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Correspondence functors

For finite sets X and Y, let C(Y, X) denote the set of correspondences
from X to Y, i.e. the set of subsets of Y x X.
When k is a commutative ring, let kC be the following category:

@ the objects of kC are the finite sets,

o Homyc(X,Y) = kC(Y,X) (free k-module with basis C(Y, X))
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Remarks on kC

@ For SeC(Y,X), let S ={(x,y) | (y,x) € S} € C(X,Y). The
functor sending each finite set to itself and S € C(Y, X) to
5% € C(X,Y) induces an equivalence of k-linear categories
kC — kC°P.

@ Let X and Y be finite sets such that | X| < |Y]. Leti: X < Y be an
injective map, and set
. = {(i().x) | x € X} €C(Y.X),
¥ ={(xi(x)) | x € X} € C(X,Y).

Then i*i, = Ax. If F € Fk, then F(X) is isomorphic to a direct
summand of F(Y). In particular F(X) # 0 implies F(Y) # 0.
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@ Yoneda functors Yg i : X — kC(X, E) e.g.
o E=10: then Yy ,(X) = kC(X, D)
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Examples of correspondence functors

@ Yoneda functors Yg i : X — kC(X, E) e.g.
o E =0: then Yy ,(X) = kC(X,0) = k, VX.
o E = {o}: then Y, x(X) = kC(X, o) = k(2X), VX.

The functor Yg i is a projective object of Fj, for any E, since
M(E), VM € Fy

~

Homfk(YEJ(, M)
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@ Yoneda functors Yg i : X — kC(X, E) e.g.
o E =0: then Yy ,(X) = kC(X,0) = k, VX.
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R € C(E, E) such that Ag C R = R?.
Then Ye kR : X — kC(X, E)R is a projective object of Fy.
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Examples of correspondence functors

@ Yoneda functors Yg i : X — kC(X, E) e.g.
o E =0 then Yy (X) = kC(X,0) = k, VX.
o E = {o}: then Y, x(X) = kC(X, o) = k(2X), VX.
The functor Yg i is a projective object of Fj, for any E.
@ Direct summands of Y ,: by the Yoneda Lemma
Endr, (Ye k) = kC(E,E). Let R be a preorder on E, i.e.
R € C(E, E) such that Ag C R = R?.
Then Ye kR : X — kC(X, E)R is a projective object of Fy.
o For F € Fy, the dual F* of F is defined by F%(X) = Homy (F(X), k)
and Fi(S) = tF(S%) for S € C(Y, X).
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Simple functors

o Let X be a finite set, and V be a simple kC(X, X)-module. Then the
functor Lx v (recall that Lx v(Y) = kC(Y, X) ®c(x.x) V)
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Simple functors

o Let X be a finite set, and V be a simple kC(X, X)-module. Then the
functor Lx y admits a unique maximal proper subfunctor Jx v
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Simple functors

o Let X be a finite set, and V be a simple kC(X, X)-module. Then the
functor Lx y admits a unique maximal proper subfunctor Jx v, and
SX,V = LX,V/JX,V is a simple functor
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o Let X be a finite set, and V be a simple kC(X, X)-module. Then the
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functor Lx y admits a unique maximal proper subfunctor Jx v, and
Sx v = Lx v/Jx,v is a simple functor, such that Sx v(X) = V.

e Conversely, if S is a simple functor such that S(X) # 0
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e If S is a simple functor, and if E is a set of minimal cardinality such
that S(E) # 0, then S(E) is a simple module for the algebra £ of

essential relations on E (S(E)LS(E) i E—S > E with Y] < |E|).
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Simple functors

o Let X be a finite set, and V be a simple kC(X, X)-module. Then the
functor Lx y admits a unique maximal proper subfunctor Jx v, and
Sx v = Lx v/Jx,v is a simple functor, such that Sx v(X) = V.

o Conversely, if S is a simple functor such that S(X) # 0, then
V = 5(X) is a simple kC(X, X)-module, and S = Sx v .

e If S is a simple functor, and if E is a set of minimal cardinality such
that S(E) # 0, then S(E) is a simple module for the algebra £ of

essential relations on E.

@ The simple Eg-modules are parametrized by pairs (R, W), where R is
an order on E, and W is a simple kAut(E, R)-module.
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functor Lx y admits a unique maximal proper subfunctor Jx v, and
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Simple functors

Let X be a finite set, and V be a simple kC(X, X)-module. Then the
functor Lx y admits a unique maximal proper subfunctor Jx v, and
Sx v = Lx v/Jx,v is a simple functor, such that Sx v(X) = V.
Conversely, if S is a simple functor such that S(X) # 0, then

V = 5(X) is a simple kC(X, X)-module, and S = Sx v .

If S is a simple functor, and if E is a set of minimal cardinality such
that S(E) # 0, then S(E) is a simple module for the algebra £ of

essential relations on E.

The simple Eg-modules are parametrized by pairs (R, W), where R is
an order on E, and W is a simple kAut(E, R)-module.

The simple correspondence functors over k are parametrized by triples
(E, R, W), where E is a finite set, R is an order on E, and W is a
simple kAut(E, R)-module. Notation: (E, R, W) — Sg g w.
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Bounded generation - Finite generation

Definition
Let M € Fi.

Q Let (E;)ies be a sequence of finite sets, and for each i € /, let
m; € M(E;). We say that M is generated by (m;);c/, and write
M = (m;);c,, if for any finite set X and any m € M(X), there exists a
finite subsequence J C /
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Let M € Fi.

