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subset of Y x X. Let C(Y, X) denote the set of correspondences from
X to Y. A correspondence from X to X is called a relation on X.
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@ Let X and Y be finite sets. A correspondence from X to Y is a
subset of Y x X. Let C(Y, X) denote the set of correspondences from
X to Y. A correspondence from X to X is called a relation on X.

@ Correspondences can be composed: f SCZx Y and RC Y x X,
then

SoR(=SR)={(z,x) e Zx X |3y €Y, (z,y) €S, (y,x) € R} .

This composition is associative.

e In particular C(X, X) is a monoid, with identity element

Ax ={(x,x) | x e X} T X x X
More generally
RoAx = R for any Y and any R € C(Y, X),
Ax oS =S forany Z and any S € C(X, Z).
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Correspondence functors

When k is a commutative ring, let kC be the following category:
@ the objects of kC are the finite sets,
o Homyc(X,Y) = kC(Y,X),
@ composition of morphisms extends composition of correspondences,
o the identity morphism of X is Ax € kC(X, X).
A correspondence functor (over k) is a k-linear functor from kC to k-Mod.

Let ) denote the category of correspondence functors over k. It is an
abelian category.
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@ Yoneda functors Yg i : X — kC(X, E) (E fixed finite set)
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@ Yoneda functors Yg i : X — kC(X, E) e.g.
o E =0: then Yy ,(X) = k, VX.
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@ Yoneda functors Yg i : X — kC(X, E) e.g.
o E =0 then Yy (X) = k, VX.
o E = {e}: then Yo ,(X) = k(2X), VX.
The functor Yg i is a projective object of Fj, for any E.
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@ Yoneda functors Yg i : X — kC(X, E) e.g.
o E =0 then Yy (X) = k, VX.
o E = {e}: then Yo ,(X) = k(2X), VX.
The functor Yg i is a projective object of Fj, for any E.
@ Direct summands of Yg ,: by Yoneda Lemma
Endr, (Ye k) = kC(E,E). Let R be a preorder on E, i.e.
R € C(E,E) such that Af C R = R2.
Then Ye xR : X — kC(X, E)R is a projective object of Fy.

Let E be a finite set. Then Rg := kC(E, E) = Endr, (YE k)
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@ Yoneda functors Yg i : X — kC(X, E) e.g.
o E =0 then Yy (X) = k, VX.
o E = {e}: then Yo ,(X) = k(2X), VX.
The functor Yg i is a projective object of Fj, for any E.
@ Direct summands of Yg ,: by Yoneda Lemma
Endr, (Ye k) = kC(E,E). Let R be a preorder on E, i.e.
R € C(E,E) such that Af C R = R2.
Then Ye xR : X — kC(X, E)R is a projective object of Fy.

Let E be a finite set. Then Rg := kC(E,E) = Endr, (YE k) is a
symmetric algebra (for an explicit symmetrizing form).
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Bounded generation - Finite generation - Finite length

Definition
Let M € Fy.
@ M has bounded type if there is a finite set E such that M = (M(E)).

@ M is finitely generated if moreover M(E) is a finitely generated
k-module.

| A

Theorem
Let M € Fi.

v
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Bounded generation - Finite generation - Finite length

Definition
Let M € Fy.
@ M has bounded type if there is a finite set E such that M = (M(E)).

@ M is finitely generated if moreover M(E) is a finitely generated
k-module.

| A

Theorem
Let M € Fi. The following are equivalent:
@ M is finitely generated.

n
@ M is isomorphic to a quotient of a finite direct sum @& YE, k.
i=1

1=
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Let M € Fy.
@ M has bounded type if there is a finite set E such that M = (M(E)).

@ M is finitely generated if moreover M(E) is a finitely generated
k-module.

Theorem

| A

Let M € Fi. The following are equivalent:
@ M is finitely generated.

n
@ M is isomorphic to a quotient of a finite direct sum @& YE, k.
i=1

If moreover k is a field, these conditions are equivalent to:
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Bounded generation - Finite generation - Finite length

Definition
Let M € Fy.
@ M has bounded type if there is a finite set E such that M = (M(E)).

