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EPFL

- LICMA’17 -

Serge Bouc (CNRS-LAMFA) Representations of finite sets Beirut, May 18, 2017 1 / 1



Correspondences, Relations

Let X and Y be finite sets. A correspondence from X to Y is a
subset of Y ×X . Let C(Y ,X ) denote the set of correspondences from
X to Y . A correspondence from X to X is called a relation on X .

Correspondences can be composed: if S ⊆ Z × Y and R ⊆ Y × X ,
then

S ◦ R(= SR) = {(z , x) ∈ Z × X | ∃y ∈ Y , (z , y) ∈ S , (y , x) ∈ R} .

This composition is associative.

In particular C(X ,X ) is a monoid, with identity element

∆X = {(x , x) | x ∈ X} ⊆ X × X .

More generally
R ◦∆X = R for any Y and any R ∈ C(Y ,X ),
∆X ◦ S = S for any Z and any S ∈ C(X ,Z ).
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When k is a commutative ring, let kC be the following category:

the objects of kC are the finite sets,

HomkC(X ,Y ) = kC(Y ,X ),

composition of morphisms extends composition of correspondences,

the identity morphism of X is ∆X ∈ kC(X ,X ).

A correspondence functor (over k) is a k-linear functor from kC to k-Mod.
Let Fk denote the category of correspondence functors over k . It is an
abelian category.
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Examples

Yoneda functors YE ,k : X 7→ kC(X ,E ) e.g.

E = ∅: then Y∅,k(X ) ∼= k, ∀X .
E = {•}: then Y•,k(X ) ∼= k(2X ), ∀X .

The functor YE ,k is a projective object of Fk , for any E .

Direct summands of YE ,k : by Yoneda Lemma
EndFk

(YE ,k) ∼= kC(E ,E ). Let R be a preorder on E , i.e.
R ∈ C(E ,E ) such that ∆E ⊆ R = R2.
Then YE ,kR : X 7→ kC(X ,E )R is a projective object of Fk .

Theorem

Let E be a finite set. Then RE := kC(E ,E ) ∼= EndFk
(YE ,k) is a

symmetric algebra (for an explicit symmetrizing form).
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Bounded generation

Definition

Let M ∈ Fk .

1 M has bounded type if there is a finite set E such that M = 〈M(E )〉.
2 M is finitely generated if moreover M(E ) is a finitely generated

k-module.

Theorem

Let M ∈ Fk . The following are equivalent:

1 M is finitely generated.

2 M is isomorphic to a quotient of a finite direct sum
n
⊕
i=1

YEi ,k .

If moreover k is a field, these conditions are equivalent to:

3 there exist positive real numbers a, b, r such that dimk M(X ) ≤ ab|X |

for any finite set X with |X | ≥ r .

4 M has finite length.
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The noetherian case

Let M ∈ Fk and E be a finite set. Define

M(E ) = M(E )/
∑
|F |<|E |

kC(E ,F )M(F ).

Theorem

Let k be a noetherian ring, let M ⊆ L in Fk , and let E and F be finite
sets.

1 If L = 〈L(F )〉 and M(E ) 6= 0, then |E | ≤ 2|F |.

2 If L = 〈L(F )〉 and |E | ≥ 2|F |, then M = 〈M(E )〉.
3 If L has bounded type, then M has bounded type.

4 If L is finitely generated, then M is finitely generated.

Corollary

Functors of bounded type form an abelian subcategory Fb
k of Fk . Finitely

generated functors form an abelian subcategory F f
k of Fb

k .
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Functors of bounded type form an abelian subcategory Fb
k of Fk . Finitely

generated functors form an abelian subcategory F f
k of Fb

k .
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Evaluation - Adjunction

Let E be a finite set. The evaluation functor
M ∈ Fk 7→ M(E ) ∈ RE -Mod

has a left adjoint V 7→ LE ,V , defined by
X 7→ LE ,V (X ) := kC(X ,E )⊗RE

V .

