Representations of finite sets and correspondences

Serge Bouc

CNRS-LAMFA Université de Picardie

joint work with

Jacques Thévenaz

EPFL

ICRA 2018

∃ ▶ ∢ ∃ ▶

- (A 🖓

Correspondence functors

Serge Bouc (CNRS-LAMFA)

For finite sets X and Y

For finite sets X and Y, let C(Y, X) denote the set of correspondences from X to Y

For finite sets X and Y, let C(Y, X) denote the set of correspondences from X to Y, i.e. the set of subsets of $Y \times X$. When k is a commutative ring

• the objects of kC are the finite sets

- the objects of kC are the finite sets,
- $Hom_{k\mathcal{C}}(X, Y) = k\mathcal{C}(Y, X)$

• the objects of kC are the finite sets,

• $Hom_{k\mathcal{C}}(X, Y) = k\mathcal{C}(Y, X)$ (free k-module with basis $\mathcal{C}(Y, X)$)

- the objects of kC are the finite sets,
- $Hom_{k\mathcal{C}}(X,Y) = k\mathcal{C}(Y,X),$
- composition of morphisms extends composition of correspondences

When k is a commutative ring, let kC be the following category:

• the objects of kC are the finite sets,

•
$$Hom_{k\mathcal{C}}(X,Y) = k\mathcal{C}(Y,X),$$

- composition of morphisms extends composition of correspondences,
- the identity morphism of X is $\Delta_X \in k\mathcal{C}(X, X)$.

When k is a commutative ring, let kC be the following category:

• the objects of kC are the finite sets,

•
$$Hom_{k\mathcal{C}}(X,Y) = k\mathcal{C}(Y,X),$$

- composition of morphisms extends composition of correspondences,
- the identity morphism of X is $\Delta_X \in k\mathcal{C}(X, X)$.

A correspondence functor (over k) is a k-linear functor from kC to k-Mod.

When k is a commutative ring, let kC be the following category:

• the objects of kC are the finite sets,

•
$$Hom_{k\mathcal{C}}(X,Y) = k\mathcal{C}(Y,X),$$

- composition of morphisms extends composition of correspondences,
- the identity morphism of X is $\Delta_X \in k\mathcal{C}(X, X)$.

A correspondence functor (over k) is a k-linear functor from kC to k-Mod. Let \mathcal{F}_k denote the category of correspondence functors over k.

When k is a commutative ring, let kC be the following category:

• the objects of kC are the finite sets,

•
$$Hom_{k\mathcal{C}}(X,Y) = k\mathcal{C}(Y,X),$$

- composition of morphisms extends composition of correspondences,
- the identity morphism of X is $\Delta_X \in k\mathcal{C}(X, X)$.

A correspondence functor (over k) is a k-linear functor from kC to k-Mod. Let \mathcal{F}_k denote the category of correspondence functors over k. It is an abelian category.

When k is a commutative ring, let kC be the following category:

• the objects of kC are the finite sets,

•
$$Hom_{k\mathcal{C}}(X,Y) = k\mathcal{C}(Y,X),$$

- composition of morphisms extends composition of correspondences,
- the identity morphism of X is $\Delta_X \in k\mathcal{C}(X, X)$.

A correspondence functor (over k) is a k-linear functor from kC to k-Mod. Let \mathcal{F}_k denote the category of correspondence functors over k. It is an abelian category.

Serge Bouc (CNRS-LAMFA)

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

• For $S \in \mathcal{C}(Y, X)$, let $S^{op} = \{(x, y) \mid (y, x) \in S\} \in \mathcal{C}(X, Y)$.

• For $S \in \mathcal{C}(Y, X)$, let $S^{op} = \{(x, y) \mid (y, x) \in S\} \in \mathcal{C}(X, Y)$. The functor sending each finite set to itself

For S ∈ C(Y, X), let S^{op} = {(x, y) | (y, x) ∈ S} ∈ C(X, Y). The functor sending each finite set to itself and S ∈ C(Y, X) to S^{op} ∈ C(X, Y)

→ ∃ →

For S∈ C(Y,X), let S^{op} = {(x,y) | (y,x) ∈ S} ∈ C(X,Y). The functor sending each finite set to itself and S∈ C(Y,X) to S^{op} ∈ C(X,Y) induces an equivalence of k-linear categories kC → kC^{op}.

(승규) (승규

- For S ∈ C(Y, X), let S^{op} = {(x, y) | (y, x) ∈ S} ∈ C(X, Y). The functor sending each finite set to itself and S ∈ C(Y, X) to S^{op} ∈ C(X, Y) induces an equivalence of k-linear categories kC → kC^{op}.
- 2 Let X and Y be finite sets such that $|X| \leq |Y|$.