Q Let (E;)ies be a sequence of finite sets, and for each i € /, let
m; € M(E;). We say that M is generated by (m;);c/, and write
M = (m;);c,, if for any finite set X and any m € M(X), there exists a
finite subsequence J C / and elements a; € kC(X, E;), for j € J

Serge Bouc (CNRS-LAMFA) 2 - Finiteness properties ICRA 2018 6 /15



Bounded generation - Finite generation
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Q Let (E;)ies be a sequence of finite sets, and for each i € /, let
m; € M(E;). We say that M is generated by (m;);c/, and write
M = (m;);c,, if for any finite set X and any m € M(X), there exists a
finite subsequence J C / and elements o € kC(X, E;), for j € J, such
that m = E M(aj)(mj).
Jjed
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Let M € Fi.

Q Let (E;)ies be a sequence of finite sets, and for each i € /, let
m; € M(E;). We say that M is generated by (m;);c/, and write
M = (m;);c,, if for any finite set X and any m € M(X), there exists a
finite subsequence J C / and elements o € kC(X, E;), for j € J, such
that m = E M(aj)(mj).

JjeJ
@ M is finitely generated
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M = (m;);c,, if for any finite set X and any m € M(X), there exists a
finite subsequence J C / and elements o € kC(X, E;), for j € J, such
that m = E M(aj)(mj).

Jjed
Q@ M is finitely generated if M = (m;);,, where [ is finite.
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M = (m;);c,, if for any finite set X and any m € M(X), there exists a
finite subsequence J C / and elements o € kC(X, E;), for j € J, such
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© M has bounded type if there is a finite set E such that M = (M(E)).
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Example: The Yoneda functor Yg x is finitely generated
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Let M € Fi.

Q Let (E;)ies be a sequence of finite sets, and for each i € /, let
m; € M(E;). We say that M is generated by (m;);c/, and write

M = (m;);c,, if for any finite set X and any m € M(X), there exists a
finite subsequence J C / and elements o € kC(X, E;), for j € J, such
that m = E M(aj)(mj).
Jjed
Q@ M is finitely generated if M = (m;);,, where [ is finite.
© M has bounded type if there is a finite set E such that M = (M(E)).
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Example: The Yoneda functor Yg  is finitely generated (by the single
element Ag € Ye «(E) = kC(E,E)).
The functor Lg v has bounded type, generated by Lg v(E) = V.
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Let M € Fi.

Q Let (E;)ies be a sequence of finite sets, and for each i € /, let
m; € M(E;). We say that M is generated by (m;);c/, and write

M = (m;);c,, if for any finite set X and any m € M(X), there exists a
finite subsequence J C / and elements o € kC(X, E;), for j € J, such
that m = E M(aj)(mj).
Jjed
Q@ M is finitely generated if M = (m;);,, where [ is finite.
© M has bounded type if there is a finite set E such that M = (M(E)).

v

Example: The Yoneda functor Yg  is finitely generated (by the single
element Ag € Ye «(E) = kC(E,E)).

The functor Lg v has bounded type, generated by Lg v(E) = V. Itis
finitely generated if and only if V is finitely generated.
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@ M is isomorphic to a quotient of a finite direct sum & YE, k.
i=1

1=

© M is isomorphic to a quotient of a finite direct sum (Yg x)®".
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i=1
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© M is isomorphic to a quotient of a finite direct sum (Yg x)®".

If moreover k is a field, these conditions are equivalent to:

@ there exist positive real numbers a, b, r such that dim; M(X) < abX|
for any finite set X with |X| > r.
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© M is isomorphic to a quotient of a finite direct sum (Yg x)®".

If moreover k is a field, these conditions are equivalent to:

@ there exist positive real numbers a, b, r such that dim; M(X) < abX|
for any finite set X with |X| > r.
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© M is isomorphic to a quotient of a finite direct sum (Yg x)®".
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Theorem

Let M € Fi. The following are equivalent:
@ M is finitely generated.

n
@ M is isomorphic to a quotient of a finite direct sum @ Y, k.
i=1

=
© M is isomorphic to a quotient of a finite direct sum (Yg x)®".
If moreover k is a field, these conditions are equivalent to:

@ there exist positive real numbers a, b, r such that dim; M(X) < abX|
for any finite set X with |X| > r.

© M has finite length.

Proof (sketch):
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n
@ M is isomorphic to a quotient of a finite direct sum @ Y, k.
i=1

=
© M is isomorphic to a quotient of a finite direct sum (Yg x)®".
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@ there exist positive real numbers a, b, r such that dim; M(X) < abX|
for any finite set X with |X| > r.
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Let M € Fi. The following are equivalent:
@ M is finitely generated.

n
@ M is isomorphic to a quotient of a finite direct sum @ Y, k.
i=1

=
© M is isomorphic to a quotient of a finite direct sum (Yg x)®".
If moreover k is a field, these conditions are equivalent to:

@ there exist positive real numbers a, b, r such that dim; M(X) < abX|
for any finite set X with |X| > r.

© M has finite length.

