Extensions of simple biset functors

Serge Bouc

CNRS-LAMFA Université de Picardie

Cohomology of Finite Groups: Interactions and Applications 09 Aug - 15 Aug 2020

Serge Bouc (CNRS-LAMFA)

Extensions of simple biset functors

MFO, August 14, 2020

1/14

Serge Bouc (CNRS-LAMFA) Extensions of

4 円

2

Let R be a commutative ring

Serge Bouc (CNRS-LAMFA) Extensio

Extensions of simple biset functors

MFO, August 14, 2020

3

Let *R* be a commutative ring, and *RC* be the following category: The objects of *RC* are the finite groups.

- The objects of RC are the finite groups.
- So For finite groups G and H, the hom set $Hom_{RC}(G, H)$

- **(**) The objects of RC are the finite groups.
- Provide and Boundary of the set Hom set Hom_{RC}(G, H) is the Grothendieck group RB(H, G) = R ⊗_Z B(H, G) of the category of finite (H, G)-bisets.

- **(**) The objects of RC are the finite groups.
- Provide and Boundary of the set Hom set Hom_{RC}(G, H) is the Grothendieck group RB(H, G) = R ⊗_Z B(H, G) of the category of finite (H, G)-bisets.
- The composition of morphisms extends the product of bisets (κV_H, HU_G)

- **(**) The objects of RC are the finite groups.
- Provide and B and B, the hom set Hom_{RC}(G, H) is the Grothendieck group RB(H, G) = R ⊗_Z B(H, G) of the category of finite (H, G)-bisets.
- The composition of morphisms extends the product of bisets $(\kappa V_H, H U_G) \mapsto V \times_H U$

- The objects of RC are the finite groups.
- Provide and Boundary of the set of the set Hom_{RC}(G, H) is the Grothendieck group RB(H, G) = R ⊗_Z B(H, G) of the category of finite (H, G)-bisets.
- The composition of morphisms extends the product of bisets $(\kappa V_H, H U_G) \mapsto V \times_H U = (V \times U)/$

- The objects of RC are the finite groups.
- Provide and Boundary of the set Hom set Hom_{RC}(G, H) is the Grothendieck group RB(H, G) = R ⊗_Z B(H, G) of the category of finite (H, G)-bisets.

Solution The composition of morphisms extends the product of bisets (KVH, HUG) → V×H U = (V×U)/{(vh, u) ~ (v, hu) h ∈ H}.

- The objects of RC are the finite groups.
- Provide and B and B, the hom set Hom_{RC}(G, H) is the Grothendieck group RB(H, G) = R ⊗_Z B(H, G) of the category of finite (H, G)-bisets.
- The composition of morphisms extends the product of bisets $(\kappa V_H, H U_G) \mapsto V \times_H U.$
- The identity morphism of the group G

- The objects of RC are the finite groups.
- Provide and B and B, the hom set Hom_{RC}(G, H) is the Grothendieck group RB(H, G) = R ⊗_Z B(H, G) of the category of finite (H, G)-bisets.
- The composition of morphisms extends the product of bisets $(\kappa V_H, H U_G) \mapsto V \times_H U.$
- The identity morphism of the group G is the class [G] of the (G, G)-biset G (by multiplication).

- The objects of RC are the finite groups.
- Provide and B and B, the hom set Hom_{RC}(G, H) is the Grothendieck group RB(H, G) = R ⊗_Z B(H, G) of the category of finite (H, G)-bisets.
- The composition of morphisms extends the product of bisets $(\kappa V_H, H U_G) \mapsto V \times_H U.$
- The identity morphism of the group G is the class [G] of the (G, G)-biset G.

- The objects of RC are the finite groups.
- Provide and B and B, the hom set Hom_{RC}(G, H) is the Grothendieck group RB(H, G) = R ⊗_Z B(H, G) of the category of finite (H, G)-bisets.
- The composition of morphisms extends the product of bisets $(\kappa V_H, H U_G) \mapsto V \times_H U.$
- The identity morphism of the group G is the class [G] of the (G, G)-biset G.
- A biset functor over R is an R-linear functor from RC to R-Mod.

- The objects of RC are the finite groups.
- Provide and B and B, the hom set Hom_{RC}(G, H) is the Grothendieck group RB(H, G) = R ⊗_Z B(H, G) of the category of finite (H, G)-bisets.
- The composition of morphisms extends the product of bisets $(\kappa V_H, H U_G) \mapsto V \times_H U.$
- The identity morphism of the group G is the class [G] of the (G, G)-biset G.

A biset functor over R is an R-linear functor from RC to R-Mod. Biset functors over R form an abelian category \mathcal{F}_R .

MFO, August 14, 2020

2/14

Serge Bouc (CNRS-LAMFA) Extension

Extensions of simple biset functors

 < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3 / 14

2

• The representation functor $G \mapsto R_{\mathbb{K}}(G)$

Serge Bouc (CNRS-LAMFA)

Extensions of simple biset functors

MFO, August 14, 2020

3/14

2

→

The representation functor G → R_K(G), when K is a field of characteristic 0.

3

- The representation functor G → R_K(G), when K is a field of characteristic 0.
- The Burnside functor $G \mapsto B(G)$

- The representation functor G → R_K(G), when K is a field of characteristic 0.
- The Burnside functor $G \mapsto B(G)$ (= $K_0(G$ -set, \coprod)).

- The representation functor G → R_K(G), when K is a field of characteristic 0.
- The Burnside functor G → B(G). Moreover the linearization morphism X → KX

- The representation functor G → R_K(G), when K is a field of characteristic 0.
- The Burnside functor G → B(G). Moreover the linearization morphism X → KX is a morphism of biset functors B → R_K.

- The representation functor G → R_K(G), when K is a field of characteristic 0.
- The Burnside functor $G \mapsto B(G)$. Moreover the linearization morphism $X \mapsto \mathbb{K}X$ is a morphism of biset functors $B \to R_{\mathbb{K}}$.
- The simple biset functors over R

- The representation functor G → R_K(G), when K is a field of characteristic 0.
- The Burnside functor G → B(G). Moreover the linearization morphism X → KX is a morphism of biset functors B → R_K.
- The simple biset functors over R are parametrized by pairs (H, W)

- The representation functor G → R_K(G), when K is a field of characteristic 0.
- The Burnside functor G → B(G). Moreover the linearization morphism X → KX is a morphism of biset functors B → R_K.
- The simple biset functors over R are parametrized by pairs (H, W), where H is a finite group

- The representation functor G → R_K(G), when K is a field of characteristic 0.
- The Burnside functor G → B(G). Moreover the linearization morphism X → KX is a morphism of biset functors B → R_K.
- The simple biset functors over R are parametrized by pairs (H, W), where H is a finite group, and W is a simple ROut(H)-module.

- The representation functor G → R_K(G), when K is a field of characteristic 0.
- The Burnside functor G → B(G). Moreover the linearization morphism X → KX is a morphism of biset functors B → R_K.
- The simple biset functors over R are parametrized by pairs (H, W), where H is a finite group, and W is a simple ROut(H)-module. Notation: $(H, W) \mapsto S_{H,W}$

- The representation functor G → R_K(G), when K is a field of characteristic 0.
- The Burnside functor $G \mapsto B(G)$. Moreover the linearization morphism $X \mapsto \mathbb{K}X$ is a morphism of biset functors $B \to R_{\mathbb{K}}$.
- The simple biset functors over R are parametrized by pairs (H, W), where H is a finite group, and W is a simple ROut(H)-module. Notation: $(H, W) \mapsto S_{H,W}$.
- Let S be a simple biset functor.

- The representation functor G → R_K(G), when K is a field of characteristic 0.
- The Burnside functor G → B(G). Moreover the linearization morphism X → KX is a morphism of biset functors B → R_K.
- The simple biset functors over R are parametrized by pairs (H, W), where H is a finite group, and W is a simple ROut(H)-module. Notation: $(H, W) \mapsto S_{H,W}$.
- Let S be a simple biset functor. Then $S \cong S_{H,W}$ if and only if

- The representation functor G → R_K(G), when K is a field of characteristic 0.
- The Burnside functor $G \mapsto B(G)$. Moreover the linearization morphism $X \mapsto \mathbb{K}X$ is a morphism of biset functors $B \to R_{\mathbb{K}}$.
- The simple biset functors over R are parametrized by pairs (H, W), where H is a finite group, and W is a simple ROut(H)-module.
 Notation: (H, W) → S_{H,W}.
- Let S be a simple biset functor. Then $S \cong S_{H,W}$ if and only if H has minimal order such that $S(H) \neq 0$

- The representation functor G → R_K(G), when K is a field of characteristic 0.
- The Burnside functor $G \mapsto B(G)$. Moreover the linearization morphism $X \mapsto \mathbb{K}X$ is a morphism of biset functors $B \to R_{\mathbb{K}}$.
- The simple biset functors over R are parametrized by pairs (H, W), where H is a finite group, and W is a simple ROut(H)-module. Notation: $(H, W) \mapsto S_{H,W}$.
- Let S be a simple biset functor. Then $S \cong S_{H,W}$ if and only if H has minimal order such that $S(H) \neq 0$, and W = S(H).

- The representation functor G → R_K(G), when K is a field of characteristic 0.
- The Burnside functor $G \mapsto B(G)$. Moreover the linearization morphism $X \mapsto \mathbb{K}X$ is a morphism of biset functors $B \to R_{\mathbb{K}}$.
- The simple biset functors over R are parametrized by pairs (H, W), where H is a finite group, and W is a simple ROut(H)-module. Notation: $(H, W) \mapsto S_{H,W}$.
- Let S be a simple biset functor. Then $S \cong S_{H,W}$ if and only if H has minimal order such that $S(H) \neq 0$, and W = S(H).
- Let (H, W) as above, and G be a finite group.

- The representation functor G → R_K(G), when K is a field of characteristic 0.
- The Burnside functor $G \mapsto B(G)$. Moreover the linearization morphism $X \mapsto \mathbb{K}X$ is a morphism of biset functors $B \to R_{\mathbb{K}}$.
- The simple biset functors over R are parametrized by pairs (H, W), where H is a finite group, and W is a simple ROut(H)-module. Notation: $(H, W) \mapsto S_{H,W}$.
- Let S be a simple biset functor. Then $S \cong S_{H,W}$ if and only if H has minimal order such that $S(H) \neq 0$, and W = S(H).
- Let (H, W) as above, and G be a finite group. Then $S_{H,W}(G) \neq 0 \implies$

- The representation functor G → R_K(G), when K is a field of characteristic 0.
- The Burnside functor $G \mapsto B(G)$. Moreover the linearization morphism $X \mapsto \mathbb{K}X$ is a morphism of biset functors $B \to R_{\mathbb{K}}$.
- The simple biset functors over R are parametrized by pairs (H, W), where H is a finite group, and W is a simple ROut(H)-module. Notation: $(H, W) \mapsto S_{H,W}$.
- Let S be a simple biset functor. Then $S \cong S_{H,W}$ if and only if H has minimal order such that $S(H) \neq 0$, and W = S(H).
- Let (H, W) as above, and G be a finite group. Then $S_{H,W}(G) \neq 0 \implies H \sqsubseteq G$ (H is a subquotient of G).

A B M A B M

- The representation functor G → R_K(G), when K is a field of characteristic 0.
- The Burnside functor $G \mapsto B(G)$. Moreover the linearization morphism $X \mapsto \mathbb{K}X$ is a morphism of biset functors $B \to R_{\mathbb{K}}$.
- The simple biset functors over R are parametrized by pairs (H, W), where H is a finite group, and W is a simple ROut(H)-module. Notation: $(H, W) \mapsto S_{H,W}$.
- Let S be a simple biset functor. Then $S \cong S_{H,W}$ if and only if H has minimal order such that $S(H) \neq 0$, and W = S(H).
- Let (H, W) as above, and G be a finite group. Then $S_{H,W}(G) \neq 0 \implies H \sqsubseteq G.$
- The representation functor G → R_K(G), when K is a field of characteristic 0.
- The Burnside functor $G \mapsto B(G)$. Moreover the linearization morphism $X \mapsto \mathbb{K}X$ is a morphism of biset functors $B \to R_{\mathbb{K}}$.
- The simple biset functors over R are parametrized by pairs (H, W), where H is a finite group, and W is a simple ROut(H)-module. Notation: $(H, W) \mapsto S_{H,W}$.
- Let S be a simple biset functor. Then $S \cong S_{H,W}$ if and only if H has minimal order such that $S(H) \neq 0$, and W = S(H).
- Let (H, W) as above, and G be a finite group. Then $S_{H,W}(G) \neq 0 \implies H \sqsubseteq G.$
- **Example:** Let \mathbb{F} be a field of characteristic 0.

