Representations of finite sets and correspondences

Serge Bouc

CNRS-LAMFA Université de Picardie

joint work with

Jacques Thévenaz

EPFL

- LICMA'17 -

- 一司

э

• Let X and Y be finite sets.

• Let X and Y be finite sets. A correspondence from X to Y

• Let X and Y be finite sets. A correspondence from X to Y is a subset of Y × X.

 Let X and Y be finite sets. A correspondence from X to Y is a subset of Y × X. Let C(Y, X) denote the set of correspondences from X to Y.

Let X and Y be finite sets. A correspondence from X to Y is a subset of Y × X. Let C(Y, X) denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X.

- Let X and Y be finite sets. A correspondence from X to Y is a subset of Y × X. Let C(Y, X) denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X.
- Correspondences can be composed:

- Let X and Y be finite sets. A correspondence from X to Y is a subset of Y × X. Let C(Y, X) denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X.
- Correspondences can be composed: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$

- Let X and Y be finite sets. A correspondence from X to Y is a subset of Y × X. Let C(Y, X) denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X.
- Correspondences can be composed: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$, then

 $S \circ R$

- Let X and Y be finite sets. A correspondence from X to Y is a subset of Y × X. Let C(Y, X) denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X.
- Correspondences can be composed: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$, then

 $S \circ R(=SR)$

- Let X and Y be finite sets. A correspondence from X to Y is a subset of Y × X. Let C(Y, X) denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X.
- Correspondences can be composed: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$, then

$$S \circ R(=SR) = \{(z,x) \in Z \times X \mid \exists y \in Y, (z,y) \in S, (y,x) \in R\}$$

- Let X and Y be finite sets. A correspondence from X to Y is a subset of Y × X. Let C(Y, X) denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X.
- Correspondences can be composed: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$, then

$$S \circ R(=SR) = \{(z,x) \in Z \times X \mid \exists y \in Y, (z,y) \in S, (y,x) \in R\}$$

This composition is associative.

- Let X and Y be finite sets. A correspondence from X to Y is a subset of Y × X. Let C(Y, X) denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X.
- Correspondences can be composed: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$, then

$$S \circ R(=SR) = \{(z,x) \in Z \times X \mid \exists y \in Y, (z,y) \in S, (y,x) \in R\}$$

This composition is associative.

• In particular C(X, X) is a monoid

- Let X and Y be finite sets. A correspondence from X to Y is a subset of Y × X. Let C(Y, X) denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X.
- Correspondences can be composed: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$, then

$$S \circ R(=SR) = \{(z,x) \in Z \times X \mid \exists y \in Y, (z,y) \in S, (y,x) \in R\}$$

This composition is associative.

• In particular C(X, X) is a monoid, with identity element

$$\Delta_X = \{(x,x) \mid x \in X\} \subseteq X imes X$$
.

- Let X and Y be finite sets. A correspondence from X to Y is a subset of Y × X. Let C(Y, X) denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X.
- Correspondences can be composed: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$, then

$$S \circ R(=SR) = \{(z,x) \in Z \times X \mid \exists y \in Y, (z,y) \in S, (y,x) \in R\}$$

This composition is associative.

• In particular C(X, X) is a monoid, with identity element

$$\Delta_X = \{(x,x) \mid x \in X\} \subseteq X imes X$$
.

More generally

- Let X and Y be finite sets. A correspondence from X to Y is a subset of Y × X. Let C(Y, X) denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X.
- Correspondences can be composed: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$, then

$$S \circ R(=SR) = \{(z,x) \in Z \times X \mid \exists y \in Y, (z,y) \in S, (y,x) \in R\}$$

This composition is associative.

• In particular $\mathcal{C}(X, X)$ is a monoid, with identity element

$$\Delta_X = \{(x,x) \mid x \in X\} \subseteq X \times X \quad .$$

More generally

 $R\circ \Delta_X=R$ for any Y and any $R\in \mathcal{C}(Y,X)$

- Let X and Y be finite sets. A correspondence from X to Y is a subset of Y × X. Let C(Y, X) denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X.
- Correspondences can be composed: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$, then

$$S \circ R(=SR) = \{(z,x) \in Z \times X \mid \exists y \in Y, (z,y) \in S, (y,x) \in R\}$$

This composition is associative.

• In particular $\mathcal{C}(X, X)$ is a monoid, with identity element

$$\Delta_X = \{(x,x) \mid x \in X\} \subseteq X \times X \quad .$$

More generally

 $R \circ \Delta_X = R$ for any Y and any $R \in \mathcal{C}(Y, X)$, $\Delta_X \circ S = S$ for any Z and any $S \in \mathcal{C}(X, Z)$.

Serge Bouc (CNRS-LAMFA)

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - 釣A(で)

When k is a commutative ring

3

< □ > < ---->

When k is a commutative ring, let kC be the following category:
the objects of kC are the finite sets

- the objects of kC are the finite sets,
- $Hom_{k\mathcal{C}}(X, Y) = k\mathcal{C}(Y, X)$

- the objects of kC are the finite sets,
- $Hom_{k\mathcal{C}}(X, Y) = k\mathcal{C}(Y, X)$ (free k-module with basis $\mathcal{C}(Y, X)$)

- the objects of kC are the finite sets,
- $Hom_{k\mathcal{C}}(X,Y) = k\mathcal{C}(Y,X),$
- composition of morphisms extends composition of correspondences

• the objects of kC are the finite sets,

•
$$Hom_{k\mathcal{C}}(X,Y) = k\mathcal{C}(Y,X),$$

- composition of morphisms extends composition of correspondences,
- the identity morphism of X is $\Delta_X \in k\mathcal{C}(X, X)$.

• the objects of kC are the finite sets,

•
$$Hom_{k\mathcal{C}}(X,Y) = k\mathcal{C}(Y,X),$$

- composition of morphisms extends composition of correspondences,
- the identity morphism of X is $\Delta_X \in k\mathcal{C}(X, X)$.

A correspondence functor (over k) is a k-linear functor from kC to k-Mod.

• the objects of kC are the finite sets,

•
$$Hom_{k\mathcal{C}}(X, Y) = k\mathcal{C}(Y, X)$$
,

- composition of morphisms extends composition of correspondences,
- the identity morphism of X is $\Delta_X \in k\mathcal{C}(X, X)$.

A correspondence functor (over k) is a k-linear functor from kC to k-Mod. Let \mathcal{F}_k denote the category of correspondence functors over k.

• the objects of kC are the finite sets,

•
$$Hom_{k\mathcal{C}}(X,Y) = k\mathcal{C}(Y,X),$$

- composition of morphisms extends composition of correspondences,
- the identity morphism of X is $\Delta_X \in k\mathcal{C}(X, X)$.

A correspondence functor (over k) is a k-linear functor from kC to k-Mod. Let \mathcal{F}_k denote the category of correspondence functors over k. It is an abelian category.

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

• Yoneda functors $Y_{E,k} : X \mapsto k\mathcal{C}(X, E)$ (E fixed finite set)

Image: Image:

э

Yoneda functors Y_{E,k} : X → kC(X, E) e.g.
E = ∅:

э

Image: Image:

3

Yoneda functors Y_{E,k} : X → kC(X, E) e.g. E = Ø: then Y_{Ø,k}(X) ≅ k, ∀X.

э

< 一型

• Yoneda functors $Y_{E,k} : X \mapsto k\mathcal{C}(X, E)$ e.g.

•
$$E = \emptyset$$
: then $Y_{\emptyset,k}(X) \cong k, \ \forall X$.

•
$$E = \{\bullet\}$$
:

-

Image: Image:

3

• Yoneda functors $Y_{E,k} : X \mapsto k\mathcal{C}(X, E)$ e.g.

•
$$E = \emptyset$$
: then $Y_{\emptyset,k}(X) \cong k, \ \forall X_{.}$

•
$$E = \{\bullet\}$$
: then $Y_{\bullet,k}(X) \cong k(2^X), \forall X$.

-

Image: Image:

3

• Yoneda functors $Y_{E,k} : X \mapsto k\mathcal{C}(X, E)$ e.g.

•
$$E = \emptyset$$
: then $Y_{\emptyset,k}(X) \cong k, \ \forall X$.

•
$$E = \{\bullet\}$$
: then $Y_{\bullet,k}(X) \cong k(2^X), \forall X$.

The functor $Y_{E,k}$ is a projective object of \mathcal{F}_k , for any E.
• Yoneda functors $Y_{E,k} : X \mapsto k\mathcal{C}(X, E)$ e.g.

•
$$E = \emptyset$$
: then $Y_{\emptyset,k}(X) \cong k, \forall X$.

•
$$E = \{\bullet\}$$
: then $Y_{\bullet,k}(X) \cong k(2^X), \ \forall X$.

The functor $Y_{E,k}$ is a projective object of \mathcal{F}_k , for any E.

• Direct summands of Y_{E,k}:

• Yoneda functors $Y_{E,k} : X \mapsto k\mathcal{C}(X, E)$ e.g.

•
$$E = \emptyset$$
: then $Y_{\emptyset,k}(X) \cong k, \forall X$.
• $E = \{\bullet\}$: then $Y_{\bullet,k}(X) \cong k(2^X), \forall X$.

The functor $Y_{E,k}$ is a projective object of \mathcal{F}_k , for any E.

• Direct summands of $Y_{E,k}$: by Yoneda Lemma $End_{\mathcal{F}_k}(Y_{E,k}) \cong$

• Yoneda functors $Y_{E,k} : X \mapsto k\mathcal{C}(X, E)$ e.g.

The functor $Y_{E,k}$ is a projective object of \mathcal{F}_k , for any E.

 Direct summands of Y_{E,k}: by Yoneda Lemma End_{F_k}(Y_{E,k}) ≅ kC(E, E).

• Yoneda functors $Y_{E,k} : X \mapsto k\mathcal{C}(X, E)$ e.g.

•
$$E = \emptyset$$
: then $Y_{\emptyset,k}(X) \cong k, \forall X$.
• $E = \{\bullet\}$: then $Y_{\bullet,k}(X) \cong k(2^X), \forall X$.

The functor $Y_{E,k}$ is a projective object of \mathcal{F}_k , for any E.

• Direct summands of $Y_{E,k}$: by Yoneda Lemma $End_{\mathcal{F}_k}(Y_{E,k}) \cong k\mathcal{C}(E, E)$. Let R be a preorder on E

- Yoneda functors $Y_{E,k} : X \mapsto k\mathcal{C}(X, E)$ e.g.
 - *E* = Ø: then Y_{Ø,k}(X) ≅ k, ∀X.
 E = {●}: then Y_{●,k}(X) ≅ k(2^X), ∀X.

The functor $Y_{E,k}$ is a projective object of \mathcal{F}_k , for any E.

• Direct summands of $Y_{E,k}$: by Yoneda Lemma $End_{\mathcal{F}_k}(Y_{E,k}) \cong k\mathcal{C}(E, E)$. Let R be a preorder on E, i.e. $R \in \mathcal{C}(E, E)$ such that $\Delta_E \subseteq R = R^2$.

- Yoneda functors $Y_{E,k} : X \mapsto k\mathcal{C}(X, E)$ e.g.
 - $E = \emptyset$: then $Y_{\emptyset,k}(X) \cong k, \ \forall X$.
 - $E = \{\bullet\}$: then $Y_{\bullet,k}(X) \cong k(2^X), \forall X$.

The functor $Y_{E,k}$ is a projective object of \mathcal{F}_k , for any E.

• Direct summands of $Y_{E,k}$: by Yoneda Lemma $End_{\mathcal{F}_k}(Y_{E,k}) \cong k\mathcal{C}(E, E)$. Let R be a preorder on E, i.e. $R \in \mathcal{C}(E, E)$ such that $\Delta_E \subseteq R = R^2$. Then $Y_{E,k}R : X \mapsto k\mathcal{C}(X, E)R$ is a projective object of \mathcal{F}_k .

- Yoneda functors $Y_{E,k} : X \mapsto k\mathcal{C}(X, E)$ e.g.
 - $E = \emptyset$: then $Y_{\emptyset,k}(X) \cong k, \forall X$.
 - $E = \{\bullet\}$: then $Y_{\bullet,k}(X) \cong k(2^X), \forall X$.

The functor $Y_{E,k}$ is a projective object of \mathcal{F}_k , for any E.

Direct summands of Y_{E,k}: by Yoneda Lemma End_{F_k}(Y_{E,k}) ≅ kC(E, E). Let R be a preorder on E, i.e. R ∈ C(E, E) such that Δ_E ⊆ R = R². Then Y_{E,k}R : X → kC(X, E)R is a projective object of F_k.