Proof (sketch): ¢ 1 & 2 < 3

Serge Bouc (CNRS-LAMFA) 2 - Finiteness properties ICRA 2018 8/15



Theorem

Let M € Fi. The following are equivalent:
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n
@ M is isomorphic to a quotient of a finite direct sum @ Y, k.
i=1

=
© M is isomorphic to a quotient of a finite direct sum (Yg x)®".
If moreover k is a field, these conditions are equivalent to:

@ there exist positive real numbers a, b, r such that dim; M(X) < abX|
for any finite set X with |X| > r.
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i=1

=
© M is isomorphic to a quotient of a finite direct sum (Yg x)®".
If moreover k is a field, these conditions are equivalent to:

@ there exist positive real numbers a, b, r such that dim; M(X) < abX|
for any finite set X with |X| > r.
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@ M is isomorphic to a quotient of a finite direct sum @ Y, k.
i=1

=
© M is isomorphic to a quotient of a finite direct sum (Yg x)®".
If moreover k is a field, these conditions are equivalent to:

@ there exist positive real numbers a, b, r such that dim; M(X) < abX|
for any finite set X with |X| > r.

© M has finite length.

Proof (sketch): e 1 < 2 < 3 = 4 are easy, as dim Yg x(X) = (2IEHIXI.
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Theorem

Let M € Fi. The following are equivalent:
@ M is finitely generated.

n
@ M is isomorphic to a quotient of a finite direct sum @ Y, k.
i=1

=
© M is isomorphic to a quotient of a finite direct sum (Yg x)®".
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The noetherian case

Let M € Fi and E be a finite set.

Serge Bouc (CNRS-LAMFA) 2 - Finiteness properties ICRA 2018 9/15



The noetherian case

Let M € Fi and E be a finite set. Define
M(E) = M(E)/
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M(E) = M(E)/ > kC(E,F)M(F).
|FI<|E]
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The noetherian case

Let M € Fi and E be a finite set. Define

M(E) = M(E)/ > kC(E,F)M(F).
|FI<|E]

Let k be a noetherian (commutative) ring
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Let k be a noetherian ring, let M C L in F
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Let M € Fi and E be a finite set. Define

M(E) = M(E)/ > kC(E,F)M(F).
|FI<|E]

Theorem
Let k be a noetherian ring, let M C L in Fy, and let E and F be finite
sets.
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Let k be a noetherian ring, let M C L in Fy, and let E and F be finite
sets.

Q IfL=(L(F)) and M(E) # 0
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M(E) = M(E)/ > kC(E,F)M(F).
|FI<|E]
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Let k be a noetherian ring, let M C L in Fy, and let E and F be finite
sets.

Q IfL = (L(F)) and M(E) # 0, then |E| < 2IFI.

Q@ IfL = (L(F)) and |E| > 2IFl, then M = (M(E)).

© If L has bounded type, then M has bounded type.

@ If L is finitely generated, then M is finitely generated.

Proof (sketch):
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The noetherian case

Let M € Fi and E be a finite set. Define

M(E) = M(E)/ > kC(E,F)M(F).
|FI<|E]

Theorem

Let k be a noetherian ring, let M C L in Fy, and let E and F be finite
sets.

Q IfL = (L(F)) and M(E) # 0, then |E| < 2IFI.

Q@ IfL = (L(F)) and |E| > 2IFl, then M = (M(E)).

© If L has bounded type, then M has bounded type.

@ If L is finitely generated, then M is finitely generated.

Proof (sketch): Assertion 1 by localization
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The noetherian case

Let M € Fi and E be a finite set. Define

M(E) = M(E)/ > kC(E,F)M(F).
|FI<|E]

Theorem

Let k be a noetherian ring, let M C L in Fy, and let E and F be finite
sets.

Q IfL = (L(F)) and M(E) # 0, then |E| < 2IFI.

Q@ IfL = (L(F)) and |E| > 2IFl, then M = (M(E)).

© If L has bounded type, then M has bounded type.

@ If L is finitely generated, then M is finitely generated.

Proof (sketch): Assertion 1 by localization + Artin-Rees lemma.
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The noetherian case

Let M € Fi and E be a finite set. Define

M(E) = M(E)/ > kC(E,F)M(F).
|FI<|E]

Theorem

Let k be a noetherian ring, let M C L in Fy, and let E and F be finite
sets.

Q IfL = (L(F)) and M(E) # 0, then |E| < 2IFI.

Q@ IfL = (L(F)) and |E| > 2IFl, then M = (M(E)).

© If L has bounded type, then M has bounded type.

@ If L is finitely generated, then M is finitely generated.

Proof (sketch): Assertion 1 by localization + Artin-Rees lemma.
Then 1 = 2 = 3, 4 easy.
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The noetherian case

Let M € Fi and E be a finite set. Define

M(E) = M(E)/ > kC(E,F)M(F).
|FI<|E]

Let k be a noetherian ring, let M C L in Fy, and let E and F be finite
sets.

Q IfL = (L(F)) and M(E) # 0, then |E| < 2IFI.

Q@ IfL = (L(F)) and |E| > 2IFl, then M = (M(E)).

© If L has bounded type, then M has bounded type.

@ If L is finitely generated, then M is finitely generated.

Corollary

Functors of bounded type

v

Serge Bouc (CNRS-LAMFA) 2 - Finiteness properties ICRA 2018 9/15



The noetherian case

Let M € Fi and E be a finite set. Define

M(E) = M(E)/ > kC(E,F)M(F).
|FI<|E]

Let k be a noetherian ring, let M C L in Fy, and let E and F be finite
sets.

Q IfL = (L(F)) and M(E) # 0, then |E| < 2IFI.

Q@ IfL = (L(F)) and |E| > 2IFl, then M = (M(E)).

© If L has bounded type, then M has bounded type.

@ If L is finitely generated, then M is finitely generated.