- For S ∈ C(Y, X), let S^{op} = {(x, y) | (y, x) ∈ S} ∈ C(X, Y). The functor sending each finite set to itself and S ∈ C(Y, X) to S^{op} ∈ C(X, Y) induces an equivalence of k-linear categories kC → kC^{op}.
- ② Let X and Y be finite sets such that |X| ≤ |Y|. Let i : X → Y be an injective map

- For S ∈ C(Y, X), let S^{op} = {(x, y) | (y, x) ∈ S} ∈ C(X, Y). The functor sending each finite set to itself and S ∈ C(Y, X) to S^{op} ∈ C(X, Y) induces an equivalence of k-linear categories kC → kC^{op}.
- ② Let X and Y be finite sets such that $|X| \le |Y|$. Let *i* : X → Y be an injective map, and set

$$i_* = \left\{ \left(i(x), x \right) \mid x \in X \right\}$$

- For S ∈ C(Y, X), let S^{op} = {(x, y) | (y, x) ∈ S} ∈ C(X, Y). The functor sending each finite set to itself and S ∈ C(Y, X) to S^{op} ∈ C(X, Y) induces an equivalence of k-linear categories kC → kC^{op}.
- ② Let X and Y be finite sets such that $|X| \le |Y|$. Let *i* : X → Y be an injective map, and set

$$i_* = \left\{ \left(i(x), x \right) \mid x \in X \right\} \in \mathcal{C}(Y, X)$$

- For S ∈ C(Y, X), let S^{op} = {(x, y) | (y, x) ∈ S} ∈ C(X, Y). The functor sending each finite set to itself and S ∈ C(Y, X) to S^{op} ∈ C(X, Y) induces an equivalence of k-linear categories kC → kC^{op}.
- ② Let X and Y be finite sets such that $|X| \le |Y|$. Let *i* : X → Y be an injective map, and set

$$\begin{split} i_* &= \left\{ \begin{pmatrix} i(x), x \end{pmatrix} \mid x \in X \right\} \in \mathcal{C}(Y, X), \\ i^* &= \left\{ \begin{pmatrix} x, i(x) \end{pmatrix} \mid x \in X \right\} \end{split}$$

- For S ∈ C(Y, X), let S^{op} = {(x, y) | (y, x) ∈ S} ∈ C(X, Y). The functor sending each finite set to itself and S ∈ C(Y, X) to S^{op} ∈ C(X, Y) induces an equivalence of k-linear categories kC → kC^{op}.
- ② Let X and Y be finite sets such that $|X| \le |Y|$. Let *i* : X → Y be an injective map, and set

$$\begin{split} i_* &= \left\{ \begin{pmatrix} i(x), x \end{pmatrix} \mid x \in X \right\} \in \mathcal{C}(Y, X), \\ i^* &= \left\{ \begin{pmatrix} x, i(x) \end{pmatrix} \mid x \in X \right\} \in \mathcal{C}(X, Y). \end{split}$$

- For S ∈ C(Y, X), let S^{op} = {(x, y) | (y, x) ∈ S} ∈ C(X, Y). The functor sending each finite set to itself and S ∈ C(Y, X) to S^{op} ∈ C(X, Y) induces an equivalence of k-linear categories kC → kC^{op}.
- ② Let X and Y be finite sets such that $|X| \le |Y|$. Let *i* : X → Y be an injective map, and set

$$\begin{split} i_* &= \left\{ \begin{pmatrix} i(x), x \end{pmatrix} \mid x \in X \right\} \in \mathcal{C}(Y, X), \\ i^* &= \left\{ \begin{pmatrix} x, i(x) \end{pmatrix} \mid x \in X \right\} \in \mathcal{C}(X, Y). \end{split}$$

Then $i^*i_* = \Delta_X$.

- For S ∈ C(Y, X), let S^{op} = {(x, y) | (y, x) ∈ S} ∈ C(X, Y). The functor sending each finite set to itself and S ∈ C(Y, X) to S^{op} ∈ C(X, Y) induces an equivalence of k-linear categories kC → kC^{op}.
- ② Let X and Y be finite sets such that $|X| \le |Y|$. Let *i* : X → Y be an injective map, and set

$$\begin{split} i_* &= \left\{ \begin{pmatrix} i(x), x \end{pmatrix} \mid x \in X \right\} \in \mathcal{C}(Y, X), \\ i^* &= \left\{ \begin{pmatrix} x, i(x) \end{pmatrix} \mid x \in X \right\} \in \mathcal{C}(X, Y). \end{split}$$