Theorem

Let E be a finite set.

- Yoneda functors $Y_{E,k} : X \mapsto k\mathcal{C}(X, E)$ e.g.
 - $E = \emptyset$: then $Y_{\emptyset,k}(X) \cong k, \forall X$.
 - $E = \{\bullet\}$: then $Y_{\bullet,k}(X) \cong k(2^X), \forall X$.

The functor $Y_{E,k}$ is a projective object of \mathcal{F}_k , for any E.

Direct summands of Y_{E,k}: by Yoneda Lemma End_{F_k}(Y_{E,k}) ≅ kC(E, E). Let R be a preorder on E, i.e. R ∈ C(E, E) such that Δ_E ⊆ R = R². Then Y_{E,k}R : X → kC(X, E)R is a projective object of F_k.

Theorem

Let E be a finite set. Then $\mathcal{R}_E := k\mathcal{C}(E, E) \cong End_{\mathcal{F}_k}(Y_{E,k})$

- Yoneda functors $Y_{E,k} : X \mapsto k\mathcal{C}(X, E)$ e.g.
 - $E = \emptyset$: then $Y_{\emptyset,k}(X) \cong k, \forall X$.
 - $E = \{\bullet\}$: then $Y_{\bullet,k}(X) \cong k(2^X), \forall X$.

The functor $Y_{E,k}$ is a projective object of \mathcal{F}_k , for any E.

Direct summands of Y_{E,k}: by Yoneda Lemma End_{F_k}(Y_{E,k}) ≅ kC(E, E). Let R be a preorder on E, i.e. R ∈ C(E, E) such that Δ_E ⊆ R = R². Then Y_{E,k}R : X → kC(X, E)R is a projective object of F_k.

Theorem

Let E be a finite set. Then $\mathcal{R}_E := k\mathcal{C}(E, E) \cong End_{\mathcal{F}_k}(Y_{E,k})$ is a symmetric algebra (for an explicit symmetrizing form).

- 4 同 6 4 日 6 4 日 6

Bounded generation

Serge Bouc (CNRS-LAMFA)

э

- ∢ ศ⊒ ▶

2

Bounded generation - Finite generation

Definition

Let $M \in \mathcal{F}_k$.

- Let $M \in \mathcal{F}_k$.
 - M has bounded type

- Let $M \in \mathcal{F}_k$.
 - M has bounded type if there is a finite set E such that $M = \langle M(E) \rangle$.

- Let $M \in \mathcal{F}_k$.
 - M has bounded type if there is a finite set E such that $M = \langle M(E) \rangle$.
 - M is finitely generated

- Let $M \in \mathcal{F}_k$.
 - M has bounded type if there is a finite set E such that $M = \langle M(E) \rangle$.
 - *M* is finitely generated if moreover M(E) is a finitely generated *k*-module.

Definition

- Let $M \in \mathcal{F}_k$.
 - M has bounded type if there is a finite set E such that $M = \langle M(E) \rangle$.
 - *M* is finitely generated if moreover M(E) is a finitely generated *k*-module.

Theorem

Let $M \in \mathcal{F}_k$.

Definition

- Let $M \in \mathcal{F}_k$.
 - M has bounded type if there is a finite set E such that $M = \langle M(E) \rangle$.
 - *M* is finitely generated if moreover M(E) is a finitely generated *k*-module.

Theorem

Let $M \in \mathcal{F}_k$. The following are equivalent:

Definition

- Let $M \in \mathcal{F}_k$.
 - M has bounded type if there is a finite set E such that $M = \langle M(E) \rangle$.
 - *M* is finitely generated if moreover M(E) is a finitely generated *k*-module.

Theorem

Let $M \in \mathcal{F}_k$. The following are equivalent:

• *M* is finitely generated.

Definition

- Let $M \in \mathcal{F}_k$.
 - M has bounded type if there is a finite set E such that $M = \langle M(E) \rangle$.
 - *M* is finitely generated if moreover M(E) is a finitely generated *k*-module.

Theorem

Let $M \in \mathcal{F}_k$. The following are equivalent:

- M is finitely generated.
- **2** *M* is isomorphic to a quotient of a finite direct sum $\bigoplus_{i=1}^{n} Y_{E_i,k}$.

Definition

- Let $M \in \mathcal{F}_k$.
 - M has bounded type if there is a finite set E such that $M = \langle M(E) \rangle$.
 - *M* is finitely generated if moreover M(E) is a finitely generated *k*-module.

Theorem

Let $M \in \mathcal{F}_k$. The following are equivalent:

- M is finitely generated.
- *M* is isomorphic to a quotient of a finite direct sum $\bigoplus_{i=1}^{n} Y_{E_{i},k}$.

If moreover k is a field, these conditions are equivalent to:

Definition

- Let $M \in \mathcal{F}_k$.
 - M has bounded type if there is a finite set E such that $M = \langle M(E) \rangle$.
 - *M* is finitely generated if moreover M(E) is a finitely generated *k*-module.

Theorem

- Let $M \in \mathcal{F}_k$. The following are equivalent:
 - *M* is finitely generated.
 - M is isomorphic to a quotient of a finite direct sum $\bigoplus_{i=1}^{n} Y_{E_i,k}$.

If moreover k is a field, these conditions are equivalent to:

 there exist positive real numbers a, b, r such that dim_k M(X) ≤ ab^{|X|} for any finite set X with |X| ≥ r.

Definition

- Let $M \in \mathcal{F}_k$.
 - *M* has bounded type if there is a finite set *E* such that $M = \langle M(E) \rangle$.
 - *M* is finitely generated if moreover M(E) is a finitely generated *k*-module.

Theorem

- Let $M \in \mathcal{F}_k$. The following are equivalent:
 - *M* is finitely generated.
 - M is isomorphic to a quotient of a finite direct sum $\bigoplus_{i=1}^{n} Y_{E_i,k}$.

If moreover k is a field, these conditions are equivalent to:

- So there exist positive real numbers a, b, r such that dim_k M(X) ≤ ab^{|X|} for any finite set X with |X| ≥ r.
- M has finite length.

Serge Bouc (CNRS-LAMFA)

- 一司

3

Let $M \in \mathcal{F}_k$ and E be a finite set.

Let $M \in \mathcal{F}_k$ and E be a finite set. Define $\overline{M}(E) = M(E)/$

Let $M \in \mathcal{F}_k$ and E be a finite set. Define $\overline{M}(E) = M(E) / \sum_{|F| < |E|} kC(E, F)M(F).$

Let $M \in \mathcal{F}_k$ and E be a finite set. Define $\overline{M}(E) = M(E) / \sum_{|F| < |E|} k\mathcal{C}(E,F)M(F).$

Theorem

Let k be a noetherian (commutative) ring

Let $M \in \mathcal{F}_k$ and E be a finite set. Define $\overline{M}(E) = M(E) / \sum_{|F| < |E|} k\mathcal{C}(E,F)M(F).$

Theorem

Let k be a noetherian ring, let $M \subseteq L$ in \mathcal{F}_k

Let $M \in \mathcal{F}_k$ and E be a finite set. Define $\overline{M}(E) = M(E) / \sum_{|F| < |E|} k\mathcal{C}(E,F)M(F).$

Theorem

Let $M \in \mathcal{F}_k$ and E be a finite set. Define $\overline{M}(E) = M(E) / \sum_{|F| < |E|} k\mathcal{C}(E,F)M(F).$

Theorem

• If
$$L = \langle L(F) \rangle$$
 and $\overline{M}(E) \neq 0$

Let $M \in \mathcal{F}_k$ and E be a finite set. Define $\overline{M}(E) = M(E) / \sum_{|F| < |E|} k\mathcal{C}(E,F)M(F).$

Theorem

• If
$$L = \langle L(F) \rangle$$
 and $\overline{M}(E) \neq 0$, then $|E| \leq 2^{|F|}$.

Let $M \in \mathcal{F}_k$ and E be a finite set. Define $\overline{M}(E) = M(E) / \sum_{|F| < |E|} k C(E, F) M(F).$

Theorem

• If
$$L = \langle L(F) \rangle$$
 and $\overline{M}(E) \neq 0$, then $|E| \leq 2^{|F|}$.

$$If L = \langle L(F) \rangle and |E| \ge 2^{|F|}$$

Let $M \in \mathcal{F}_k$ and E be a finite set. Define $\overline{M}(E) = M(E) / \sum_{|F| < |E|} k C(E, F) M(F).$

Theorem

• If
$$L = \langle L(F) \rangle$$
 and $\overline{M}(E) \neq 0$, then $|E| \leq 2^{|F|}$.

2 If
$$L = \langle L(F) \rangle$$
 and $|E| \ge 2^{|F|}$, then $M = \langle M(E) \rangle$.

Let $M \in \mathcal{F}_k$ and E be a finite set. Define $\overline{M}(E) = M(E) / \sum_{|F| < |E|} k\mathcal{C}(E,F)M(F).$

Theorem

Let k be a noetherian ring, let $M \subseteq L$ in \mathcal{F}_k , and let E and F be finite sets.

• If
$$L = \langle L(F) \rangle$$
 and $\overline{M}(E) \neq 0$, then $|E| \leq 2^{|F|}$.

2 If
$$L = \langle L(F) \rangle$$
 and $|E| \ge 2^{|F|}$, then $M = \langle M(E) \rangle$.

3 If L has bounded type
Let $M \in \mathcal{F}_k$ and E be a finite set. Define $\overline{M}(E) = M(E) / \sum_{|F| < |E|} k\mathcal{C}(E,F)M(F).$

Theorem

Let k be a noetherian ring, let $M \subseteq L$ in \mathcal{F}_k , and let E and F be finite sets.

- If $L = \langle L(F) \rangle$ and $\overline{M}(E) \neq 0$, then $|E| \leq 2^{|F|}$.
- 2 If $L = \langle L(F) \rangle$ and $|E| \ge 2^{|F|}$, then $M = \langle M(E) \rangle$.
- If L has bounded type, then M has bounded type.

Let $M \in \mathcal{F}_k$ and E be a finite set. Define $\overline{M}(E) = M(E) / \sum_{|F| < |E|} k\mathcal{C}(E,F)M(F).$

Theorem

Let k be a noetherian ring, let $M \subseteq L$ in \mathcal{F}_k , and let E and F be finite sets.

- If $L = \langle L(F) \rangle$ and $\overline{M}(E) \neq 0$, then $|E| \leq 2^{|F|}$.
- 2 If $L = \langle L(F) \rangle$ and $|E| \ge 2^{|F|}$, then $M = \langle M(E) \rangle$.
- **If** *L* has bounded type, then *M* has bounded type.
- If L is finitely generated

Let $M \in \mathcal{F}_k$ and E be a finite set. Define $\overline{M}(E) = M(E) / \sum_{|F| < |E|} k\mathcal{C}(E,F)M(F).$

Theorem

Let k be a noetherian ring, let $M \subseteq L$ in \mathcal{F}_k , and let E and F be finite sets.

- If $L = \langle L(F) \rangle$ and $\overline{M}(E) \neq 0$, then $|E| \leq 2^{|F|}$.
- 2 If $L = \langle L(F) \rangle$ and $|E| \ge 2^{|F|}$, then $M = \langle M(E) \rangle$.
- **If** *L* has bounded type, then *M* has bounded type.
- **If** *L* is finitely generated, then *M* is finitely generated.

Let $M \in \mathcal{F}_k$ and E be a finite set. Define $\overline{M}(E) = M(E) / \sum_{|F| < |E|} k\mathcal{C}(E,F)M(F).$

Theorem

Let k be a noetherian ring, let $M \subseteq L$ in \mathcal{F}_k , and let E and F be finite sets.

- If $L = \langle L(F) \rangle$ and $\overline{M}(E) \neq 0$, then $|E| \leq 2^{|F|}$.
- **2** If $L = \langle L(F) \rangle$ and $|E| \ge 2^{|F|}$, then $M = \langle M(E) \rangle$.
- **If** *L* has bounded type, then *M* has bounded type.
- **If** *L* is finitely generated, then *M* is finitely generated.

Corollary

Let $M \in \mathcal{F}_k$ and E be a finite set. Define $\overline{M}(E) = M(E) / \sum_{|F| < |E|} k\mathcal{C}(E,F)M(F).$

Theorem

Let k be a noetherian ring, let $M \subseteq L$ in \mathcal{F}_k , and let E and F be finite sets.