Corollary

Functors of bounded type form an abelian subcategory .7-",’3 of Fy.

v

Serge Bouc (CNRS-LAMFA) 2 - Finiteness properties ICRA 2018 9/15



The noetherian case

Let M € Fi and E be a finite set. Define
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The noetherian case

Let M € Fi and E be a finite set. Define

M(E) = M(E)/ > kC(E,F)M(F).
|FI<|E]

Let k be a noetherian ring, let M C L in Fy, and let E and F be finite
sets.

Q IfL = (L(F)) and M(E) # 0, then |E| < 2IFI.

Q@ IfL = (L(F)) and |E| > 2IFl, then M = (M(E)).

© If L has bounded type, then M has bounded type.

@ If L is finitely generated, then M is finitely generated.

Corollary

Functors of bounded type form an abelian subcategory .7-",’3 of Fy. Finitely
generated functors form an abelian subcategory F, ,f of ]-'/(’ :

v
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The noetherian case

Let k be a noetherian ring.
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Let k be a noetherian ring.
Q IfMeFf
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The noetherian case

Let k be a noetherian ring.
Q If M € Ff, then Endx, (M) is a finitely generated k-module.
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Let k be a noetherian ring.
Q If M € Ff, then Endx, (M) is a finitely generated k-module.
@ Forany M, N € ]—",f, the k-module Homz, (M, N) is finitely generated.

© If k is a field, then the Krull-Remak-Schmidt theorem holds for
finitely generated correspondence functors over k.
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@ Forany M, N € ]—",f, the k-module Homz, (M, N) is finitely generated.

© If k is a field, then the Krull-Remak-Schmidt theorem holds for
finitely generated correspondence functors over k.

Proof: 1) M is a quotient of a projective functor é kC(—, E)
i=1
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The noetherian case

Let k be a noetherian ring.
Q If M € Ff, then Endx, (M) is a finitely generated k-module.
@ Forany M, N € ]—",f, the k-module Homz, (M, N) is finitely generated.

© If k is a field, then the Krull-Remak-Schmidt theorem holds for
finitely generated correspondence functors over k.

Proof: 1) M is a quotient of a projective functor é kC(—, E), so
i=1

Endr, (M) is a quotient of a k-submodule of the finitely generated
k-module M, (kC(E, E)).
2) Homgz, (M, N) is a direct summand of Endr, (M & N).
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The noetherian case

Proposition

Let k be a noetherian ring.
Q If M € Ff, then Endx, (M) is a finitely generated k-module.
@ Forany M, N € ]—",f, the k-module Homz, (M, N) is finitely generated.

© If k is a field, then the Krull-Remak-Schmidt theorem holds for
finitely generated correspondence functors over k.

Proof: 1) M is a quotient of a projective functor é kC(—, E), so
i=1

Endr, (M) is a quotient of a k-submodule of the finitely generated
k-module M, (kC(E, E)).

2) Homgz, (M, N) is a direct summand of Endr, (M & N).

3) Splitting M € F
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The noetherian case

Proposition

Let k be a noetherian ring.
Q If M € Ff, then Endx, (M) is a finitely generated k-module.
@ Forany M, N € ]—",f, the k-module Homz, (M, N) is finitely generated.

© If k is a field, then the Krull-Remak-Schmidt theorem holds for
finitely generated correspondence functors over k.

Proof: 1) M is a quotient of a projective functor él kC(—, E), so
i=

Endr, (M) is a quotient of a k-submodule of the finitely generated

k-module M, (kC(E, E)).

2) Homgz, (M, N) is a direct summand of Endr, (M & N).

3) Splitting M € Fj amounts to splitting the identity as a sum of

orthogonal idempotents
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The noetherian case

Proposition

Let k be a noetherian ring.
Q If M € Ff, then Endx, (M) is a finitely generated k-module.
@ Forany M, N € ]—",f, the k-module Homz, (M, N) is finitely generated.

© If k is a field, then the Krull-Remak-Schmidt theorem holds for
finitely generated correspondence functors over k.

Proof: 1) M is a quotient of a projective functor é kC(—, E), so
i=1

Endr, (M) is a quotient of a k-submodule of the finitely generated
k-module M,,(kC(E, E))

2) Homgz, (M, N) is a direct summand of Endr, (M & N).

3) Splitting M € Fj amounts to splitting the identity as a sum of
orthogonal idempotents in the finite dimensional k-algebra Endr, (M).
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@ Let E be a finite set, and Rg = kC(E, E).
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Evaluation - Adjunction

o Let E be a finite set, and Rg = kC(E, E). Recall that the evaluation
functor
M e Fy — M(E) € Re-Mod
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Evaluation - Adjunction

o Let E be a finite set, and Rg = kC(E, E). Recall that the evaluation
functor
M e Fy — M(E) € Re-Mod
has a left adjoint V = Lg v
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Evaluation - Adjunction

o Let E be a finite set, and Rg = kC(E, E). Recall that the evaluation
functor
M e Fy — M(E) € Re-Mod
has a left adjoint V' + Lg v, defined by
X = Lev(X):=kC(X,E)®r, V.
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Evaluation - Adjunction

o Let E be a finite set, and Rg = kC(E, E). Recall that the evaluation
functor
M e Fy — M(E) € Re-Mod
has a left adjoint V' + Lg v, defined by
X = Lev(X):=kC(X,E)®r, V.
In particular Lg v (E) = V.
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Evaluation - Adjunction

o Let E be a finite set, and Rg = kC(E, E). Recall that the evaluation
functor
M e Fy — M(E) € Re-Mod
has a left adjoint V' + Lg v, defined by
X = Lev(X):=kC(X,E)®r, V.
In particular Lg v (E) = V.
e If M is projective in Fy
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Evaluation - Adjunction