- The representation functor G → R_K(G), when K is a field of characteristic 0.
- The Burnside functor G → B(G). Moreover the linearization morphism X → KX is a morphism of biset functors B → R_K.
- The simple biset functors over R are parametrized by pairs (H, W), where H is a finite group, and W is a simple ROut(H)-module. Notation: $(H, W) \mapsto S_{H,W}$.
- Let S be a simple biset functor. Then $S \cong S_{H,W}$ if and only if H has minimal order such that $S(H) \neq 0$, and W = S(H).
- Let (H, W) as above, and G be a finite group. Then $S_{H,W}(G) \neq 0 \implies H \sqsubseteq G.$
- Example: Let $\mathbb F$ be a field of characteristic 0. The functor $\mathbb FR_{\mathbb Q}$ is simple

- The representation functor G → R_K(G), when K is a field of characteristic 0.
- The Burnside functor G → B(G). Moreover the linearization morphism X → KX is a morphism of biset functors B → R_K.
- The simple biset functors over R are parametrized by pairs (H, W), where H is a finite group, and W is a simple ROut(H)-module. Notation: $(H, W) \mapsto S_{H,W}$.
- Let S be a simple biset functor. Then $S \cong S_{H,W}$ if and only if H has minimal order such that $S(H) \neq 0$, and W = S(H).
- Let (H, W) as above, and G be a finite group. Then $S_{H,W}(G) \neq 0 \implies H \sqsubseteq G.$
- Example: Let \mathbb{F} be a field of characteristic 0. The functor $\mathbb{F}R_{\mathbb{Q}}$ is simple, isomorphic to $S_{1,\mathbb{F}}$.

- The representation functor G → R_K(G), when K is a field of characteristic 0.
- The Burnside functor G → B(G). Moreover the linearization morphism X → KX is a morphism of biset functors B → R_K.
- The simple biset functors over R are parametrized by pairs (H, W), where H is a finite group, and W is a simple ROut(H)-module. Notation: $(H, W) \mapsto S_{H,W}$.
- Let S be a simple biset functor. Then $S \cong S_{H,W}$ if and only if H has minimal order such that $S(H) \neq 0$, and W = S(H).
- Let (H, W) as above, and G be a finite group. Then $S_{H,W}(G) \neq 0 \implies H \sqsubseteq G.$
- Example: Let \mathbb{F} be a field of characteristic 0. The functor $\mathbb{F}R_{\mathbb{Q}}$ is simple, isomorphic to $S_{1,\mathbb{F}}$. The functor $\mathbb{F}B$ is its projective cover.

- The representation functor G → R_K(G), when K is a field of characteristic 0.
- The Burnside functor G → B(G). Moreover the linearization morphism X → KX is a morphism of biset functors B → R_K.
- The simple biset functors over R are parametrized by pairs (H, W), where H is a finite group, and W is a simple ROut(H)-module. Notation: $(H, W) \mapsto S_{H,W}$.
- Let S be a simple biset functor. Then $S \cong S_{H,W}$ if and only if H has minimal order such that $S(H) \neq 0$, and W = S(H).
- Let (H, W) as above, and G be a finite group. Then $S_{H,W}(G) \neq 0 \implies H \sqsubseteq G.$
- Example: Let \mathbb{F} be a field of characteristic 0. The functor $\mathbb{F}R_{\mathbb{Q}}$ is simple, isomorphic to $S_{1,\mathbb{F}}$. The functor $\mathbb{F}B$ is its projective cover.

Serge Bouc (CNRS-LAMFA) Ex

2

э

A representable biset functor is a functor of the form $Y_G : H \mapsto RB(H, G)$

A representable biset functor is a functor of the form $Y_G : H \mapsto RB(H, G)$, where G is a fixed finite group.

A representable biset functor is a functor of the form $Y_G : H \mapsto RB(H, G)$, where G is a fixed finite group. The R-module RB(H, G) has a basis consisting of the transitive (H, G)-bisets, up to isomorphism A representable biset functor is a functor of the form $Y_G : H \mapsto RB(H, G)$, where G is a fixed finite group. The R-module RB(H, G) has a basis consisting of the transitive (H, G)-bisets, up to isomorphism, i.e. bisets $(H \times G)/L$

A representable biset functor is a functor of the form $Y_G : H \mapsto RB(H, G)$, where G is a fixed finite group. The R-module RB(H, G) has a basis consisting of the transitive (H, G)-bisets, up to isomorphism, i.e. bisets $(H \times G)/L$, where L is a subgroup of $(H \times G)$, up to conjugation.

By the Yoneda lemma

A representable biset functor is a functor of the form $Y_G : H \mapsto RB(H, G)$, where G is a fixed finite group. The R-module RB(H, G) has a basis consisting of the transitive (H, G)-bisets, up to isomorphism, i.e. bisets $(H \times G)/L$, where L is a subgroup of $(H \times G)$, up to conjugation.

By the Yoneda lemma

 $\operatorname{Hom}_{\mathcal{F}_R}(Y_G, F) \cong F(G)$ for any $F \in \mathcal{F}_R$.

By the Yoneda lemma $\operatorname{Hom}_{\mathcal{F}_R}(Y_G, F) \cong F(G)$ for any $F \in \mathcal{F}_R$. Hence Y_G is projective in \mathcal{F}_R

By the Yoneda lemma

 $\operatorname{Hom}_{\mathcal{F}_R}(Y_G,F)\cong F(G) \text{ for any } F\in \mathcal{F}_R.$ Hence Y_G is projective in \mathcal{F}_R , and $\operatorname{End}_{\mathcal{F}_R}(Y_G)\cong RB(G,G)$

A representable biset functor is a functor of the form $Y_G : H \mapsto RB(H, G)$, where G is a fixed finite group. The R-module RB(H, G) has a basis consisting of the transitive (H, G)-bisets, up to isomorphism, i.e. bisets $(H \times G)/L$, where L is a subgroup of $(H \times G)$, up to conjugation.

By the Yoneda lemma

 $\operatorname{Hom}_{\mathcal{F}_R}(Y_G,F)\cong F(G)$ for any $F\in\mathcal{F}_R$.

Hence Y_G is projective in \mathcal{F}_{R_i} and $\operatorname{End}_{\mathcal{F}_R}(Y_G) \cong RB(G, G)$ is the double Burnside algebra of G over R.

A representable biset functor is a functor of the form $Y_G : H \mapsto RB(H, G)$, where G is a fixed finite group. The R-module RB(H, G) has a basis consisting of the transitive (H, G)-bisets, up to isomorphism, i.e. bisets $(H \times G)/L$, where L is a subgroup of $(H \times G)$, up to conjugation.

By the Yoneda lemma

 $\operatorname{Hom}_{\mathcal{F}_R}(Y_G, F) \cong F(G)$ for any $F \in \mathcal{F}_R$.

Hence Y_G is projective in \mathcal{F}_{R_i} and $\operatorname{End}_{\mathcal{F}_R}(Y_G) \cong RB(G, G)$ is the double Burnside algebra of G over R.

When $R \supseteq \mathbb{Q}$

A representable biset functor is a functor of the form $Y_G : H \mapsto RB(H, G)$, where G is a fixed finite group. The R-module RB(H, G) has a basis consisting of the transitive (H, G)-bisets, up to isomorphism, i.e. bisets $(H \times G)/L$, where L is a subgroup of $(H \times G)$, up to conjugation.

By the Yoneda lemma

 $\operatorname{Hom}_{\mathcal{F}_R}(Y_G,F)\cong F(G)$ for any $F\in\mathcal{F}_R$.

Hence Y_G is projective in \mathcal{F}_{R_i} and $\operatorname{End}_{\mathcal{F}_R}(Y_G) \cong RB(G, G)$ is the double Burnside algebra of G over R.

When $R \supseteq \mathbb{Q}$, for any G

A representable biset functor is a functor of the form $Y_G : H \mapsto RB(H, G)$, where G is a fixed finite group. The R-module RB(H, G) has a basis consisting of the transitive (H, G)-bisets, up to isomorphism, i.e. bisets $(H \times G)/L$, where L is a subgroup of $(H \times G)$, up to conjugation.

By the Yoneda lemma

 $\operatorname{Hom}_{\mathcal{F}_R}(Y_G,F)\cong F(G)$ for any $F\in\mathcal{F}_R$.

Hence Y_G is projective in \mathcal{F}_{R_i} and $\operatorname{End}_{\mathcal{F}_R}(Y_G) \cong RB(G, G)$ is the double Burnside algebra of G over R.

When $R \supseteq \mathbb{Q}$, for any G, there is an idempotent φ_1^G in RB(G, G) with the following property:

A representable biset functor is a functor of the form $Y_G : H \mapsto RB(H, G)$, where G is a fixed finite group. The R-module RB(H, G) has a basis consisting of the transitive (H, G)-bisets, up to isomorphism, i.e. bisets $(H \times G)/L$, where L is a subgroup of $(H \times G)$, up to conjugation.

By the Yoneda lemma

 $\operatorname{Hom}_{\mathcal{F}_R}(Y_G,F)\cong F(G)$ for any $F\in\mathcal{F}_R$.

Hence Y_G is projective in \mathcal{F}_{R_i} and $\operatorname{End}_{\mathcal{F}_R}(Y_G) \cong RB(G, G)$ is the double Burnside algebra of G over R.

By the Yoneda lemma

 $\operatorname{Hom}_{\mathcal{F}_R}(Y_G,F)\cong F(G)$ for any $F\in\mathcal{F}_R$.

Hence Y_G is projective in \mathcal{F}_{R_i} and $\operatorname{End}_{\mathcal{F}_R}(Y_G) \cong RB(G, G)$ is the double Burnside algebra of G over R.

$$\left[(H\times {\sf G})/L\right]\circ \varphi_1^{\sf G}\neq 0 \implies$$

By the Yoneda lemma

 $\operatorname{Hom}_{\mathcal{F}_R}(Y_G,F)\cong F(G)$ for any $F\in\mathcal{F}_R$.

Hence Y_G is projective in \mathcal{F}_R and $\operatorname{End}_{\mathcal{F}_R}(Y_G) \cong RB(G, G)$ is the double Burnside algebra of G over R.

$$\left[(H \times G)/L \right] \circ \varphi_1^G \neq 0 \implies \begin{cases} p_2(L) = G \\ p_2(L) = G \end{cases}$$

By the Yoneda lemma

 $\operatorname{Hom}_{\mathcal{F}_R}(Y_G,F)\cong F(G)$ for any $F\in\mathcal{F}_R$.

Hence Y_G is projective in \mathcal{F}_{R_i} and $\operatorname{End}_{\mathcal{F}_R}(Y_G) \cong RB(G, G)$ is the double Burnside algebra of G over R.

$$\left[(H \times G)/L\right] \circ \varphi_1^G \neq 0 \implies \begin{cases} p_2(L) = G \\ k_2(L) \cap \Phi(G) = 1, \end{cases}$$

By the Yoneda lemma

 $\operatorname{Hom}_{\mathcal{F}_R}(Y_G,F)\cong F(G)$ for any $F\in\mathcal{F}_R.$

Hence Y_G is projective in \mathcal{F}_R and $\operatorname{End}_{\mathcal{F}_R}(Y_G) \cong RB(G, G)$ is the double Burnside algebra of G over R.

$$\begin{bmatrix} (H \times G)/L \end{bmatrix} \circ \varphi_1^G \neq 0 \implies \begin{cases} p_2(L) = G \\ k_2(L) \cap \Phi(G) = 1, \end{cases}$$

where
$$\begin{cases} p_2 : (h,g) \in (H \times G) \mapsto g \in G \end{cases}$$

By the Yoneda lemma

 $\operatorname{Hom}_{\mathcal{F}_R}(Y_G,F)\cong F(G)$ for any $F\in\mathcal{F}_R.$

Hence Y_G is projective in \mathcal{F}_{R_i} and $\operatorname{End}_{\mathcal{F}_R}(Y_G) \cong RB(G, G)$ is the double Burnside algebra of G over R.

$$\begin{split} \left[(H \times G)/L \right] \circ \varphi_1^G \neq 0 \implies \begin{cases} p_2(L) = G \\ k_2(L) \cap \Phi(G) = 1, \end{cases} \\ \end{split}$$
where
$$\begin{cases} p_2 : (h,g) \in (H \times G) \mapsto g \in G, \\ k_2(L) = \{g \in G \mid (1,g) \in L\}. \end{cases}$$

By the Yoneda lemma

 $\operatorname{Hom}_{\mathcal{F}_R}(Y_G,F)\cong F(G)$ for any $F\in\mathcal{F}_R$.