If V is projective (resp. indecomposable), so is LE ,V .

If M is projective in Fk , and M = 〈M(E )〉, then M ∼= LF ,M(F ) for any
finite set F with |F | ≥ |E |, and M(F ) is a projective RF -module.

If k is a field, any finitely generated projective in Fk is also injective.
F f
k has infinite global dimension.
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Evaluation - Stability

Theorem

Let k be a noetherian ring, let M,N ∈ Fk , and let E ,F be finite sets.

1 If M = 〈M(E )〉, then for |F | ≥ 2|E |, the evaluation map
HomFk

(M,N)→ HomRF

(
M(F ),N(F )

)
is an isomorphism.

2 If M has bounded type, then for any i ∈ N, there exists ni ∈ N such
that if |F | ≥ ni , the map

Ext iFk
(M,N)→ Ext iRF

(
M(F ),N(F )

)
is an isomorphism.
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An equivalence of categories

Definition

Let Gk be the following category:
the objects are pairs (E ,U), where E is a finite set, and U is an
RE -module.
a morphism (E ,U)→ (F ,V ) is a morphism of RE -modules
U → kC(E ,F )⊗RF

V .
the composition of

U → kC(E ,F )⊗RF
V and V → kC(F ,G )⊗RG

W
is U → kC(E ,F )⊗RF

V → kC(E ,F )⊗RF
kC(F ,G )⊗RG

W
→ kC(E ,G )⊗RG

W

the identity morphism of (E ,U) is U
∼=→ kC(E ,E )⊗RE

U.

Theorem
1 The assignment (E ,U) 7→ LE ,U is a fully faithful k-linear functor
Gk → Fb

k .
2 When k is noetherian, it is an equivalence of categories. In particular
Gk is abelian.
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Evaluation - Simple functors

If V is a simple RE -module, then LE ,V has a unique maximal
subfunctor JE ,V , so SE ,V = LE ,V /JE ,V is a simple functor.

Conversely, if S ∈ Fk is simple, and if V = S(E ) 6= 0, then V is a
simple RE -module, and S ∼= SE ,V .

If moreover E is minimal such that S(E ) 6= 0, then V = S(E ) is a
module for the algebra of essential relations on E

EE = kC(E ,E )/
∑
|F |<|E |

kC(E ,F )C(F ,E ).

Let R be a partial order on E . There exists a fundamental EE -module
PE fR endowed with a right kAut(E ,R)-action such that
PE fR ⊗kAut(E ,R) W is a simple EE -module for any simple
kAut(E ,R)-module W . Any simple EE -module is obtained in this
way.

There is an associated fundamental functor SE ,R= SE ,PE fR .
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Simple functors

Theorem

There is a bijection

Simple correspondence
functors over k

up to isomorphism

↔

Triples (E ,R ,W )
E finite set
R partial order on E
W simple kAut(E ,R)-module

up to isomorphism.

SE ,R,W ← (E ,R,W )

Examples: Let k be a field.

The functor Y∅,k is simple (and projective, and injective),
isomorphic to S∅,tot,k .

The functor Y•,k is semisimple (and projective, and injective),
isomorphic to S∅,tot,k ⊕ S•,tot,k .
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isomorphic to S∅,tot,k .

The functor Y•,k

is semisimple (and projective, and injective),
isomorphic to S∅,tot,k ⊕ S•,tot,k .
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Functors and lattices

Let T = (T ,∨,∧) be a finite lattice.
For a finite set X , set FT (X ) = k(TX ).
For R ∈ C(Y ,X ) and ϕ : X → T , define Rϕ : Y → T by

∀y ∈ Y , (Rϕ)(y) =
∨

(y ,x)∈R
ϕ(x) .

