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Biset functors

Let R be a commutative ring, and RC be the following category:

1 The objects of RC are the �nite groups.

2 For �nite groups G and H, the hom set HomRC(G ,H) is the

Grothendieck group RB(H,G ) = R ⊗Z B(H,G ) of the category of

�nite (H,G )-bisets.

3 The composition of morphisms extends the product of bisets

(KVH , HUG ) 7→ V ×H U.

4 The identity morphism of the group G is the class [G ] of the
(G ,G )-biset G .

A biset functor over R is an R-linear functor from RC to R-Mod.

Biset functors over R form an abelian category FR .
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Examples

The representation functor G 7→ RK(G ), when K is a �eld of

characteristic 0.

The Burnside functor G 7→ B(G ). Moreover the linearization

morphism X 7→ KX is a morphism of biset functors B → RK.

The simple biset functors over R are parametrized by pairs (H,W ),
where H is a �nite group, and W is a simple ROut(H)-module.

Notation: (H,W ) 7→ SH,W .

Let S be a simple biset functor. Then S ∼= SH,W if and only if H has

minimal order such that S(H) 6= 0, and W = S(H).

Let (H,W ) as above, and G be a �nite group. Then

SH,W (G ) 6= 0 =⇒ H v G .

Example: Let F be a �eld of characteristic 0. The functor FRQ is

simple, isomorphic to S1,F. The functor FB is its projective cover.
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Let (H,W ) as above, and G be a �nite group. Then

SH,W (G ) 6= 0 =⇒ H v G .

Example: Let F be a �eld of characteristic 0. The functor FRQ is
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Representable functors

A representable biset functor is a functor of the form YG : H 7→ RB(H,G ),
where G is a �xed �nite group.

The R-module RB(H,G ) has a basis

consisting of the transitive (H,G )-bisets, up to isomorphism, i.e. bisets

(H × G )/L, where L is a subgroup of (H × G ), up to conjugation.

By the Yoneda lemma

HomFR
(YG ,F ) ∼= F (G ) for any F ∈ FR .

Hence YG is projective in FR , and

EndFR
(YG ) ∼= RB(G ,G ) is the double

Burnside algebra of G over R .

When R ⊇ Q, for any G , there is an idempotent ϕG
1
in RB(G ,G ) with the

following property: For any �nite group H and any L ≤ (H × G ),[
(H × G )/L

]
◦ ϕG

1
6= 0 =⇒

{
p2(L) = G
k2(L) ∩ Φ(G ) = 1,

where

{
p2 : (h, g) ∈ (H × G ) 7→ g ∈ G ,
k2(L) = {g ∈ G | (1, g) ∈ L}.
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An equivalence of categories

Assume R ⊇ Q. Let RD be the following category:

The objects of RD are the �nite groups.

For �nite groups G and H,

HomRD(G ,H) = ϕH
1
◦ RB(H,G ) ◦ ϕG

1

⊆ RB(H,G )

The composition in RD is the composition in RC.
The identity morphism of the group G is ϕG

1
.

Theorem

The category FR of biset functors over R is equivalent to the category GR
of R-linear functors from RD to R-Mod.
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On the category RD

For �nite groups G and H, we write H ◦ // // G if there exists a surjective

group homomorphism s : H // // G such that Ker s ∩ Φ(H) = 1.

Proposition

1 Let G and H be �nite groups. Then HomRD(G ,H) 6= 0 if and only if

there exists a group Q such that G ◦ // // Q H◦oooo .

2 Let G be a �nite group. Then there exists a �nite group H such that

Φ(H) = 1 and H // // G ( hence H ◦ // // G ).

3 Let G and H be �nite groups. Then there exist �nite groups X and Y
and a chain G // X // Y // H of non zero morphisms in RD.
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there exists a group Q such that G ◦ // // Q H◦oooo .

2 Let G be a �nite group. Then there exists a �nite group H such that

Φ(H) = 1 and H // // G ( hence H ◦ // // G ).

3 Let G and H be �nite groups. Then there exist �nite groups X and Y

and a chain G // X // Y // H of non zero morphisms in RD.
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Extensions of simple biset functors

Theorem

Let F be a �eld of characteristic 0. Let SG ,V and SH,W be simple biset

functors over F. If Ext1FF
(SG ,V ,SH,W ) 6= 0, then

either |G | > |H| and G ◦ // // H ,

or |H| > |G | and H ◦ // // G .