- If $L = \langle L(F) \rangle$ and $\overline{M}(E) \neq 0$, then $|E| \leq 2^{|F|}$.
- **2** If $L = \langle L(F) \rangle$ and $|E| \ge 2^{|F|}$, then $M = \langle M(E) \rangle$.
- **If** *L* has bounded type, then *M* has bounded type.
- If L is finitely generated, then M is finitely generated.

Corollary

Functors of bounded type

Let $M \in \mathcal{F}_k$ and E be a finite set. Define $\overline{M}(E) = M(E) / \sum_{|F| < |E|} k\mathcal{C}(E,F)M(F).$

Theorem

Let k be a noetherian ring, let $M \subseteq L$ in \mathcal{F}_k , and let E and F be finite sets.

- If $L = \langle L(F) \rangle$ and $\overline{M}(E) \neq 0$, then $|E| \leq 2^{|F|}$.
- **2** If $L = \langle L(F) \rangle$ and $|E| \ge 2^{|F|}$, then $M = \langle M(E) \rangle$.
- **③** If L has bounded type, then M has bounded type.
- If L is finitely generated, then M is finitely generated.

Corollary

Functors of bounded type form an abelian subcategory \mathcal{F}_k^b of \mathcal{F}_k .

Let $M \in \mathcal{F}_k$ and E be a finite set. Define $\overline{M}(E) = M(E) / \sum_{|F| < |E|} k\mathcal{C}(E,F)M(F).$

Theorem

Let k be a noetherian ring, let $M \subseteq L$ in \mathcal{F}_k , and let E and F be finite sets.

- If $L = \langle L(F) \rangle$ and $\overline{M}(E) \neq 0$, then $|E| \leq 2^{|F|}$.
- **2** If $L = \langle L(F) \rangle$ and $|E| \ge 2^{|F|}$, then $M = \langle M(E) \rangle$.
- **③** If L has bounded type, then M has bounded type.
- **If** *L* is finitely generated, then *M* is finitely generated.

Corollary

Functors of bounded type form an abelian subcategory \mathcal{F}_k^b of \mathcal{F}_k . Finitely generated functors

Serge Bouc (CNRS-LAMFA)

Let $M \in \mathcal{F}_k$ and E be a finite set. Define $\overline{M}(E) = M(E) / \sum_{|F| < |E|} k\mathcal{C}(E,F)M(F).$

Theorem

Let k be a noetherian ring, let $M \subseteq L$ in \mathcal{F}_k , and let E and F be finite sets.

- If $L = \langle L(F) \rangle$ and $\overline{M}(E) \neq 0$, then $|E| \leq 2^{|F|}$.
- **2** If $L = \langle L(F) \rangle$ and $|E| \ge 2^{|F|}$, then $M = \langle M(E) \rangle$.
- **③** If L has bounded type, then M has bounded type.
- **9** If L is finitely generated, then M is finitely generated.

Corollary

Functors of bounded type form an abelian subcategory \mathcal{F}_k^b of \mathcal{F}_k . Finitely generated functors form an abelian subcategory \mathcal{F}_k^f of \mathcal{F}_k^b .

Serge Bouc (CNRS-LAMFA)

Evaluation - Adjunction

Serge Bouc (CNRS-LAMFA)

< m

æ

• Let *E* be a finite set.

э

• Let E be a finite set. The evaluation functor $M \in \mathcal{F}_k \mapsto M(E) \in \mathcal{R}_E ext{-Mod}$

• Let *E* be a finite set. The evaluation functor $M \in \mathcal{F}_k \mapsto M(E) \in \mathcal{R}_E$ -Mod has a left adjoint $V \mapsto \mathcal{L}_{E,V}$

• Let *E* be a finite set. The evaluation functor $M \in \mathcal{F}_k \mapsto M(E) \in \mathcal{R}_E$ -Mod has a left adjoint $V \mapsto \mathcal{L}_{E,V}$, defined by $X \mapsto \mathcal{L}_{E,V}(X) := k\mathcal{C}(X, E) \otimes_{\mathcal{R}_E} V.$

- Let *E* be a finite set. The evaluation functor $M \in \mathcal{F}_k \mapsto M(E) \in \mathcal{R}_E$ -Mod has a left adjoint $V \mapsto \mathcal{L}_{E,V}$, defined by $X \mapsto \mathcal{L}_{E,V}(X) := k\mathcal{C}(X, E) \otimes_{\mathcal{R}_E} V.$
- If V is projective

- Let *E* be a finite set. The evaluation functor $M \in \mathcal{F}_k \mapsto M(E) \in \mathcal{R}_E$ -Mod has a left adjoint $V \mapsto \mathcal{L}_{E,V}$, defined by $X \mapsto \mathcal{L}_{E,V}(X) := k\mathcal{C}(X, E) \otimes_{\mathcal{R}_E} V.$
- If V is projective (resp. indecomposable)

- Let *E* be a finite set. The evaluation functor $M \in \mathcal{F}_k \mapsto M(E) \in \mathcal{R}_E$ -Mod has a left adjoint $V \mapsto \mathcal{L}_{E,V}$, defined by $X \mapsto \mathcal{L}_{E,V}(X) := k\mathcal{C}(X, E) \otimes_{\mathcal{R}_E} V.$
- If V is projective (resp. indecomposable), so is $\mathcal{L}_{E,V}$.

- Let *E* be a finite set. The evaluation functor $M \in \mathcal{F}_k \mapsto M(E) \in \mathcal{R}_E$ -Mod has a left adjoint $V \mapsto \mathcal{L}_{E,V}$, defined by $X \mapsto \mathcal{L}_{E,V}(X) := k\mathcal{C}(X, E) \otimes_{\mathcal{R}_E} V.$
- If V is projective (resp. indecomposable), so is $\mathcal{L}_{E,V}$.
- If M is projective in \mathcal{F}_k

- Let *E* be a finite set. The evaluation functor $M \in \mathcal{F}_k \mapsto M(E) \in \mathcal{R}_E$ -Mod has a left adjoint $V \mapsto \mathcal{L}_{E,V}$, defined by $X \mapsto \mathcal{L}_{E,V}(X) := k\mathcal{C}(X, E) \otimes_{\mathcal{R}_E} V.$
- If V is projective (resp. indecomposable), so is $\mathcal{L}_{E,V}$.
- If *M* is projective in \mathcal{F}_k , and $M = \langle M(E) \rangle$

- Let *E* be a finite set. The evaluation functor $M \in \mathcal{F}_k \mapsto M(E) \in \mathcal{R}_E$ -Mod has a left adjoint $V \mapsto \mathcal{L}_{E,V}$, defined by $X \mapsto \mathcal{L}_{E,V}(X) := k\mathcal{C}(X, E) \otimes_{\mathcal{R}_E} V.$
- If V is projective (resp. indecomposable), so is $\mathcal{L}_{E,V}$.
- If *M* is projective in \mathcal{F}_k , and $M = \langle M(E) \rangle$, then $M \cong \mathcal{L}_{F,M(F)}$ for any finite set *F* with $|F| \ge |E|$

- Let *E* be a finite set. The evaluation functor $M \in \mathcal{F}_k \mapsto M(E) \in \mathcal{R}_E$ -Mod has a left adjoint $V \mapsto \mathcal{L}_{E,V}$, defined by $X \mapsto \mathcal{L}_{E,V}(X) := k\mathcal{C}(X, E) \otimes_{\mathcal{R}_E} V.$
- If V is projective (resp. indecomposable), so is $\mathcal{L}_{E,V}$.
- If *M* is projective in \mathcal{F}_k , and $M = \langle M(E) \rangle$, then $M \cong \mathcal{L}_{F,M(F)}$ for any finite set *F* with $|F| \ge |E|$, and M(F) is a projective \mathcal{R}_F -module.

- Let *E* be a finite set. The evaluation functor $M \in \mathcal{F}_k \mapsto M(E) \in \mathcal{R}_E$ -Mod has a left adjoint $V \mapsto \mathcal{L}_{E,V}$, defined by $X \mapsto \mathcal{L}_{E,V}(X) := k\mathcal{C}(X, E) \otimes_{\mathcal{R}_E} V.$
- If V is projective (resp. indecomposable), so is $\mathcal{L}_{E,V}$.
- If *M* is projective in \mathcal{F}_k , and $M = \langle M(E) \rangle$, then $M \cong \mathcal{L}_{F,M(F)}$ for any finite set *F* with $|F| \ge |E|$, and M(F) is a projective \mathcal{R}_F -module.
- If k is a field, any finitely generated projective in \mathcal{F}_k is also injective.

- Let *E* be a finite set. The evaluation functor $M \in \mathcal{F}_k \mapsto M(E) \in \mathcal{R}_E$ -Mod has a left adjoint $V \mapsto \mathcal{L}_{E,V}$, defined by $X \mapsto \mathcal{L}_{E,V}(X) := k\mathcal{C}(X, E) \otimes_{\mathcal{R}_E} V.$
- If V is projective (resp. indecomposable), so is $\mathcal{L}_{E,V}$.
- If *M* is projective in \mathcal{F}_k , and $M = \langle M(E) \rangle$, then $M \cong \mathcal{L}_{F,M(F)}$ for any finite set *F* with $|F| \ge |E|$, and M(F) is a projective \mathcal{R}_F -module.
- If k is a field, any finitely generated projective in \mathcal{F}_k is also injective. \mathcal{F}_k^f has infinite global dimension.

Evaluation - Stability

Serge Bouc (CNRS-LAMFA)

< □ > < ---->

æ

Let k be a noetherian ring, let $M, N \in \mathcal{F}_k$, and let E, F be finite sets.

Let k be a noetherian ring, let $M, N \in \mathcal{F}_k$, and let E, F be finite sets.

• If $M = \langle M(E) \rangle$

Let k be a noetherian ring, let $M, N \in \mathcal{F}_k$, and let E, F be finite sets.

• If $M = \langle M(E) \rangle$, then for $|F| \ge 2^{|E|}$

Let k be a noetherian ring, let $M, N \in \mathcal{F}_k$, and let E, F be finite sets.

• If $M = \langle M(E) \rangle$, then for $|F| \ge 2^{|E|}$, the evaluation map $Hom_{\mathcal{F}_k}(M, N) \to Hom_{\mathcal{R}_F}(M(F), N(F))$

Let k be a noetherian ring, let $M, N \in \mathcal{F}_k$, and let E, F be finite sets.

• If $M = \langle M(E) \rangle$, then for $|F| \ge 2^{|E|}$, the evaluation map $Hom_{\mathcal{F}_k}(M, N) \to Hom_{\mathcal{R}_F}(M(F), N(F))$

is an isomorphism.

Let k be a noetherian ring, let $M, N \in \mathcal{F}_k$, and let E, F be finite sets.

• If $M = \langle M(E) \rangle$, then for $|F| \ge 2^{|E|}$, the evaluation map $Hom_{\mathcal{F}_k}(M, N) \to Hom_{\mathcal{R}_F}(M(F), N(F))$

is an isomorphism.

If M has bounded type

Let k be a noetherian ring, let $M, N \in \mathcal{F}_k$, and let E, F be finite sets.

- If $M = \langle M(E) \rangle$, then for $|F| \ge 2^{|E|}$, the evaluation map $Hom_{\mathcal{F}_k}(M, N) \to Hom_{\mathcal{R}_F}(M(F), N(F))$
 - is an isomorphism.
- **2** If *M* has bounded type, then for any $i \in \mathbb{N}$, there exists $n_i \in \mathbb{N}$

Let k be a noetherian ring, let $M, N \in \mathcal{F}_k$, and let E, F be finite sets.

• If $M = \langle M(E) \rangle$, then for $|F| \ge 2^{|E|}$, the evaluation map $Hom_{\mathcal{F}_k}(M, N) \to Hom_{\mathcal{R}_F}(M(F), N(F))$

is an isomorphism.

If M has bounded type, then for any i ∈ N, there exists n_i ∈ N such that if |F| ≥ n_i

Let k be a noetherian ring, let $M, N \in \mathcal{F}_k$, and let E, F be finite sets.

• If
$$M = \langle M(E) \rangle$$
, then for $|F| \ge 2^{|E|}$, the evaluation map
 $Hom_{\mathcal{F}_k}(M, N) \to Hom_{\mathcal{R}_F}(M(F), N(F))$

is an isomorphism.