Hence Y_G is projective in \mathcal{F}_{R_i} and $\operatorname{End}_{\mathcal{F}_R}(Y_G) \cong RB(G, G)$ is the double Burnside algebra of G over R.

When $R \supseteq \mathbb{Q}$, for any G, there is an idempotent φ_1^G in RB(G, G) with the following property: For any finite group H and any $L \leq (H \times G)$,

$$\left[(H \times G)/L \right] \circ \varphi_1^G \neq 0 \implies \begin{cases} p_2(L) = G \\ k_2(L) \cap \Phi(G) = 1, \end{cases}$$

where $\begin{cases} p_2: (h,g) \in (H \times G) \mapsto g \in G \\ k_2(L) = \{g \in G \mid (1,g) \in L\}. \end{cases}$

Serge Bouc (CNRS-LAMFA) Extensions of sin

Extensions of simple biset functors

MFO, August 14, 2020

5/14

э

Assume $R \supseteq \mathbb{Q}$.

Serge Bouc (CNRS-LAMFA)

3

э

• The objects of $R\mathcal{D}$ are the finite groups.

- The objects of $R\mathcal{D}$ are the finite groups.
- For finite groups G and H

- The objects of $R\mathcal{D}$ are the finite groups.
- For finite groups G and H,

 $\operatorname{Hom}_{\mathcal{RD}}(\mathcal{G},\mathcal{H}) = \varphi_1^{\mathcal{H}} \circ \mathcal{RB}(\mathcal{H},\mathcal{G}) \circ \varphi_1^{\mathcal{G}} \subseteq \mathcal{RB}(\mathcal{H},\mathcal{G})$

- The objects of $R\mathcal{D}$ are the finite groups.
- For finite groups G and H, $\operatorname{Hom}_{R\mathcal{D}}(G,H) = \varphi_1^H \circ RB(H,G) \circ \varphi_1^G$
- The composition in $R\mathcal{D}$ is the composition in $R\mathcal{C}$.

- The objects of $R\mathcal{D}$ are the finite groups.
- For finite groups G and H, $\operatorname{Hom}_{\mathcal{RD}}(G,H) = \varphi_1^H \circ \mathcal{RB}(H,G) \circ \varphi_1^G$
- The composition in $R\mathcal{D}$ is the composition in $R\mathcal{C}$.
- The identity morphism of the group ${\cal G}$ is $\varphi_1^{\cal G}$

- The objects of $R\mathcal{D}$ are the finite groups.
- For finite groups G and H, $\operatorname{Hom}_{R\mathcal{D}}(G,H) = \varphi_1^H \circ RB(H,G) \circ \varphi_1^G$
- The composition in $R\mathcal{D}$ is the composition in $R\mathcal{C}$.
- The identity morphism of the group G is $\varphi_1^{\mathsf{G}} \in \varphi_1^{\mathsf{G}} \circ RB(\mathsf{G},\mathsf{G}) \circ \varphi_1^{\mathsf{G}}$.

- The objects of $R\mathcal{D}$ are the finite groups.
- For finite groups G and H, $\operatorname{Hom}_{\mathcal{RD}}(G,H) = \varphi_1^H \circ \mathcal{RB}(H,G) \circ \varphi_1^G$
- The composition in $R\mathcal{D}$ is the composition in $R\mathcal{C}$.
- The identity morphism of the group G is φ_1^G .

Theorem
Assume $R \supseteq \mathbb{Q}$. Let $R\mathcal{D}$ be the following category:

- The objects of $R\mathcal{D}$ are the finite groups.
- For finite groups G and H, $\operatorname{Hom}_{\mathcal{RD}}(G,H) = \varphi_1^H \circ \mathcal{RB}(H,G) \circ \varphi_1^G$
- The composition in $R\mathcal{D}$ is the composition in $R\mathcal{C}$.
- The identity morphism of the group G is φ_1^G .

Theorem

The category \mathcal{F}_R of biset functors over R

Assume $R \supseteq \mathbb{Q}$. Let $R\mathcal{D}$ be the following category:

- The objects of $R\mathcal{D}$ are the finite groups.
- For finite groups G and H, $\operatorname{Hom}_{\mathcal{RD}}(G,H) = \varphi_1^H \circ \mathcal{RB}(H,G) \circ \varphi_1^G$
- The composition in $R\mathcal{D}$ is the composition in $R\mathcal{C}$.
- The identity morphism of the group G is φ_1^G .

Theorem

The category \mathcal{F}_R of biset functors over R is equivalent to the category \mathcal{G}_R of R-linear functors from $R\mathcal{D}$ to R-Mod.

Assume $R \supseteq \mathbb{Q}$. Let $R\mathcal{D}$ be the following category:

- The objects of $R\mathcal{D}$ are the finite groups.
- For finite groups G and H, $\operatorname{Hom}_{\mathcal{RD}}(G,H) = \varphi_1^H \circ \mathcal{RB}(H,G) \circ \varphi_1^G$
- The composition in $R\mathcal{D}$ is the composition in $R\mathcal{C}$.
- The identity morphism of the group G is φ_1^G .

Theorem

The category \mathcal{F}_R of biset functors over R is equivalent to the category \mathcal{G}_R of R-linear functors from $R\mathcal{D}$ to R-Mod.

On the category $R\mathcal{D}$

Serge Bouc (CNRS-LAMFA)

Extensions of simple biset functors

MFO, August 14, 2020

3 > < 3 >

Image: A matrix

6/14

æ

For finite groups G and H

Serge Bouc (CNRS-LAMFA)

э

For finite groups G and H, we write $H \rightarrow G$

Proposition

Serge Bouc (CNRS-LAMFA)

Proposition

Serge Bouc (CNRS-LAMFA)

• Let G and H be finite groups.

Proposition

1 Let G and H be finite groups. Then $\operatorname{Hom}_{R\mathcal{D}}(G, H) \neq 0$ if and only if

Proposition

1 Let G and H be finite groups. Then $\operatorname{Hom}_{R\mathcal{D}}(G, H) \neq 0$ if and only if there exists a group Q such that $G \longrightarrow Q \longleftarrow H$.

- Let G and H be finite groups. Then $\operatorname{Hom}_{R\mathcal{D}}(G, H) \neq 0$ if and only if there exists a group Q such that $G \longrightarrow Q \iff H$.
- 2 Let G be a finite group. Then there exists a finite group H such that $\Phi(H) = 1$ and $H \longrightarrow G$

- Let G and H be finite groups. Then $\operatorname{Hom}_{R\mathcal{D}}(G, H) \neq 0$ if and only if there exists a group Q such that $G \longrightarrow Q \iff H$.
- 2 Let G be a finite group. Then there exists a finite group H such that $\Phi(H) = 1$ and $H \longrightarrow G$ (hence $H \multimap G$).

- Let G and H be finite groups. Then $\operatorname{Hom}_{R\mathcal{D}}(G, H) \neq 0$ if and only if there exists a group Q such that $G \longrightarrow Q \iff H$.
- 2 Let G be a finite group. Then there exists a finite group H such that $\Phi(H) = 1$ and $H \longrightarrow G$ (hence $H \multimap G$).
- **3** Let G and H be finite groups.

- Let G and H be finite groups. Then $\operatorname{Hom}_{R\mathcal{D}}(G, H) \neq 0$ if and only if there exists a group Q such that $G \longrightarrow Q \iff H$.
- 2 Let G be a finite group. Then there exists a finite group H such that $\Phi(H) = 1$ and $H \longrightarrow G$ (hence $H \multimap G$).
- **1** Let G and H be finite groups. Then there exist finite groups X and Y

Proposition

- Let G and H be finite groups. Then $\operatorname{Hom}_{R\mathcal{D}}(G, H) \neq 0$ if and only if there exists a group Q such that $G \longrightarrow Q \iff H$.
- 2 Let G be a finite group. Then there exists a finite group H such that $\Phi(H) = 1$ and $H \longrightarrow G$ (hence $H \multimap G$).
- Let G and H be finite groups. Then there exist finite groups X and Y and a chain $G \longrightarrow X \longrightarrow Y \longrightarrow H$

- 4 B M 4 B M

Proposition

- Let G and H be finite groups. Then $\operatorname{Hom}_{R\mathcal{D}}(G, H) \neq 0$ if and only if there exists a group Q such that $G \longrightarrow Q \iff H$.
- 2 Let G be a finite group. Then there exists a finite group H such that $\Phi(H) = 1$ and $H \longrightarrow G$ (hence $H \multimap G$).
- Let G and H be finite groups. Then there exist finite groups X and Y and a chain $G \longrightarrow X \longrightarrow Y \longrightarrow H$ of non zero morphisms in RD.

Proposition

- Let G and H be finite groups. Then $\operatorname{Hom}_{R\mathcal{D}}(G, H) \neq 0$ if and only if there exists a group Q such that $G \longrightarrow Q \iff H$.
- 2 Let G be a finite group. Then there exists a finite group H such that $\Phi(H) = 1$ and $H \longrightarrow G$ (hence $H \multimap G$).
- Let G and H be finite groups. Then there exist finite groups X and Y and a chain $G \longrightarrow X \longrightarrow Y \longrightarrow H$ of non zero morphisms in RD.

Serge Bouc (CNRS-LAMFA) Extensions of simple biset functors

MFO, August 14, 2020

э

Serge Bouc (CNRS-LAMFA) Extensions of simple biset functors

MFO, August 14, 2020

э

Serge Bouc (CNRS-LAMFA) Extensions of simple biset functors

functors MFO, Augu

MFO, August 14, 2020 7 / 14

Let \mathbb{F} be a field of characteristic 0.

Serge Bouc (CNRS-LAMFA)

Extensions of simple biset functors

MFO, August 14, 2020

Let \mathbb{F} be a field of characteristic 0. Let $S_{G,V}$ and $S_{H,W}$ be simple biset functors over \mathbb{F} .

Let \mathbb{F} be a field of characteristic 0. Let $S_{G,V}$ and $S_{H,W}$ be simple biset functors over \mathbb{F} . If $\operatorname{Ext}^{1}_{\mathcal{F}_{\mathbb{F}}}(S_{G,V}, S_{H,W}) \neq 0$

Let \mathbb{F} be a field of characteristic 0. Let $S_{G,V}$ and $S_{H,W}$ be simple biset functors over \mathbb{F} . If $\operatorname{Ext}^{1}_{\mathcal{F}_{\mathbb{F}}}(S_{G,V}, S_{H,W}) \neq 0$, then

• either |G| > |H| and $G \rightarrow H$

Let \mathbb{F} be a field of characteristic 0. Let $S_{G,V}$ and $S_{H,W}$ be simple biset functors over \mathbb{F} . If $\operatorname{Ext}^{1}_{\mathcal{F}_{\mathbb{F}}}(S_{G,V}, S_{H,W}) \neq 0$, then

- either |G| > |H| and $G \longrightarrow H$,
- or |H| > |G| and $H \longrightarrow G$.

Let \mathbb{F} be a field of characteristic 0. Let $S_{G,V}$ and $S_{H,W}$ be simple biset functors over \mathbb{F} . If $\operatorname{Ext}^{1}_{\mathcal{F}_{\mathbb{F}}}(S_{G,V}, S_{H,W}) \neq 0$, then

• either
$$|G|>|H|$$
 and $G extsf{-} hextsf{-} H$,

• or
$$|H|>|G|$$
 and $H {-} G$.