@ M is finitely generated if moreover M(E) is a finitely generated
k-module.

Theorem

| A

Let M € Fi. The following are equivalent:
@ M is finitely generated.

n
@ M is isomorphic to a quotient of a finite direct sum @& YE, k.
i=1
If moreover k is a field, these conditions are equivalent to:
Q there exist positive real numbers a, b, r such that dim; M(X) < abX|
for any finite set X with |X| > r.
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Definition
Let M € Fy.
@ M has bounded type if there is a finite set E such that M = (M(E)).

@ M is finitely generated if moreover M(E) is a finitely generated
k-module.

| A

Theorem
Let M € Fi. The following are equivalent:
@ M is finitely generated.

n
@ M is isomorphic to a quotient of a finite direct sum @& YE, k.
i=1

If moreover k is a field, these conditions are equivalent to:

Q there exist positive real numbers a, b, r such that dim; M(X) < abX|
for any finite set X with |X| > r.

Q@ M has finite length.
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Let M € Fi and E be a finite set.
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The noetherian case

Let M € Fi and E be a finite set. Define
M(E) = M(E)/
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The noetherian case

Let M € Fi and E be a finite set. Define

M(E) = M(E)/ > kC(E,F)M(F).
|FI<|E]
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The noetherian case

Let M € Fi and E be a finite set. Define

M(E) = M(E)/ > kC(E,F)M(F).
|FI<|E]

Let k be a noetherian (commutative) ring
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The noetherian case

Let M € Fi and E be a finite set. Define

M(E) = M(E)/ > kC(E,F)M(F).
|FI<|E]

Theorem
Let k be a noetherian ring, let M C L in Fy, and let E and F be finite
sets.
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The noetherian case

Let M € Fi and E be a finite set. Define

M(E) = M(E)/ > kC(E,F)M(F).
|FI<|E]

Theorem
Let k be a noetherian ring, let M C L in Fy, and let E and F be finite
sets.

© IfL = (L(F)) and M(E) # 0
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Let k be a noetherian ring, let M C L in Fy, and let E and F be finite
sets.

Q IfL = (L(F)) and M(E) # 0, then |E| < 2IF.

Serge Bouc (CNRS-LAMFA) Representations of finite sets Beirut, May 18, 2017 6/1



The noetherian case

Let M € Fi and E be a finite set. Define

M(E) = M(E)/ > kC(E,F)M(F).
|FI<|E]

Theorem
Let k be a noetherian ring, let M C L in Fy, and let E and F be finite
sets.

Q IfL = (L(F)) and M(E) # 0, then |E| < 2IF.
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The noetherian case

Let M € Fi and E be a finite set. Define

M(E) = M(E)/ > kC(E,F)M(F).
|FI<|E]

Theorem
Let k be a noetherian ring, let M C L in Fy, and let E and F be finite
sets.

Q IfL = (L(F)) and M(E) # 0, then |E| < 2IF.

Q If L= (L(F)) and |E| > 2IFl, then M = (M(E)).
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@ Let E be a finite set. The evaluation functor
M e Fi — M(E) € Re-Mod
has a left adjoint V + Lg y/, defined by
X = ,CE’\/(X) = kC(X, E) QRE V.
e If V is projective (resp. indecomposable), so is Lg .
e If M is projective in Fy, and M = (M(E)), then M = L yy(f) for any
finite set F with |F| > |E|, and M(F) is a projective R r-module.
o If k is a field, any finitely generated projective in Fj is also injective.
.7-'[ has infinite global dimension.
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@ the objects are pairs (E, U), where E is a finite set, and U is an
Re-module.
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Let Gk be the following category:
@ the objects are pairs (E, U), where E is a finite set, and U is an
Re-module.
@ a morphism (E, U) — (F, V) is a morphism of Rg-modules
U— kC(E,F) @, V.
@ the composition of
U— kC(E,F)®gr, V and V — kC(F, G) ®r. W
is U— kC(E,F) ®r, V — kC(E,F) ®r, kC(F,G) ®r, W
— kC(E, G) @, W
e the identity morphism of (E, U) is U 5 kC(E,E) ®r, U.