② If *M* has bounded type, then for any *i* ∈ \mathbb{N} , there exists $n_i \in \mathbb{N}$ such that if $|F| \ge n_i$, the map

 $Ext^{i}_{\mathcal{F}_{k}}(M,N) \rightarrow Ext^{i}_{\mathcal{R}_{F}}(M(F),N(F))$

Let k be a noetherian ring, let $M, N \in \mathcal{F}_k$, and let E, F be finite sets.

• If
$$M = \langle M(E) \rangle$$
, then for $|F| \ge 2^{|E|}$, the evaluation map
 $Hom_{\mathcal{F}_k}(M, N) \to Hom_{\mathcal{R}_F}(M(F), N(F))$

is an isomorphism.

If M has bounded type, then for any i ∈ N, there exists n_i ∈ N such that if |F| ≥ n_i, the map
Extⁱ_{F_i}(M, N) → Extⁱ_{R_F}(M(F), N(F))

is an isomorphism.

Let k be a noetherian ring, let $M, N \in \mathcal{F}_k$, and let E, F be finite sets.

• If
$$M = \langle M(E) \rangle$$
, then for $|F| \ge 2^{|E|}$, the evaluation map
 $Hom_{\mathcal{F}_k}(M, N) \to Hom_{\mathcal{R}_F}(M(F), N(F))$

is an isomorphism.

If M has bounded type, then for any i ∈ N, there exists n_i ∈ N such that if |F| ≥ n_i, the map
Extⁱ_{F_i}(M, N) → Extⁱ_{R_F}(M(F), N(F))

is an isomorphism.

- 一司

3

An equivalence of categories

Definition

Let \mathcal{G}_k be the following category:
Definition

- Let \mathcal{G}_k be the following category:
 - the objects are pairs (E, U)

Definition

Let \mathcal{G}_k be the following category:

• the objects are pairs (E, U), where E is a finite set

Definition

- Let \mathcal{G}_k be the following category:
 - the objects are pairs (E, U), where E is a finite set, and U is an \mathcal{R}_E -module.

Definition

- Let \mathcal{G}_k be the following category:
 - the objects are pairs (E, U), where E is a finite set, and U is an \mathcal{R}_E -module.
 - a morphism $(E, U) \rightarrow (F, V)$

Definition

- Let \mathcal{G}_k be the following category:
 - the objects are pairs (E, U), where E is a finite set, and U is an \mathcal{R}_E -module.

• a morphism $(E, U) \to (F, V)$ is a morphism of \mathcal{R}_E -modules $U \to k\mathcal{C}(E, F) \otimes_{\mathcal{R}_F} V$.

Definition

- Let \mathcal{G}_k be the following category:
 - the objects are pairs (E, U), where E is a finite set, and U is an \mathcal{R}_E -module.
 - a morphism $(E, U) \rightarrow (F, V)$ is a morphism of \mathcal{R}_E -modules $U \rightarrow k\mathcal{C}(E, F) \otimes_{\mathcal{R}_F} V$.
 - the composition of

 $U \to k\mathcal{C}(E,F) \otimes_{\mathcal{R}_F} V$ and $V \to k\mathcal{C}(F,G) \otimes_{\mathcal{R}_G} W$

Definition

- Let \mathcal{G}_k be the following category:
 - the objects are pairs (E, U), where E is a finite set, and U is an \mathcal{R}_E -module.
 - a morphism $(E, U) \rightarrow (F, V)$ is a morphism of \mathcal{R}_E -modules $U \rightarrow k\mathcal{C}(E, F) \otimes_{\mathcal{R}_F} V$.
 - the composition of

 $\begin{array}{l} U \to k\mathcal{C}(E,F) \otimes_{\mathcal{R}_F} V \text{ and } V \to k\mathcal{C}(F,G) \otimes_{\mathcal{R}_G} W \\ \text{is } U \to k\mathcal{C}(E,F) \otimes_{\mathcal{R}_F} V \end{array}$

Definition

- Let \mathcal{G}_k be the following category:
 - the objects are pairs (E, U), where E is a finite set, and U is an \mathcal{R}_E -module.
 - a morphism $(E, U) \rightarrow (F, V)$ is a morphism of \mathcal{R}_E -modules $U \rightarrow k\mathcal{C}(E, F) \otimes_{\mathcal{R}_F} V$.
 - the composition of

 $U \to k\mathcal{C}(E, F) \otimes_{\mathcal{R}_F} V \text{ and } V \to k\mathcal{C}(F, G) \otimes_{\mathcal{R}_G} W$ is $U \to k\mathcal{C}(E, F) \otimes_{\mathcal{R}_F} V \to k\mathcal{C}(E, F) \otimes_{\mathcal{R}_F} \frac{k\mathcal{C}(F, G) \otimes_{\mathcal{R}_G} W}{k\mathcal{C}(F, G) \otimes_{\mathcal{R}_G} W}$

Definition

- Let \mathcal{G}_k be the following category:
 - the objects are pairs (E, U), where E is a finite set, and U is an \mathcal{R}_E -module.
 - a morphism $(E, U) \rightarrow (F, V)$ is a morphism of \mathcal{R}_E -modules $U \rightarrow k\mathcal{C}(E, F) \otimes_{\mathcal{R}_F} V$.
 - the composition of

 $U \to k\mathcal{C}(E, F) \otimes_{\mathcal{R}_F} V \text{ and } V \to k\mathcal{C}(F, G) \otimes_{\mathcal{R}_G} W$ is $U \to k\mathcal{C}(E, F) \otimes_{\mathcal{R}_F} V \to k\mathcal{C}(E, F) \otimes_{\mathcal{R}_F} k\mathcal{C}(F, G) \otimes_{\mathcal{R}_G} W$

Definition

- Let \mathcal{G}_k be the following category:
 - the objects are pairs (E, U), where E is a finite set, and U is an \mathcal{R}_E -module.
 - a morphism (E, U) → (F, V) is a morphism of R_E-modules
 U → kC(E, F) ⊗_{R_F} V.
 - the composition of

 $U \to k\mathcal{C}(E,F) \otimes_{\mathcal{R}_F} V \text{ and } V \to k\mathcal{C}(F,G) \otimes_{\mathcal{R}_G} W$ is $U \to k\mathcal{C}(E,F) \otimes_{\mathcal{R}_F} V \to k\mathcal{C}(E,F) \otimes_{\mathcal{R}_F} k\mathcal{C}(F,G) \otimes_{\mathcal{R}_G} W$ $\to k\mathcal{C}(E,G)$

Definition

- Let \mathcal{G}_k be the following category:
 - the objects are pairs (E, U), where E is a finite set, and U is an \mathcal{R}_E -module.
 - a morphism (E, U) → (F, V) is a morphism of R_E-modules
 U → kC(E, F) ⊗_{R_F} V.
 - the composition of

 $U \to k\mathcal{C}(E,F) \otimes_{\mathcal{R}_F} V \text{ and } V \to k\mathcal{C}(F,G) \otimes_{\mathcal{R}_G} W$ is $U \to k\mathcal{C}(E,F) \otimes_{\mathcal{R}_F} V \to k\mathcal{C}(E,F) \otimes_{\mathcal{R}_F} k\mathcal{C}(F,G) \otimes_{\mathcal{R}_G} W$ $\to k\mathcal{C}(E,G) \otimes_{\mathcal{R}_G} W$

Definition

- Let \mathcal{G}_k be the following category:
 - the objects are pairs (E, U), where E is a finite set, and U is an \mathcal{R}_E -module.
 - a morphism $(E, U) \rightarrow (F, V)$ is a morphism of \mathcal{R}_E -modules $U \rightarrow k\mathcal{C}(E, F) \otimes_{\mathcal{R}_F} V$.
 - the composition of $U \to k\mathcal{C}(E, F) \otimes_{\mathcal{R}_F} V$ and $V \to k\mathcal{C}(F, G) \otimes_{\mathcal{R}_G} W$ is $U \to k\mathcal{C}(E, F) \otimes_{\mathcal{R}_F} V \to k\mathcal{C}(E, F) \otimes_{\mathcal{R}_F} k\mathcal{C}(F, G) \otimes_{\mathcal{R}_G} W$ $\to k\mathcal{C}(E, G) \otimes_{\mathcal{R}_G} W$

• the identity morphism of (E, U)

Definition

- Let \mathcal{G}_k be the following category:
 - the objects are pairs (E, U), where E is a finite set, and U is an \mathcal{R}_E -module.
 - a morphism (E, U) → (F, V) is a morphism of R_E-modules
 U → kC(E, F) ⊗_{R_F} V.
 - the composition of

 $U \to k\mathcal{C}(E, F) \otimes_{\mathcal{R}_F} V \text{ and } V \to k\mathcal{C}(F, G) \otimes_{\mathcal{R}_G} W$ is $U \to k\mathcal{C}(E, F) \otimes_{\mathcal{R}_F} V \to k\mathcal{C}(E, F) \otimes_{\mathcal{R}_F} k\mathcal{C}(F, G) \otimes_{\mathcal{R}_G} W$ $\to k\mathcal{C}(E, G) \otimes_{\mathcal{R}_G} W$ • the identity morphism of (E, U) is $U \stackrel{\cong}{\to} k\mathcal{C}(E, E) \otimes_{\mathcal{R}_F} U$.

Definition

- Let \mathcal{G}_k be the following category:
 - the objects are pairs (E, U), where E is a finite set, and U is an \mathcal{R}_E -module.
 - a morphism $(E, U) \rightarrow (F, V)$ is a morphism of \mathcal{R}_E -modules $U \rightarrow k\mathcal{C}(E, F) \otimes_{\mathcal{R}_F} V$.
 - the composition of

$$U \to k\mathcal{C}(E, F) \otimes_{\mathcal{R}_F} V \text{ and } V \to k\mathcal{C}(F, G) \otimes_{\mathcal{R}_G} W$$

is $U \to k\mathcal{C}(E, F) \otimes_{\mathcal{R}_F} V \to k\mathcal{C}(E, F) \otimes_{\mathcal{R}_F} k\mathcal{C}(F, G) \otimes_{\mathcal{R}_G} W$
 $\to k\mathcal{C}(E, G) \otimes_{\mathcal{R}_G} W$
he identity morphism of (E, U) is $U \stackrel{\cong}{\to} k\mathcal{C}(E, E) \otimes_{\mathcal{R}_F} U$.

Theorem

t

• The assignment $(E, U) \mapsto \mathcal{L}_{E,U}$ is a fully faithful k-linear functor $\mathcal{G}_k \to \mathcal{F}_k^b$.

Definition

- Let \mathcal{G}_k be the following category:
 - the objects are pairs (E, U), where E is a finite set, and U is an \mathcal{R}_E -module.
 - a morphism (E, U) → (F, V) is a morphism of R_E-modules
 U → kC(E, F) ⊗_{R_F} V.
 - the composition of

$$U \to k\mathcal{C}(E,F) \otimes_{\mathcal{R}_F} V \text{ and } V \to k\mathcal{C}(F,G) \otimes_{\mathcal{R}_G} W$$

is $U \to k\mathcal{C}(E,F) \otimes_{\mathcal{R}_F} V \to k\mathcal{C}(E,F) \otimes_{\mathcal{R}_F} k\mathcal{C}(F,G) \otimes_{\mathcal{R}_G} W$
 $\to k\mathcal{C}(E,G) \otimes_{\mathcal{R}_G} W$
he identity morphism of (E,U) is $U \stackrel{\cong}{\to} k\mathcal{C}(E,E) \otimes_{\mathcal{R}_F} U$.

Theorem

t

The assignment (E, U) → L_{E,U} is a fully faithful k-linear functor G_k → F^b_k.
 When k is noetherian, it is an equivalence of categories

Definition

- Let \mathcal{G}_k be the following category:
 - the objects are pairs (E, U), where E is a finite set, and U is an \mathcal{R}_E -module.
 - a morphism $(E, U) \rightarrow (F, V)$ is a morphism of \mathcal{R}_E -modules $U \rightarrow k\mathcal{C}(E, F) \otimes_{\mathcal{R}_F} V$.
 - the composition of

$$U \to k\mathcal{C}(E,F) \otimes_{\mathcal{R}_F} V \text{ and } V \to k\mathcal{C}(F,G) \otimes_{\mathcal{R}_G} W$$

is $U \to k\mathcal{C}(E,F) \otimes_{\mathcal{R}_F} V \to k\mathcal{C}(E,F) \otimes_{\mathcal{R}_F} k\mathcal{C}(F,G) \otimes_{\mathcal{R}_G} W$
 $\to k\mathcal{C}(E,G) \otimes_{\mathcal{R}_G} W$
• the identity morphism of (E,U) is $U \xrightarrow{\cong} k\mathcal{C}(E,E) \otimes_{\mathcal{R}_F} U$.