Corollary

Let \mathbb{F} be a field of characteristic 0. Let $S_{G,V}$ and $S_{H,W}$ be simple biset functors over \mathbb{F} . If $\operatorname{Ext}^{1}_{\mathcal{F}_{\mathbb{F}}}(S_{G,V}, S_{H,W}) \neq 0$, then

• either
$$|G| > |H|$$
 and $G \longrightarrow H$,

• or
$$|H|>|G|$$
 and $H {-} G$.

Corollary

Let G and H be finite groups.

Let \mathbb{F} be a field of characteristic 0. Let $S_{G,V}$ and $S_{H,W}$ be simple biset functors over \mathbb{F} . If $\operatorname{Ext}^{1}_{\mathcal{F}_{\mathbb{F}}}(S_{G,V}, S_{H,W}) \neq 0$, then

• either
$$|G| > |H|$$
 and $G \longrightarrow H$,

• or
$$|H|>|G|$$
 and $H ext{-} \circ ext{-} ext{-} G$.

Corollary

Let G and H be finite groups. If $Soc(G) \le \Phi(G)$ and $Soc(H) \le \Phi(H)$

Let \mathbb{F} be a field of characteristic 0. Let $S_{G,V}$ and $S_{H,W}$ be simple biset functors over \mathbb{F} . If $\operatorname{Ext}^{1}_{\mathcal{F}_{\mathbb{F}}}(S_{G,V}, S_{H,W}) \neq 0$, then

• either
$$|G| > |H|$$
 and $G \longrightarrow H$,

• or
$$|H|>|G|$$
 and $H ext{-} \circ ext{-} ext{-} G$.

Corollary

Let G and H be finite groups. If $Soc(G) \le \Phi(G)$ and $Soc(H) \le \Phi(H)$, then $Ext^{1}_{\mathcal{F}_{F}}(S_{G,V}, S_{H,W}) = 0$.

Let \mathbb{F} be a field of characteristic 0. Let $S_{G,V}$ and $S_{H,W}$ be simple biset functors over \mathbb{F} . If $\operatorname{Ext}^{1}_{\mathcal{F}_{\mathbb{F}}}(S_{G,V}, S_{H,W}) \neq 0$, then

• either
$$|G| > |H|$$
 and $G \longrightarrow H$,

• or
$$|H|>|G|$$
 and $H ext{-} \circ ext{-} ext{-} G$.

Corollary

Let G and H be finite groups. If $Soc(G) \le \Phi(G)$ and $Soc(H) \le \Phi(H)$, then $Ext^{1}_{\mathcal{F}_{F}}(S_{G,V}, S_{H,W}) = 0$.

Let \mathbb{F} be a field of characteristic 0. Let $S_{G,V}$ and $S_{H,W}$ be simple biset functors over \mathbb{F} . If $\operatorname{Ext}^{1}_{\mathcal{F}_{\mathbb{F}}}(S_{G,V}, S_{H,W}) \neq 0$, then

• either
$$|G| > |H|$$
 and $G \longrightarrow H$,

• or
$$|H|>|G|$$
 and $H ext{-} \circ ext{-} ext{-} G$.

Corollary

Let G and H be finite groups. If $Soc(G) \le \Phi(G)$ and $Soc(H) \le \Phi(H)$, then $Ext^{1}_{\mathcal{F}_{F}}(S_{G,V}, S_{H,W}) = 0$.

Serge Bouc (CNRS-LAMFA) Ext

Extensions of simple biset functors

MFO, August 14, 2020

→ < ∃→

Image: A matrix

8 / 14

æ

• A finite nilpotent group G is called atoric if

э

• A finite nilpotent group G is called atoric if G cannot split as $E \times K$,

• A finite nilpotent group G is called atoric if G cannot split as $E \times K$, where E is a non-trivial elementary abelian group.
• A finite nilpotent group G is called atoric if G cannot split as $E \times K$, where E is a non-trivial elementary abelian group. Equivalently

• A finite nilpotent group G is called atoric if G cannot split as $E \times K$, where E is a non-trivial elementary abelian group. Equivalently $Soc(G) \subseteq \Phi(G)$.

- A finite nilpotent group G is called atoric if G cannot split as $E \times K$, where E is a non-trivial elementary abelian group. Equivalently $Soc(G) \subseteq \Phi(G)$.
- Let G be a finite nilpotent group

- A finite nilpotent group G is called atoric if G cannot split as $E \times K$, where E is a non-trivial elementary abelian group. Equivalently $Soc(G) \subseteq \Phi(G)$.
- Let G be a finite nilpotent group, and $N \leq G$ maximal such that $N \cap \Phi(G) = 1$.

- A finite nilpotent group G is called atoric if G cannot split as $E \times K$, where E is a non-trivial elementary abelian group. Equivalently $Soc(G) \subseteq \Phi(G)$.
- Let G be a finite nilpotent group, and N ≤ G maximal such that N ∩ Φ(G) = 1. Then G[@] = G/N does not depend on N, up to isomorphism.

- A finite nilpotent group G is called atoric if G cannot split as $E \times K$, where E is a non-trivial elementary abelian group. Equivalently $Soc(G) \subseteq \Phi(G)$.
- Let G be a finite nilpotent group, and N ≤ G maximal such that N ∩ Φ(G) = 1. Then G[®] = G/N does not depend on N, up to isomorphism. It is the largest atoric quotient of G.

8/14

- A finite nilpotent group G is called atoric if G cannot split as $E \times K$, where E is a non-trivial elementary abelian group. Equivalently $Soc(G) \subseteq \Phi(G)$.
- Let G be a finite nilpotent group, and N ≤ G maximal such that N ∩ Φ(G) = 1. Then G[®] = G/N does not depend on N, up to isomorphism. It is the largest atoric quotient of G.
- If G is nilpotent

- A finite nilpotent group G is called atoric if G cannot split as $E \times K$, where E is a non-trivial elementary abelian group. Equivalently $Soc(G) \subseteq \Phi(G)$.
- Let G be a finite nilpotent group, and N ≤ G maximal such that N ∩ Φ(G) = 1. Then G[@] = G/N does not depend on N, up to isomorphism. It is the largest atoric quotient of G.
- If G is nilpotent and $G \rightarrow H$

- A finite nilpotent group G is called atoric if G cannot split as $E \times K$, where E is a non-trivial elementary abelian group. Equivalently $Soc(G) \subseteq \Phi(G)$.
- Let G be a finite nilpotent group, and N ≤ G maximal such that N ∩ Φ(G) = 1. Then G[@] = G/N does not depend on N, up to isomorphism. It is the largest atoric quotient of G.
- If G is nilpotent and $G \rightarrow H$, then $G^{@} \cong H^{@}$.

- A finite nilpotent group G is called atoric if G cannot split as $E \times K$, where E is a non-trivial elementary abelian group. Equivalently $Soc(G) \subseteq \Phi(G)$.
- Let G be a finite nilpotent group, and N ≤ G maximal such that N ∩ Φ(G) = 1. Then G[@] = G/N does not depend on N, up to isomorphism. It is the largest atoric quotient of G.
- If G is nilpotent and $G \longrightarrow H$, then $G^{@} \cong H^{@}$.
- If G and H are nilpotent

- A finite nilpotent group G is called atoric if G cannot split as $E \times K$, where E is a non-trivial elementary abelian group. Equivalently $Soc(G) \subseteq \Phi(G)$.
- Let G be a finite nilpotent group, and N ≤ G maximal such that N ∩ Φ(G) = 1. Then G[@] = G/N does not depend on N, up to isomorphism. It is the largest atoric quotient of G.
- If G is nilpotent and $G \rightarrow H$, then $G^{@} \cong H^{@}$.
- If G and H are nilpotent, then $\operatorname{Hom}_{R\mathcal{D}}(G, H) \neq 0$

- A finite nilpotent group G is called atoric if G cannot split as $E \times K$, where E is a non-trivial elementary abelian group. Equivalently $Soc(G) \subseteq \Phi(G)$.
- Let G be a finite nilpotent group, and N ≤ G maximal such that N ∩ Φ(G) = 1. Then G[@] = G/N does not depend on N, up to isomorphism. It is the largest atoric quotient of G.
- If G is nilpotent and $G \rightarrow H$, then $G^{@} \cong H^{@}$.
- If G and H are nilpotent, then $\operatorname{Hom}_{R\mathcal{D}}(G, H) \neq 0$ if and only if $G^{@} \cong H^{@}$.

- A finite nilpotent group G is called atoric if G cannot split as $E \times K$, where E is a non-trivial elementary abelian group. Equivalently $Soc(G) \subseteq \Phi(G)$.
- Let G be a finite nilpotent group, and N ≤ G maximal such that N ∩ Φ(G) = 1. Then G[@] = G/N does not depend on N, up to isomorphism. It is the largest atoric quotient of G.
- If G is nilpotent and $G \rightarrow H$, then $G^{@} \cong H^{@}$.
- If G and H are nilpotent, then $\operatorname{Hom}_{R\mathcal{D}}(G, H) \neq 0$ if and only if $G^{@} \cong H^{@}$.
- If $S_{G,V}$ and $S_{H,W}$ are simple functors

- A finite nilpotent group G is called atoric if G cannot split as $E \times K$, where E is a non-trivial elementary abelian group. Equivalently $Soc(G) \subseteq \Phi(G)$.
- Let G be a finite nilpotent group, and N ≤ G maximal such that N ∩ Φ(G) = 1. Then G[®] = G/N does not depend on N, up to isomorphism. It is the largest atoric quotient of G.
- If G is nilpotent and $G \rightarrow H$, then $G^{@} \cong H^{@}$.
- If G and H are nilpotent, then $\operatorname{Hom}_{R\mathcal{D}}(G, H) \neq 0$ if and only if $G^{@} \cong H^{@}$.
- If $S_{G,V}$ and $S_{H,W}$ are simple functors with G and H nilpotent

- A finite nilpotent group G is called atoric if G cannot split as $E \times K$, where E is a non-trivial elementary abelian group. Equivalently $Soc(G) \subseteq \Phi(G)$.
- Let G be a finite nilpotent group, and N ≤ G maximal such that N ∩ Φ(G) = 1. Then G[@] = G/N does not depend on N, up to isomorphism. It is the largest atoric quotient of G.
- If G is nilpotent and $G \rightarrow H$, then $G^{@} \cong H^{@}$.
- If G and H are nilpotent, then $\operatorname{Hom}_{R\mathcal{D}}(G, H) \neq 0$ if and only if $G^{@} \cong H^{@}$.
- If $S_{G,V}$ and $S_{H,W}$ are simple functors with G and H nilpotent, then $\operatorname{Ext}^{1}_{\mathcal{F}_{\mathbb{F}}}(S_{G,V}, S_{H,W}) \neq 0 \implies$

- A finite nilpotent group G is called atoric if G cannot split as $E \times K$, where E is a non-trivial elementary abelian group. Equivalently $Soc(G) \subseteq \Phi(G)$.
- Let G be a finite nilpotent group, and N ≤ G maximal such that N ∩ Φ(G) = 1. Then G[@] = G/N does not depend on N, up to isomorphism. It is the largest atoric quotient of G.
- If G is nilpotent and $G \rightarrow H$, then $G^{@} \cong H^{@}$.
- If G and H are nilpotent, then $\operatorname{Hom}_{R\mathcal{D}}(G, H) \neq 0$ if and only if $G^{@} \cong H^{@}$.
- If $S_{G,V}$ and $S_{H,W}$ are simple functors with G and H nilpotent, then $\operatorname{Ext}^{1}_{\mathcal{F}_{\mathbb{F}}}(S_{G,V}, S_{H,W}) \neq 0 \implies G^{@} \cong H^{@}.$

- A finite nilpotent group G is called atoric if G cannot split as $E \times K$, where E is a non-trivial elementary abelian group. Equivalently $Soc(G) \subseteq \Phi(G)$.
- Let G be a finite nilpotent group, and N ≤ G maximal such that N ∩ Φ(G) = 1. Then G[@] = G/N does not depend on N, up to isomorphism. It is the largest atoric quotient of G.
- If G is nilpotent and $G \rightarrow H$, then $G^{@} \cong H^{@}$.
- If G and H are nilpotent, then $\operatorname{Hom}_{R\mathcal{D}}(G, H) \neq 0$ if and only if $G^{@} \cong H^{@}$.
- If $S_{G,V}$ and $S_{H,W}$ are simple functors with G and H nilpotent, then $\operatorname{Ext}^{1}_{\mathcal{F}_{\mathbb{F}}}(S_{G,V}, S_{H,W}) \neq 0 \implies G^{@} \cong H^{@}.$