o Let E be a finite set, and Rg = kC(E, E). Recall that the evaluation
functor
M e Fy — M(E) € Re-Mod
has a left adjoint V' + Lg v, defined by
X = Lev(X):=kC(X,E)®r, V.
In particular Lg v (E) = V.
e If M is projective in Fy, and M = (M(E))
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Evaluation - Adjunction

o Let E be a finite set, and Rg = kC(E, E). Recall that the evaluation
functor
M € Fi — M(E) € Re-Mod
has a left adjoint V' + Lg v, defined by
X 5 Ley(X) := kC(X, E) @, V.
In particular Lg v (E) = V.
o If M is projective in Fi, and M = (M(E)), then M == Lg yry for any
finite set F with |F| > |E|
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Evaluation - Adjunction

o Let E be a finite set, and Rg = kC(E, E). Recall that the evaluation
functor
M € Fi — M(E) € Re-Mod
has a left adjoint V' + Lg v, defined by
X Ley(X) := kC(X,E) @r, V.
In particular Lg v (E) = V.
o If M is projective in Fi, and M = (M(E)), then M == Lg yry for any
finite set F with |F| > |E|, and M(F) is a projective R r-module.
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Evaluation - Adjunction

o Let E be a finite set, and Rg = kC(E, E). Recall that the evaluation
functor
M € Fi — M(E) € Re-Mod
has a left adjoint V' + Lg v, defined by
X Ley(X) := kC(X,E) @r, V.
In particular Lg v (E) = V.
o If M is projective in Fi, and M = (M(E)), then M == Lg yry for any
finite set F with |F| > |E|, and M(F) is a projective R r-module.

@ The functor Lg v is projective
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Evaluation - Adjunction

o Let E be a finite set, and Rg = kC(E, E). Recall that the evaluation
functor
M € Fi — M(E) € Re-Mod
has a left adjoint V' + Lg v, defined by
X Ley(X) := kC(X,E) @r, V.
In particular Lg v (E) = V.
o If M is projective in Fi, and M = (M(E)), then M == Lg yry for any
finite set F with |F| > |E|, and M(F) is a projective R r-module.

o The functor L v is projective (resp. indecomposable)
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Evaluation - Adjunction

o Let E be a finite set, and Rg = kC(E, E). Recall that the evaluation
functor
M e Fy — M(E) € Re-Mod
has a left adjoint V' + Lg v, defined by
X 5 Ley(X) := kC(X, E) @, V.
In particular Lg v (E) = V.
o If M is projective in Fi, and M = (M(E)), then M == Lg yry for any
finite set F with |F| > |E|, and M(F) is a projective R r-module.
e The functor Lg v is projective (resp. indecomposable) if and only if V
is a projective (resp. indecomposable) R g-module.
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@ Let E be a finite set
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Symmetry

Q Let E be a finite set, and Rg = kC(E, E).
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Symmetry

Q Let E be a finite set, and Rg = kC(E, E). Define tg : Rg — k by

VR € C(E,E), te(R) =
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Symmetry

Q Let E be a finite set, and Rg = kC(E, E). Define tg : Rg — k by

VRGC(E,E), tE(R):{ 1 ImeAE:®7

Serge Bouc (CNRS-LAMFA) 2 - Finiteness properties ICRA 2018 12 / 15



Symmetry

Q Let E be a finite set, and Rg = kC(E, E). Define tg : Rg — k by

1 ifRNAg=0,

VR € C(E,E), te(R) = { 0 otherwise.
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Symmetry

Q Let E be a finite set, and Rg = kC(E, E). Define tg : Rg — k by

1 ifRNAg=0,

VR € C(E,E), te(R) = { 0 otherwise.

Then tg is a symmetrizing form for Rg.
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Symmetry

Q Let E be a finite set, and Rg = kC(E, E). Define tg : Rg — k by

1 ifRNAg=0,

VR € C(E,E), te(R) = { 0 otherwise.

Then tg is a symmetrizing form for Rg.
Q Ifk is a field
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Symmetry

Q Let E be a finite set, and Rg = kC(E, E). Define tg : Rg — k by

1 ifRNAg=0,

VR € C(E,E), te(R) = { 0 otherwise.

Then tg is a symmetrizing form for Rg.

@ If k is a field (or more generally if k is self injective)
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Symmetry

Q Let E be a finite set, and Rg = kC(E, E). Define tg : Rg — k by

1 ifRNAg=0,

VR € C(E,E), te(R) = { 0 otherwise.

Then tg is a symmetrizing form for Rg.

@ If k is a field (or more generally if k is self injective), any finitely
generated projective in F is also injective.
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Symmetry

Q Let E be a finite set, and Rg = kC(E, E). Define tg : Rg — k by

1 ifRNAg=0,

VR € C(E,E), te(R) = { 0 otherwise.

Then tg is a symmetrizing form for Rg.

@ If k is a field (or more generally if k is self injective), any finitely
generated projective in Fy is also injective. In particular ]-",f has
infinite global dimension.
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Symmetry

Q Let E be a finite set, and Rg = kC(E, E). Define tg : Rg — k by

1 ifRNAg=0,

VR € C(E,E), te(R) = { 0 otherwise.

Then tg is a symmetrizing form for Rg.

@ If k is a field (or more generally if k is self injective), any finitely
generated projective in Fy is also injective. In particular ]-",f has
infinite global dimension.