Theorem

The assignment (E, U) → L_{E,U} is a fully faithful k-linear functor G_k → F^b_k.
When k is noetherian, it is an equivalence of categories. In particular G_k is abelian.

Serge Bouc (CNRS-LAMFA)

Serge Bouc (CNRS-LAMFA)

æ

• If V is a simple \mathcal{R}_E -module

э

If V is a simple R_E-module, then L_{E,V} has a unique maximal subfunctor J_{E,V}

• If V is a simple \mathcal{R}_E -module, then $\mathcal{L}_{E,V}$ has a unique maximal subfunctor $J_{E,V}$, so $S_{E,V} = \mathcal{L}_{E,V}/J_{E,V}$ is a simple functor.

- If V is a simple \mathcal{R}_E -module, then $\mathcal{L}_{E,V}$ has a unique maximal subfunctor $J_{E,V}$, so $S_{E,V} = \mathcal{L}_{E,V}/J_{E,V}$ is a simple functor.
- Conversely, if $S \in \mathcal{F}_k$ is simple

- If V is a simple \mathcal{R}_E -module, then $\mathcal{L}_{E,V}$ has a unique maximal subfunctor $J_{E,V}$, so $S_{E,V} = \mathcal{L}_{E,V}/J_{E,V}$ is a simple functor.
- Conversely, if $S \in \mathcal{F}_k$ is simple, and if $V = S(E) \neq 0$

- If V is a simple \mathcal{R}_E -module, then $\mathcal{L}_{E,V}$ has a unique maximal subfunctor $J_{E,V}$, so $S_{E,V} = \mathcal{L}_{E,V}/J_{E,V}$ is a simple functor.
- Conversely, if $S \in \mathcal{F}_k$ is simple, and if $V = S(E) \neq 0$, then V is a simple \mathcal{R}_E -module

- If V is a simple \mathcal{R}_E -module, then $\mathcal{L}_{E,V}$ has a unique maximal subfunctor $J_{E,V}$, so $S_{E,V} = \mathcal{L}_{E,V}/J_{E,V}$ is a simple functor.
- Conversely, if $S \in \mathcal{F}_k$ is simple, and if $V = S(E) \neq 0$, then V is a simple \mathcal{R}_E -module, and $S \cong S_{E,V}$.

- If V is a simple \mathcal{R}_E -module, then $\mathcal{L}_{E,V}$ has a unique maximal subfunctor $J_{E,V}$, so $S_{E,V} = \mathcal{L}_{E,V}/J_{E,V}$ is a simple functor.
- Conversely, if S ∈ F_k is simple, and if V = S(E) ≠ 0, then V is a simple R_E-module, and S ≅ S_{E,V}.
- If moreover E is minimal such that $S(E) \neq 0$

- If V is a simple \mathcal{R}_E -module, then $\mathcal{L}_{E,V}$ has a unique maximal subfunctor $J_{E,V}$, so $S_{E,V} = \mathcal{L}_{E,V}/J_{E,V}$ is a simple functor.
- Conversely, if S ∈ F_k is simple, and if V = S(E) ≠ 0, then V is a simple R_E-module, and S ≅ S_{E,V}.
- If moreover E is minimal such that S(E) ≠ 0, then V = S(E) is a module for the algebra of essential relations on E

- If V is a simple \mathcal{R}_E -module, then $\mathcal{L}_{E,V}$ has a unique maximal subfunctor $J_{E,V}$, so $S_{E,V} = \mathcal{L}_{E,V}/J_{E,V}$ is a simple functor.
- Conversely, if S ∈ F_k is simple, and if V = S(E) ≠ 0, then V is a simple R_E-module, and S ≅ S_{E,V}.
- If moreover E is minimal such that $S(E) \neq 0$, then V = S(E) is a module for the algebra of essential relations on E

$$\mathcal{E}_E = k\mathcal{C}(E, E) / \sum_{|F| < |E|} k\mathcal{C}(E, F)\mathcal{C}(F, E).$$

- If V is a simple \mathcal{R}_E -module, then $\mathcal{L}_{E,V}$ has a unique maximal subfunctor $J_{E,V}$, so $S_{E,V} = \mathcal{L}_{E,V}/J_{E,V}$ is a simple functor.
- Conversely, if S ∈ F_k is simple, and if V = S(E) ≠ 0, then V is a simple R_E-module, and S ≅ S_{E,V}.
- If moreover E is minimal such that S(E) ≠ 0, then V = S(E) is a module for the algebra of essential relations on E

 *E*_E = kC(E, E) / ∑_{|F|<|E|} kC(E, F)C(F, E).

• Let R be a partial order on E.

- If V is a simple \mathcal{R}_E -module, then $\mathcal{L}_{E,V}$ has a unique maximal subfunctor $J_{E,V}$, so $S_{E,V} = \mathcal{L}_{E,V}/J_{E,V}$ is a simple functor.
- Conversely, if S ∈ F_k is simple, and if V = S(E) ≠ 0, then V is a simple R_E-module, and S ≅ S_{E,V}.
- If moreover E is minimal such that $S(E) \neq 0$, then V = S(E) is a module for the algebra of essential relations on E $\mathcal{E}_E = k\mathcal{C}(E, E) / \sum_{|F| \le |E|} k\mathcal{C}(E, F)\mathcal{C}(F, E).$
- Let *R* be a partial order on *E*. There exists a fundamental \mathcal{E}_E -module $\mathcal{P}_E f_R$

- If V is a simple \mathcal{R}_E -module, then $\mathcal{L}_{E,V}$ has a unique maximal subfunctor $J_{E,V}$, so $S_{E,V} = \mathcal{L}_{E,V}/J_{E,V}$ is a simple functor.
- Conversely, if S ∈ F_k is simple, and if V = S(E) ≠ 0, then V is a simple R_E-module, and S ≅ S_{E,V}.
- If moreover E is minimal such that $S(E) \neq 0$, then V = S(E) is a module for the algebra of essential relations on E $\mathcal{E}_E = k\mathcal{C}(E, E) / \sum_{|F| \le |E|} k\mathcal{C}(E, F)\mathcal{C}(F, E).$
- Let R be a partial order on E. There exists a fundamental \mathcal{E}_E -module $\mathcal{P}_E f_R$ endowed with a right kAut(E, R)-action

- If V is a simple \mathcal{R}_E -module, then $\mathcal{L}_{E,V}$ has a unique maximal subfunctor $J_{E,V}$, so $S_{E,V} = \mathcal{L}_{E,V}/J_{E,V}$ is a simple functor.
- Conversely, if S ∈ F_k is simple, and if V = S(E) ≠ 0, then V is a simple R_E-module, and S ≅ S_{E,V}.
- If moreover E is minimal such that S(E) ≠ 0, then V = S(E) is a module for the algebra of essential relations on E

 *E*_E = kC(E, E) / ∑_{|F|<|E|} kC(E, F)C(F, E).
- Let R be a partial order on E. There exists a fundamental \mathcal{E}_E -module $\mathcal{P}_E f_R$ endowed with a right kAut(E, R)-action such that $\mathcal{P}_E f_R \otimes_{kAut(E,R)} W$ is a simple \mathcal{E}_E -module

- If V is a simple \mathcal{R}_E -module, then $\mathcal{L}_{E,V}$ has a unique maximal subfunctor $J_{E,V}$, so $S_{E,V} = \mathcal{L}_{E,V}/J_{E,V}$ is a simple functor.
- Conversely, if S ∈ F_k is simple, and if V = S(E) ≠ 0, then V is a simple R_E-module, and S ≅ S_{E,V}.
- If moreover E is minimal such that $S(E) \neq 0$, then V = S(E) is a module for the algebra of essential relations on E $\mathcal{E}_E = k\mathcal{C}(E, E) / \sum_{|F| \le |E|} k\mathcal{C}(E, F)\mathcal{C}(F, E).$
- Let *R* be a partial order on *E*. There exists a fundamental \mathcal{E}_E -module $\mathcal{P}_E f_R$ endowed with a right kAut(E, R)-action such that $\mathcal{P}_E f_R \otimes_{kAut(E,R)} W$ is a simple \mathcal{E}_E -module for any simple kAut(E, R)-module *W*.

- If V is a simple \mathcal{R}_E -module, then $\mathcal{L}_{E,V}$ has a unique maximal subfunctor $J_{E,V}$, so $S_{E,V} = \mathcal{L}_{E,V}/J_{E,V}$ is a simple functor.
- Conversely, if S ∈ F_k is simple, and if V = S(E) ≠ 0, then V is a simple R_E-module, and S ≅ S_{E,V}.
- If moreover E is minimal such that $S(E) \neq 0$, then V = S(E) is a module for the algebra of essential relations on E $\mathcal{E}_E = k\mathcal{C}(E, E) / \sum_{|F| \le |E|} k\mathcal{C}(E, F)\mathcal{C}(F, E).$
- Let R be a partial order on E. There exists a fundamental \mathcal{E}_E -module $\mathcal{P}_E f_R$ endowed with a right kAut(E, R)-action such that $\mathcal{P}_E f_R \otimes_{kAut(E,R)} W$ is a simple \mathcal{E}_E -module for any simple kAut(E, R)-module W. Any simple \mathcal{E}_E -module is obtained in this way.

10 / 1

- If V is a simple \mathcal{R}_E -module, then $\mathcal{L}_{E,V}$ has a unique maximal subfunctor $J_{E,V}$, so $S_{E,V} = \mathcal{L}_{E,V}/J_{E,V}$ is a simple functor.
- Conversely, if S ∈ F_k is simple, and if V = S(E) ≠ 0, then V is a simple R_E-module, and S ≅ S_{E,V}.
- If moreover E is minimal such that $S(E) \neq 0$, then V = S(E) is a module for the algebra of essential relations on E $\mathcal{E}_E = k\mathcal{C}(E, E) / \sum_{|F| \le |E|} k\mathcal{C}(E, F)\mathcal{C}(F, E).$
- Let R be a partial order on E. There exists a fundamental \mathcal{E}_E -module $\mathcal{P}_E f_R$ endowed with a right kAut(E, R)-action such that $\mathcal{P}_E f_R \otimes_{kAut(E,R)} W$ is a simple \mathcal{E}_E -module for any simple kAut(E, R)-module W. Any simple \mathcal{E}_E -module is obtained in this way.
- There is an associated fundamental functor $S_{E,R} = S_{E,\mathcal{P}_E f_R}$.

10 / 1

Serge Bouc (CNRS-LAMFA)

3

Theorem

Serge Bouc (CNRS-LAMFA)

< 4 ► >

2

Theorem

Serge Bouc (CNRS-LAMFA)

< 4 ► >

Theorem

There is a bijection

- 一司

Theorem

There is a bijection

Simple correspondence functors over *k*

up to isomorphism

э

Theorem

There is a bijection

Simple correspondence functors over k

up to isomorphism

 \leftrightarrow

Theorem

There is a bijection

Simple correspondence functors over k

up to isomorphism

 \leftrightarrow

Theorem

There is a bijection

Simple correspondence functors over *k*

up to isomorphism

 \leftrightarrow

Triples (E, R, W)

E finite set R partial order on E

Theorem

There is a bijection

Simple correspondence functors over k

up to isomorphism

 \leftrightarrow

Triples (E, R, W)

E finite set

R partial order on *E W* simple kAut(*E*, *R*)-module

Theorem

There is a bijection

Simple correspondence functors over *k*

up to isomorphism

 \leftrightarrow

Triples (E, R, W)

 $\left\{\begin{array}{l} E \text{ finite set} \\ R \text{ partial order on } E \\ W \text{ simple } kAut(E, R)\text{-module} \\ up \text{ to isomorphism.} \end{array}\right.$

Theorem

There is a bijection

Theorem

There is a bijection

Examples:

3

Theorem

Examples: Let *k* be a field.

Theorem

Examples: Let k be a field.

• The functor $Y_{\emptyset,k}$

Theorem

Examples: Let *k* be a field.

• The functor $Y_{\emptyset,k}$ is simple

Theorem

Examples: Let *k* be a field.

• The functor $Y_{\emptyset,k}$ is simple (and projective

Theorem

Examples: Let *k* be a field.

• The functor $Y_{\emptyset,k}$ is simple (and projective, and injective)

Theorem

Examples: Let *k* be a field.

 The functor Y_{Ø,k} is simple (and projective, and injective), isomorphic to S_{Ø,tot,k}.