Serge Bouc (CNRS-LAMFA)

Extensions of simple biset functors

9/14

For $N \trianglelefteq G$, set $m_{G,N} =$

Serge Bouc (CNRS-LAMFA)

Extensions of simple biset functors

A B b

Image: A matrix

For
$$N \trianglelefteq G$$
, set $m_{G,N} = \frac{1}{|G|} \sum_{\substack{X \leq G \\ XN = G}}$

Serge Bouc (CNRS-LAMFA)

For
$$N \trianglelefteq G$$
, set $m_{G,N} = \frac{1}{|G|} \sum_{\substack{X \leq G \\ XN = G}} |X| \mu(X,G)$

For
$$N \trianglelefteq G$$
, set $m_{G,N} = \frac{1}{|G|} \sum_{\substack{X \leq G \\ XN = G}} |X| \mu(X,G) \in \mathbb{Q}.$

Serge Bouc (CNRS-LAMFA)

For
$$N \leq G$$
, set $m_{G,N} = \frac{1}{|G|} \sum_{\substack{X \leq G \\ XN = G}} |X| \mu(X,G) \in \mathbb{Q}.$

Recall that G is a B-group

Serge Bouc (CNRS-LAMFA)

- 2

For $N \leq G$, set $m_{G,N} = \frac{1}{|G|} \sum_{\substack{X \leq G \\ XN = G}} |X| \mu(X, G) \in \mathbb{Q}$. Recall that G is a *B*-group if $m_{G,N} = 0$ for any $1 \neq N \leq G$.

For $N \leq G$, set $m_{G,N} = \frac{1}{|G|} \sum_{\substack{X \leq G \\ XN = G}} |X| \mu(X, G) \in \mathbb{Q}$. Recall that G is a *B*-group if $m_{G,N} = 0$ for any $1 \neq N \leq G$. Let G be a finite group.

For $N \leq G$, set $m_{G,N} = \frac{1}{|G|} \sum_{\substack{X \leq G \\ XN = G}} |X| \mu(X,G) \in \mathbb{Q}$. Recall that G is a *B*-group if $m_{G,N} = 0$ for any $1 \neq N \leq G$. Let G be a finite group. There exists a group $\beta(G)$ such that

For $N \leq G$, set $m_{G,N} = \frac{1}{|G|} \sum_{\substack{X \leq G \\ XN = G}} |X| \mu(X,G) \in \mathbb{Q}$. Recall that G is a B-group if $m_{G,N} = 0$ for any $1 \neq N \leq G$. Let G be a finite group. There exists a group $\beta(G)$ such that • $\beta(G)$ is a B-group

For $N \leq G$, set $m_{G,N} = \frac{1}{|G|} \sum_{\substack{X \leq G \\ XN = G}} |X| \mu(X,G) \in \mathbb{Q}$. Recall that G is a *B*-group if $m_{G,N} = 0$ for any $1 \neq N \leq G$. Let G be a finite group. There exists a group $\beta(G)$ such that

• $\beta(G)$ is a *B*-group, and $G \longrightarrow \beta(G)$.

For $N \leq G$, set $m_{G,N} = \frac{1}{|G|} \sum_{\substack{X \leq G \\ XN = G}} |X| \mu(X,G) \in \mathbb{Q}$. Recall that G is a *B*-group if $m_{G,N} = 0$ for any $1 \neq N \leq G$. Let G be a finite group. There exists a group $\beta(G)$ such that

- $\beta(G)$ is a *B*-group, and $G \longrightarrow \beta(G)$.
- If H is a B-group

Serge Bouc (CNRS-LAMFA)

For $N \leq G$, set $m_{G,N} = \frac{1}{|G|} \sum_{\substack{X \leq G \\ XN = G}} |X| \mu(X, G) \in \mathbb{Q}$. Recall that G is a *B*-group if $m_{G,N} = 0$ for any $1 \neq N \leq G$. Let G be a finite group. There exists a group $\beta(G)$ such that

- $\beta(G)$ is a *B*-group, and $G \longrightarrow \beta(G)$.

For $N \leq G$, set $m_{G,N} = \frac{1}{|G|} \sum_{\substack{X \leq G \\ XN = G}} |X| \mu(X, G) \in \mathbb{Q}$. Recall that G is a *B*-group if $m_{G,N} = 0$ for any $1 \neq N \leq G$. Let G be a finite group. There exists a group $\beta(G)$ such that

- $\beta(G)$ is a *B*-group, and $G \longrightarrow \beta(G)$.
- If H is a B-group, and $G \longrightarrow H$, then $\beta(G) \longrightarrow H$.

For $N \leq G$, set $m_{G,N} = \frac{1}{|G|} \sum_{\substack{X \leq G \\ XN = G}} |X| \mu(X,G) \in \mathbb{Q}.$

Let G be a finite group. There exists a group $\beta(G)$ such that

- $\beta(G)$ is a *B*-group, and $G \longrightarrow \beta(G)$.
- If H is a B-group, and $G \longrightarrow H$, then $\beta(G) \longrightarrow H$.

Theorem

For $N \leq G$, set $m_{G,N} = \frac{1}{|G|} \sum_{\substack{X \leq G \\ XN = G}} |X| \mu(X,G) \in \mathbb{Q}.$

Recall that G is a B-group if $m_{G,N} = 0$ for any $1 \neq N \leq G$. Let G be a finite group. There exists a group $\beta(G)$ such that

- $\beta(G)$ is a *B*-group, and $G \longrightarrow \beta(G)$.
- If H is a B-group, and $G \longrightarrow H$, then $\beta(G) \longrightarrow H$.

Theorem

$If 0 \leq F_2 < F_1 \leq \mathbb{F}B$

For $N \leq G$, set $m_{G,N} = \frac{1}{|G|} \sum_{\substack{X \leq G \\ XN = G}} |X| \mu(X,G) \in \mathbb{Q}.$

Recall that G is a B-group if $m_{G,N} = 0$ for any $1 \neq N \leq G$. Let G be a finite group. There exists a group $\beta(G)$ such that

- $\beta(G)$ is a *B*-group, and $G \longrightarrow \beta(G)$.
- If H is a B-group, and $G \longrightarrow H$, then $\beta(G) \longrightarrow H$.

Theorem

• If $0 \le F_2 < F_1 \le \mathbb{F}B$ and $F_1/F_2 \cong S_{H,W}$

For $N \leq G$, set $m_{G,N} = \frac{1}{|G|} \sum_{\substack{X \leq G \\ XN = G}} |X| \mu(X,G) \in \mathbb{Q}.$

Recall that G is a B-group if $m_{G,N} = 0$ for any $1 \neq N \leq G$. Let G be a finite group. There exists a group $\beta(G)$ such that

- $\beta(G)$ is a *B*-group, and $G \longrightarrow \beta(G)$.
- If H is a B-group, and $G \longrightarrow H$, then $\beta(G) \longrightarrow H$.

Theorem

• If $0 \le F_2 < F_1 \le \mathbb{F}B$ and $F_1/F_2 \cong S_{H,W}$, then H is a B-group and $W = \mathbb{F}$.

For $N \leq G$, set $m_{G,N} = \frac{1}{|G|} \sum_{\substack{X \leq G \\ XN = G}} |X| \mu(X,G) \in \mathbb{Q}.$

Recall that G is a B-group if $m_{G,N} = 0$ for any $1 \neq N \leq G$.

- $\beta(G)$ is a *B*-group, and $G \longrightarrow \beta(G)$.
- If H is a B-group, and $G \longrightarrow H$, then $\beta(G) \longrightarrow H$.

Theorem

- If $0 \le F_2 < F_1 \le \mathbb{F}B$ and $F_1/F_2 \cong S_{H,W}$, then H is a B-group and $W = \mathbb{F}$.
- Onversely, if H is a B-group

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <
For $N \leq G$, set $m_{G,N} = \frac{1}{|G|} \sum_{\substack{X \leq G \\ XN = G}} |X| \mu(X,G) \in \mathbb{Q}.$

Recall that G is a B-group if $m_{G,N} = 0$ for any $1 \neq N \leq G$. Let G be a finite group. There exists a group $\beta(G)$ such that

- $\beta(G)$ is a *B*-group, and $G \longrightarrow \beta(G)$.
- If H is a B-group, and $G \longrightarrow H$, then $\beta(G) \longrightarrow H$.

Theorem

- If $0 \le F_2 < F_1 \le \mathbb{F}B$ and $F_1/F_2 \cong S_{H,W}$, then H is a B-group and $W = \mathbb{F}$.
- 3 Conversely, if H is a B-group, then there exist $0 \le F_2 < F_1 \le \mathbb{F}B$

For $N \leq G$, set $m_{G,N} = \frac{1}{|G|} \sum_{\substack{X \leq G \\ XN = G}} |X| \mu(X,G) \in \mathbb{Q}.$

Recall that G is a B-group if $m_{G,N} = 0$ for any $1 \neq N \leq G$. Let G be a finite group. There exists a group $\beta(G)$ such that

- $\beta(G)$ is a *B*-group, and $G \longrightarrow \beta(G)$.
- If H is a B-group, and $G \longrightarrow H$, then $\beta(G) \longrightarrow H$.

Theorem

- If $0 \le F_2 < F_1 \le \mathbb{F}B$ and $F_1/F_2 \cong S_{H,W}$, then H is a B-group and $W = \mathbb{F}$.
- ② Conversely, if H is a B-group, then there exist $0 \le F_2 < F_1 \le \mathbb{F}B$ such that $F_1/F_2 \cong S_{H,\mathbb{F}}$.

For $N \leq G$, set $m_{G,N} = \frac{1}{|G|} \sum_{\substack{X \leq G \\ XN = G}} |X| \mu(X,G) \in \mathbb{Q}.$

Recall that G is a B-group if $m_{G,N} = 0$ for any $1 \neq N \leq G$. Let G be a finite group. There exists a group $\beta(G)$ such that

- $\beta(G)$ is a *B*-group, and $G \longrightarrow \beta(G)$.
- If H is a B-group, and $G \longrightarrow H$, then $\beta(G) \longrightarrow H$.

Theorem

- If $0 \le F_2 < F_1 \le \mathbb{F}B$ and $F_1/F_2 \cong S_{H,W}$, then H is a B-group and $W = \mathbb{F}$.
- ② Conversely, if H is a B-group, then there exist $0 \le F_2 < F_1 \le \mathbb{F}B$ such that $F_1/F_2 \cong S_{H,\mathbb{F}}$.
- 3 If H is a finite B-group

< □ > < /□ >

For $N \leq G$, set $m_{G,N} = \frac{1}{|G|} \sum_{\substack{X \leq G \\ XN = G}} |X| \mu(X,G) \in \mathbb{Q}.$

Recall that G is a B-group if $m_{G,N} = 0$ for any $1 \neq N \leq G$. Let G be a finite group. There exists a group $\beta(G)$ such that

- $\beta(G)$ is a *B*-group, and $G \longrightarrow \beta(G)$.
- If H is a B-group, and $G \longrightarrow H$, then $\beta(G) \longrightarrow H$.

Theorem

- If $0 \le F_2 < F_1 \le \mathbb{F}B$ and $F_1/F_2 \cong S_{H,W}$, then H is a B-group and $W = \mathbb{F}$.
- ② Conversely, if H is a B-group, then there exist $0 \le F_2 < F_1 \le \mathbb{F}B$ such that $F_1/F_2 \cong S_{H,\mathbb{F}}$.
- If H is a finite B-group, and G is a finite group

For $N \leq G$, set $m_{G,N} = \frac{1}{|G|} \sum_{\substack{X \leq G \\ XN = G}} |X| \mu(X,G) \in \mathbb{Q}.$

Recall that G is a B-group if $m_{G,N} = 0$ for any $1 \neq N \leq G$. Let G be a finite group. There exists a group $\beta(G)$ such that

- $\beta(G)$ is a *B*-group, and $G \longrightarrow \beta(G)$.
- If H is a B-group, and $G \longrightarrow H$, then $\beta(G) \longrightarrow H$.

