]} (-1)^{|\sigma|} \ell(G_{\sigma}, b_{\sigma}) = \begin{cases} 0 \text{ if } D(b) \neq \{1\} \\ 1 \text{ if } D(b) = \{1\}, \end{cases}$$

where $[\Sigma_p(G)]$ is a set of representatives of conjugacy classes of chains $\sigma = (\{1\} = P_0 < P_1 < \ldots < P_n)$ of *p*-subgroups of *G* of dimension $|\sigma| = n$, $G_{\sigma} = N_G(\sigma)$

- For a finite group G and a central idempotent b of kG, let $\ell(G, b)$ denote the number of simple kGb-modules (up to isomorphism), and $f_0(G, b)$ denote the number of projective simple kGb-modules.
- Blockwise Alperin's weight conjecture is the following: (BAWC) If *b* is a block idempotent of *kG*, then

$$\ell(G,b) = \sum_{Q \in [s_p(G)]} f_0(N_G(Q)/Q, Br_Q(b)),$$

where $[s_p(G)]$ is a set of representatives of conjugacy classes of *p*-subgroups of *G*, and is Br_Q the Brauer morphism at *Q*.

It has been reformulated by Knörr and Robinson as:
 If b is a block idempotent of kG then, (a) if D(b) (12)

$$\sum_{\sigma\in[\Sigma_{\rho}(G)]} (-1)^{|\sigma|} \ell(G_{\sigma}, b_{\sigma}) = \begin{cases} 0 \text{ if } D(b) \neq \{1\} \\ 1 \text{ if } D(b) = \{1\}, \end{cases}$$

where $[\Sigma_p(G)]$ is a set of representatives of conjugacy classes of chains $\sigma = (\{1\} = P_0 < P_1 < \ldots < P_n)$ of *p*-subgroups of *G* of dimension $|\sigma| = n$, $G_{\sigma} = N_G(\sigma)$, and $b_{\sigma} = Br_{P_n}(b)$.

Serge Bouc (CNRS-LAMFA) Functorial equivalence of blocks and BAWC ECNU, Shanghai, January 21, 2024

- ∢ ⊒ →

• Blockwise Alperin's weight conjecture is equivalent to $\sum_{\sigma \in [\Sigma_{\rho}(G)]} (-1)^{|\sigma|} \ell(G_{\sigma}, b_{\sigma}) = \begin{cases} 0 \text{ if } D(b) \neq \{1\} \\ 1 \text{ if } D(b) = \{1\}. \end{cases}$

- Blockwise Alperin's weight conjecture is equivalent to $\sum_{\sigma \in [\Sigma_{\rho}(G)]} (-1)^{|\sigma|} \ell(G_{\sigma}, b_{\sigma}) = \begin{cases} 0 \text{ if } D(b) \neq \{1\} \\ 1 \text{ if } D(b) = \{1\}. \end{cases}$
- We now observe that

• Blockwise Alperin's weight conjecture is equivalent to $\sum_{\sigma \in [\Sigma_{\rho}(G)]} (-1)^{|\sigma|} \ell(G_{\sigma}, b_{\sigma}) = \begin{cases} 0 \text{ if } D(b) \neq \{1\}\\ 1 \text{ if } D(b) = \{1\}. \end{cases}$

• We now observe that $\ell(G, b) = mult(S_{1,1,\mathbb{F}}, \mathbb{F}T^{\Delta}_{G,b})$

- Blockwise Alperin's weight conjecture is equivalent to $\sum_{\sigma \in [\Sigma_{\rho}(G)]} (-1)^{|\sigma|} \ell(G_{\sigma}, b_{\sigma}) = \begin{cases} 0 \text{ if } D(b) \neq \{1\}\\ 1 \text{ if } D(b) = \{1\}. \end{cases}$
- We now observe that ℓ(G, b) = mult(S_{1,1,F}, FT^Δ_{G,b}), the multiplicity of S_{1,1,F} as a composition factor of FT^Δ_{G,b}.

- Blockwise Alperin's weight conjecture is equivalent to $\sum_{\sigma \in [\Sigma_{\sigma}(G)]} (-1)^{|\sigma|} \ell(G_{\sigma}, b_{\sigma}) = \begin{cases} 0 \text{ if } D(b) \neq \{1\}\\ 1 \text{ if } D(b) = \{1\}. \end{cases}$
- We now observe that ℓ(G, b) = mult(S_{1,1,F}, FT^Δ_{G,b}), the multiplicity of S_{1,1,F} as a composition factor of FT^Δ_{G,b}.
- It is then tempting to consider the sum

• Blockwise Alperin's weight conjecture is equivalent to $\sum_{a} (a) = \int_{a} (b) d(b) = \{1\}$

$$\sum_{\sigma\in[\Sigma_p(G)]} (-1)^{|\sigma|} \ell(G_{\sigma}, b_{\sigma}) = \begin{cases} 0 \text{ if } D(b) \neq \{1\} \\ 1 \text{ if } D(b) = \{1\}. \end{cases}$$

- We now observe that ℓ(G, b) = mult(S_{1,1,F}, FT^Δ_{G,b}), the multiplicity of S_{1,1,F} as a composition factor of FT^Δ_{G,b}.
- It is then tempting to consider the sum $\sum_{\sigma \in [\Sigma_p(G)]} (-1)^{|\sigma|} \mathbb{F} T^{\Delta}_{G_{\sigma}, b_{\sigma}}$

• Blockwise Alperin's weight conjecture is equivalent to

$$\sum_{\sigma\in[\Sigma_
ho(G)]}(-1)^{|\sigma|}\ell(G_\sigma,b_\sigma)=\left\{egin{array}{c} 0 ext{ if } D(b)
eq\{1\}\ 1 ext{ if } D(b)=\{1\}. \end{array}
ight.$$

- We now observe that ℓ(G, b) = mult(S_{1,1,F}, FT^Δ_{G,b}), the multiplicity of S_{1,1,F} as a composition factor of FT^Δ_{G,b}.
- It is then tempting to consider the sum $\sum_{\sigma \in [\Sigma_{\rho}(G)]} (-1)^{|\sigma|} \mathbb{F}T^{\Delta}_{G_{\sigma},b_{\sigma}}$ in the

Grothendieck group $K_0(\mathcal{F}^{\Delta}_{\mathbb{F}\rho\rho_k})$

• Blockwise Alperin's weight conjecture is equivalent to

$$\sum_{\sigma\in[\Sigma_{
ho}(G)]}(-1)^{|\sigma|}\ell(G_{\sigma},b_{\sigma})=\left\{egin{array}{c} 0 ext{ if } D(b)
eq\{1\}\ 1 ext{ if } D(b)=\{1\}. \end{array}
ight.$$

- We now observe that ℓ(G, b) = mult(S_{1,1,F}, FT^Δ_{G,b}), the multiplicity of S_{1,1,F} as a composition factor of FT^Δ_{G,b}.
- It is then tempting to consider the sum $\sum_{\sigma \in [\Sigma_{\rho}(G)]} (-1)^{|\sigma|} \mathbb{F}T^{\Delta}_{G_{\sigma},b_{\sigma}}$ in the

Grothendieck group $\mathcal{K}_0(\mathcal{F}^{\Delta}_{\mathbb{F}pp_k})$, and to formulate the

• Blockwise Alperin's weight conjecture is equivalent to

$$\sum_{\sigma\in[\Sigma_{\rho}(G)]}(-1)^{|\sigma|}\ell(G_{\sigma},b_{\sigma}) = \begin{cases} 0 \text{ if } D(b) \neq \{1\}\\ 1 \text{ if } D(b) = \{1\}. \end{cases}$$

- We now observe that ℓ(G, b) = mult(S_{1,1,F}, FT^Δ_{G,b}), the multiplicity of S_{1,1,F} as a composition factor of FT^Δ_{G,b}.
- It is then tempting to consider the sum $\sum_{\sigma \in [\Sigma_{\rho}(G)]} (-1)^{|\sigma|} \mathbb{F}T^{\Delta}_{G_{\sigma},b_{\sigma}}$ in the