Then $i^*i_* = \Delta_X$. If $F \in \mathcal{F}_k$

- For S ∈ C(Y, X), let S^{op} = {(x, y) | (y, x) ∈ S} ∈ C(X, Y). The functor sending each finite set to itself and S ∈ C(Y, X) to S^{op} ∈ C(X, Y) induces an equivalence of k-linear categories kC → kC^{op}.
- ② Let X and Y be finite sets such that $|X| \le |Y|$. Let *i* : X → Y be an injective map, and set

$$\begin{split} i_* &= \left\{ \begin{pmatrix} i(x), x \end{pmatrix} \mid x \in X \right\} \in \mathcal{C}(Y, X), \\ i^* &= \left\{ \begin{pmatrix} x, i(x) \end{pmatrix} \mid x \in X \right\} \in \mathcal{C}(X, Y). \end{split}$$

Then $i^*i_* = \Delta_X$. If $F \in \mathcal{F}_k$, then F(X) is isomorphic to a direct summand of F(Y).

- For S ∈ C(Y, X), let S^{op} = {(x, y) | (y, x) ∈ S} ∈ C(X, Y). The functor sending each finite set to itself and S ∈ C(Y, X) to S^{op} ∈ C(X, Y) induces an equivalence of k-linear categories kC → kC^{op}.
- ② Let X and Y be finite sets such that $|X| \le |Y|$. Let *i* : X → Y be an injective map, and set

$$\begin{split} i_* &= \left\{ \begin{pmatrix} i(x), x \end{pmatrix} \mid x \in X \right\} \in \mathcal{C}(Y, X), \\ i^* &= \left\{ \begin{pmatrix} x, i(x) \end{pmatrix} \mid x \in X \right\} \in \mathcal{C}(X, Y). \end{split}$$

Then $i^*i_* = \Delta_X$. If $F \in \mathcal{F}_k$, then F(X) is isomorphic to a direct summand of F(Y). In particular $F(X) \neq 0$ implies $F(Y) \neq 0$.

Serge Bouc (CNRS-LAMFA)

• Yoneda functors $Y_{E,k} : X \mapsto k\mathcal{C}(X, E)$ (*E* fixed finite set)

• Yoneda functors $Y_{E,k} : X \mapsto k\mathcal{C}(X, E)$ e.g.

•
$$E = \emptyset$$
:

• Yoneda functors $Y_{E,k} : X \mapsto k\mathcal{C}(X, E)$ e.g.

•
$$E = \emptyset$$
: then $Y_{\emptyset,k}(X) = k\mathcal{C}(X, \emptyset)$

• Yoneda functors $Y_{E,k} : X \mapsto k\mathcal{C}(X, E)$ e.g.

•
$$E = \emptyset$$
: then $Y_{\emptyset,k}(X) = k\mathcal{C}(X, \emptyset) \cong k, \ \forall X$.
• Yoneda functors $Y_{E,k} : X \mapsto k\mathcal{C}(X, E)$ e.g.

Image: Image:

→ ∃ →

• Yoneda functors $Y_{E,k} : X \mapsto k\mathcal{C}(X, E)$ e.g.

- - E > - 4

• Yoneda functors $Y_{E,k} : X \mapsto k\mathcal{C}(X, E)$ e.g.

• Yoneda functors $Y_{E,k} : X \mapsto k\mathcal{C}(X, E)$ e.g.

•
$$E = \emptyset$$
: then $Y_{\emptyset,k}(X) = k\mathcal{C}(X, \emptyset) \cong k, \ \forall X$.

•
$$E = \{\bullet\}$$
: then $Y_{\bullet,k}(X) = k\mathcal{C}(X, \bullet) \cong k(2^X), \ \forall X.$

The functor $Y_{E,k}$ is a projective object of \mathcal{F}_k , for any E

• Yoneda functors $Y_{E,k} : X \mapsto k\mathcal{C}(X, E)$ e.g.

•
$$E = \emptyset$$
: then $Y_{\emptyset,k}(X) = k\mathcal{C}(X, \emptyset) \cong k, \ \forall X$.

•
$$E = \{\bullet\}$$
: then $Y_{\bullet,k}(X) = k\mathcal{C}(X, \bullet) \cong k(2^X), \forall X$.

The functor $Y_{E,k}$ is a projective object of \mathcal{F}_k , for any E, since $Hom_{\mathcal{F}_k}(Y_{E,k}, M) \cong M(E), \ \forall M \in \mathcal{F}_k$

• Yoneda functors $Y_{E,k} : X \mapsto k\mathcal{C}(X, E)$ e.g.

•
$$E = \emptyset$$
: then $Y_{\emptyset,k}(X) = k\mathcal{C}(X, \emptyset) \cong k, \ \forall X$.

•
$$E = \{\bullet\}$$
: then $Y_{\bullet,k}(X) = k\mathcal{C}(X, \bullet) \cong k(2^X), \ \forall X.$

The functor $Y_{E,k}$ is a projective object of \mathcal{F}_k , for any E.