Theorem

- If $0 \le F_2 < F_1 \le \mathbb{F}B$ and $F_1/F_2 \cong S_{H,W}$, then H is a B-group and $W = \mathbb{F}$.
- ② Conversely, if H is a B-group, then there exist $0 \le F_2 < F_1 \le \mathbb{F}B$ such that $F_1/F_2 \cong S_{H,\mathbb{F}}$.

• If H is a finite B-group, and G is a finite group, then $\dim_{\mathbb{F}} S_{H,\mathbb{F}}(G) =$

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

For
$$N \leq G$$
, set $m_{G,N} = \frac{1}{|G|} \sum_{\substack{X \leq G \\ XN = G}} |X| \mu(X,G) \in \mathbb{Q}.$

Recall that G is a B-group if $m_{G,N} = 0$ for any $1 \neq N \leq G$. Let G be a finite group. There exists a group $\beta(G)$ such that

- $\beta(G)$ is a *B*-group, and $G \longrightarrow \beta(G)$.
- If H is a B-group, and $G \longrightarrow H$, then $\beta(G) \longrightarrow H$.

Theorem

- If $0 \le F_2 < F_1 \le \mathbb{F}B$ and $F_1/F_2 \cong S_{H,W}$, then H is a B-group and $W = \mathbb{F}$.
- ② Conversely, if H is a B-group, then there exist $0 \le F_2 < F_1 \le \mathbb{F}B$ such that $F_1/F_2 \cong S_{H,\mathbb{F}}$.

• If H is a finite B-group, and G is a finite group, then $\dim_{\mathbb{F}} S_{H,\mathbb{F}}(G) = |\{K \leq G \mid$

For
$$N \leq G$$
, set $m_{G,N} = \frac{1}{|G|} \sum_{\substack{X \leq G \\ XN = G}} |X| \mu(X,G) \in \mathbb{Q}.$

Recall that G is a B-group if $m_{G,N} = 0$ for any $1 \neq N \leq G$. Let G be a finite group. There exists a group $\beta(G)$ such that

- $\beta(G)$ is a *B*-group, and $G \longrightarrow \beta(G)$.
- If H is a B-group, and $G \longrightarrow H$, then $\beta(G) \longrightarrow H$.

Theorem

- If $0 \le F_2 < F_1 \le \mathbb{F}B$ and $F_1/F_2 \cong S_{H,W}$, then H is a B-group and $W = \mathbb{F}$.
- ② Conversely, if H is a B-group, then there exist $0 \le F_2 < F_1 \le \mathbb{F}B$ such that $F_1/F_2 \cong S_{H,\mathbb{F}}$.

• If H is a finite B-group, and G is a finite group, then $\dim_{\mathbb{F}} S_{H,\mathbb{F}}(G) = \left| \{ K \leq G \mid \beta(K) \cong H \right|$

For $N \leq G$, set $m_{G,N} = \frac{1}{|G|} \sum_{\substack{X \leq G \\ XN = G}} |X| \mu(X,G) \in \mathbb{Q}.$

Recall that G is a B-group if $m_{G,N} = 0$ for any $1 \neq N \leq G$. Let G be a finite group. There exists a group $\beta(G)$ such that

- $\beta(G)$ is a *B*-group, and $G \longrightarrow \beta(G)$.
- If H is a B-group, and $G \longrightarrow H$, then $\beta(G) \longrightarrow H$.

Theorem

- If $0 \le F_2 < F_1 \le \mathbb{F}B$ and $F_1/F_2 \cong S_{H,W}$, then H is a B-group and $W = \mathbb{F}$.
- ② Conversely, if H is a B-group, then there exist $0 \le F_2 < F_1 \le \mathbb{F}B$ such that $F_1/F_2 \cong S_{H,\mathbb{F}}$.

• If H is a finite B-group, and G is a finite group, then $\dim_{\mathbb{F}} S_{H,\mathbb{F}}(G) = \big| \{ K \leq G \mid \beta(K) \cong H, K \text{ up to } G \} \big|.$

Serge Bouc (CNRS-LAMFA) Extensions of simple biset functors

2

э.

The *B*-group *G* is minimal

Simple functors and *B*-groups

The *B*-group *G* is minimal if $G \neq 1$

The *B*-group *G* is minimal if $G \neq 1$, and for any *B*-group *H*

Serge Bouc (CNRS-LAMFA)

Extensions of simple biset functors

MFO, August 14, 2020

э

The *B*-group *G* is minimal if $G \neq 1$, and for any *B*-group *H*, $G \longrightarrow H$

Serge Bouc (CNRS-LAMFA) Extens

Extensions of simple biset functors

MFO, August 14, 2020

≣ ৩৭৫ 0 10/14

Serge Bouc (CNRS-LAMFA)

Extensions of simple biset functors

MFO, August 14, 2020

10 / 14

3 🕨 🤅 3

Theorem

Serge Bouc (CNRS-LAMFA)

Extensions of simple biset functors

MFO, August 14, 2020

∃ >

10 / 14

Theorem

Let $S_{H,W}$ be a simple biset functor over \mathbb{F} .

Theorem

Let $S_{H,W}$ be a simple biset functor over \mathbb{F} . The following are equivalent:

Theorem

Let $S_{H,W}$ be a simple biset functor over \mathbb{F} . The following are equivalent: • Ext¹_{$\mathcal{F}_{\mathbb{F}}$} $(S_{1,\mathbb{F}}, S_{H,W}) \neq 0.$

Serge Bouc (CNRS-LAMFA)

Extensions of simple biset functors

Theorem

Let $S_{H,W}$ be a simple biset functor over \mathbb{F} . The following are equivalent: \bullet Ext $^{1}_{\mathcal{F}_{\mathbb{F}}}(S_{1,\mathbb{F}}, S_{H,W}) \neq 0$.

$$2 \operatorname{Ext}^{1}_{\mathcal{F}_{\mathbb{F}}}(S_{H,W},S_{1,\mathbb{F}}) \neq 0.$$

Theorem

Let $S_{H,W}$ be a simple biset functor over \mathbb{F} . The following are equivalent:

- 2 $\operatorname{Ext}^{1}_{\mathcal{F}_{\mathbb{F}}}(S_{H,W}, S_{1,\mathbb{F}}) \neq 0.$
- It is a minimal B-group

Theorem

Let $S_{H,W}$ be a simple biset functor over \mathbb{F} . The following are equivalent:

$$I Ext^{1}_{\mathcal{F}_{\mathbb{F}}}(S_{1,\mathbb{F}},S_{H,W}) \neq 0.$$

2
$$\operatorname{Ext}^{1}_{\mathcal{F}_{\mathbb{F}}}(S_{H,W}, S_{1,\mathbb{F}}) \neq 0.$$

③ H is a minimal B-group, and
$$W = \mathbb{F}$$
.

Theorem

Let $S_{H,W}$ be a simple biset functor over \mathbb{F} . The following are equivalent:

- 2 $\operatorname{Ext}^{1}_{\mathcal{F}_{\mathbb{F}}}(S_{H,W}, S_{1,\mathbb{F}}) \neq 0.$
- **3** H is a minimal B-group, and $W = \mathbb{F}$.

Moreover if this holds

Theorem

Let $S_{H,W}$ be a simple biset functor over \mathbb{F} . The following are equivalent:

- 2 $\operatorname{Ext}^{1}_{\mathcal{F}_{\mathbb{F}}}(S_{H,W}, S_{1,\mathbb{F}}) \neq 0.$
- **(3)** H is a minimal B-group, and $W = \mathbb{F}$.

Moreover if this holds, then $\operatorname{Ext}^{1}_{\mathcal{F}_{\mathbb{F}}}(S_{1,\mathbb{F}}, S_{H,W}) \cong \mathbb{F} \cong \operatorname{Ext}^{1}_{\mathcal{F}_{\mathbb{F}}}(S_{H,W}, S_{1,\mathbb{F}}).$

Theorem

Let $S_{H,W}$ be a simple biset functor over \mathbb{F} . The following are equivalent:

- 2 $\operatorname{Ext}^{1}_{\mathcal{F}_{\mathbb{F}}}(S_{H,W}, S_{1,\mathbb{F}}) \neq 0.$
- **3** H is a minimal B-group, and $W = \mathbb{F}$.

Moreover if this holds, then $\operatorname{Ext}^{1}_{\mathcal{F}_{\mathbb{F}}}(S_{1,\mathbb{F}}, S_{H,W}) \cong \mathbb{F} \cong \operatorname{Ext}^{1}_{\mathcal{F}_{\mathbb{F}}}(S_{H,W}, S_{1,\mathbb{F}}).$

G minimal B-group \iff

Theorem

Let $S_{H,W}$ be a simple biset functor over \mathbb{F} . The following are equivalent:

- 2 $\operatorname{Ext}^{1}_{\mathcal{F}_{\mathbb{F}}}(S_{H,W}, S_{1,\mathbb{F}}) \neq 0.$
- **()** H is a minimal B-group, and $W = \mathbb{F}$.

Moreover if this holds, then $\operatorname{Ext}^{1}_{\mathcal{F}_{\mathbb{F}}}(S_{1,\mathbb{F}}, S_{H,W}) \cong \mathbb{F} \cong \operatorname{Ext}^{1}_{\mathcal{F}_{\mathbb{F}}}(S_{H,W}, S_{1,\mathbb{F}}).$

G minimal B-group $\iff \bullet N = S^k \trianglelefteq G$

Theorem

Let $S_{H,W}$ be a simple biset functor over \mathbb{F} . The following are equivalent:

- 2 $\operatorname{Ext}^{1}_{\mathcal{F}_{\mathbb{F}}}(S_{H,W}, S_{1,\mathbb{F}}) \neq 0.$
- **()** H is a minimal B-group, and $W = \mathbb{F}$.

Moreover if this holds, then $\operatorname{Ext}^{1}_{\mathcal{F}_{\mathbb{F}}}(S_{1,\mathbb{F}}, S_{H,W}) \cong \mathbb{F} \cong \operatorname{Ext}^{1}_{\mathcal{F}_{\mathbb{F}}}(S_{H,W}, S_{1,\mathbb{F}}).$

G minimal B-group $\iff \bullet N = S^k \trianglelefteq G$, S non-abelian simple group, $k \ge 1$

Theorem

Let $S_{H,W}$ be a simple biset functor over \mathbb{F} . The following are equivalent:

- 2 $\operatorname{Ext}^{1}_{\mathcal{F}_{\mathbb{F}}}(S_{H,W}, S_{1,\mathbb{F}}) \neq 0.$
- **3** H is a minimal B-group, and $W = \mathbb{F}$.

Moreover if this holds, then $\operatorname{Ext}^{1}_{\mathcal{F}_{\mathbb{F}}}(S_{1,\mathbb{F}}, S_{H,W}) \cong \mathbb{F} \cong \operatorname{Ext}^{1}_{\mathcal{F}_{\mathbb{F}}}(S_{H,W}, S_{1,\mathbb{F}}).$

G minimal B-group $\iff \bullet N = S^k \trianglelefteq G$, S non-abelian simple group, $k \ge 1$, $C_G(N) = 1$

Theorem

Let $S_{H,W}$ be a simple biset functor over \mathbb{F} . The following are equivalent:

- 2 $\operatorname{Ext}^{1}_{\mathcal{F}_{\mathbb{F}}}(S_{H,W}, S_{1,\mathbb{F}}) \neq 0.$
- **3** H is a minimal B-group, and $W = \mathbb{F}$.

Moreover if this holds, then $\operatorname{Ext}^{1}_{\mathcal{F}_{\mathbb{F}}}(S_{1,\mathbb{F}}, S_{H,W}) \cong \mathbb{F} \cong \operatorname{Ext}^{1}_{\mathcal{F}_{\mathbb{F}}}(S_{H,W}, S_{1,\mathbb{F}}).$

G minimal *B*-group $\iff \bullet N = S^k \trianglelefteq G$, *S* non-abelian simple group, $k \ge 1$, $C_G(N) = 1$, G/N cyclic

Theorem

Let $S_{H,W}$ be a simple biset functor over \mathbb{F} . The following are equivalent:

- 2 $\operatorname{Ext}^{1}_{\mathcal{F}_{\mathbb{F}}}(S_{H,W}, S_{1,\mathbb{F}}) \neq 0.$
- **3** H is a minimal B-group, and $W = \mathbb{F}$.