Grothendieck group $\mathcal{K}_0(\mathcal{F}^{\Delta}_{\mathbb{F}pp_k})$, and to formulate the

Conjecture (FBAWC)

• Blockwise Alperin's weight conjecture is equivalent to

$$\sum_{\sigma\in[\Sigma_p(G)]} (-1)^{|\sigma|} \ell(G_{\sigma}, b_{\sigma}) = \begin{cases} 0 \text{ if } D(b) \neq \{1\}\\ 1 \text{ if } D(b) = \{1\}. \end{cases}$$

- We now observe that ℓ(G, b) = mult(S_{1,1,F}, FT^Δ_{G,b}), the multiplicity of S_{1,1,F} as a composition factor of FT^Δ_{G,b}.
- It is then tempting to consider the sum $\sum_{\sigma \in [\Sigma_{\rho}(G)]} (-1)^{|\sigma|} \mathbb{F}T^{\Delta}_{G_{\sigma},b_{\sigma}}$ in the

Grothendieck group $\mathcal{K}_0(\mathcal{F}^{\Delta}_{\mathbb{F}pp_k})$, and to formulate the

Conjecture (FBAWC)

Let G be a finite group and b be a block of kG. Then in $K_0(\mathcal{F}_{\mathbb{F}pp_k}^{\Delta})$

• Blockwise Alperin's weight conjecture is equivalent to

$$\sum_{\sigma\in[\Sigma_p(G)]} (-1)^{|\sigma|} \ell(G_{\sigma}, b_{\sigma}) = \begin{cases} 0 \text{ if } D(b) \neq \{1\}\\ 1 \text{ if } D(b) = \{1\}. \end{cases}$$

- We now observe that ℓ(G, b) = mult(S_{1,1,F}, FT^Δ_{G,b}), the multiplicity of S_{1,1,F} as a composition factor of FT^Δ_{G,b}.
- It is then tempting to consider the sum $\sum_{\sigma \in [\Sigma_{\rho}(G)]} (-1)^{|\sigma|} \mathbb{F}T^{\Delta}_{G_{\sigma},b_{\sigma}}$ in the

Grothendieck group $\mathcal{K}_0(\mathcal{F}^{\Delta}_{\mathbb{F}pp_k})$, and to formulate the

Conjecture (FBAWC)

Let G be a finite group and b be a block of kG. Then in $K_0(\mathcal{F}_{\mathbb{F}pp_k}^{\Delta})$

$$\sum_{\sigma\in [\Sigma_p(G)]} (-1)^{|\sigma|} \mathbb{F} T^{\Delta}_{G_{\sigma}, b_{\sigma}} =$$

• Blockwise Alperin's weight conjecture is equivalent to

$$\sum_{\sigma\in[\Sigma_{\rho}(G)]} (-1)^{|\sigma|} \ell(G_{\sigma}, b_{\sigma}) = \begin{cases} 0 \text{ if } D(b) \neq \{1\} \\ 1 \text{ if } D(b) = \{1\}. \end{cases}$$

- We now observe that ℓ(G, b) = mult(S_{1,1,F}, FT^Δ_{G,b}), the multiplicity of S_{1,1,F} as a composition factor of FT^Δ_{G,b}.
- It is then tempting to consider the sum $\sum_{\sigma \in [\Sigma_{\rho}(G)]} (-1)^{|\sigma|} \mathbb{F}T^{\Delta}_{G_{\sigma},b_{\sigma}}$ in the

Grothendieck group $\mathcal{K}_0(\mathcal{F}^{\Delta}_{\mathbb{F}pp_k})$, and to formulate the

Conjecture (FBAWC)

Let G be a finite group and b be a block of kG. Then in $K_0(\mathcal{F}_{\mathbb{F}pp_k}^{\Delta})$

$$\sum_{\sigma \in [\Sigma_{\rho}(G)]} (-1)^{|\sigma|} \mathbb{F} T^{\Delta}_{G_{\sigma}, b_{\sigma}} = \begin{cases} 0 & \text{if } D(b) \neq \{1\} \\ [S_{1,1,\mathbb{F}}] & \text{if } D(b) = \{1\}. \end{cases}$$

Serge Bouc (CNRS-LAMFA) Functorial equivalence of blocks and BAWC ECNU, Shanghai, January 21, 2024

A B M A B M

э

Theorem

Serge Bouc (CNRS-LAMFA) Functorial equivalence of blocks and BAWC ECNU, Shanghai, January 21, 2024

★ ∃ ► < ∃ ►</p>

Theorem

 $FBAWC \implies BAWC.$

Serge Bouc (CNRS-LAMFA) Functorial equivalence of blocks and BAWC ECNU, Shanghai, January 21, 2024

< ロ > < 同 > < 回 > < 回 > < 回 > <

3

Theorem

 $FBAWC \implies BAWC.$

Proof:

Serge Bouc (CNRS-LAMFA) Functorial equivalence of blocks and BAWC ECNU, Shanghai, January 21, 2024

A B M A B M

3

Theorem

 $FBAWC \implies BAWC.$

Proof: Computing the multiplicity of $S_{1,1,\mathbb{F}}$ in both sides of FBAWC

- ∢ ∃ ▶

Theorem

 $FBAWC \implies BAWC.$

Proof: Computing the multiplicity of $S_{1,1,\mathbb{F}}$ in both sides of FBAWC, we get BAWC.

Theorem

 $FBAWC \implies BAWC.$

Proof: Computing the multiplicity of $S_{1,1,\mathbb{F}}$ in both sides of FBAWC, we get BAWC.

Theorem

A B M A B M

Theorem

 $FBAWC \implies BAWC.$

Proof: Computing the multiplicity of $S_{1,1,\mathbb{F}}$ in both sides of FBAWC, we get BAWC.

Theorem

Let G be a finite group and b be a block idempotent of kG.

Serge Bouc (CNRS-LAMFA) Functorial equivalence of blocks and BAWC ECNU, Shanghai, January 21, 2024

Theorem

 $FBAWC \implies BAWC.$

Proof: Computing the multiplicity of $S_{1,1,\mathbb{F}}$ in both sides of FBAWC, we get BAWC.

Theorem

Let G be a finite group and b be a block idempotent of kG.

1 There exists an integer $n_{G,b}$ such that

Theorem

 $FBAWC \implies BAWC.$

Proof: Computing the multiplicity of $S_{1,1,\mathbb{F}}$ in both sides of FBAWC, we get BAWC.

Theorem

Let G be a finite group and b be a block idempotent of kG.

1 There exists an integer $n_{G,b}$ such that

$$\sum_{\sigma\in [\Sigma_{
ho}(G)]} (-1)^{|\sigma|} \mathbb{F} \mathcal{T}^{\Delta}_{G_{\sigma},b_{\sigma}} =$$

Serge Bouc (CNRS-LAMFA) Functorial equivalence of blocks and BAWC ECNU, Shanghai, January 21, 2024

Theorem

 $FBAWC \implies BAWC.$

Proof: Computing the multiplicity of $S_{1,1,\mathbb{F}}$ in both sides of FBAWC, we get BAWC.

Theorem

Let G be a finite group and b be a block idempotent of kG.

1 There exists an integer $n_{G,b}$ such that

$$\sum_{\sigma \in [\Sigma_{\rho}(G)]} (-1)^{|\sigma|} \mathbb{F} T^{\Delta}_{G_{\sigma}, b_{\sigma}} = n_{G, b} [S_{1, 1, \mathbb{F}}]$$

Theorem

 $FBAWC \implies BAWC.$

Proof: Computing the multiplicity of $S_{1,1,\mathbb{F}}$ in both sides of FBAWC, we get BAWC.

Theorem

Let G be a finite group and b be a block idempotent of kG.

1 There exists an integer $n_{G,b}$ such that

$$\sum_{\sigma \in [\Sigma_{\rho}(G)]} (-1)^{|\sigma|} \mathbb{F} T^{\Delta}_{G_{\sigma}, b_{\sigma}} = n_{G, b} \left[S_{1, 1, \mathbb{F}} \right] \text{ in } \mathcal{K}_{0} \big(\mathcal{F}^{\Delta}_{\mathbb{F} \rho \rho_{k}} \big)$$

Theorem

 $FBAWC \implies BAWC.$

Proof: Computing the multiplicity of $S_{1,1,\mathbb{F}}$ in both sides of FBAWC, we get BAWC.