Theorem

@ The assignment (E, U) — Lg y is a fully faithful k-linear functor
gk — .7:{3

@ When k is noetherian, it is an equivalence of categories. In particular
G is abelian.

V.
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@ Let R be a partial order on E. There exists a fundamental ££-module
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o The objects of kL are the finite lattices.
o Homie(T, T)=k{f : T—=T'|f(\V t)=V f(t), VACT}.
teA teA

The assignment T — Ft is a k-linear functor kL — Fy.
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o Let T =(T,V,A) be a finite lattice.
o For a finite set X, set Fr(X) = k(TX).
e For ReC(Y,X)and p: X — T, define Rp: Y — T by

Yy eY, (Re)ly) = ( V€R</>(X)

© Fr is a correspondence functor.

@ Fr is projective in F, <= T is distributive.

o Let kL be the following category:

o The objects of kL are the finite lattices.
o Homie(T, T)=k{f : T—=T'|f(\V t)=V f(t), VACT}.
teA teA

The assignment T — Ft is a fully faithful k-linear functor kL — F.
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A subfunctor of Fr

Let T be a finite lattice.

@ Recall that e € T is irreducible
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Let T be a finite lattice.

@ Recall that e € T is irreducible if VAC T, e = \/At — e €A
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Let /rr(T) be the set of irreducible elements of T.
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@ Recall that e € T is irreducible if VAC T, e = \/At — e €A
te

Let /rr(T) be the set of irreducible elements of T.

@ For a finite set X
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A subfunctor of Fr

Let T be a finite lattice.

@ Recall that e € T is irreducible if VAC T, e = \/At — e €A
te

Let /rr(T) be the set of irreducible elements of T.

e For a finite set X, denote by H7(X) the k-submodule of
Fr(X) = K(T%)
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A subfunctor of Fr

Let T be a finite lattice.

@ Recall that e € T is irreducible if VAC T, e = \/At — e €A
te

Let /rr(T) be the set of irreducible elements of T.

e For a finite set X, denote by H7(X) the k-submodule of
Fr(X) = k(TX) generated by all p: X — T
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Let /rr(T) be the set of irreducible elements of T.
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A subfunctor of Fr

Let T be a finite lattice.

@ Recall that e € T is irreducible if VAC T, e = \/At — e €A
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Let /rr(T) be the set of irreducible elements of T.

e For a finite set X, denote by H7(X) the k-submodule of
Fr(X) = k(TX) generated by all ¢ : X — T such that

p(X) 2 Irr(T).

Q Let Y, X be finite sets
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A subfunctor of Fr

Let T be a finite lattice.

@ Recall that e € T is irreducible if VAC T, e = \/At — e €A
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Let /rr(T) be the set of irreducible elements of T.

e For a finite set X, denote by H7(X) the k-submodule of
Fr(X) = k(TX) generated by all ¢ : X — T such that

p(X) 2 Irr(T).

O Let Y, X be finite sets, let R € C(Y, X)
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A subfunctor of Fr

Let T be a finite lattice.

@ Recall that e € T is irreducible if VAC T, e = \/At — e €A
te

Let /rr(T) be the set of irreducible elements of T.

e For a finite set X, denote by H7(X) the k-submodule of
Fr(X) = k(TX) generated by all ¢ : X — T such that

p(X) 2 Irr(T).

Q Let Y, X be finite sets, let R € C(Y,X), and let ¢ : X — T.
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A subfunctor of Fr

Let T be a finite lattice.

@ Recall that e € T is irreducible if VAC T, e = \/At — e €A
te

Let /rr(T) be the set of irreducible elements of T.

e For a finite set X, denote by H7(X) the k-submodule of
Fr(X) = k(TX) generated by all ¢ : X — T such that

p(X) 2 Irr(T).

Q Let Y, X be finite sets, let R € C(Y,X), and let ¢ : X — T. Then
(Re)(Y) N Irr(T)
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Let T be a finite lattice.