Theorem

1 FT is a correspondence functor.

2 FT is projective in Fk ⇐⇒ T is distributive.

Let

k

L be the following category:
The objects of

k

L are the finite lattices.
Hom

k

L(T ,T ′) =

k

{
f : T → T ′ | f (

∨
t∈A

t) =
∨
t∈A

f (t), ∀A ⊆ T
}

.

Theorem

The assignment T 7→ FT is a

fully faithful k-linear

functor kL → Fk .
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A subfunctor of FT

Let T be a finite lattice.

Recall that e ∈ T is irreducible if ∀A ⊆ T , e = ∨
t∈A

t =⇒ e ∈ A.

Let Irr(T ) be the set of irreducible elements of T .

For a finite set X , denote by HT (X ) the k-submodule of
FT (X ) = k(TX ) generated by all ϕ : X → T such that
ϕ(X ) + Irr(T ).

Lemma
1 Let Y ,X be finite sets, let R ∈ C(Y ,X ), and let ϕ : X → T . Then

(Rϕ)(Y ) ∩ Irr(T ) ⊆ ϕ(X ) ∩ Irr(T ).

2 The assignment X 7→ HT (X ) is a subfunctor of FT .
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The case of a total order

Let n ∈ N. Set n = {0 < 1 < . . . < n}, and [n] = n − {0}.

Theorem

For n ∈ N, set S(n) = Fn/Hn. Then:

1 The surjection Fn → S(n) splits. The functor S(n) is projective.

2 If X is a finite set, then S(n)(X ) is a free k-module of rank
n∑

i=0
(−1)i

(n
i

)
(n + 1− i)|X |.

3 Fn
∼=
⊕

A⊆[n]

S
(
|A|
) ∼= n⊕

j=0
S(j)⊕(nj).

4 EndkL(n) ∼= EndFk
(Fn) ∼=

n∏
j=0

M(nj)
(k).

5 If k is a field, then S(n) is simple (and projective, and injective),
isomorphic to S[n],tot,k .
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Simple functors: the general case

Theorem

Let (E ,R) be a finite poset, with n = |E |.
1 There exists a canonical poset G (E ,R) containing (E ,R) such that

for any finite set X , the module SE ,R(X ) has a k-basis consisting of
{ϕ : X → G (E ,R) | ϕ(X ) ⊇ E}.

2 In particular the k-module SE ,R(X ) is free of rank
n∑

i=0
(−1)i

(n
i

)
(gE ,R − i)|X |, where gE ,R = |G (E ,R)|.

It is moreover a free right kAut(E ,R)-module.

3 Let W be a kAut(E ,R)-module. Then the assignment
X 7→ SE ,R(X )⊗kAut(E ,R) W is a correspondence functor, denoted by
S(E ,R,W ).

4 If k is a field and W is simple, then S(E ,R,W ) ∼= SE ,R,W .
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Simple functors: the general case

Corollary

Let k be a field. Let (E ,R) be a finite poset, and W be a simple
kAut(E ,R)-module.
Then for any finite set X ,

dimk SE ,R,W (X ) =
dimk W

|Aut(E ,R)|

|E |∑
i=0

(−1)i
(
|E |
i

)
(gE ,R − i)|X | .
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The simple RX -modules

Theorem

Let X be a finite set.

1 The set of isomorphism classes of simple RX -modules is parametrized
by the set of isomorphism classes of triples (E ,R,W ), where E is a
finite set with |E | ≤ |X |, R is an order on E , and W is a simple
kAut(E ,R)-module.

2 The simple module parametrized by (E ,R,W ) is SE ,R,W (X ).
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Posets of cardinality 4
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Posets of cardinality 4 (f = gE ,R − 4)
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Splitting the diamond

The diamond is the following lattice D

Over a field of characteristic different from 2, the functor FD is semisimple:

FD
∼= S0 ⊕ 4S1 ⊕ 4S2 ⊕ S3 ⊕ 2S• • ⊕ S

•
•

•

.
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