Theorem

Let G be a finite group and b be a block idempotent of kG.

1 There exists an integer $n_{G,b}$ such that

$$\sum_{\sigma \in [\Sigma_{\rho}(G)]} (-1)^{|\sigma|} \mathbb{F} T^{\Delta}_{G_{\sigma}, b_{\sigma}} = n_{G, b} \left[S_{1, 1, \mathbb{F}} \right] \text{ in } K_0 \left(\mathcal{F}^{\Delta}_{\mathbb{F} \rho p_k} \right).$$

Theorem

 $FBAWC \implies BAWC.$

Proof: Computing the multiplicity of $S_{1,1,\mathbb{F}}$ in both sides of FBAWC, we get BAWC.

Theorem

Let G be a finite group and b be a block idempotent of kG.

1 There exists an integer $n_{G,b}$ such that

$$\sum_{\sigma \in [\Sigma_{\rho}(G)]} (-1)^{|\sigma|} \mathbb{F} T^{\Delta}_{G_{\sigma}, b_{\sigma}} = n_{G, b} \left[S_{1, 1, \mathbb{F}} \right] \text{ in } K_0 \left(\mathcal{F}^{\Delta}_{\mathbb{F} p p_k} \right).$$
BAWC versus FBAWC

Theorem

 $FBAWC \implies BAWC.$

Proof: Computing the multiplicity of $S_{1,1,\mathbb{F}}$ in both sides of FBAWC, we get BAWC.

Theorem

Let G be a finite group and b be a block idempotent of kG.

1 There exists an integer $n_{G,b}$ such that

$$\sum_{\sigma \in [\Sigma_{\rho}(G)]} (-1)^{|\sigma|} \mathbb{F} T^{\Delta}_{G_{\sigma}, b_{\sigma}} = n_{G, b} \left[S_{1, 1, \mathbb{F}} \right] \text{ in } K_0 \left(\mathcal{F}^{\Delta}_{\mathbb{F} p p_k} \right).$$

Proof:

BAWC versus FBAWC

Theorem

 $FBAWC \implies BAWC.$

Proof: Computing the multiplicity of $S_{1,1,\mathbb{F}}$ in both sides of FBAWC, we get BAWC.

Theorem

Let G be a finite group and b be a block idempotent of kG.

1 There exists an integer $n_{G,b}$ such that

$$\sum_{\sigma \in [\Sigma_{\rho}(G)]} (-1)^{|\sigma|} \mathbb{F} T^{\Delta}_{G_{\sigma}, b_{\sigma}} = n_{G, b} \left[S_{1, 1, \mathbb{F}} \right] \text{ in } K_0 \left(\mathcal{F}^{\Delta}_{\mathbb{F} p p_k} \right).$$

Proof: We show that if $L \neq \{1\}$

BAWC versus FBAWC

Theorem

 $FBAWC \implies BAWC.$

Proof: Computing the multiplicity of $S_{1,1,\mathbb{F}}$ in both sides of FBAWC, we get BAWC.

Theorem

Let G be a finite group and b be a block idempotent of kG.

1 There exists an integer $n_{G,b}$ such that

$$\sum_{\sigma \in [\Sigma_{\rho}(G)]} (-1)^{|\sigma|} \mathbb{F} T^{\Delta}_{G_{\sigma}, b_{\sigma}} = n_{G, b} \left[S_{1, 1, \mathbb{F}} \right] \text{ in } K_0 \left(\mathcal{F}^{\Delta}_{\mathbb{F} \rho \rho_k} \right).$$

Proof: We show that if $L \neq \{1\}$, the multiplicity of the simple functor $S_{L,u,V}$ in the alternating sum is equal to 0.

THANK YOU!

Serge Bouc (CNRS-LAMFA) Functorial equivalence of blocks and BAWC ECNU, Shanghai, January 21, 2024

ヨト イヨト

Serge Bouc (CNRS-LAMFA) Functorial equivalence of blocks and BAWC ECNU, Shanghai, January 21, 2024

★ ∃ ► < ∃ ►</p>

æ

• For a finite group G

▶ < ∃ >

• For a finite group G, let $Q_{G,p}$ denote the set of pairs (P,s)

⇒ ▶

For a finite group G, let Q_{G,p} denote the set of pairs (P, s), where P is a p-subgroup of G and s is a p'-element of N_G(P).

For a finite group G, let Q_{G,p} denote the set of pairs (P, s), where P is a p-subgroup of G and s is a p'-element of N_G(P). Let [Q_{G,p}] be a set of representatives of G\Q_{G,p}.

- For a finite group G, let Q_{G,p} denote the set of pairs (P, s), where P is a p-subgroup of G and s is a p'-element of N_G(P). Let [Q_{G,p}] be a set of representatives of G\Q_{G,p}.
- For (P, s) ∈ Q_{G,p}

For a finite group G, let Q_{G,p} denote the set of pairs (P, s), where P is a p-subgroup of G and s is a p'-element of N_G(P). Let [Q_{G,p}] be a set of representatives of G\Q_{G,p}.

• For
$$(P,s) \in \mathcal{Q}_{G,p}$$
, set $(ilde{P}, ilde{s}) = (PC/C,sC/C)$

- For a finite group G, let Q_{G,p} denote the set of pairs (P, s), where P is a p-subgroup of G and s is a p'-element of N_G(P). Let [Q_{G,p}] be a set of representatives of G\Q_{G,p}.
- For $(P, s) \in \mathcal{Q}_{G,p}$, set $(\tilde{P}, \tilde{s}) = (PC/C, sC/C)$, where $C = C_{\langle s \rangle}(P)$.

- For a finite group G, let Q_{G,p} denote the set of pairs (P, s), where P is a p-subgroup of G and s is a p'-element of N_G(P). Let [Q_{G,p}] be a set of representatives of G\Q_{G,p}.
- For $(P, s) \in \mathcal{Q}_{G,p}$, set $(\tilde{P}, \tilde{s}) = (PC/C, sC/C)$, where $C = C_{\langle s \rangle}(P)$.
- Let moreover (L, u) be a D^{Δ} -pair.

For a finite group G, let Q_{G,p} denote the set of pairs (P, s), where P is a p-subgroup of G and s is a p'-element of N_G(P). Let [Q_{G,p}] be a set of representatives of G\Q_{G,p}.

• For
$$(P, s) \in \mathcal{Q}_{G,p}$$
, set $(\tilde{P}, \tilde{s}) = (PC/C, sC/C)$, where $C = C_{\langle s \rangle}(P)$.

• Let moreover (L, u) be a D^{Δ} -pair. If $(\tilde{P}, \tilde{s}) \cong (L, u)$

- For a finite group G, let Q_{G,p} denote the set of pairs (P, s), where P is a p-subgroup of G and s is a p'-element of N_G(P). Let [Q_{G,p}] be a set of representatives of G\Q_{G,p}.
- For $(P, s) \in \mathcal{Q}_{G,p}$, set $(\tilde{P}, \tilde{s}) = (PC/C, sC/C)$, where $C = C_{\langle s \rangle}(P)$.
- Let moreover (L, u) be a D^{Δ} -pair. If $(\tilde{P}, \tilde{s}) \cong (L, u)$, then there exists

 $\varphi: P \stackrel{\cong}{\to} L$

For a finite group G, let Q_{G,p} denote the set of pairs (P, s), where P is a p-subgroup of G and s is a p'-element of N_G(P). Let [Q_{G,p}] be a set of representatives of G\Q_{G,p}.

• For
$$(P, s) \in \mathcal{Q}_{G,p}$$
, set $(\tilde{P}, \tilde{s}) = (PC/C, sC/C)$, where $C = C_{\langle s \rangle}(P)$.

• Let moreover (L, u) be a D^{Δ} -pair. If $(\tilde{P}, \tilde{s}) \cong (L, u)$, then there exists

 $\varphi: P \xrightarrow{\cong} L$ such that the square

For a finite group G, let Q_{G,p} denote the set of pairs (P, s), where P is a p-subgroup of G and s is a p'-element of N_G(P). Let [Q_{G,p}] be a set of representatives of G\Q_{G,p}.