@ Recall that e € T is irreducible if VAC T, e = \/At — e €A
te

Let /rr(T) be the set of irreducible elements of T.

e For a finite set X, denote by H7(X) the k-submodule of
Fr(X) = k(TX) generated by all ¢ : X — T such that

p(X) 2 Irr(T).

Q Let Y, X be finite sets, let R € C(Y,X), and let ¢ : X — T. Then
(Re)(Y) N Irr(T) C (X)) N Irr(T).
@ The assignment X — Hr(X) is a subfunctor of Fr.
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e For a finite set X, denote by H7(X) the k-submodule of
Fr(X) = k(TX) generated by all ¢ : X — T such that

p(X) 2 Irr(T).

Q Let Y, X be finite sets, let R € C(Y,X), and let ¢ : X — T. Then
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@ The assignment X — Hr(X) is a subfunctor of Fr.
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The case of a total order

Let n € N.
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The case of a total order

Let neN. Set n={0<1<...<n}, and [n] = n— {0}.

For n € N, set S(n) = F,/Hp. Then:
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The case of a total order

Let neN. Set n={0<1<...<n}, and [n] = n— {0}.

For n € N, set S(n) = F,/Hp. Then:
@ The surjection F, — S(n) splits.

v
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The case of a total order

Let neN. Set n={0<1<...<n}, and [n] = n— {0}.

For n € N, set S(n) = F,/Hp. Then:
@ The surjection F, — S(n) splits. The functor S(n) is projective.

v

Serge Bouc (CNRS-LAMFA) Representations of finite sets Beirut, May 18, 2017 14 /1



The case of a total order

Let neN. Set n={0<1<...<n}, and [n] = n— {0}.

For n € N, set S(n) = F,/Hp. Then:
@ The surjection F, — S(n) splits. The functor S(n) is projective.
@ If X is a finite set
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The case of a total order

Let neN. Set n={0<1<...<n}, and [n] = n— {0}.

Theorem

For n € N, set S(n) = F,/Hp. Then:
@ The surjection F, — S(n) splits. The functor S(n) is projective.
@ If X is a finite set, then S(n)(X) is a free k-module

v
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The case of a total order

Let neN. Set n={0<1<...<n}, and [n] = n— {0}.

For n € N, set S(n) = F,/Hp. Then:
@ The surjection F, — S(n) splits. The functor S(n) is projective.
@ If X is a finite set, then S(n)(X) is a free k-module of rank

Y (=1 () (n+1 - )Xl

1=

v
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The case of a total order

Let neN. Set n={0<1<...<n}, and [n] = n— {0}.

Theorem

For n € N, set S(n) = F,/Hp. Then:
@ The surjection F, — S(n) splits. The functor S(n) is projective.
@ If X is a finite set, then S(n)(X) is a free k-module of rank
> (-1 () n+1- )X

i=

Q@ F,= @ S(IA)

AC[n]

v
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The case of a total order

Let neN. Set n={0<1<...<n}, and [n] = n— {0}.
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For n € N, set S(n) = F,/Hp. Then:
@ The surjection F, — S(n) splits. The functor S(n) is projective.
@ If X is a finite set, then S(n)(X) is a free k-module of rank
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The case of a total order

Let neN. Set n={0<1<...<n}, and [n] = n— {0}.

For n € N, set S(n) = F,/Hp. Then:
@ The surjection F, — S(n) splits. The functor S(n) is projective.
@ If X is a finite set, then S(n)(X) is a free k-module of rank

S (=1 ()n+1- )X,

i=

0 R @ S(IA) =@ s()®W.

AC[n] Jj=0

Q Endiz(n) =
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The case of a total order

Let neN. Set n={0<1<...<n}, and [n] = n— {0}.

For n € N, set S(n) = F,/Hp. Then:
@ The surjection F, — S(n) splits. The functor S(n) is projective.
@ If X is a finite set, then S(n)(X) is a free k-module of rank
> (-1 () n+1- )X

i=

0 F= @ S(A) =@ s()®W.

AC[n] Jj=0

Q Endis(n) = Endr, (Fp) =

v
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The case of a total order

Let neN. Set n={0<1<...<n}, and [n] = n— {0}.