Moreover if this holds, then $\operatorname{Ext}^{1}_{\mathcal{F}_{\mathbb{F}}}(S_{1,\mathbb{F}}, S_{H,W}) \cong \mathbb{F} \cong \operatorname{Ext}^{1}_{\mathcal{F}_{\mathbb{F}}}(S_{H,W}, S_{1,\mathbb{F}}).$

G minimal B-group $\iff \bullet N = S^k \trianglelefteq G, S$ non-abelian simple group, $k \ge 1$, $C_G(N) = 1, G/N$ cyclic, transitive on $\{1, \ldots, k\}$

Theorem

Let $S_{H,W}$ be a simple biset functor over \mathbb{F} . The following are equivalent:

- 2 $\operatorname{Ext}^{1}_{\mathcal{F}_{\mathbb{F}}}(S_{H,W}, S_{1,\mathbb{F}}) \neq 0.$
- **()** H is a minimal B-group, and $W = \mathbb{F}$.

Moreover if this holds, then $\operatorname{Ext}^{1}_{\mathcal{F}_{\mathbb{F}}}(S_{1,\mathbb{F}}, S_{H,W}) \cong \mathbb{F} \cong \operatorname{Ext}^{1}_{\mathcal{F}_{\mathbb{F}}}(S_{H,W}, S_{1,\mathbb{F}}).$

 $\begin{array}{l} G \text{ minimal } B \text{-group } \iff \bullet \ N = S^k \trianglelefteq G, \ S \text{ non-abelian simple group, } k \ge 1, \\ C_G(N) = 1, \ G/N \text{ cyclic, transitive on } \{1, \ldots, k\}, \\ \bullet \ G \cong C_p \times C_p \ (p \text{ prime}) \end{array}$

MFO, August 14, 2020

Theorem

Let $S_{H,W}$ be a simple biset functor over \mathbb{F} . The following are equivalent:

- 2 $\operatorname{Ext}^{1}_{\mathcal{F}_{\mathbb{F}}}(S_{H,W}, S_{1,\mathbb{F}}) \neq 0.$
- **()** H is a minimal B-group, and $W = \mathbb{F}$.

Moreover if this holds, then $\operatorname{Ext}^{1}_{\mathcal{F}_{\mathbb{F}}}(S_{1,\mathbb{F}}, S_{H,W}) \cong \mathbb{F} \cong \operatorname{Ext}^{1}_{\mathcal{F}_{\mathbb{F}}}(S_{H,W}, S_{1,\mathbb{F}}).$

 $\begin{array}{l} G \text{ minimal } B \text{-group } \iff \bullet \ N = S^k \trianglelefteq G, \ S \text{ non-abelian simple group, } k \ge 1, \\ C_G(N) = 1, \ G/N \text{ cyclic, transitive on } \{1, \ldots, k\}, \\ \bullet \ G \cong C_p \times C_p \ (p \text{ prime}), \text{ or } G \cong \mathbb{F}_q \rtimes \langle \lambda \rangle, \ \lambda \ne 1 \text{ primitive in } \mathbb{F}_q. \end{array}$

Groups of odd order

Serge Bouc (CNRS-LAMFA) Extensions of simple biset functors

MFO, August 14, 2020

æ

→ ∃ →

Let G be a finite group

Serge Bouc (CNRS-LAMFA)

э

Let G be a finite group, and $B^{\times}(G)$ be the unit group of B(G).

Let G be a finite group, and $B^{\times}(G)$ be the unit group of B(G). Then $B^{\times}(G) \cong (\mathbb{Z}/2\mathbb{Z})^{n_G}$, and

Serge Bouc (CNRS-LAMFA)

Let G be a finite group, and $B^{\times}(G)$ be the unit group of B(G). Then $B^{\times}(G) \cong (\mathbb{Z}/2\mathbb{Z})^{n_G}$, and

Theorem (tom Dieck, Dress)
Theorem (tom Dieck, Dress)

Feit-Thompson theorem \Leftrightarrow

Theorem (tom Dieck, Dress)

Feit-Thompson theorem \Leftrightarrow (*if* |G| *is odd*

Theorem (tom Dieck, Dress)

Feit-Thompson theorem \Leftrightarrow (if |G| is odd, then $n_G = 1$).

Theorem (tom Dieck, Dress)

Feit-Thompson theorem \Leftrightarrow (if |G| is odd, then $n_G = 1$).

The assignment $G \mapsto B^{\times}(G)$

Theorem (tom Dieck, Dress)

Feit-Thompson theorem \Leftrightarrow (if |G| is odd, then $n_G = 1$).

The assignment $G\mapsto B^{ imes}(G)$ extends to a biset functor $B^{ imes}$ over \mathbb{F}_2

Theorem (tom Dieck, Dress)

Feit-Thompson theorem \Leftrightarrow (if |G| is odd, then $n_G = 1$).

The assignment $G \mapsto B^{\times}(G)$ extends to a biset functor B^{\times} over \mathbb{F}_2 (via generalized tensor induction)

Theorem (tom Dieck, Dress)

Feit-Thompson theorem \Leftrightarrow (if |G| is odd, then $n_G = 1$).

The assignment $G \mapsto B^{\times}(G)$ extends to a biset functor B^{\times} over \mathbb{F}_2 (via generalized tensor induction), and $S_{1,\mathbb{F}_2} \hookrightarrow B^{\times}$.

MFO, August 14, 2020

Theorem (tom Dieck, Dress)

Feit-Thompson theorem \Leftrightarrow (if |G| is odd, then $n_G = 1$).

The assignment $G \mapsto B^{\times}(G)$ extends to a biset functor B^{\times} over \mathbb{F}_2 (via generalized tensor induction), and $S_{1,\mathbb{F}_2} \hookrightarrow B^{\times}$. Moreover

Theorem (tom Dieck, Dress)

Feit-Thompson theorem \Leftrightarrow (if |G| is odd, then $n_G = 1$).

The assignment $G \mapsto B^{\times}(G)$ extends to a biset functor B^{\times} over \mathbb{F}_2 (via generalized tensor induction), and $S_{1,\mathbb{F}_2} \hookrightarrow B^{\times}$. Moreover

Feit-Thompson theorem \Leftrightarrow

Theorem (tom Dieck, Dress)

Feit-Thompson theorem \Leftrightarrow (if |G| is odd, then $n_G = 1$).

The assignment $G \mapsto B^{\times}(G)$ extends to a biset functor B^{\times} over \mathbb{F}_2 (via generalized tensor induction), and $S_{1,\mathbb{F}_2} \hookrightarrow B^{\times}$. Moreover

Feit-Thompson theorem $\Leftrightarrow B_{|odd}^{\times} \cong S_{1,\mathbb{F}_2|odd}$.

Serge Bouc (CNRS-LAMFA)

MFO, August 14, 2020

Serge Bouc (CNRS-LAMFA) Extensions

Extensions of simple biset functors

< □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷
 MFO, August 14, 2020

э.

Let G be a finite group of odd order.

Serge Bouc (CNRS-LAMFA) Exten

Extensions of simple biset functors

MFO, August 14, 2020

∃ ► < ∃ ►</p>

Let G be a finite group of odd order. For $N \trianglelefteq G$, set $m_{G,N} =$

I ⇒

Let G be a finite group of odd order. For $N \leq G$, set $m_{G,N} = \frac{1}{|G|} \sum_{\substack{X \leq G \\ XN = G}}$

Serge Bouc (CNRS-LAMFA)

Extensions of simple biset functors

MFO, August 14, 2020

3 🕨 🤅 3

Let G be a finite group of odd order. For $N \leq G$, set $m_{G,N} = \frac{1}{|G|} \sum_{\substack{X \leq G \\ XN = G}} |X| \mu(X, G)$

Serge Bouc (CNRS-LAMFA)

MFO, August 14, 2020

12 / 14

3

- ∢ ∃ ▶

Let G be a finite group of odd order. For $N \leq G$, set $m_{G,N} = \frac{1}{|G|} \sum_{\substack{X \leq G \\ XN = G}} |X| \mu(X,G) \in \mathbb{Q}$

Serge Bouc (CNRS-LAMFA)

MFO, August 14, 2020

-∢ ∃ ▶

Let G be a finite group of odd order. For $N \trianglelefteq G$, set $m_{G,N} = \sum_{\substack{X \le G \\ XN = G}} \mu(X, G) \in \mathbb{F}_2$

Serge Bouc (CNRS-LAMFA)

MFO, August 14, 2020

∃ ► < ∃ ►</p>

12 / 14

Let G be a finite group of odd order. For $N \trianglelefteq G$, set $m_{G,N} = \sum_{\substack{X \le G \\ XN = G}} \mu(X, G) \in \mathbb{F}_2$ The group G is a B_2 -group

Serge Bouc (CNRS-LAMFA)

MFO, August 14, 2020

∃ ▶ 3

Let G be a finite group of odd order. For $N \trianglelefteq G$, set $m_{G,N} = \sum_{\substack{X \le G \\ XN = G}} \mu(X,G) \in \mathbb{F}_2$ The group G is a B_2 -group if $m_{G,N} = 0_{\mathbb{F}_2}$ for any $1 \neq N \trianglelefteq G$.

Serge Bouc (CNRS-LAMFA)

MFO, August 14, 2020

Let G be a finite group of odd order.

For $N \trianglelefteq G$, set $m_{G,N} = \sum_{\substack{X \le G \\ XN = G}} \mu(X,G) \in \mathbb{F}_2$ The group G is a B_2 -group if $m_{G,N} = 0_{\mathbb{F}_2}$ for any $1 \neq N \trianglelefteq G$.

Serge Bouc (CNRS-LAMFA)

Extensions of simple biset functors

MFO, August 14, 2020

3 K K 3 K

Let G be a finite group of odd order. For $N \leq G$, set $m_{G,N} = \sum_{\substack{X \leq G \\ XN = G}} \mu(X, G) \in \mathbb{F}_2$ The group G is a B_2 -group if $m_{G,N} = 0_{\mathbb{F}_2}$ for any $1 \neq N \leq G$. There exists a group $\beta_2(G)$ such that

Serge Bouc (CNRS-LAMFA) Extensions

Extensions of simple biset functors

MFO, August 14, 2020

12 / 14

Let G be a finite group of odd order. For $N \trianglelefteq G$, set $m_{G,N} = \sum_{\substack{X \le G \\ XN = G}} \mu(X,G) \in \mathbb{F}_2$ The group G is a B_2 -group if $m_{G,N} = 0_{\mathbb{F}_2}$ for any $1 \neq N \trianglelefteq G$. There exists a group $\beta_2(G)$ such that

MFO, August 14, 2020

12 / 14

• $\beta_2(G)$ is a B_2 -group

Let G be a finite group of odd order. For $N \trianglelefteq G$, set $m_{G,N} = \sum_{\substack{X \leq G \\ XN = G}} \mu(X,G) \in \mathbb{F}_2$ The group G is a B_2 -group if $m_{G,N} = 0_{\mathbb{F}_2}$ for any $1 \neq N \trianglelefteq G$. There exists a group $\beta_2(G)$ such that

• $\beta_2(G)$ is a B_2 -group, and $G \longrightarrow \beta_2(G)$.