• For
$$(P, s) \in \mathcal{Q}_{G,p}$$
, set $(\tilde{P}, \tilde{s}) = (PC/C, sC/C)$, where $C = C_{\langle s \rangle}(P)$.

• Let moreover (L, u) be a D^{Δ} -pair. If $(\tilde{P}, \tilde{s}) \cong (L, u)$, then there exists

$$\varphi: P \stackrel{\cong}{\to} L \text{ such that the square } \begin{array}{c} P \stackrel{\varphi}{\to} L \\ i_s \downarrow & \downarrow^{i_u} \\ P \stackrel{\varphi}{\to} L \end{array}$$

For a finite group G, let Q_{G,p} denote the set of pairs (P, s), where P is a p-subgroup of G and s is a p'-element of N_G(P). Let [Q_{G,p}] be a set of representatives of G\Q_{G,p}.

• For
$$(P, s) \in \mathcal{Q}_{G,p}$$
, set $(\tilde{P}, \tilde{s}) = (PC/C, sC/C)$, where $C = C_{\langle s \rangle}(P)$.

• Let moreover (L, u) be a D^{Δ} -pair. If $(\tilde{P}, \tilde{s}) \cong (L, u)$, then there exists

$$\varphi: P \xrightarrow{\cong} L$$
 such that the square $P \xrightarrow{\varphi} L$
 $i_s \downarrow \qquad \downarrow i_u$ is commutative.
 $P \xrightarrow{\varphi} L$

For a finite group G, let Q_{G,p} denote the set of pairs (P, s), where P is a p-subgroup of G and s is a p'-element of N_G(P). Let [Q_{G,p}] be a set of representatives of G\Q_{G,p}.

• For
$$(P, s) \in \mathcal{Q}_{G,p}$$
, set $(\tilde{P}, \tilde{s}) = (PC/C, sC/C)$, where $C = C_{\langle s \rangle}(P)$.

- Let moreover (L, u) be a D^{Δ} -pair. If $(\tilde{P}, \tilde{s}) \cong (L, u)$, then there exists
 - $\varphi: P \xrightarrow{\cong} L \text{ such that the square } \begin{array}{c} P \xrightarrow{\varphi} L \\ i_s \downarrow & \downarrow i_u \\ P \xrightarrow{\varphi} L \end{array} \text{ is commutative.}$

This induces a group homomorphism $N_G(P, s) \rightarrow Aut(L, u)$.

For a finite group G, let Q_{G,p} denote the set of pairs (P, s), where P is a p-subgroup of G and s is a p'-element of N_G(P). Let [Q_{G,p}] be a set of representatives of G\Q_{G,p}.

• For
$$(P, s) \in \mathcal{Q}_{G,p}$$
, set $(\tilde{P}, \tilde{s}) = (PC/C, sC/C)$, where $C = C_{\langle s \rangle}(P)$.

• Let moreover (L, u) be a D^{Δ} -pair. If $(\tilde{P}, \tilde{s}) \cong (L, u)$, then there exists

 $\varphi: P \xrightarrow{\cong} L \text{ such that the square } \begin{array}{c} P \xrightarrow{\varphi} L \\ i_s \downarrow & \downarrow i_u \\ P \xrightarrow{\varphi} L \end{array} \text{ is commutative.}$

This induces a group homomorphism $N_G(P, s) \rightarrow Aut(L, u)$.

Proposition

Let (L, u) be a D^{Δ} -pair and V be a simple $\mathbb{F}Out(L, u)$ -module.

イロト 不得 トイヨト イヨト

For a finite group G, let Q_{G,p} denote the set of pairs (P, s), where P is a p-subgroup of G and s is a p'-element of N_G(P). Let [Q_{G,p}] be a set of representatives of G\Q_{G,p}.

• For
$$(P, s) \in \mathcal{Q}_{G,p}$$
, set $(\tilde{P}, \tilde{s}) = (PC/C, sC/C)$, where $C = C_{\langle s \rangle}(P)$.

• Let moreover (L, u) be a D^{Δ} -pair. If $(\tilde{P}, \tilde{s}) \cong (L, u)$, then there exists

 $\varphi: P \xrightarrow{\cong} L$ such that the square $P \xrightarrow{\varphi} L_{i_s \downarrow} \downarrow_{i_u} i_s$ commutative. $P \xrightarrow{\varphi} L$

This induces a group homomorphism $N_G(P, s) \rightarrow Aut(L, u)$.

Proposition

Let (L, u) be a D^{Δ} -pair and V be a simple $\mathbb{F}Out(L, u)$ -module. Then for a finite group G

イロト 不得 トイヨト イヨト

For a finite group G, let Q_{G,p} denote the set of pairs (P, s), where P is a p-subgroup of G and s is a p'-element of N_G(P). Let [Q_{G,p}] be a set of representatives of G\Q_{G,p}.

• For
$$(P, s) \in \mathcal{Q}_{G,p}$$
, set $(\tilde{P}, \tilde{s}) = (PC/C, sC/C)$, where $C = C_{\langle s \rangle}(P)$.

• Let moreover (L, u) be a D^{Δ} -pair. If $(\tilde{P}, \tilde{s}) \cong (L, u)$, then there exists

 $\varphi: P \xrightarrow{\cong} L$ such that the square $P \xrightarrow{\varphi} L_{i_s \downarrow} \downarrow_{i_u} i_s$ commutative. $P \xrightarrow{\varphi} L$

This induces a group homomorphism $N_G(P, s) \rightarrow Aut(L, u)$.

Proposition

Let (L, u) be a D^{Δ} -pair and V be a simple $\mathbb{F}Out(L, u)$ -module. Then for a finite group G

$$S_{L,u,V}(G) \cong$$

< 日 > < 同 > < 回 > < 回 > .

For a finite group G, let Q_{G,p} denote the set of pairs (P, s), where P is a p-subgroup of G and s is a p'-element of N_G(P). Let [Q_{G,p}] be a set of representatives of G\Q_{G,p}.

• For
$$(P, s) \in \mathcal{Q}_{G,p}$$
, set $(\tilde{P}, \tilde{s}) = (PC/C, sC/C)$, where $C = C_{\langle s \rangle}(P)$.

• Let moreover (L, u) be a D^{Δ} -pair. If $(\tilde{P}, \tilde{s}) \cong (L, u)$, then there exists

 $\varphi: P \xrightarrow{\cong} L$ such that the square $P \xrightarrow{\varphi} L_{i_s \downarrow} \downarrow_{i_u}$ is commutative. $P \xrightarrow{\varphi} L$

This induces a group homomorphism $N_G(P, s) \rightarrow Aut(L, u)$.

Proposition

Let (L, u) be a D^{Δ} -pair and V be a simple $\mathbb{F}Out(L, u)$ -module. Then for a finite group G

$$S_{L,u,V}(G) \cong \bigoplus_{\substack{(P,s) \in [\mathcal{Q}_{G,p}] \\ (\tilde{P},\tilde{s}) \cong (L,u)}} V^{N_G(P,s)}$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Serge Bouc (CNRS-LAMFA) Functorial equivalence of blocks and BAWC ECNU, Shanghai, January 21, 2024

イロト イポト イヨト イヨト

æ

Let $\mathcal{Y} = \mathcal{Y}(G, L, u)$ be the set of triples (P, π, F) where

Serge Bouc (CNRS-LAMFA) Functorial equivalence of blocks and BAWC ECNU, Shanghai, January 21, 2024

• • = • • = •

< 行

Let $\mathcal{Y} = \mathcal{Y}(G, L, u)$ be the set of triples (P, π, F) where

• P is a p-subgroup of G.

글 에 에 글 어

Let $\mathcal{Y} = \mathcal{Y}(G, L, u)$ be the set of triples (P, π, F) where

- *P* is a *p*-subgroup of *G*.
- $\pi: L \to P$ is a group isomorphism

- ∢ ∃ ▶

Let $\mathcal{Y} = \mathcal{Y}(G, L, u)$ be the set of triples (P, π, F) where

- *P* is a *p*-subgroup of *G*.
- π : L → P is a group isomorphism such that there exists a p'-element s ∈ G with π("I) = ^sπ(I) for all I ∈ L.