Corollary

Let G and H be �nite groups. If Soc(G ) ≤ Φ(G ) and Soc(H) ≤ Φ(H),
then Ext

1

FF
(SG ,V ,SH,W ) = 0.
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Nilpotent groups

A �nite nilpotent group G is called atoric if

G cannot split as E × K ,

where E is a non-trivial elementary abelian group. Equivalently

Soc(G ) ⊆ Φ(G ).

Let G be a �nite nilpotent group, and N E G maximal such that

N ∩ Φ(G ) = 1. Then G@ = G/N does not depend on N, up to

isomorphism. It is the largest atoric quotient of G .

If G is nilpotent and G ◦ // // H , then G@ ∼= H@.

If G and H are nilpotent, then HomRD(G ,H) 6= 0 if and only if

G@ ∼= H@.

If SG ,V and SH,W are simple functors with G and H nilpotent, then

Ext
1

FF
(SG ,V ,SH,W ) 6= 0 =⇒ G@ ∼= H@.
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B-groups

For N E G , set mG ,N = 1

|G |
∑

X≤G
XN=G

|X |µ(X ,G ) ∈ Q.

Recall that G is a B-group if mG ,N = 0 for any 1 6= N E G .

Let G be a �nite group. There exists a group β(G ) such that

β(G ) is a B-group, and G // // β(G ) .

If H is a B-group, and G // // H , then β(G ) // // H .

Theorem
1 If 0 ≤ F2 < F1 ≤ FB and F1/F2 ∼= SH,W , then H is a B-group and

W = F.
2 Conversely, if H is a B-group, then there exist 0 ≤ F2 < F1 ≤ FB

such that F1/F2 ∼= SH,F.

3 If H is a �nite B-group, and G is a �nite group, then

dimF SH,F(G ) =
∣∣{K ≤ G | β(K ) ∼= H, K up to G}

∣∣.
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Simple functors and B-groups

The B-group G is minimal if G 6= 1, and for any B-group H,

G // // H =⇒ H ∼= G or H = 1.

Theorem

Let SH,W be a simple biset functor over F. The following are equivalent:

1 Ext
1

FF
(S1,F,SH,W ) 6= 0.

2 Ext
1

FF
(SH,W ,S1,F) 6= 0.

3 H is a minimal B-group, and W = F.
Moreover if this holds, then Ext

1

FF
(S1,F,SH,W ) ∼= F ∼= Ext

1

FF
(SH,W , S1,F).

G minimal B-group ⇐⇒ • N = Sk E G , S non-abelian simple group, k ≥ 1,
CG (N) = 1, G/N cyclic, transitive on {1, . . . , k},
• G ∼= Cp × Cp (p prime), or G ∼= Fq o 〈λ〉, λ 6= 1 primitive in Fq.
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Groups of odd order

Let G be a �nite group, and B×(G ) be the unit group of B(G ).
Then B×(G ) ∼= (Z/2Z)nG , and

Theorem (tom Dieck, Dress)

Feit-Thompson theorem ⇔ (if |G | is odd, then nG = 1).

The assignment G 7→ B×(G ) extends to a biset functor B× over F2 (via

generalized tensor induction), and S1,F2 ↪→ B×. Moreover

Feit-Thompson theorem ⇔ B×|odd
∼= S1,F2 |odd .
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B2-groups

Let G be a �nite group of odd order.

For N E G , set mG ,N =
∑

X≤G
XN=G

µ(X ,G ) ∈ F2

The group G is a B2-group if mG ,N = 0F2 for any 1 6= N E G .

There exists a group β2(G ) such that

β2(G ) is a B2-group, and G // // β2(G ) .

If H is a B2-group, and G // // H , then β2(G ) // // H .

Proposition

1 β2(G ) ∼= G/Φ(G ). In particular G is a B2-group ⇔ Φ(G ) = 1.

2 0 ≤ F2 < F1 ≤ F2B|odd with F1/F2 ∼= SF2
H,W ⇔ Φ(H) = 1 and

W = F2.

3 If Φ(H) = 1, then

dimF2 SH,F2(G ) =
∣∣{K ≤ G | K/Φ(K ) ∼= H, K up to G}

∣∣.
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Extensions

(All biset functors are over groups of odd order.)

Theorem

Let SH,W be a simple biset functor over F2. The following are equivalent:

1 Ext
1

FF2
(S1,F2 ,SH,W ) 6= 0.

2 Ext
1

FF2
(SH,W ,S1,F2) 6= 0.

3 H has odd prime order, and W = F2.

Moreover if this holds, then

Ext
1

FF2
(S1,F2 ,SH,W ) ∼= F2

∼= Ext
1

FF2
(SH,W ,S1,F2).
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THANK YOU!
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