Proof:
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Symmetry

Q Let E be a finite set, and Rg = kC(E, E). Define tg : Rg — k by

1 ifRNAg=0,

VR € C(E,E), te(R) = { 0 otherwise.

Then tg is a symmetrizing form for Rg.

@ If k is a field (or more generally if k is self injective), any finitely
generated projective in Fy is also injective. In particular ]-",f has
infinite global dimension.

Proof: 1) Let R,S € C(E,E).
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Symmetry

Q Let E be a finite set, and Rg = kC(E, E). Define tg : Rg — k by

1 ifRNAg=0,

VR € C(E,E), te(R) = { 0 otherwise.

Then tg is a symmetrizing form for Rg.

@ If k is a field (or more generally if k is self injective), any finitely
generated projective in Fy is also injective. In particular ]-",f has
infinite global dimension.

Proof: 1) Let R,S € C(E,E). Then tg(RS)=1< RC (E x E) — 5°,

Serge Bouc (CNRS-LAMFA) 2 - Finiteness properties ICRA 2018 12 / 15



Symmetry

Q Let E be a finite set, and Rg = kC(E, E). Define tg : Rg — k by

1 ifRNAg=0,

VR € C(E,E), te(R) = { 0 otherwise.

Then tg is a symmetrizing form for Rg.

@ If k is a field (or more generally if k is self injective), any finitely
generated projective in Fy is also injective. In particular ]-",f has
infinite global dimension.

Proof: 1) Let R,S € C(E,E). Then tg(RS)=1< RC (E x E) — 5°,
The matrix (tE(RS))R,SeC(E,E)

Serge Bouc (CNRS-LAMFA) 2 - Finiteness properties ICRA 2018 12 / 15



Symmetry

Q Let E be a finite set, and Rg = kC(E, E). Define tg : Rg — k by

1 ifRNAg=0,

VR € C(E,E), te(R) = { 0 otherwise.

Then tg is a symmetrizing form for Rg.

@ If k is a field (or more generally if k is self injective), any finitely
generated projective in Fy is also injective. In particular ]-",f has
infinite global dimension.

Proof: 1) Let R,S € C(E,E). Then tg(RS)=1< RC (E x E) — 5°,
The matrix (tg(RS)) 5 scc(e.) 1S the product of a permutation matrix
(S = (E x E) — 5°)
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Symmetry

Q Let E be a finite set, and Rg = kC(E, E). Define tg : Rg — k by

1 ifRNAg=0,

VR € C(E,E), te(R) = { 0 otherwise.

Then tg is a symmetrizing form for Rg.

@ If k is a field (or more generally if k is self injective), any finitely
generated projective in Fy is also injective. In particular ]-",f has
infinite global dimension.

Proof: 1) Let R,S € C(E,E). Then tg(RS)=1< RC (E x E) — 5°,
The matrix (tg(RS)) 5 scc(e.) 1S the product of a permutation matrix
(S — (E x E) — §°P) with the matrix of an order (C)
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Symmetry

Q Let E be a finite set, and Rg = kC(E, E). Define tg : Rg — k by

1 ifRNAg=0,

VR € C(E,E), te(R) = { 0 otherwise.

Then tg is a symmetrizing form for Rg.

@ If k is a field (or more generally if k is self injective), any finitely
generated projective in Fy is also injective. In particular ]-",f has
infinite global dimension.

v

Proof: 1) Let R,S € C(E,E). Then tg(RS)=1< RC (E x E) — 5°,
The matrix (tE(RS))R,SeC(E,E) is the product of a permutation matrix
(S — (E x E) — S°) with the matrix of an order (C), hence it is
invertible (over Z).
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Symmetry

Q Let E be a finite set, and Rg = kC(E, E). Define tg : Rg — k by

1 ifRNAg=0,

VR € C(E,E), te(R) = { 0 otherwise.

Then tg is a symmetrizing form for Rg.

@ If k is a field (or more generally if k is self injective), any finitely
generated projective in Fy is also injective. In particular ]-",f has
infinite global dimension.

Proof: 1) Let R,S € C(E,E). Then tg(RS)=1< RC (E x E) — 5°,
The matrix (tg(RS)) 5 scc(e.) 1S the product of a permutation matrix
(S — (E x E) — 5°P) with the matrix of an order (C), hence it is

invertible (over Z).
2) A similar argument shows that the Yoneda functor kC(—, E) is selfdual.
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Let k be a field
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Let k be a field, and M € .F,f.
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More on projective functors

Let k be a field, and M € .F,f. The following are equivalent:

Serge Bouc (CNRS-LAMFA) 2 - Finiteness properties ICRA 2018 13 / 15



More on projective functors

Let k be a field, and M € .F,f. The following are equivalent:

Q@ M is projective and indecomposable.
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More on projective functors

Let k be a field, and M € .F,f. The following are equivalent:

Q@ M is projective and indecomposable.

@ M is projective and admits a unique maximal proper subfunctor.
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More on projective functors

Let k be a field, and M € .F,f. The following are equivalent:

Q@ M is projective and indecomposable.
@ M is projective and admits a unique maximal proper subfunctor.

© M is projective and admits a unique minimal non-zero subfunctor.
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More on projective functors

Let k be a field, and M € .F,f. The following are equivalent:

Q@ M is projective and indecomposable.
@ M is projective and admits a unique maximal proper subfunctor.
© M is projective and admits a unique minimal non-zero subfunctor.

@ M is injective and indecomposable.
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More on projective functors

Let k be a field, and M € .F,f. The following are equivalent:

Q@ M is projective and indecomposable.