Let $\mathcal{Y} = \mathcal{Y}(G, L, u)$ be the set of triples (P, π, F) where

- *P* is a *p*-subgroup of *G*.
- π : L → P is a group isomorphism such that there exists a p'-element s ∈ G with π(^ul) = ^sπ(l) for all l ∈ L.
- F is an u-invariant projective indecomposable $kBr_P(b)C_G(P)$ -module.

Let $\mathcal{Y} = \mathcal{Y}(G, L, u)$ be the set of triples (P, π, F) where

- *P* is a *p*-subgroup of *G*.
- π : L → P is a group isomorphism such that there exists a p'-element s ∈ G with π(^ul) = ^sπ(l) for all l ∈ L.
- F is an u-invariant projective indecomposable $kBr_P(b)C_G(P)$ -module.

The group ${\it G} imes {\it L} \langle u
angle$ acts on ${\cal Y}$

Let $\mathcal{Y} = \mathcal{Y}(G, L, u)$ be the set of triples (P, π, F) where

- *P* is a *p*-subgroup of *G*.
- π : L → P is a group isomorphism such that there exists a p'-element s ∈ G with π(^ul) = ^sπ(l) for all l ∈ L.
- F is an u-invariant projective indecomposable $kBr_P(b)C_G(P)$ -module.

The group $G \times L\langle u \rangle$ acts on \mathcal{Y} by $(g, t) \cdot (P, \pi, F) := ({}^{g}P, i_{g}\pi i_{t^{-1}}, {}^{g}F)$ for $(g, t) \in G \times L\langle u \rangle$ and $(P, \pi, F) \in \mathcal{Y}$.

Let $\mathcal{Y} = \mathcal{Y}(G, L, u)$ be the set of triples (P, π, F) where

- *P* is a *p*-subgroup of *G*.
- π : L → P is a group isomorphism such that there exists a p'-element s ∈ G with π(^uI) = ^sπ(I) for all I ∈ L.
- F is an u-invariant projective indecomposable $kBr_P(b)C_G(P)$ -module.

The group $G \times L\langle u \rangle$ acts on \mathcal{Y} by $(g, t) \cdot (P, \pi, F) := ({}^{g}P, i_{g}\pi i_{t^{-1}}, {}^{g}F)$ for $(g, t) \in G \times L\langle u \rangle$ and $(P, \pi, F) \in \mathcal{Y}$. Here ${}^{g}F$ is the $kC_{G}({}^{g}P)$ -module equal to F as a k-vector space and on which $c \in C_{G}({}^{g}P)$ acts by

• • = • • = •

Let $\mathcal{Y} = \mathcal{Y}(G, L, u)$ be the set of triples (P, π, F) where

- *P* is a *p*-subgroup of *G*.
- π : L → P is a group isomorphism such that there exists a p'-element s ∈ G with π(^uI) = ^sπ(I) for all I ∈ L.
- F is an u-invariant projective indecomposable $kBr_P(b)C_G(P)$ -module.

The group $G \times L\langle u \rangle$ acts on \mathcal{Y} by $(g, t) \cdot (P, \pi, F) := ({}^{g}P, i_{g}\pi i_{t^{-1}}, {}^{g}F)$ for $(g, t) \in G \times L\langle u \rangle$ and $(P, \pi, F) \in \mathcal{Y}$. Here ${}^{g}F$ is the $kC_{G}({}^{g}P)$ -module equal to F as a k-vector space and on which $c \in C_{G}({}^{g}P)$ acts by $c \cdot {}^{g}f := c^{g}f$.

• • = • • = •

Let $\mathcal{Y} = \mathcal{Y}(G, L, u)$ be the set of triples (P, π, F) where

- *P* is a *p*-subgroup of *G*.
- π : L → P is a group isomorphism such that there exists a p'-element s ∈ G with π(^uI) = ^sπ(I) for all I ∈ L.
- F is an u-invariant projective indecomposable $k Br_P(b) C_G(P)$ -module.

The group $G \times L\langle u \rangle$ acts on \mathcal{Y} by $(g, t) \cdot (P, \pi, F) := ({}^{g}P, i_{g}\pi i_{t^{-1}}, {}^{g}F)$ for $(g, t) \in G \times L\langle u \rangle$ and $(P, \pi, F) \in \mathcal{Y}$. Here ${}^{g}F$ is the $kC_{G}({}^{g}P)$ -module equal to F as a k-vector space and on which $c \in C_{G}({}^{g}P)$ acts by $c \cdot {}^{g}f := c^{g}f$.

Theorem

イロト イボト イヨト イヨト

3

Let $\mathcal{Y} = \mathcal{Y}(G, L, u)$ be the set of triples (P, π, F) where

- *P* is a *p*-subgroup of *G*.
- π : L → P is a group isomorphism such that there exists a p'-element s ∈ G with π(^uI) = ^sπ(I) for all I ∈ L.
- F is an u-invariant projective indecomposable $k Br_P(b)C_G(P)$ -module.

The group $G \times L\langle u \rangle$ acts on \mathcal{Y} by $(g, t) \cdot (P, \pi, F) := ({}^{g}P, i_{g}\pi i_{t^{-1}}, {}^{g}F)$ for $(g, t) \in G \times L\langle u \rangle$ and $(P, \pi, F) \in \mathcal{Y}$. Here ${}^{g}F$ is the $kC_{G}({}^{g}P)$ -module equal to F as a k-vector space and on which $c \in C_{G}({}^{g}P)$ acts by $c \cdot {}^{g}f := c^{g}f$.

イロト 不得 トイヨト イヨト

3

Theorem

The multiplicity of $S_{L,u,V}$ in $\mathbb{F}T_{G,b}^{\Delta}$

Let $\mathcal{Y} = \mathcal{Y}(G, L, u)$ be the set of triples (P, π, F) where

- *P* is a *p*-subgroup of *G*.
- π : L → P is a group isomorphism such that there exists a p'-element s ∈ G with π(^uI) = ^sπ(I) for all I ∈ L.
- F is an u-invariant projective indecomposable $k Br_P(b) C_G(P)$ -module.

The group $G \times L\langle u \rangle$ acts on \mathcal{Y} by $(g, t) \cdot (P, \pi, F) := ({}^{g}P, i_{g}\pi i_{t^{-1}}, {}^{g}F)$ for $(g, t) \in G \times L\langle u \rangle$ and $(P, \pi, F) \in \mathcal{Y}$. Here ${}^{g}F$ is the $kC_{G}({}^{g}P)$ -module equal to F as a k-vector space and on which $c \in C_{G}({}^{g}P)$ acts by $c \cdot {}^{g}f := c^{g}f$.

Theorem

The multiplicity of
$$S_{L,u,V}$$
 in $\mathbb{F}T_{G,b}^{\Delta}$ is the dimension of
$$\bigoplus_{\overline{(P,\pi,F)}\in\mathcal{U}} V^{Aut(L,u)}\overline{(P,\pi,F)},$$

イロト 不得 トイヨト イヨト

3
Let $\mathcal{Y} = \mathcal{Y}(G, L, u)$ be the set of triples (P, π, F) where

- *P* is a *p*-subgroup of *G*.
- π : L → P is a group isomorphism such that there exists a p'-element s ∈ G with π(^ul) = ^sπ(l) for all l ∈ L.
- F is an u-invariant projective indecomposable $k Br_P(b) C_G(P)$ -module.

The group $G \times L\langle u \rangle$ acts on \mathcal{Y} by $(g, t) \cdot (P, \pi, F) := ({}^{g}P, i_{g}\pi i_{t^{-1}}, {}^{g}F)$ for $(g, t) \in G \times L\langle u \rangle$ and $(P, \pi, F) \in \mathcal{Y}$. Here ${}^{g}F$ is the $kC_{G}({}^{g}P)$ -module equal to F as a k-vector space and on which $c \in C_{G}({}^{g}P)$ acts by $c \cdot {}^{g}f := c^{g}f$.