Theorem

Examples: Let *k* be a field.

- The functor Y_{Ø,k} is simple (and projective, and injective), isomorphic to S_{Ø,tot,k}.
- The functor $Y_{\bullet,k}$

Theorem

Examples: Let k be a field.

- The functor Y_{Ø,k} is simple (and projective, and injective), isomorphic to S_{Ø,tot,k}.
- The functor $Y_{\bullet,k}$ is semisimple

Theorem

Examples: Let k be a field.

- The functor Y_{Ø,k} is simple (and projective, and injective), isomorphic to S_{Ø,tot,k}.
- The functor $Y_{\bullet,k}$ is semisimple (and projective

Theorem

Examples: Let k be a field.

- The functor Y_{Ø,k} is simple (and projective, and injective), isomorphic to S_{Ø,tot,k}.
- The functor $Y_{\bullet,k}$ is semisimple (and projective, and injective)

Theorem

Examples: Let k be a field.

- The functor Y_{Ø,k} is simple (and projective, and injective), isomorphic to S_{Ø,tot,k}.
- The functor $Y_{\bullet,k}$ is semisimple (and projective, and injective), isomorphic to $S_{\emptyset,tot,k} \oplus S_{\bullet,tot,k}$.

Serge Bouc (CNRS-LAMFA)

- 一司

• Let $T = (T, \lor, \land)$ be a finite lattice.

Serge Bouc (CNRS-LAMFA)

- 一司

• Let
$$T = (T, \lor, \land)$$
 be a finite lattice.

• For a finite set X

- 一司

- Let $T = (T, \lor, \land)$ be a finite lattice.
 - For a finite set X, set $F_T(X) = k(T^X)$.

э

• Let
$$T = (T, \lor, \land)$$
 be a finite lattice

• For a finite set X, set $F_T(X) = k(T^X)$.

• For
$$R \in \mathcal{C}(Y, X)$$
 and $\varphi: X o T$

• Let
$$T = (T, \lor, \land)$$
 be a finite lattice.

- For a finite set X, set $F_T(X) = k(T^X)$.
- For $R \in \mathcal{C}(Y, X)$ and $\varphi: X \to T$, define $R\varphi: Y \to T$ by

- 一司

- 一司

- 一司

Theorem

3

< □ > < ---->

Theorem

1 F_T is a correspondence functor.

Theorem

1 F_T is a correspondence functor.

2 F_T is projective in $\mathcal{F}_k \iff$

Theorem

1 F_{T} is a correspondence functor.

2 F_T is projective in $\mathcal{F}_k \iff T$ is distributive.

Theorem

- F_T is a correspondence functor.
- **2** F_T is projective in $\mathcal{F}_k \iff T$ is distributive.
- Let \mathcal{L} be the following category:

Theorem

- **1** F_T is a correspondence functor.
- **2** F_T is projective in $\mathcal{F}_k \iff T$ is distributive.
- Let \mathcal{L} be the following category:
 - $\bullet\,$ The objects of $\,$ ${\cal L}$ are the finite lattices.
Theorem

- **1** F_T is a correspondence functor.
- **2** F_T is projective in $\mathcal{F}_k \iff T$ is distributive.
- Let \mathcal{L} be the following category:
 - $\bullet\,$ The objects of $\,$ ${\cal L}$ are the finite lattices.

• Hom
$$_{\mathcal{L}}(T,T') = \{f: T \to T' \mid f(\bigvee_{t \in A} t) = \bigvee_{t \in A} f(t), \forall A \subseteq T\}.$$

Theorem

- **1** F_T is a correspondence functor.
- **2** F_T is projective in $\mathcal{F}_k \iff T$ is distributive.
- Let $k\mathcal{L}$ be the following category:
 - The objects of $k\mathcal{L}$ are the finite lattices.

•
$$Hom_{k\mathcal{L}}(T,T') = k \{ f: T \to T' \mid f(\bigvee_{t \in A} t) = \bigvee_{t \in A} f(t), \forall A \subseteq T \}.$$

Theorem

- **1** F_T is a correspondence functor.
- **2** F_T is projective in $\mathcal{F}_k \iff T$ is distributive.
- Let $k\mathcal{L}$ be the following category:
 - The objects of $k\mathcal{L}$ are the finite lattices.

•
$$Hom_{k\mathcal{L}}(T,T') = k\{f:T \to T' \mid f(\bigvee_{t \in A} t) = \bigvee_{t \in A} f(t), \forall A \subseteq T\}.$$

Theorem

- **1** F_T is a correspondence functor.
- **2** F_T is projective in $\mathcal{F}_k \iff T$ is distributive.
 - Let $k\mathcal{L}$ be the following category:
 - The objects of $k\mathcal{L}$ are the finite lattices.

•
$$Hom_{k\mathcal{L}}(T,T') = k\{f:T \to T' \mid f(\bigvee_{t \in A} t) = \bigvee_{t \in A} f(t), \forall A \subseteq T\}.$$

Theorem

Theorem

- F_T is a correspondence functor.
- **2** F_T is projective in $\mathcal{F}_k \iff T$ is distributive.
 - Let *kL* be the following category:
 - The objects of $k\mathcal{L}$ are the finite lattices.

•
$$Hom_{k\mathcal{L}}(T,T') = k\{f:T \to T' \mid f(\bigvee_{t \in A} t) = \bigvee_{t \in A} f(t), \forall A \subseteq T\}.$$

Theorem

The assignment $T \mapsto F_T$

Beirut, May 18, 2017 12 / 1

Theorem

- F_T is a correspondence functor.
- **2** F_T is projective in $\mathcal{F}_k \iff T$ is distributive.
 - Let *kL* be the following category:
 - The objects of $k\mathcal{L}$ are the finite lattices.

•
$$Hom_{k\mathcal{L}}(T,T') = k\{f:T \to T' \mid f(\bigvee_{t \in A} t) = \bigvee_{t \in A} f(t), \forall A \subseteq T\}.$$

Theorem

The assignment $T \mapsto F_T$ is a

functor
$$k\mathcal{L} \to \mathcal{F}_k$$
.

Serge Bouc (CNRS-LAMFA)

Beirut, May 18, 2017

Theorem

- **1** F_T is a correspondence functor.
- **2** F_T is projective in $\mathcal{F}_k \iff T$ is distributive.
 - Let *kL* be the following category:
 - The objects of $k\mathcal{L}$ are the finite lattices.

•
$$Hom_{k\mathcal{L}}(T,T') = k\{f: T \to T' \mid f(\bigvee_{t \in A} t) = \bigvee_{t \in A} f(t), \forall A \subseteq T\}.$$

Theorem

The assignment $T \mapsto F_T$ is a

k-linear functor
$$k\mathcal{L} \to \mathcal{F}_k$$
.

Serge Bouc (CNRS-LAMFA)

Beirut, May 18, 2017

Theorem

- F_T is a correspondence functor.
- **2** F_T is projective in $\mathcal{F}_k \iff T$ is distributive.
 - Let $k\mathcal{L}$ be the following category:
 - The objects of $k\mathcal{L}$ are the finite lattices.

•
$$Hom_{k\mathcal{L}}(T,T') = k\{f:T \to T' \mid f(\bigvee_{t \in A} t) = \bigvee_{t \in A} f(t), \forall A \subseteq T\}.$$

Theorem

The assignment $T \mapsto F_T$ is a fully faithful k-linear functor $k\mathcal{L} \to \mathcal{F}_k$.

Serge Bouc (CNRS-LAMFA)

Serge Bouc (CNRS-LAMFA)

• • • • • • • •

æ

Let T be a finite lattice.

• Recall that $e \in T$ is irreducible

Let T be a finite lattice.

• Recall that $e \in T$ is irreducible if $\forall A \subseteq T$

Let T be a finite lattice.

• Recall that $e \in T$ is irreducible if $\forall A \subseteq T$, $e = \bigvee_{t \in A} t \implies$

Let T be a finite lattice.

• Recall that $e \in T$ is irreducible if $\forall A \subseteq T$, $e = \bigvee_{t \in A} t \implies e \in A$.

Let T be a finite lattice.

Recall that e ∈ T is irreducible if ∀A ⊆ T, e = ∨ t ⇒ e ∈ A.
 Let Irr(T) be the set of irreducible elements of T.

- Recall that e ∈ T is irreducible if ∀A ⊆ T, e = ∨ t ⇒ e ∈ A.
 Let Irr(T) be the set of irreducible elements of T.
- For a finite set X

- Recall that e ∈ T is irreducible if ∀A ⊆ T, e = ∨ t ⇒ e ∈ A.
 Let Irr(T) be the set of irreducible elements of T.
- For a finite set X, denote by $H_T(X)$ the k-submodule of $F_T(X) = k(T^X)$

- Recall that e ∈ T is irreducible if ∀A ⊆ T, e = ∨ t ⇒ e ∈ A.
 Let Irr(T) be the set of irreducible elements of T.
- For a finite set X, denote by H_T(X) the k-submodule of F_T(X) = k(T^X) generated by all φ : X → T

- Recall that e ∈ T is irreducible if ∀A ⊆ T, e = ∨ t ⇒ e ∈ A.
 Let Irr(T) be the set of irreducible elements of T.
- For a finite set X, denote by $H_T(X)$ the k-submodule of $F_T(X) = k(T^X)$ generated by all $\varphi : X \to T$ such that $\varphi(X) \not\supseteq Irr(T)$.

Let T be a finite lattice.

- Recall that e ∈ T is irreducible if ∀A ⊆ T, e = ∨ t ⇒ e ∈ A.
 Let Irr(T) be the set of irreducible elements of T.
- For a finite set X, denote by $H_T(X)$ the k-submodule of $F_T(X) = k(T^X)$ generated by all $\varphi : X \to T$ such that $\varphi(X) \not\supseteq Irr(T)$.

Lemma

- Recall that e ∈ T is irreducible if ∀A ⊆ T, e = ∨ t ⇒ e ∈ A.
 Let Irr(T) be the set of irreducible elements of T.
- For a finite set X, denote by $H_T(X)$ the k-submodule of $F_T(X) = k(T^X)$ generated by all $\varphi : X \to T$ such that $\varphi(X) \not\supseteq Irr(T)$.

Lemma

• Let Y, X be finite sets

- Recall that e ∈ T is irreducible if ∀A ⊆ T, e = ∨ t ⇒ e ∈ A.
 Let Irr(T) be the set of irreducible elements of T.
- For a finite set X, denote by $H_T(X)$ the k-submodule of $F_T(X) = k(T^X)$ generated by all $\varphi : X \to T$ such that $\varphi(X) \not\supseteq Irr(T)$.

Lemma

• Let Y, X be finite sets, let $R \in C(Y, X)$

- Recall that e ∈ T is irreducible if ∀A ⊆ T, e = ∨ t ⇒ e ∈ A.
 Let Irr(T) be the set of irreducible elements of T.
- For a finite set X, denote by $H_T(X)$ the k-submodule of $F_T(X) = k(T^X)$ generated by all $\varphi : X \to T$ such that $\varphi(X) \not\supseteq Irr(T)$.

Lemma

1 Let Y, X be finite sets, let $R \in C(Y, X)$, and let $\varphi : X \to T$.

- Recall that e ∈ T is irreducible if ∀A ⊆ T, e = ∨ t ⇒ e ∈ A.
 Let Irr(T) be the set of irreducible elements of T.
- For a finite set X, denote by $H_T(X)$ the k-submodule of $F_T(X) = k(T^X)$ generated by all $\varphi : X \to T$ such that $\varphi(X) \not\supseteq Irr(T)$.

Lemma

• Let Y, X be finite sets, let $R \in C(Y, X)$, and let $\varphi : X \to T$. Then $(R\varphi)(Y) \cap Irr(T)$

- Recall that e ∈ T is irreducible if ∀A ⊆ T, e = ∨ t ⇒ e ∈ A.
 Let Irr(T) be the set of irreducible elements of T.
- For a finite set X, denote by $H_T(X)$ the k-submodule of $F_T(X) = k(T^X)$ generated by all $\varphi : X \to T$ such that $\varphi(X) \not\supseteq Irr(T)$.

Lemma

• Let Y, X be finite sets, let $R \in C(Y, X)$, and let $\varphi : X \to T$. Then $(R\varphi)(Y) \cap Irr(T) \subseteq \varphi(X) \cap Irr(T)$.