For n € N, set S(n) = F,/Hp. Then:
@ The surjection F, — S(n) splits. The functor S(n) is projective.
@ If X is a finite set, then S(n)(X) is a free k-module of rank
> (-1 () n+1- )X

i=

0 F= @ S(A) =@ s()®W.

AC[n] Jj=0

Q Endkg(ﬂ) = End]:k(FQ) = _no M(j)(k)
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The case of a total order

Let neN. Set n={0<1<...<n}, and [n] = n— {0}.

For n € N, set S(n) = F,/Hp. Then:
@ The surjection F, — S(n) splits. The functor S(n) is projective.
@ If X is a finite set, then S(n)(X) is a free k-module of rank
> (-1 () n+1- )X

i=

0 F= @ S(A) =@ s()®W.

AC[n] Jj=0

Q Endkg(ﬂ) = End]:k(FQ) = _no M(j)(k)

@ Ifkis a field

v
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The case of a total order

Let neN. Set n={0<1<...<n}, and [n] = n— {0}.

For n € N, set S(n) = F,/Hp. Then:
@ The surjection F, — S(n) splits. The functor S(n) is projective.
@ If X is a finite set, then S(n)(X) is a free k-module of rank

S (=1 ()n+1- )X,

i=

0 R @ S(IA) =@ s()®W.

AC[n] Jj=0

Q Endkg(ﬂ) = End]:k(FQ) = I_EIOM( )(k)

n
J

@ If k is a field, then S(n) is simple

v
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The case of a total order

Let neN. Set n={0<1<...<n}, and [n] = n— {0}.

Theorem

For n € N, set S(n) = F,/Hp. Then:
@ The surjection F, — S(n) splits. The functor S(n) is projective.
@ If X is a finite set, then S(n)(X) is a free k-module of rank
n .
X () (D +1 =i

i=

0 F= @ S(A) =@ s()®W.

AC[n] Jj=0

@ Endic(n) = Endx, (F)) = ] Mry (k).
j=0

n
J

@ If k is a field, then S(n) is simple (and projective
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The case of a total order

Let neN. Set n={0<1<...<n}, and [n] = n— {0}.

Theorem

For n € N, set S(n) = F,/Hp. Then:
@ The surjection F, — S(n) splits. The functor S(n) is projective.
@ If X is a finite set, then S(n)(X) is a free k-module of rank
n .
X () (D +1 =i

i=

0 F= @ S(A) =@ s()®W.

AC[n] Jj=0

@ Endic(n) = Endx, (F)) = ] Mry (k).
j=0

n
J

@ If k is a field, then S(n) is simple (and projective, and injective)
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The case of a total order

Let neN. Set n={0<1<...<n}, and [n] = n— {0}.

Theorem

For n € N, set S(n) = F,/Hp. Then:
@ The surjection F, — S(n) splits. The functor S(n) is projective.
@ If X is a finite set, then S(n)(X) is a free k-module of rank
n .
X () (D +1 =i

i=

0 F= @ S(A) =@ s()®W.

AC[n] Jj=0
© Endyc(n) = Endr,(Fy) = TT Mr)(k).
=0
@ If k is a field, then S(n) is simple (and projective, and injective),
isomorphic to Sy tot,k-

v
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@ There exists a canonical poset G(E, R)
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Simple functors: the general case

Let (E, R) be a finite poset, with n = |E|.
@ There exists a canonical poset G(E, R) containing (E, R)
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Simple functors: the general case

Let (E, R) be a finite poset, with n = |E|.
@ There exists a canonical poset G(E, R) containing (E, R) such that
for any finite set X,
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Simple functors: the general case

Let (E, R) be a finite poset, with n = |E|.
@ There exists a canonical poset G(E, R) containing (E, R) such that

for any finite set X, the module Sg r(X) has a k-basis consisting of
{o: X = G(E,R) | ¢(X) 2 E}.
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Simple functors: the general case

Let (E, R) be a finite poset, with n = |E|.
@ There exists a canonical poset G(E, R) containing (E, R) such that
for any finite set X, the module Sg r(X) has a k-basis consisting of
{v: X = G(E,R) | ¢(X) 2 E}.
@ In particular the k-module Sg r(X) is free
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Simple functors: the general case