Theorem

The multiplicity of
$$S_{L,u,V}$$
 in $\mathbb{F}T_{G,b}^{\Delta}$ is the dimension of

$$\bigoplus_{\substack{(\overline{P},\pi,\overline{F})\in\mathcal{U}}} V^{Aut(L,u)}_{\overline{(P,\pi,\overline{F})}},$$
where $\mathcal{U} = [(G \times L\langle u \rangle) \setminus \mathcal{Y}(G,L,u) / Aut(L,u)]$

イロト イボト イヨト イヨト

3

Let $\mathcal{Y} = \mathcal{Y}(G, L, u)$ be the set of triples (P, π, F) where

- *P* is a *p*-subgroup of *G*.
- π : L → P is a group isomorphism such that there exists a p'-element s ∈ G with π(^ul) = ^sπ(l) for all l ∈ L.
- F is an u-invariant projective indecomposable $kBr_P(b)C_G(P)$ -module.

The group $G \times L\langle u \rangle$ acts on \mathcal{Y} by $(g, t) \cdot (P, \pi, F) := ({}^{g}P, i_{g}\pi i_{t^{-1}}, {}^{g}F)$ for $(g, t) \in G \times L\langle u \rangle$ and $(P, \pi, F) \in \mathcal{Y}$. Here ${}^{g}F$ is the $kC_{G}({}^{g}P)$ -module equal to F as a k-vector space and on which $c \in C_{G}({}^{g}P)$ acts by $c \cdot {}^{g}f := c^{g}f$.

Theorem

The multiplicity of
$$S_{L,u,V}$$
 in $\mathbb{F}T_{G,b}^{\Delta}$ is the dimension of

$$\bigoplus_{\substack{(P,\pi,F)\in\mathcal{U}}} V^{Aut(L,u)_{\overline{(P,\pi,F)}}},$$
where $\mathcal{U} = [(G \times L\langle u \rangle) \setminus \mathcal{Y}(G,L,u) / Aut(L,u)]$, and $Aut(L,u)_{\overline{(P,\pi,F)}}$ is the stabilizer of $(G \times L\langle u \rangle)(P,\pi,F)$ in $Aut(L,u)$.

3

Serge Bouc (CNRS-LAMFA) Functorial equivalence of blocks and BAWC ECNU, Shanghai, January 21, 2024

æ

Let \mathcal{F}_b denote the fusion system of kGb with respect to a maximal *b*-Brauer pair (D, e_D) .

-

Let \mathcal{F}_b denote the fusion system of kGb with respect to a maximal *b*-Brauer pair (D, e_D) . For each subgroup $P \leq D$, let e_P denote the unique block of $kC_G(P)$ with $(P, e_P) \leq (D, e_D)$.

Let \mathcal{F}_b denote the fusion system of kGb with respect to a maximal *b*-Brauer pair (D, e_D) . For each subgroup $P \leq D$, let e_P denote the unique block of $kC_G(P)$ with $(P, e_P) \leq (D, e_D)$. For $(P, e_P) \in \mathcal{F}_b$

Let \mathcal{F}_b denote the fusion system of kGb with respect to a maximal b-Brauer pair (D, e_D) . For each subgroup $P \leq D$, let e_P denote the unique block of $kC_G(P)$ with $(P, e_P) \leq (D, e_D)$. For $(P, e_P) \in \mathcal{F}_b$, let $\mathcal{P}_{(P, e_P)}(L, u)$ denote the set of group isomorphisms $\pi : L \rightarrow P$ with $\pi i_u \pi^{-1} \in Aut_{\mathcal{F}_b}(P, e_P)$.

Let \mathcal{F}_b denote the fusion system of kGb with respect to a maximal *b*-Brauer pair (D, e_D) . For each subgroup $P \leq D$, let e_P denote the unique block of $kC_G(P)$ with $(P, e_P) \leq (D, e_D)$. For $(P, e_P) \in \mathcal{F}_b$, let $\mathcal{P}_{(P, e_P)}(L, u)$ denote the set of group isomorphisms $\pi : L \to P$ with $\pi i_u \pi^{-1} \in Aut_{\mathcal{F}_b}(P, e_P)$. The set $\mathcal{P}_{(P, e_P)}(L, u)$ is an $(N_G(P, e_P), Aut(L, u))$ -biset via $g \cdot \pi \cdot \varphi = i_g \pi \varphi$,

Let \mathcal{F}_b denote the fusion system of kGb with respect to a maximal *b*-Brauer pair (D, e_D) . For each subgroup $P \leq D$, let e_P denote the unique block of $kC_G(P)$ with $(P, e_P) \leq (D, e_D)$. For $(P, e_P) \in \mathcal{F}_b$, let $\mathcal{P}_{(P, e_P)}(L, u)$ denote the set of group isomorphisms $\pi : L \rightarrow P$ with $\pi i_u \pi^{-1} \in Aut_{\mathcal{F}_b}(P, e_P)$. The set $\mathcal{P}_{(P, e_P)}(L, u)$ is an $(N_G(P, e_P), Aut(L, u))$ -biset via $g \cdot \pi \cdot \varphi = i_g \pi \varphi$, for $g \in N_G(P, e_P)$, $\pi \in \mathcal{P}_{(P, e_P)}(L, u)$ and $\varphi \in Aut(L, u)$.

Let \mathcal{F}_b denote the fusion system of kGb with respect to a maximal *b*-Brauer pair (D, e_D) . For each subgroup $P \leq D$, let e_P denote the unique block of $kC_G(P)$ with $(P, e_P) \leq (D, e_D)$. For $(P, e_P) \in \mathcal{F}_b$, let $\mathcal{P}_{(P, e_P)}(L, u)$ denote the set of group isomorphisms $\pi : L \rightarrow P$ with $\pi i_u \pi^{-1} \in Aut_{\mathcal{F}_b}(P, e_P)$. The set $\mathcal{P}_{(P, e_P)}(L, u)$ is an $(N_G(P, e_P), Aut(L, u))$ -biset via $g \cdot \pi \cdot \varphi = i_g \pi \varphi$, for $g \in N_G(P, e_P)$, $\pi \in \mathcal{P}_{(P, e_P)}(L, u)$ and $\varphi \in Aut(L, u)$. Let $[\mathcal{P}_{(P, e_P)}(L, u)]$ denote a set of representatives of orbits.

Let \mathcal{F}_b denote the fusion system of kGb with respect to a maximal *b*-Brauer pair (D, e_D) . For each subgroup $P \leq D$, let e_P denote the unique block of $kC_G(P)$ with $(P, e_P) \leq (D, e_D)$. For $(P, e_P) \in \mathcal{F}_b$, let $\mathcal{P}_{(P, e_P)}(L, u)$ denote the set of group isomorphisms $\pi : L \rightarrow P$ with $\pi i_u \pi^{-1} \in Aut_{\mathcal{F}_b}(P, e_P)$. The set $\mathcal{P}_{(P, e_P)}(L, u)$ is an $(N_G(P, e_P), Aut(L, u))$ -biset via $g \cdot \pi \cdot \varphi = i_g \pi \varphi$, for $g \in N_G(P, e_P)$, $\pi \in \mathcal{P}_{(P, e_P)}(L, u)$ and $\varphi \in Aut(L, u)$. Let $[\mathcal{P}_{(P, e_P)}(L, u)]$ denote a set of representatives of orbits.

Theorem

Let \mathcal{F}_b denote the fusion system of kGb with respect to a maximal *b*-Brauer pair (D, e_D) . For each subgroup $P \leq D$, let e_P denote the unique block of $kC_G(P)$ with $(P, e_P) \leq (D, e_D)$. For $(P, e_P) \in \mathcal{F}_b$, let $\mathcal{P}_{(P, e_P)}(L, u)$ denote the set of group isomorphisms $\pi : L \rightarrow P$ with $\pi i_u \pi^{-1} \in Aut_{\mathcal{F}_b}(P, e_P)$. The set $\mathcal{P}_{(P, e_P)}(L, u)$ is an $(N_G(P, e_P), Aut(L, u))$ -biset via $g \cdot \pi \cdot \varphi = i_g \pi \varphi$, for $g \in N_G(P, e_P)$, $\pi \in \mathcal{P}_{(P, e_P)}(L, u)$ and $\varphi \in Aut(L, u)$. Let $[\mathcal{P}_{(P, e_P)}(L, u)]$ denote a set of representatives of orbits.