- Recall that e ∈ T is irreducible if ∀A ⊆ T, e = ∨ t ⇒ e ∈ A.
 Let Irr(T) be the set of irreducible elements of T.
- For a finite set X, denote by $H_T(X)$ the k-submodule of $F_T(X) = k(T^X)$ generated by all $\varphi : X \to T$ such that $\varphi(X) \not\supseteq Irr(T)$.

Lemma

- Let Y, X be finite sets, let $R \in C(Y, X)$, and let $\varphi : X \to T$. Then $(R\varphi)(Y) \cap Irr(T) \subseteq \varphi(X) \cap Irr(T)$.
- **2** The assignment $X \mapsto H_T(X)$ is a subfunctor of F_T .

- Recall that e ∈ T is irreducible if ∀A ⊆ T, e = ∨ t ⇒ e ∈ A.
 Let Irr(T) be the set of irreducible elements of T.
- For a finite set X, denote by $H_T(X)$ the k-submodule of $F_T(X) = k(T^X)$ generated by all $\varphi : X \to T$ such that $\varphi(X) \not\supseteq Irr(T)$.

Lemma

- Let Y, X be finite sets, let $R \in C(Y, X)$, and let $\varphi : X \to T$. Then $(R\varphi)(Y) \cap Irr(T) \subseteq \varphi(X) \cap Irr(T)$.
- **2** The assignment $X \mapsto H_T(X)$ is a subfunctor of F_T .

Serge Bouc (CNRS-LAMFA)

3

Let $n \in \mathbb{N}$.

3

Let $n \in \mathbb{N}$. Set $\underline{n} = \{0 < 1 < \ldots < n\}$

Let $n \in \mathbb{N}$. Set $\underline{n} = \{0 < 1 < ... < n\}$, and $[n] = \underline{n} - \{0\}$.

Let
$$n \in \mathbb{N}$$
. Set $\underline{n} = \{0 < 1 < \ldots < n\}$, and $[n] = \underline{n} - \{0\}$.

Theorem

Serge Bouc (CN	RS-LAMFA)
----------------	-----------

3

・ロト ・聞 ト ・ ヨト ・ ヨト

Let
$$n \in \mathbb{N}$$
. Set $\underline{n} = \{0 < 1 < \ldots < n\}$, and $[n] = \underline{n} - \{0\}$.

Theorem

For $n \in \mathbb{N}$, set $S(\underline{n}) = F_{\underline{n}}/H_{\underline{n}}$. Then:

3

イロト イヨト イヨト イヨト

Let
$$n \in \mathbb{N}$$
. Set $\underline{n} = \{0 < 1 < ... < n\}$, and $[n] = \underline{n} - \{0\}$.

Theorem

For $n \in \mathbb{N}$, set $S(\underline{n}) = F_{\underline{n}}/H_{\underline{n}}$. Then:

• The surjection $F_{\underline{n}} \rightarrow S(\underline{n})$ splits.

イロト イ団ト イヨト イヨト

Let
$$n \in \mathbb{N}$$
. Set $\underline{n} = \{0 < 1 < \ldots < n\}$, and $[n] = \underline{n} - \{0\}$.

Theorem

For $n \in \mathbb{N}$, set $S(\underline{n}) = F_{\underline{n}}/H_{\underline{n}}$. Then:

1 The surjection $F_{\underline{n}} \to S(\underline{n})$ splits. The functor $S(\underline{n})$ is projective.

イロト イヨト イヨト イヨト

Let
$$n \in \mathbb{N}$$
. Set $\underline{n} = \{0 < 1 < \ldots < n\}$, and $[n] = \underline{n} - \{0\}$.

Theorem

For $n \in \mathbb{N}$, set $S(\underline{n}) = F_{\underline{n}}/H_{\underline{n}}$. Then:

- **1** The surjection $F_{\underline{n}} \to S(\underline{n})$ splits. The functor $S(\underline{n})$ is projective.
- If X is a finite set

イロト イヨト イヨト イヨト

Let
$$n \in \mathbb{N}$$
. Set $\underline{n} = \{0 < 1 < \ldots < n\}$, and $[n] = \underline{n} - \{0\}$.

Theorem

For $n \in \mathbb{N}$, set $S(\underline{n}) = F_{\underline{n}}/H_{\underline{n}}$. Then:

- **1** The surjection $F_{\underline{n}} \to S(\underline{n})$ splits. The functor $S(\underline{n})$ is projective.
- **2** If X is a finite set, then $S(\underline{n})(X)$ is a free k-module

(日) (同) (三) (三)
Let
$$n \in \mathbb{N}$$
. Set $\underline{n} = \{0 < 1 < \ldots < n\}$, and $[n] = \underline{n} - \{0\}$.

Theorem

For $n \in \mathbb{N}$, set $S(\underline{n}) = F_{\underline{n}}/H_{\underline{n}}$. Then:

- **9** The surjection $F_{\underline{n}} \to S(\underline{n})$ splits. The functor $S(\underline{n})$ is projective.
- If X is a finite set, then $S(\underline{n})(X)$ is a free k-module of rank $\sum_{i=0}^{n} (-1)^{i} {n \choose i} (n+1-i)^{|X|}$.

イロト イヨト イヨト イヨト

Let
$$n \in \mathbb{N}$$
. Set $\underline{n} = \{0 < 1 < \ldots < n\}$, and $[n] = \underline{n} - \{0\}$.

Theorem

For $n \in \mathbb{N}$, set $S(\underline{n}) = F_{\underline{n}}/H_{\underline{n}}$. Then:

- **1** The surjection $F_{\underline{n}} \to S(\underline{n})$ splits. The functor $S(\underline{n})$ is projective.
- If X is a finite set, then $S(\underline{n})(X)$ is a free k-module of rank $\sum_{i=0}^{n} (-1)^{i} {n \choose i} (n+1-i)^{|X|}$.

イロト イヨト イヨト イヨト

Let
$$n \in \mathbb{N}$$
. Set $\underline{n} = \{0 < 1 < \ldots < n\}$, and $[n] = \underline{n} - \{0\}$.

Theorem

For $n \in \mathbb{N}$, set $S(\underline{n}) = F_{\underline{n}}/H_{\underline{n}}$. Then:

- **1** The surjection $F_{\underline{n}} \to S(\underline{n})$ splits. The functor $S(\underline{n})$ is projective.
- If X is a finite set, then $S(\underline{n})(X)$ is a free k-module of rank $\sum_{i=0}^{n} (-1)^{i} {n \choose i} (n+1-i)^{|X|}$.

•
$$F_{\underline{n}} \cong \bigoplus_{A \subseteq [n]} S(\underline{|A|}) \cong \bigoplus_{j=0}^{n} S(\underline{j})^{\oplus \binom{n}{j}}.$$

イロト イヨト イヨト イヨト

Let
$$n \in \mathbb{N}$$
. Set $\underline{n} = \{0 < 1 < \ldots < n\}$, and $[n] = \underline{n} - \{0\}$.

Theorem

For $n \in \mathbb{N}$, set $S(\underline{n}) = F_{\underline{n}}/H_{\underline{n}}$. Then:

- **1** The surjection $F_{\underline{n}} \to S(\underline{n})$ splits. The functor $S(\underline{n})$ is projective.
- If X is a finite set, then $S(\underline{n})(X)$ is a free k-module of rank $\sum_{i=0}^{n} (-1)^{i} {n \choose i} (n+1-i)^{|X|}$.

•
$$F_{\underline{n}} \cong \bigoplus_{A \subseteq [n]} S(\underline{|A|}) \cong \bigoplus_{j=0}^{n} S(\underline{j})^{\oplus \binom{n}{j}}.$$

• $End_{k\mathcal{L}}(\underline{n}) \cong$

イロト イヨト イヨト イヨト

Let
$$n \in \mathbb{N}$$
. Set $\underline{n} = \{0 < 1 < \ldots < n\}$, and $[n] = \underline{n} - \{0\}$.

Theorem

For $n \in \mathbb{N}$, set $S(\underline{n}) = F_{\underline{n}}/H_{\underline{n}}$. Then:

- **1** The surjection $F_{\underline{n}} \to S(\underline{n})$ splits. The functor $S(\underline{n})$ is projective.
- If X is a finite set, then $S(\underline{n})(X)$ is a free k-module of rank $\sum_{i=0}^{n} (-1)^{i} {n \choose i} (n+1-i)^{|X|}$.

•
$$F_{\underline{n}} \cong \bigoplus_{A \subseteq [n]} S(\underline{|A|}) \cong \bigoplus_{j=0}^{n} S(\underline{j})^{\oplus \binom{n}{j}}.$$

• End_{kL}(\underline{n}) \cong End_{F_k}($F_{\underline{n}}$) \cong

イロト イヨト イヨト イヨト

Let
$$n \in \mathbb{N}$$
. Set $\underline{n} = \{0 < 1 < \ldots < n\}$, and $[n] = \underline{n} - \{0\}$.

Theorem

For $n \in \mathbb{N}$, set $S(\underline{n}) = F_{\underline{n}}/H_{\underline{n}}$. Then:

- **9** The surjection $F_{\underline{n}} \to S(\underline{n})$ splits. The functor $S(\underline{n})$ is projective.
- If X is a finite set, then $S(\underline{n})(X)$ is a free k-module of rank $\sum_{i=0}^{n} (-1)^{i} {n \choose i} (n+1-i)^{|X|}$.

• End_{kL}(\underline{n}) \cong End_{F_k}($F_{\underline{n}}$) $\cong \prod_{j=0}^{n} M_{\binom{n}{j}}(k)$.

イロト イヨト イヨト イヨト

Let
$$n \in \mathbb{N}$$
. Set $\underline{n} = \{0 < 1 < \ldots < n\}$, and $[n] = \underline{n} - \{0\}$.

Theorem

For $n \in \mathbb{N}$, set $S(\underline{n}) = F_{\underline{n}}/H_{\underline{n}}$. Then:

- **9** The surjection $F_{\underline{n}} \to S(\underline{n})$ splits. The functor $S(\underline{n})$ is projective.
- If X is a finite set, then $S(\underline{n})(X)$ is a free k-module of rank $\sum_{i=0}^{n} (-1)^{i} {n \choose i} (n+1-i)^{|X|}$.

•
$$F_{\underline{n}} \cong \bigoplus_{A \subseteq [n]} S(\underline{|A|}) \cong \bigoplus_{j=0}^n S(\underline{j})^{\oplus \binom{n}{j}}.$$

• $End_{k\mathcal{L}}(\underline{n}) \cong End_{\mathcal{F}_k}(F_{\underline{n}}) \cong \prod_{j=0}^n M_{\binom{n}{j}}(k).$

If k is a field

イロト イヨト イヨト イヨト

Let
$$n \in \mathbb{N}$$
. Set $\underline{n} = \{0 < 1 < \ldots < n\}$, and $[n] = \underline{n} - \{0\}$.

Theorem

For $n \in \mathbb{N}$, set $S(\underline{n}) = F_{\underline{n}}/H_{\underline{n}}$. Then:

- **9** The surjection $F_{\underline{n}} \to S(\underline{n})$ splits. The functor $S(\underline{n})$ is projective.
- If X is a finite set, then $S(\underline{n})(X)$ is a free k-module of rank $\sum_{i=0}^{n} (-1)^{i} {n \choose i} (n+1-i)^{|X|}$.

• End_{kL}(\underline{n}) \cong End_{F_k}($F_{\underline{n}}$) $\cong \prod_{j=0}^{n} M_{\binom{n}{j}}(k)$.

(3) If k is a field, then $S(\underline{n})$ is simple

3

Let
$$n \in \mathbb{N}$$
. Set $\underline{n} = \{0 < 1 < ... < n\}$, and $[n] = \underline{n} - \{0\}$.

Theorem

For $n \in \mathbb{N}$, set $S(\underline{n}) = F_{\underline{n}}/H_{\underline{n}}$. Then:

- **9** The surjection $F_{\underline{n}} \to S(\underline{n})$ splits. The functor $S(\underline{n})$ is projective.
- If X is a finite set, then $S(\underline{n})(X)$ is a free k-module of rank $\sum_{i=0}^{n} (-1)^{i} {n \choose i} (n+1-i)^{|X|}$.

- End_{kL}(\underline{n}) \cong End_{F_k}($F_{\underline{n}}$) $\cong \prod_{i=0}^{n} M_{\binom{n}{j}}(k)$.
- **5** If k is a field, then $S(\underline{n})$ is simple (and projective

3

(日) (同) (三) (三)

Let
$$n \in \mathbb{N}$$
. Set $\underline{n} = \{0 < 1 < \ldots < n\}$, and $[n] = \underline{n} - \{0\}$.