@ M is projective and admits a unique maximal proper subfunctor.
© M is projective and admits a unique minimal non-zero subfunctor.
@ M is injective and indecomposable.

© M is injective and admits a unique maximal proper subfunctor.
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More on projective functors

Let k be a field, and M € .F,f. The following are equivalent:

o
2]
o
(%]
o
o

M is projective and indecomposable.

M is projective and admits a unique maximal proper subfunctor.
M is projective and admits a unique minimal non-zero subfunctor.
M is injective and indecomposable.

M is injective and admits a unique maximal proper subfunctor.

M is injective and admits a unique minimal non-zero subfunctor.
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M is projective and admits a unique minimal non-zero subfunctor.
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M is injective and admits a unique minimal non-zero subfunctor.

Serge Bouc (CNRS-LAMFA) 2 - Finiteness properties ICRA 2018 13 / 15



More on projective functors

Let k be a field, and M € .F,f. The following are equivalent:

o
2]
o
(%]
o
o

M is projective and indecomposable.

M is projective and admits a unique maximal proper subfunctor.
M is projective and admits a unique minimal non-zero subfunctor.
M is injective and indecomposable.

M is injective and admits a unique maximal proper subfunctor.

M is injective and admits a unique minimal non-zero subfunctor.

Let k be a field.
Q Let M e ]—",f be a projective functor.
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More on projective functors

Let k be a field, and M € .F,f. The following are equivalent:

o
2]
o
(%]
o
o

M is projective and indecomposable.

M is projective and admits a unique maximal proper subfunctor.
M is projective and admits a unique minimal non-zero subfunctor.
M is injective and indecomposable.

M is injective and admits a unique maximal proper subfunctor.

M is injective and admits a unique minimal non-zero subfunctor.

Let k be a field.
Q Let M € Ff be a projective functor. Then M/Rad(M) = Soc(M).
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More on projective functors

Let k be a field, and M € .F,f. The following are equivalent:

o
2]
o
(%]
o
o

M is projective and indecomposable.

M is projective and admits a unique maximal proper subfunctor.
M is projective and admits a unique minimal non-zero subfunctor.
M is injective and indecomposable.

M is injective and admits a unique maximal proper subfunctor.

M is injective and admits a unique minimal non-zero subfunctor.

Let k be a field.
Q Let M € Ff be a projective functor. Then M/Rad(M) = Soc(M).
Q Let M, N € ]—",f be projective functors.
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More on projective functors

Let k be a field, and M € .F,f. The following are equivalent:

o
2]
o
(%]
o
o

M is projective and indecomposable.

M is projective and admits a unique maximal proper subfunctor.
M is projective and admits a unique minimal non-zero subfunctor.
M is injective and indecomposable.

M is injective and admits a unique maximal proper subfunctor.

M is injective and admits a unique minimal non-zero subfunctor.

Let k be a field.

Q Let M € Ff be a projective functor. Then M/Rad(M) = Soc(M).

Q Let M,N € ]—",f be projective functors. Then
dimy, Homz, (M, N) = dimy Homg, (N, M)
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Evaluation - Stability

Let k be a noetherian ring, let M, N € Fi, and let E, F be finite sets.
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Let k be a noetherian ring, let M, N € Fi, and let E, F be finite sets.
Q IfM = (M(E))
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Evaluation - Stability

Let k be a noetherian ring, let M, N € Fi, and let E, F be finite sets.
Q If M = (M(E)), then for |F| > 2IEl

Serge Bouc (CNRS-LAMFA) 2 - Finiteness properties ICRA 2018 14 / 15



Evaluation - Stability

Let k be a noetherian ring, let M, N € Fi, and let E, F be finite sets.

Q If M = (M(E)), then for |F| > 2IEl  the evaluation map
Homz, (M, N) — Homg,(M(F), N(F))
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Evaluation - Stability

Let k be a noetherian ring, let M, N € Fi, and let E, F be finite sets.
Q If M = (M(E)), then for |F| > 2IEl  the evaluation map
Homg, (M, N) — HomRF(M(F), N(F))
is an isomorphism.
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Evaluation - Stability

Let k be a noetherian ring, let M, N € Fi, and let E, F be finite sets.
Q If M = (M(E)), then for |F| > 2IEl  the evaluation map
Homg, (M, N) — HomRF(M(F), N(F))
is an isomorphism.

@ If M has bounded type
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Evaluation - Stability

Let k be a noetherian ring, let M, N € Fi, and let E, F be finite sets.
Q If M = (M(E)), then for |F| > 2IEl  the evaluation map
Homg, (M, N) — HomRF(M(F), N(F))
is an isomorphism.

@ If M has bounded type, then for any i € N, there exists n; € N
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Evaluation - Stability

Let k be a noetherian ring, let M, N € Fi, and let E, F be finite sets.
Q If M = (M(E)), then for |F| > 2IEl  the evaluation map
Homg, (M, N) — HomRF(M(F), N(F))
is an isomorphism.

@ I/f M has bounded type, then for any i € N, there exists n; € N such
that if |F| > n;
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Evaluation - Stability

Let k be a noetherian ring, let M, N € Fi, and let E, F be finite sets.
Q If M = (M(E)), then for |F| > 2IEl  the evaluation map
Homg, (M, N) — HomRF(M(F), N(F))
is an isomorphism.