Theorem

The multiplicity of $S_{L,u,V}$ in $\mathbb{F}T_{G,b}^{\Delta}$

Let \mathcal{F}_b denote the fusion system of kGb with respect to a maximal *b*-Brauer pair (D, e_D) . For each subgroup $P \leq D$, let e_P denote the unique block of $kC_G(P)$ with $(P, e_P) \leq (D, e_D)$. For $(P, e_P) \in \mathcal{F}_b$, let $\mathcal{P}_{(P, e_P)}(L, u)$ denote the set of group isomorphisms $\pi : L \rightarrow P$ with $\pi i_u \pi^{-1} \in Aut_{\mathcal{F}_b}(P, e_P)$. The set $\mathcal{P}_{(P, e_P)}(L, u)$ is an $(N_G(P, e_P), Aut(L, u))$ -biset via $g \cdot \pi \cdot \varphi = i_g \pi \varphi$, for $g \in N_G(P, e_P)$, $\pi \in \mathcal{P}_{(P, e_P)}(L, u)$ and $\varphi \in Aut(L, u)$. Let $[\mathcal{P}_{(P, e_P)}(L, u)]$ denote a set of representatives of orbits.

Theorem

The multiplicity of $S_{L,u,V}$ in $\mathbb{F}T^{\Delta}_{G,b}$ is the dimension of $\bigoplus_{(P,e_P)\in [\mathcal{F}_b]}$

Let \mathcal{F}_b denote the fusion system of kGb with respect to a maximal *b*-Brauer pair (D, e_D) . For each subgroup $P \leq D$, let e_P denote the unique block of $kC_G(P)$ with $(P, e_P) \leq (D, e_D)$. For $(P, e_P) \in \mathcal{F}_b$, let $\mathcal{P}_{(P, e_P)}(L, u)$ denote the set of group isomorphisms $\pi : L \rightarrow P$ with $\pi i_u \pi^{-1} \in Aut_{\mathcal{F}_b}(P, e_P)$. The set $\mathcal{P}_{(P, e_P)}(L, u)$ is an $(N_G(P, e_P), Aut(L, u))$ -biset via $g \cdot \pi \cdot \varphi = i_g \pi \varphi$, for $g \in N_G(P, e_P)$, $\pi \in \mathcal{P}_{(P, e_P)}(L, u)$ and $\varphi \in Aut(L, u)$. Let $[\mathcal{P}_{(P, e_P)}(L, u)]$ denote a set of representatives of orbits.

Theorem

The multiplicity of $S_{L,u,V}$ in $\mathbb{F}T^{\Delta}_{G,b}$ is the dimension of $\bigoplus_{(P,e_P)\in [\mathcal{F}_b]} \bigoplus_{\pi\in [\mathcal{P}_{(P,e_P)}(L,u)]}$

Let \mathcal{F}_b denote the fusion system of kGb with respect to a maximal *b*-Brauer pair (D, e_D) . For each subgroup $P \leq D$, let e_P denote the unique block of $kC_G(P)$ with $(P, e_P) \leq (D, e_D)$. For $(P, e_P) \in \mathcal{F}_b$, let $\mathcal{P}_{(P, e_P)}(L, u)$ denote the set of group isomorphisms $\pi : L \rightarrow P$ with $\pi i_u \pi^{-1} \in Aut_{\mathcal{F}_b}(P, e_P)$. The set $\mathcal{P}_{(P, e_P)}(L, u)$ is an $(N_G(P, e_P), Aut(L, u))$ -biset via $g \cdot \pi \cdot \varphi = i_g \pi \varphi$, for $g \in N_G(P, e_P)$, $\pi \in \mathcal{P}_{(P, e_P)}(L, u)$ and $\varphi \in Aut(L, u)$. Let $[\mathcal{P}_{(P, e_P)}(L, u)]$ denote a set of representatives of orbits.

Theorem

The multiplicity of $S_{L,u,V}$ in $\mathbb{F}T_{G,b}^{\Delta}$ is the dimension of $\bigoplus_{(P,e_P)\in [\mathcal{F}_b]} \bigoplus_{\pi\in [\mathcal{P}_{(P,e_P)}(L,u)]} \mathbb{F}\operatorname{Proj}(ke_PC_G(P),u) \otimes_{Aut(L,u)_{\overline{(P,e_P,\pi)}}} V,$

Let \mathcal{F}_b denote the fusion system of kGb with respect to a maximal *b*-Brauer pair (D, e_D) . For each subgroup $P \leq D$, let e_P denote the unique block of $kC_G(P)$ with $(P, e_P) \leq (D, e_D)$. For $(P, e_P) \in \mathcal{F}_b$, let $\mathcal{P}_{(P, e_P)}(L, u)$ denote the set of group isomorphisms $\pi : L \rightarrow P$ with $\pi i_u \pi^{-1} \in Aut_{\mathcal{F}_b}(P, e_P)$. The set $\mathcal{P}_{(P, e_P)}(L, u)$ is an $(N_G(P, e_P), Aut(L, u))$ -biset via $g \cdot \pi \cdot \varphi = i_g \pi \varphi$, for $g \in N_G(P, e_P)$, $\pi \in \mathcal{P}_{(P, e_P)}(L, u)$ and $\varphi \in Aut(L, u)$. Let $[\mathcal{P}_{(P, e_P)}(L, u)]$ denote a set of representatives of orbits.

Theorem

The multiplicity of $S_{L,u,V}$ in $\mathbb{F}T_{G,b}^{\Delta}$ is the dimension of $\bigoplus_{(P,e_P)\in[\mathcal{F}_b]} \bigoplus_{\pi\in[\mathcal{P}_{(P,e_P)}(L,u)]} \mathbb{F}\operatorname{Proj}(ke_P C_G(P), u) \otimes_{Aut(L,u)_{\overline{(P,e_P,\pi)}}} V$, where $\operatorname{Proj}(ke_P C_G(P), u) \leq \operatorname{Proj}(ke_P C_G(P))$ is generated by u-invariant indecomposable modules

- ロ ト ・ 同 ト ・ 三 ト ・ 三 ト - -

Let \mathcal{F}_b denote the fusion system of kGb with respect to a maximal *b*-Brauer pair (D, e_D) . For each subgroup $P \leq D$, let e_P denote the unique block of $kC_G(P)$ with $(P, e_P) \leq (D, e_D)$. For $(P, e_P) \in \mathcal{F}_b$, let $\mathcal{P}_{(P,e_P)}(L, u)$ denote the set of group isomorphisms $\pi : L \rightarrow P$ with $\pi i_u \pi^{-1} \in Aut_{\mathcal{F}_b}(P, e_P)$. The set $\mathcal{P}_{(P,e_P)}(L, u)$ is an $(N_G(P, e_P), Aut(L, u))$ -biset via $g \cdot \pi \cdot \varphi = i_g \pi \varphi$, for $g \in N_G(P, e_P)$, $\pi \in \mathcal{P}_{(P,e_P)}(L, u)$ and $\varphi \in Aut(L, u)$. Let $[\mathcal{P}_{(P,e_P)}(L, u)]$ denote a set of representatives of orbits.