12 / 14

Let G be a finite group of odd order. For $N \trianglelefteq G$, set $m_{G,N} = \sum_{\substack{X \le G \\ XN = G}} \mu(X,G) \in \mathbb{F}_2$ The group G is a B_2 -group if $m_{G,N} = 0_{\mathbb{F}_2}$ for any $1 \neq N \trianglelefteq G$. There exists a group $\beta_2(G)$ such that

- $\beta_2(G)$ is a B_2 -group, and $G \longrightarrow \beta_2(G)$.
- If H is a B_2 -group

Let G be a finite group of odd order. For $N \leq G$, set $m_{G,N} = \sum_{\substack{X \leq G \\ XN = G}} \mu(X,G) \in \mathbb{F}_2$ The group G is a B_2 -group if $m_{G,N} = 0_{\mathbb{F}_2}$ for any $1 \neq N \leq G$. There exists a group $\beta_2(G)$ such that

- $\beta_2(G)$ is a B_2 -group, and $G \longrightarrow \beta_2(G)$.
- If H is a B_2 -group, and $G \longrightarrow H$

Let G be a finite group of odd order. For $N \leq G$, set $m_{G,N} = \sum_{\substack{X \leq G \\ XN = G}} \mu(X,G) \in \mathbb{F}_2$ The group G is a B_2 -group if $m_{G,N} = 0_{\mathbb{F}_2}$ for any $1 \neq N \leq G$. There exists a group $\beta_2(G)$ such that

- $\beta_2(G)$ is a B_2 -group, and $G \longrightarrow \beta_2(G)$.
- If H is a B_2 -group, and $G \longrightarrow H$, then $\beta_2(G) \longrightarrow H$.

Let G be a finite group of odd order.

The group G is a B_2 -group if $m_{G,N} = 0_{\mathbb{F}_2}$ for any $1 \neq N \trianglelefteq G$. There exists a group $\beta_2(G)$ such that

- $\beta_2(G)$ is a B_2 -group, and $G \longrightarrow \beta_2(G)$.
- If H is a B_2 -group, and $G \longrightarrow H$, then $\beta_2(G) \longrightarrow H$.

Proposition

э

Let G be a finite group of odd order.

The group G is a B_2 -group if $m_{G,N} = 0_{\mathbb{F}_2}$ for any $1 \neq N \trianglelefteq G$. There exists a group $\beta_2(G)$ such that

- $\beta_2(G)$ is a B_2 -group, and $G \longrightarrow \beta_2(G)$.
- If H is a B_2 -group, and $G \longrightarrow H$, then $\beta_2(G) \longrightarrow H$.

Proposition

 $\ \, {\mathfrak S}_2(G)\cong G/\Phi(G).$

Let G be a finite group of odd order.

 $\widehat{XN} = G \\ \widehat{C} \\ \widehat{$

- $\beta_2(G)$ is a B_2 -group, and $G \longrightarrow \beta_2(G)$.
- If H is a B_2 -group, and $G \longrightarrow H$, then $\beta_2(G) \longrightarrow H$.

Proposition

• $\beta_2(G) \cong G/\Phi(G)$. In particular G is a B_2 -group \Leftrightarrow

Let G be a finite group of odd order.

 $\widehat{XN} = G^{\geq G}$ The group *G* is a *B*₂-group if $m_{G,N} = 0_{\mathbb{F}_2}$ for any $1 \neq N \leq G$. There exists a group $\beta_2(G)$ such that

- $\beta_2(G)$ is a B_2 -group, and $G \longrightarrow \beta_2(G)$.
- If H is a B_2 -group, and $G \longrightarrow H$, then $\beta_2(G) \longrightarrow H$.

Proposition

Let G be a finite group of odd order.

XN = GThe group G is a B_2 -group if $m_{G,N} = 0_{\mathbb{F}_2}$ for any $1 \neq N \trianglelefteq G$. There exists a group $\beta_2(G)$ such that

- $\beta_2(G)$ is a B_2 -group, and $G \longrightarrow \beta_2(G)$.
- If H is a B_2 -group, and $G \longrightarrow H$, then $\beta_2(G) \longrightarrow H$.

Proposition

• $\beta_2(G) \cong G/\Phi(G)$. In particular G is a B_2 -group $\Leftrightarrow \Phi(G) = 1$. • $0 \le F_2 < F_1 \le \mathbb{F}_2 B_{|odd}$ with $F_1/F_2 \cong S_{H,W}^{\mathbb{F}_2}$

Let G be a finite group of odd order.

The group G is a B_2 -group if $m_{G,N} = 0_{\mathbb{F}_2}$ for any $1 \neq N \trianglelefteq G$. There exists a group $\beta_2(G)$ such that

- $\beta_2(G)$ is a B_2 -group, and $G \longrightarrow \beta_2(G)$.
- If H is a B_2 -group, and $G \longrightarrow H$, then $\beta_2(G) \longrightarrow H$.

Proposition

- $0 \ \, \beta_2(G) \cong G/\Phi(G). \ \, \text{In particular } G \ \, \text{is a } B_2\text{-group} \Leftrightarrow \Phi(G) = 1.$
- $\begin{array}{l} \textcircled{0} \quad 0 \leq F_2 < F_1 \leq \mathbb{F}_2 B_{|odd} \ \text{with} \ F_1/F_2 \cong S_{H,W}^{\mathbb{F}_2} \Leftrightarrow \Phi(H) = 1 \ \text{and} \\ W = \mathbb{F}_2. \end{array}$

Let G be a finite group of odd order.

 $\widehat{XN} = \tilde{G}_{G}$ The group *G* is a *B*₂-group if $m_{G,N} = 0_{\mathbb{F}_2}$ for any $1 \neq N \trianglelefteq G$. There exists a group $\beta_2(G)$ such that

- $\beta_2(G)$ is a B_2 -group, and $G \longrightarrow \beta_2(G)$.
- If H is a B_2 -group, and $G \longrightarrow H$, then $\beta_2(G) \longrightarrow H$.

Proposition

- **2** $0 \leq F_2 < F_1 \leq \mathbb{F}_2 B_{|odd}$ with $F_1/F_2 \cong S_{H,W}^{\mathbb{F}_2} \Leftrightarrow \Phi(H) = 1$ and $W = \mathbb{F}_2$.

3 If
$$\Phi(H)=1$$
, then $\dim_{\mathbb{F}_2}S_{H,\mathbb{F}_2}(G)=$

Let G be a finite group of odd order.

XN=GThe group G is a B_2 -group if $m_{G,N}=0_{\mathbb{F}_2}$ for any $1
eq N\trianglelefteq G$. There exists a group $eta_2(G)$ such that

- $\beta_2(G)$ is a B_2 -group, and $G \longrightarrow \beta_2(G)$.
- If H is a B_2 -group, and $G \longrightarrow H$, then $\beta_2(G) \longrightarrow H$.

Proposition

- $\ \, {\frak G}_2(G)\cong G/\Phi(G). \ \, {\it In \ particular \ G} \ \, {\it is \ a \ B_2}{\it -group} \Leftrightarrow \Phi(G)=1.$
- **2** $0 \leq F_2 < F_1 \leq \mathbb{F}_2 B_{|odd}$ with $F_1/F_2 \cong S_{H,W}^{\mathbb{F}_2} \Leftrightarrow \Phi(H) = 1$ and $W = \mathbb{F}_2$.

3 If
$$\Phi(H) = 1$$
, then $\dim_{\mathbb{F}_2} S_{H,\mathbb{F}_2}(G) = \big| \{K \leq G \mid$

Let G be a finite group of odd order.

XN=GThe group G is a B_2 -group if $m_{G,N}=0_{\mathbb{F}_2}$ for any $1
eq N\trianglelefteq G$. There exists a group $eta_2(G)$ such that

- $\beta_2(G)$ is a B_2 -group, and $G \longrightarrow \beta_2(G)$.
- If H is a B_2 -group, and $G \longrightarrow H$, then $\beta_2(G) \longrightarrow H$.

Proposition

- $\ \, {\frak G}_2(G)\cong G/\Phi(G). \ \, {\it In \ particular \ G} \ \, {\it is \ a \ B_2}{\it -group} \Leftrightarrow \Phi(G)=1.$
- **2** $0 \leq F_2 < F_1 \leq \mathbb{F}_2 B_{|odd}$ with $F_1/F_2 \cong S_{H,W}^{\mathbb{F}_2} \Leftrightarrow \Phi(H) = 1$ and $W = \mathbb{F}_2$.

3 If
$$\Phi(H) = 1$$
, then
 $\dim_{\mathbb{F}_2} S_{H,\mathbb{F}_2}(G) = |\{K \leq G \mid K/\Phi(K) \cong H\}|$

Let G be a finite group of odd order.

 $\begin{array}{c} X \leq G \\ XN = G \\ \text{The group } G \text{ is a } B_2\text{-group if } m_{G,N} = 0_{\mathbb{F}_2} \text{ for any } 1 \neq N \trianglelefteq G. \\ \text{There exists a group } \beta_2(G) \text{ such that} \end{array}$

- $\beta_2(G)$ is a B_2 -group, and $G \longrightarrow \beta_2(G)$.
- If H is a B_2 -group, and $G \longrightarrow H$, then $\beta_2(G) \longrightarrow H$.

Proposition

- **3** $0 \leq F_2 < F_1 \leq \mathbb{F}_2 B_{|odd}$ with $F_1/F_2 \cong S_{H,W}^{\mathbb{F}_2} \Leftrightarrow \Phi(H) = 1$ and $W = \mathbb{F}_2$.

3 If
$$\Phi(H) = 1$$
, then

$$\dim_{\mathbb{F}_2} S_{H,\mathbb{F}_2}(G) = \big| \{ K \leq G \mid K/\Phi(K) \cong H, K \text{ up to } G \} \big|.$$
Extensions

Serge Bouc (CNRS-LAMFA) Extensions of simple biset functors

2

э

э

Theorem

э

э

Theorem

Let $S_{H,W}$ be a simple biset functor over \mathbb{F}_2 .

Theorem

Theorem

Let $S_{H,W}$ be a simple biset functor over \mathbb{F}_2 . The following are equivalent: $\operatorname{Ext}^1_{\mathcal{F}_{\mathbb{F}_2}}(S_{1,\mathbb{F}_2}, S_{H,W}) \neq 0.$

Theorem

$$(2 \operatorname{Ext}^{1}_{\mathcal{F}_{\mathbb{F}_{2}}}(S_{H,W},S_{1,\mathbb{F}_{2}}) \neq 0.$$

Theorem

•
$$\operatorname{Ext}^{1}_{\mathcal{F}_{\mathbb{F}_{2}}}(S_{1,\mathbb{F}_{2}},S_{H,W})\neq 0$$

- $e Ext^1_{\mathcal{F}_{\mathbb{F}_2}}(S_{H,W},S_{1,\mathbb{F}_2}) \neq 0.$
- I has odd prime order

Theorem

$$e \operatorname{Ext}^{1}_{\mathcal{F}_{\mathbb{F}_{2}}}(S_{H,W},S_{1,\mathbb{F}_{2}}) \neq 0.$$

③ *H* has odd prime order, and
$$W = \mathbb{F}_2$$
.

Theorem

Let $S_{H,W}$ be a simple biset functor over \mathbb{F}_2 . The following are equivalent:

•
$$\operatorname{Ext}^{1}_{\mathcal{F}_{\mathbb{F}_{2}}}(S_{1,\mathbb{F}_{2}},S_{H,W})\neq 0$$

$$e \operatorname{Ext}^{1}_{\mathcal{F}_{\mathbb{F}_{2}}}(S_{H,W},S_{1,\mathbb{F}_{2}}) \neq 0.$$

3 *H* has odd prime order, and
$$W = \mathbb{F}_2$$
.

Moreover if this holds

Theorem

Let $S_{H,W}$ be a simple biset functor over \mathbb{F}_2 . The following are equivalent:

•
$$\operatorname{Ext}^{1}_{\mathcal{F}_{\mathbb{F}_{2}}}(S_{1,\mathbb{F}_{2}},S_{H,W})\neq 0$$

$$e \operatorname{Ext}^{1}_{\mathcal{F}_{\mathbb{F}_{2}}}(S_{H,W},S_{1,\mathbb{F}_{2}}) \neq 0.$$

3 *H* has odd prime order, and $W = \mathbb{F}_2$.

Moreover if this holds, then

$$\mathrm{Ext}^{1}_{\mathcal{F}_{\mathbb{F}_{2}}}(S_{1,\mathbb{F}_{2}},S_{\mathcal{H},\mathcal{W}})\cong\mathbb{F}_{2}\cong\mathrm{Ext}^{1}_{\mathcal{F}_{\mathbb{F}_{2}}}(S_{\mathcal{H},\mathcal{W}},S_{1,\mathbb{F}_{2}}).$$

THANK YOU!

Serge Bouc (CNRS-LAMFA)

Extensions of simple biset functors

14 / 14

3