@ I/f M has bounded type, then for any i € N, there exists n; € N such
that if |F| > n;, the map .
Exty, (M, N) — Ext}zF(M(F), N(F))
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Evaluation - Stability

Let k be a noetherian ring, let M, N € Fi, and let E, F be finite sets.
Q If M = (M(E)), then for |F| > 2IEl  the evaluation map
Homg, (M, N) — HomRF(M(F), N(F))
is an isomorphism.

@ I/f M has bounded type, then for any i € N, there exists n; € N such
that if |F| > n;, the map
Ext}_—k(M, N) — Ext;'zF(M(F), N(F))
is an isomorphism.

Serge Bouc (CNRS-LAMFA) 2 - Finiteness properties ICRA 2018 14 / 15



An equivalence of categories
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Let Gk be the following category:
@ the objects are pairs (E, U)
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Let Gk be the following category:
@ the objects are pairs (E, U), where E is a finite set
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An equivalence of categories

Let Gk be the following category:
@ the objects are pairs (E, U), where E is a finite set, and U is an

Re-module.
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An equivalence of categories

Let Gk be the following category:
@ the objects are pairs (E, U), where E is a finite set, and U is an

Re-module.
@ a morphism (E, U) — (F, V)
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An equivalence of categories

Let Gk be the following category:
@ the objects are pairs (E, U), where E is a finite set, and U is an
Re-module.
@ a morphism (E, U) — (F, V) is a morphism of Rg-modules
U— kC(E,F) ®r, V.
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An equivalence of categories

Let Gk be the following category:
@ the objects are pairs (E, U), where E is a finite set, and U is an
Re-module.
@ a morphism (E, U) — (F, V) is a morphism of Rg-modules
U— kC(E,F) ®r, V.
@ the composition of
(E,U) — (F,V)
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Let Gk be the following category:
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Re-module.
@ a morphism (E, U) — (F, V) is a morphism of Rg-modules
U— kC(E,F) ®r, V.
@ the composition of
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An equivalence of categories

Let Gk be the following category:
@ the objects are pairs (E, U), where E is a finite set, and U is an
Re-module.
@ a morphism (E, U) — (F, V) is a morphism of Rg-modules
U— kC(E,F) ®r, V.
@ the composition of
U— kC(E,F)®g, V and (F,V) — (G, W)
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@ a morphism (E, U) — (F, V) is a morphism of Rg-modules
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@ the composition of

U— kC(E,F)®g, V and V — kC(F, G) ®r, W
is U— kC(E,F) ®r, V
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An equivalence of categories

Let Gk be the following category:
@ the objects are pairs (E, U), where E is a finite set, and U is an
Re-module.
@ a morphism (E, U) — (F, V) is a morphism of Rg-modules
U— kC(E,F) ®r, V.
@ the composition of
U— kC(E,F)®g, V and V — kC(F, G) ®r, W
is U— kC(E,F) ®r, V — kC(E,F) ®r, kC(F,G) ®r, W
— kC(E, G) @, W
@ the identity morphism of (E, U)
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An equivalence of categories

Let Gk be the following category:
@ the objects are pairs (E, U), where E is a finite set, and U is an
Re-module.
@ a morphism (E, U) — (F, V) is a morphism of Rg-modules
U— kC(E,F) ®r, V.
@ the composition of
U— kC(E,F)®g, V and V — kC(F, G) ®r, W
is U— kC(E,F) ®r, V — kC(E,F) ®r, kC(F,G) ®r, W
— kC(E, G) @, W
e the identity morphism of (E, U) is U 5 kC(E,E) ®r, U.
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An equivalence of categories

Let Gk be the following category:
@ the objects are pairs (E, U), where E is a finite set, and U is an
Re-module.
@ a morphism (E, U) — (F, V) is a morphism of Rg-modules
U— kC(E,F) @, V.
@ the composition of
U— kC(E,F)®gr, V and V — kC(F, G) ®r, W
is U— kC(E,F) ®r, V — kC(E,F) ®r, kC(F,G) ®r, W
— kC(E, G) @, W
e the identity morphism of (E, U) is U 5 kC(E,E) ®r, U.

Theorem

@ The assignment (E, U) — Lg y is a fully faithful k-linear functor
gk — ff

V.
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An equivalence of categories

Let Gk be the following category:
@ the objects are pairs (E, U), where E is a finite set, and U is an
Re-module.
@ a morphism (E, U) — (F, V) is a morphism of Rg-modules
U— kC(E,F) @, V.
@ the composition of
U— kC(E,F)®gr, V and V — kC(F, G) ®r, W
is U— kC(E,F) ®r, V — kC(E,F) ®r, kC(F,G) ®r, W
— kC(E, G) @, W
e the identity morphism of (E, U) is U 5 kC(E,E) ®r, U.

Theorem

@ The assignment (E, U) — Lg y is a fully faithful k-linear functor
gk — .7:{3
@ When k is noetherian, it is an equivalence of categories

V.
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An equivalence of categories

Let Gk be the following category:
@ the objects are pairs (E, U), where E is a finite set, and U is an
Re-module.
@ a morphism (E, U) — (F, V) is a morphism of Rg-modules
U— kC(E,F) @, V.
@ the composition of
U— kC(E,F)®gr, V and V — kC(F, G) ®r, W
is U— kC(E,F) ®r, V — kC(E,F) ®r, kC(F,G) ®r, W
— kC(E, G) @, W
e the identity morphism of (E, U) is U 5 kC(E,E) ®r, U.

Theorem

@ The assignment (E, U) — Lg y is a fully faithful k-linear functor
gk — .7:{3

@ When k is noetherian, it is an equivalence of categories. In particular
G is abelian.

V.
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