Theorem

The multiplicity of $S_{L,u,V}$ in $\mathbb{F}T_{G,b}^{\Delta}$ is the dimension of $\bigoplus_{(P,e_P)\in[\mathcal{F}_b]} \bigoplus_{\pi\in[\mathcal{P}_{(P,e_P)}(L,u)]} \mathbb{F}\operatorname{Proj}(ke_PC_G(P), u) \otimes_{Aut(L,u)} V,$ where $\operatorname{Proj}(ke_PC_G(P), u) \leq \operatorname{Proj}(ke_PC_G(P))$ is generated by u-invariant indecomposable modules, and

 $Aut(L, u)_{(P, e_P, \pi)} = \{\varphi \in Aut(L, u) \mid \exists g \in N_G(P, e_P), \pi \varphi \pi^{-1} = i_g\}.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Serge Bouc (CNRS-LAMFA) Functorial equivalence of blocks and BAWC ECNU, Shanghai, January 21, 2024

イロト イポト イヨト イヨト

æ

Let $\mathcal{L}_b(G, L, u)$ denote the set of pairs (P_γ, π) where

Serge Bouc (CNRS-LAMFA) Functorial equivalence of blocks and BAWC ECNU, Shanghai, January 21, 2024

→

Let $\mathcal{L}_b(G, L, u)$ denote the set of pairs (P_γ, π) where

• P_{γ} is a local pointed point group on kGb

∃ >

Let $\mathcal{L}_b(G, L, u)$ denote the set of pairs (P_γ, π) where

- P_{γ} is a local pointed point group on *kGb*,
- $\pi: L \to P$ is a group isomorphism such that $\pi i_u \pi^{-1} = Res(i_s)$ for some $s \in N_G(P_\gamma)$.

Let $\mathcal{L}_b(G, L, u)$ denote the set of pairs (P_γ, π) where

- P_{γ} is a local pointed point group on kGb,
- $\pi: L \to P$ is a group isomorphism such that $\pi i_u \pi^{-1} = Res(i_s)$ for some $s \in N_G(P_\gamma)$.

The set $\mathcal{L}_b(G, L, u)$ is a (G, Aut(L, u))-biset

Let $\mathcal{L}_b(G, L, u)$ denote the set of pairs (P_γ, π) where

- P_{γ} is a local pointed point group on *kGb*,
- $\pi: L \to P$ is a group isomorphism such that $\pi i_u \pi^{-1} = Res(i_s)$ for some $s \in N_G(P_\gamma)$.

The set $\mathcal{L}_b(G, L, u)$ is a (G, Aut(L, u))-biset via $g \cdot (P_\gamma, \pi) \cdot \varphi = ({}^g P_{{}^g\gamma}, i_g \pi \varphi),$

Let $\mathcal{L}_b(G, L, u)$ denote the set of pairs (P_γ, π) where

- P_{γ} is a local pointed point group on *kGb*,
- $\pi: L \to P$ is a group isomorphism such that $\pi i_u \pi^{-1} = Res(i_s)$ for some $s \in N_G(P_\gamma)$.

The set $\mathcal{L}_b(G, L, u)$ is a (G, Aut(L, u))-biset via $g \cdot (P_\gamma, \pi) \cdot \varphi = ({}^g P_{g\gamma}, i_g \pi \varphi)$, for $g \in G$ and $\varphi \in Aut(L, u)$.

Let $\mathcal{L}_b(G, L, u)$ denote the set of pairs (P_γ, π) where

- P_{γ} is a local pointed point group on *kGb*,
- $\pi: L \to P$ is a group isomorphism such that $\pi i_u \pi^{-1} = Res(i_s)$ for some $s \in N_G(P_\gamma)$.

The set $\mathcal{L}_b(G, L, u)$ is a (G, Aut(L, u))-biset via $g \cdot (P_\gamma, \pi) \cdot \varphi = ({}^g P_{s\gamma}, i_g \pi \varphi)$, for $g \in G$ and $\varphi \in Aut(L, u)$. Let $[\mathcal{L}_b(G, L, u)]$ be a set of representatives of orbits.

Let $\mathcal{L}_b(G, L, u)$ denote the set of pairs (P_γ, π) where

- P_{γ} is a local pointed point group on *kGb*,
- $\pi: L \to P$ is a group isomorphism such that $\pi i_u \pi^{-1} = Res(i_s)$ for some $s \in N_G(P_\gamma)$.

The set $\mathcal{L}_b(G, L, u)$ is a (G, Aut(L, u))-biset via $g \cdot (P_\gamma, \pi) \cdot \varphi = ({}^g P_{g\gamma}, i_g \pi \varphi)$, for $g \in G$ and $\varphi \in Aut(L, u)$. Let $[\mathcal{L}_b(G, L, u)]$ be a set of representatives of orbits. For $(P_\gamma, \pi) \in \mathcal{L}_b(G, L, u)$, we set $Aut(L, u)_{(P_\gamma, \pi)} = \{\varphi \in Aut(L, u) \mid \exists g \in N_G(P_\gamma), \ \pi \varphi \pi^{-1} = Res(i_g)\}.$

Let $\mathcal{L}_b(G, L, u)$ denote the set of pairs (P_γ, π) where

- P_{γ} is a local pointed point group on *kGb*,
- $\pi: L \to P$ is a group isomorphism such that $\pi i_u \pi^{-1} = Res(i_s)$ for some $s \in N_G(P_\gamma)$.

The set $\mathcal{L}_b(G, L, u)$ is a (G, Aut(L, u))-biset via $g \cdot (P_\gamma, \pi) \cdot \varphi = ({}^g P_{g\gamma}, i_g \pi \varphi)$, for $g \in G$ and $\varphi \in Aut(L, u)$. Let $[\mathcal{L}_b(G, L, u)]$ be a set of representatives of orbits. For $(P_\gamma, \pi) \in \mathcal{L}_b(G, L, u)$, we set $Aut(L, u)_{\overline{(P_\gamma, \pi)}} = \{\varphi \in Aut(L, u) \mid \exists g \in N_G(P_\gamma), \ \pi \varphi \pi^{-1} = Res(i_g)\}.$

Theorem

• • = • • = •

Let $\mathcal{L}_b(G, L, u)$ denote the set of pairs (P_γ, π) where

- P_{γ} is a local pointed point group on *kGb*,
- $\pi: L \to P$ is a group isomorphism such that $\pi i_u \pi^{-1} = Res(i_s)$ for some $s \in N_G(P_\gamma)$.

The set $\mathcal{L}_b(G, L, u)$ is a (G, Aut(L, u))-biset via $g \cdot (P_\gamma, \pi) \cdot \varphi = ({}^g P_{g\gamma}, i_g \pi \varphi)$, for $g \in G$ and $\varphi \in Aut(L, u)$. Let $[\mathcal{L}_b(G, L, u)]$ be a set of representatives of orbits. For $(P_\gamma, \pi) \in \mathcal{L}_b(G, L, u)$, we set $Aut(L, u)_{\overline{(P_\gamma, \pi)}} = \{\varphi \in Aut(L, u) \mid \exists g \in N_G(P_\gamma), \ \pi \varphi \pi^{-1} = Res(i_g)\}.$

Theorem

The multiplicity of $S_{L,u,V}$ in $\mathbb{F}T_{G,b}^{\Delta}$

• • = • • = •

Let $\mathcal{L}_b(G, L, u)$ denote the set of pairs (P_γ, π) where

- P_{γ} is a local pointed point group on kGb,
- $\pi: L \to P$ is a group isomorphism such that $\pi i_u \pi^{-1} = Res(i_s)$ for some $s \in N_G(P_\gamma)$.

The set $\mathcal{L}_b(G, L, u)$ is a (G, Aut(L, u))-biset via $g \cdot (P_\gamma, \pi) \cdot \varphi = ({}^g P_{\varepsilon_\gamma}, i_g \pi \varphi)$, for $g \in G$ and $\varphi \in Aut(L, u)$. Let $[\mathcal{L}_b(G, L, u)]$ be a set of representatives of orbits. For $(P_\gamma, \pi) \in \mathcal{L}_b(G, L, u)$, we set $Aut(L, u)_{(P_\gamma, \pi)} = \{\varphi \in Aut(L, u) \mid \exists g \in N_G(P_\gamma), \ \pi \varphi \pi^{-1} = Res(i_g)\}.$

Theorem

The multiplicity of $S_{L,u,V}$ in $\mathbb{F}T_{G,b}^{\Delta}$ is the dimension of

$$\bigoplus \qquad V^{Aut(L,u)_{\overline{(P_{\gamma},\pi)}}}.$$

 $(P_{\gamma},\pi){\in}[\mathcal{L}_b(G,L,u)]$

・ 同 ト ・ ヨ ト ・ ヨ ト ・