Let (E, R) be a finite poset, with n = |E|.
@ There exists a canonical poset G(E, R) containing (E, R) such that
for any finite set X, the module Sg r(X) has a k-basis consisting of
{v: X = G(E,R) | ¢(X) 2 E}.
@ In particular the k-module Sg r(X) is free of rank

S (1) () (ge.g — )X,

i=0
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Simple functors: the general case

Let (E, R) be a finite poset, with n = |E|.
@ There exists a canonical poset G(E, R) containing (E, R) such that
for any finite set X, the module Sg r(X) has a k-basis consisting of
{v: X = G(E,R) | ¢(X) 2 E}.
@ In particular the k-module Sg r(X) is free of rank
Z(_l)i(’;)(gE,R — i)|X|, where gE7R = ‘G(E, R)|

i=0
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Simple functors: the general case

Let (E, R) be a finite poset, with n = |E|.
@ There exists a canonical poset G(E, R) containing (E, R) such that
for any finite set X, the module Sg r(X) has a k-basis consisting of
{v: X = G(E,R) | ¢(X) 2 E}.
@ In particular the k-module Sg r(X) is free of rank
Z(—l)i(’;)(gE’R — i)|X|, where gE7R = ‘G(E, R)|

i=0

It is moreover a free right kAut(E, R)-module.
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Simple functors: the general case

Let (E, R) be a finite poset, with n = |E|.
@ There exists a canonical poset G(E, R) containing (E, R) such that
for any finite set X, the module Sg r(X) has a k-basis consisting of
{e: X = G(E,R) | p(X) D E}.
@ In particular the k-module Sg r(X) is free of rank
Z(—l)i(’;)(gE’R — i)|X|, where gE7R = ‘G(E, R)|

i=0

It is moreover a free right kAut(E, R)-module.
O Let W be a kAut(E, R)-module.
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Simple functors: the general case

Let (E, R) be a finite poset, with n = |E|.
@ There exists a canonical poset G(E, R) containing (E, R) such that
for any finite set X, the module Sg r(X) has a k-basis consisting of
{e: X = G(E,R) | p(X) D E}.
@ In particular the k-module Sg r(X) is free of rank
Z(—l)i(’;)(gE’R — i)|X|, where gE7R = ‘G(E, R)|

i=0

It is moreover a free right kAut(E, R)-module.

© Let W be a kAut(E, R)-module. Then the assignment
X = Sg r(X) ®@kaut(e,r) W
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Simple functors: the general case

Let (E, R) be a finite poset, with n = |E|.
@ There exists a canonical poset G(E, R) containing (E, R) such that
for any finite set X, the module Sg r(X) has a k-basis consisting of
{e: X = G(E,R) | p(X) D E}.
@ In particular the k-module Sg r(X) is free of rank
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It is moreover a free right kAut(E, R)-module.

© Let W be a kAut(E, R)-module. Then the assignment
X = Sg,R(X) @kaue(e,r) W is a correspondence functor
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Simple functors: the general case

Let (E, R) be a finite poset, with n = |E|.
@ There exists a canonical poset G(E, R) containing (E, R) such that
for any finite set X, the module Sg r(X) has a k-basis consisting of
{e: X = G(E,R) | p(X) D E}.
@ In particular the k-module Sg r(X) is free of rank
Z(—l)i(’;)(gE’R — i)|X|, where gE7R = ‘G(E, R)|

i=0

It is moreover a free right kAut(E, R)-module.

© Let W be a kAut(E, R)-module. Then the assignment
X+ Sg r(X) ®kaut(E,R) W is a correspondence functor, denoted by
S(E,R,W).
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Simple functors: the general case

Let (E, R) be a finite poset, with n = |E|.
@ There exists a canonical poset G(E, R) containing (E, R) such that
for any finite set X, the module Sg r(X) has a k-basis consisting of
{e: X = G(E,R) | p(X) D E}.
@ In particular the k-module Sg r(X) is free of rank
Z(—l)i(’;)(gE’R — i)|X|, where gE7R = ‘G(E, R)|

i=0

It is moreover a free right kAut(E, R)-module.