Theorem

For $n \in \mathbb{N}$, set $S(\underline{n}) = F_{\underline{n}}/H_{\underline{n}}$. Then:

- **9** The surjection $F_{\underline{n}} \to S(\underline{n})$ splits. The functor $S(\underline{n})$ is projective.
- If X is a finite set, then $S(\underline{n})(X)$ is a free k-module of rank $\sum_{i=0}^{n} (-1)^{i} {n \choose i} (n+1-i)^{|X|}$.

- End_{kL}(\underline{n}) \cong End_{F_k}($F_{\underline{n}}$) $\cong \prod_{j=0}^{''} M_{\binom{n}{j}}(k)$.
- **5** If k is a field, then $S(\underline{n})$ is simple (and projective, and injective)

3

イロト イヨト イヨト イヨト

Let
$$n \in \mathbb{N}$$
. Set $\underline{n} = \{0 < 1 < \ldots < n\}$, and $[n] = \underline{n} - \{0\}$.

Theorem

For $n \in \mathbb{N}$, set $S(\underline{n}) = F_{\underline{n}}/H_{\underline{n}}$. Then:

- **9** The surjection $F_{\underline{n}} \to S(\underline{n})$ splits. The functor $S(\underline{n})$ is projective.
- If X is a finite set, then $S(\underline{n})(X)$ is a free k-module of rank $\sum_{i=0}^{n} (-1)^{i} {n \choose i} (n+1-i)^{|X|}$.

- End_{kL}(\underline{n}) \cong End_{F_k}($F_{\underline{n}}$) $\cong \prod_{j=0}^{''} M_{\binom{n}{j}}(k)$.
- If k is a field, then S(<u>n</u>) is simple (and projective, and injective), isomorphic to S_{[n],tot,k}.

3

(日) (同) (三) (三)

Theorem

Serge Bouc (C	NRS-LAMFA)
---------------	------------

- 一司

Theorem

Let (E, R) be a finite poset

Theorem

Let (E, R) be a finite poset, with n = |E|.

Theorem

- Let (E, R) be a finite poset, with n = |E|.
 - There exists a canonical poset G(E, R)

- Let (E, R) be a finite poset, with n = |E|.
 - There exists a canonical poset G(E, R) containing (E, R)

Let (E, R) be a finite poset, with n = |E|.

There exists a canonical poset G(E, R) containing (E, R) such that for any finite set X,

Let (E, R) be a finite poset, with n = |E|.

There exists a canonical poset G(E, R) containing (E, R) such that for any finite set X, the module S_{E,R}(X) has a k-basis consisting of {φ : X → G(E, R) | φ(X) ⊇ E}.

- There exists a canonical poset G(E, R) containing (E, R) such that for any finite set X, the module S_{E,R}(X) has a k-basis consisting of {φ : X → G(E, R) | φ(X) ⊇ E}.
- **2** In particular the k-module $\mathbb{S}_{E,R}(X)$ is free

- There exists a canonical poset G(E, R) containing (E, R) such that for any finite set X, the module S_{E,R}(X) has a k-basis consisting of {φ : X → G(E, R) | φ(X) ⊇ E}.
- In particular the k-module $\mathbb{S}_{E,R}(X)$ is free of rank $\sum_{i=0}^{n} (-1)^{i} {n \choose i} (g_{E,R} i)^{|X|}$,

- There exists a canonical poset G(E, R) containing (E, R) such that for any finite set X, the module S_{E,R}(X) has a k-basis consisting of {φ : X → G(E, R) | φ(X) ⊇ E}.
- In particular the k-module $\mathbb{S}_{E,R}(X)$ is free of rank $\sum_{i=0}^{n} (-1)^{i} {n \choose i} (g_{E,R} - i)^{|X|}, \text{ where } g_{E,R} = |G(E,R)|.$

- There exists a canonical poset G(E, R) containing (E, R) such that for any finite set X, the module S_{E,R}(X) has a k-basis consisting of {φ : X → G(E, R) | φ(X) ⊇ E}.
- In particular the k-module $\mathbb{S}_{E,R}(X)$ is free of rank $\sum_{i=0}^{n} (-1)^{i} {n \choose i} (g_{E,R} - i)^{|X|}, \text{ where } g_{E,R} = |G(E,R)|.$ It is moreover a free right kAut(E, R)-module.

- There exists a canonical poset G(E, R) containing (E, R) such that for any finite set X, the module S_{E,R}(X) has a k-basis consisting of {φ : X → G(E, R) | φ(X) ⊇ E}.
- In particular the k-module $\mathbb{S}_{E,R}(X)$ is free of rank $\sum_{i=0}^{n} (-1)^{i} {n \choose i} (g_{E,R} - i)^{|X|}, \text{ where } g_{E,R} = |G(E,R)|.$ It is moreover a free right kAut(E, R)-module.
- **3** Let W be a kAut(E, R)-module.

Let (E, R) be a finite poset, with n = |E|.

- There exists a canonical poset G(E, R) containing (E, R) such that for any finite set X, the module S_{E,R}(X) has a k-basis consisting of {φ : X → G(E, R) | φ(X) ⊇ E}.
- In particular the k-module $\mathbb{S}_{E,R}(X)$ is free of rank $\sum_{i=0}^{n} (-1)^{i} {n \choose i} (g_{E,R} - i)^{|X|}, \text{ where } g_{E,R} = |G(E,R)|.$ It is moreover a free right kAut(E, R)-module.
- So Let W be a kAut(E, R)-module. Then the assignment $X \mapsto \mathbb{S}_{E,R}(X) \otimes_{kAut(E,R)} W$

< 4 → <

Let (E, R) be a finite poset, with n = |E|.

- There exists a canonical poset G(E, R) containing (E, R) such that for any finite set X, the module S_{E,R}(X) has a k-basis consisting of {φ : X → G(E, R) | φ(X) ⊇ E}.
- In particular the k-module $\mathbb{S}_{E,R}(X)$ is free of rank $\sum_{i=0}^{n} (-1)^{i} {n \choose i} (g_{E,R} - i)^{|X|}, \text{ where } g_{E,R} = |G(E,R)|.$ It is moreover a free right kAut(E, R)-module.
- Solution Let W be a kAut(E, R)-module. Then the assignment $X \mapsto \mathbb{S}_{E,R}(X) \otimes_{kAut(E,R)} W$ is a correspondence functor

• • • • • • • •

Let (E, R) be a finite poset, with n = |E|.

- There exists a canonical poset G(E, R) containing (E, R) such that for any finite set X, the module S_{E,R}(X) has a k-basis consisting of {φ : X → G(E, R) | φ(X) ⊇ E}.
- In particular the k-module $\mathbb{S}_{E,R}(X)$ is free of rank $\sum_{i=0}^{n} (-1)^{i} {n \choose i} (g_{E,R} - i)^{|X|}, \text{ where } g_{E,R} = |G(E,R)|.$ It is moreover a free right kAut(E, R)-module.
- Let W be a kAut(E, R)-module. Then the assignment $X \mapsto \mathbb{S}_{E,R}(X) \otimes_{kAut(E,R)} W$ is a correspondence functor, denoted by S(E, R, W).

Let (E, R) be a finite poset, with n = |E|.

- There exists a canonical poset G(E, R) containing (E, R) such that for any finite set X, the module S_{E,R}(X) has a k-basis consisting of {φ : X → G(E, R) | φ(X) ⊇ E}.
- In particular the k-module $\mathbb{S}_{E,R}(X)$ is free of rank $\sum_{i=0}^{n} (-1)^{i} {n \choose i} (g_{E,R} - i)^{|X|}, \text{ where } g_{E,R} = |G(E,R)|.$ It is moreover a free right kAut(E,R)-module.
- Let W be a kAut(E, R)-module. Then the assignment $X \mapsto \mathbb{S}_{E,R}(X) \otimes_{kAut(E,R)} W$ is a correspondence functor, denoted by S(E, R, W).
- If k is a field and W is simple

Let (E, R) be a finite poset, with n = |E|.

- There exists a canonical poset G(E, R) containing (E, R) such that for any finite set X, the module S_{E,R}(X) has a k-basis consisting of {φ : X → G(E, R) | φ(X) ⊇ E}.
- In particular the k-module $\mathbb{S}_{E,R}(X)$ is free of rank $\sum_{i=0}^{n} (-1)^{i} {n \choose i} (g_{E,R} - i)^{|X|}, \text{ where } g_{E,R} = |G(E,R)|.$ It is moreover a free right kAut(E, R)-module.
- Let W be a kAut(E, R)-module. Then the assignment $X \mapsto \mathbb{S}_{E,R}(X) \otimes_{kAut(E,R)} W$ is a correspondence functor, denoted by S(E, R, W).
- If k is a field and W is simple, then $S(E, R, W) \cong S_{E,R,W}$.

3

15 / 1

イロト 不得下 イヨト イヨト

Serge Bouc (CNRS-LAMFA)

Let k be a field.

Let k be a field. Let (E, R) be a finite poset

Let k be a field. Let (E, R) be a finite poset, and W be a simple kAut(E, R)-module.

Let k be a field. Let (E, R) be a finite poset, and W be a simple kAut(E, R)-module. Then for any finite set X,

Let k be a field. Let (E, R) be a finite poset, and W be a simple kAut(E, R)-module. Then for any finite set X,

 $\dim_k S_{E,R,W}(X) =$

Let k be a field. Let (E, R) be a finite poset, and W be a simple kAut(E, R)-module. Then for any finite set X,

$$\dim_k S_{E,R,W}(X) = \frac{\dim_k W}{|Aut(E,R)|} \sum_{i=0}^{|E|} (-1)^i \binom{|E|}{i} (g_{E,R}-i)^{|X|}$$
The simple \mathcal{R}_X -modules

Serge Bouc (CNRS-LAMFA)

< 一型

Let X be a finite set.

Serge Bouc (CNRS-LAMFA)

Let X be a finite set.

() The set of isomorphism classes of simple \mathcal{R}_X -modules

17 / 1

Let X be a finite set.

The set of isomorphism classes of simple R_X-modules is parametrized by the set of isomorphism classes of triples (E, R, W)

Let X be a finite set.

The set of isomorphism classes of simple R_X-modules is parametrized by the set of isomorphism classes of triples (E, R, W), where E is a finite set with |E| ≤ |X|

17 / 1

Let X be a finite set.

• The set of isomorphism classes of simple \mathcal{R}_X -modules is parametrized by the set of isomorphism classes of triples (E, R, W), where E is a finite set with $|E| \le |X|$, R is an order on E

Let X be a finite set.

The set of isomorphism classes of simple R_X-modules is parametrized by the set of isomorphism classes of triples (E, R, W), where E is a finite set with |E| ≤ |X|, R is an order on E, and W is a simple kAut(E, R)-module.

17 / 1

Let X be a finite set.

- The set of isomorphism classes of simple R_X-modules is parametrized by the set of isomorphism classes of triples (E, R, W), where E is a finite set with |E| ≤ |X|, R is an order on E, and W is a simple kAut(E, R)-module.
- **2** The simple module parametrized by (E, R, W) is $S_{E,R,W}(X)$.

17 / 1

Serge Bouc (CNRS-LAMFA)

< □ > < ---->

Posets of cardinality 4 $(f = g_{E,R} - 4)$

Serge Bouc (CNRS-LAMFA)

< □ > < ---->

Serge Bouc (CNRS-LAMFA)

- 一司

æ

< □ > < ---->

3/1

э

< □ > < ---->

э

Serge Bouc (CNRS-LAMFA)

- ∢ /⊐ >

The diamond is the following lattice D

- 一司

The diamond is the following lattice D

The diamond is the following lattice D

The diamond is the following lattice D

$$F_D \cong S_0$$

The diamond is the following lattice D

$$F_D \cong S_0 \oplus 4S_1$$

The diamond is the following lattice D

$$F_D \cong S_0 \oplus 4S_1 \oplus 4S_2$$

The diamond is the following lattice D

$$F_D \cong S_0 \oplus 4S_1 \oplus 4S_2 \oplus S_3$$

The diamond is the following lattice D

$$F_D \cong S_0 \oplus 4S_1 \oplus 4S_2 \oplus S_3 \oplus 2S_{\bullet \bullet}$$

The diamond is the following lattice D

$$F_D \cong S_0 \oplus 4S_1 \oplus 4S_2 \oplus S_3 \oplus 2S_{\bullet \bullet} \oplus S_{\bullet \bullet}$$