© Let W be a kAut(E, R)-module. Then the assignment
X+ Sg r(X) ®kaut(E,R) W is a correspondence functor, denoted by
S(E,R,W).

Q Ifk isa field and W is simple
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Let (E, R) be a finite poset, with n = |E|.
@ There exists a canonical poset G(E, R) containing (E, R) such that
for any finite set X, the module Sg r(X) has a k-basis consisting of
{e: X = G(E,R) | p(X) D E}.
@ In particular the k-module Sg r(X) is free of rank
Z(—l)i(’;)(gE’R — i)|X|, where gE7R = ‘G(E, R)|

i=0

It is moreover a free right kAut(E, R)-module.

© Let W be a kAut(E, R)-module. Then the assignment
X+ Sg r(X) ®kaut(E,R) W is a correspondence functor, denoted by
S(E,R,W).

Q Ifk is a field and W is simple, then S(E,R, W) = Sg g w.
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Corollary

Let k be a field. Let (E, R) be a finite poset, and W be a simple
kAut(E, R)-module.
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Simple functors: the general case

Corollary

Let k be a field. Let (E, R) be a finite poset, and W be a simple
kAut(E, R)-module.

Then for any finite set X,
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Simple functors: the general case

Corollary

Let k be a field. Let (E, R) be a finite poset, and W be a simple
kAut(E, R)-module.

Then for any finite set X,

dimk SE,R,W(X) =
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Simple functors: the general case

Corollary
Let k be a field. Let (E, R) be a finite poset, and W be a simple

kAut(E, R)-module.
Then for any finite set X,

dim,w &

Thee Z <|E|) ger — )X

dimk SE,R,W(X)

Serge Bouc (CNRS-LAMFA) Representations of finite sets Beirut, May 18, 2017 16 /1



The simple R x-modules

Serge Bouc (CNRS-LAMFA) Representations of finite sets Beirut, May 18, 2017 17



The simple R x-modules

Let X be a finite set.
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Let X be a finite set.

@ The set of isomorphism classes of simple R x-modules is parametrized
by the set of isomorphism classes of triples (E, R, W)
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The simple R x-modules

Let X be a finite set.

@ The set of isomorphism classes of simple R x-modules is parametrized
by the set of isomorphism classes of triples (E, R, W), where E is a
finite set with |E| < |X|
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The simple R x-modules

Let X be a finite set.

@ The set of isomorphism classes of simple R x-modules is parametrized
by the set of isomorphism classes of triples (E, R, W), where E is a
finite set with |E| < |X|, R is an order on E
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The simple R x-modules

Let X be a finite set.

@ The set of isomorphism classes of simple R x-modules is parametrized
by the set of isomorphism classes of triples (E, R, W), where E is a
finite set with |E| < |X|, R is an order on E, and W is a simple
kAut(E, R)-module.
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The simple R x-modules

Let X be a finite set.

@ The set of isomorphism classes of simple R x-modules is parametrized
by the set of isomorphism classes of triples (E, R, W), where E is a
finite set with |E| < |X|, R is an order on E, and W is a simple
kAut(E, R)-module.

@ The simple module parametrized by (E, R, W) is Sg g w (X).
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Posets of cardinality 4 (f = ge.r — 4)
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Splitting the diamond

The diamond is the following lattice D
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Splitting the diamond

The diamond is the following lattice D

Over a field of characteristic different from 2, the functor Fp is semisimple:
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Over a field of characteristic different from 2, the functor Fp is semisimple:
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Splitting the diamond

The diamond is the following lattice D

Over a field of characteristic different from 2, the functor Fp is semisimple:

Fp =2 So® 451 4S5, & S3
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Splitting the diamond

The diamond is the following lattice D

Over a field of characteristic different from 2, the functor Fp is semisimple:

Fp =2 S0 0451 G458 S0 2S,,
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Splitting the diamond

The diamond is the following lattice D

Over a field of characteristic different from 2, the functor Fp is semisimple:

Fp =2 S0 45:1 0450 S5@25,, ¢S

Beirut, May 18, 2017
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