• Yoneda functors $Y_{E,k} : X \mapsto k\mathcal{C}(X, E)$ e.g.

•
$$E = \emptyset$$
: then $Y_{\emptyset,k}(X) = k\mathcal{C}(X, \emptyset) \cong k, \ \forall X$.

•
$$E = \{\bullet\}$$
: then $Y_{\bullet,k}(X) = k\mathcal{C}(X, \bullet) \cong k(2^X), \forall X$.

The functor $Y_{E,k}$ is a projective object of \mathcal{F}_k , for any E.

• Direct summands of Y_{E,k}:

• Yoneda functors $Y_{E,k} : X \mapsto k\mathcal{C}(X, E)$ e.g.

•
$$E = \emptyset$$
: then $Y_{\emptyset,k}(X) = k\mathcal{C}(X, \emptyset) \cong k, \ \forall X$.

•
$$E = \{\bullet\}$$
: then $\Upsilon_{\bullet,k}(X) = k\mathcal{C}(X,\bullet) \cong k(2^X), \ \forall X.$

The functor $Y_{E,k}$ is a projective object of \mathcal{F}_k , for any E.

• Direct summands of $Y_{E,k}$: by the Yoneda Lemma $End_{\mathcal{F}_k}(Y_{E,k}) \cong$

• Yoneda functors $Y_{E,k} : X \mapsto k\mathcal{C}(X, E)$ e.g.

•
$$E = \emptyset$$
: then $Y_{\emptyset,k}(X) = k\mathcal{C}(X, \emptyset) \cong k, \ \forall X$.

•
$$E = \{\bullet\}$$
: then $\Upsilon_{\bullet,k}(X) = k\mathcal{C}(X,\bullet) \cong k(2^X), \ \forall X.$

The functor $Y_{E,k}$ is a projective object of \mathcal{F}_k , for any E.

 Direct summands of Y_{E,k}: by the Yoneda Lemma End_{F_k}(Y_{E,k}) ≅ kC(E, E).

• Yoneda functors $Y_{E,k} : X \mapsto k\mathcal{C}(X, E)$ e.g.

•
$$E = \emptyset$$
: then $Y_{\emptyset,k}(X) = k\mathcal{C}(X, \emptyset) \cong k, \ \forall X$.

•
$$E = \{\bullet\}$$
: then $\Upsilon_{\bullet,k}(X) = k\mathcal{C}(X,\bullet) \cong k(2^X), \ \forall X.$

The functor $Y_{E,k}$ is a projective object of \mathcal{F}_k , for any E.

 Direct summands of Y_{E,k}: by the Yoneda Lemma End_{F_k}(Y_{E,k}) ≅ kC(E, E). Let R be a preorder on E

• Yoneda functors $Y_{E,k} : X \mapsto k\mathcal{C}(X, E)$ e.g.

•
$$E = \emptyset$$
: then $Y_{\emptyset,k}(X) = k\mathcal{C}(X, \emptyset) \cong k, \ \forall X$.

•
$$E = \{\bullet\}$$
: then $Y_{\bullet,k}(X) = k\mathcal{C}(X, \bullet) \cong k(2^X), \forall X$.

The functor $Y_{E,k}$ is a projective object of \mathcal{F}_k , for any E.

• Direct summands of $Y_{E,k}$: by the Yoneda Lemma $End_{\mathcal{F}_k}(Y_{E,k}) \cong k\mathcal{C}(E, E)$. Let R be a preorder on E, i.e. $R \in \mathcal{C}(E, E)$ such that $\Delta_E \subseteq R = R^2$.

• Yoneda functors $Y_{E,k} : X \mapsto k\mathcal{C}(X, E)$ e.g.

•
$$E = \emptyset$$
: then $Y_{\emptyset,k}(X) = k\mathcal{C}(X, \emptyset) \cong k, \ \forall X$.

•
$$E = \{\bullet\}$$
: then $Y_{\bullet,k}(X) = k\mathcal{C}(X, \bullet) \cong k(2^X), \ \forall X.$

The functor $Y_{E,k}$ is a projective object of \mathcal{F}_k , for any E.

• Direct summands of $Y_{E,k}$: by the Yoneda Lemma $End_{\mathcal{F}_k}(Y_{E,k}) \cong k\mathcal{C}(E, E)$. Let R be a preorder on E, i.e. $R \in \mathcal{C}(E, E)$ such that $\Delta_E \subseteq R = R^2$. Then $Y_{E,k}R : X \mapsto k\mathcal{C}(X, E)R$ is a projective object of \mathcal{F}_k .

6

• Yoneda functors $Y_{E,k} : X \mapsto k\mathcal{C}(X, E)$ e.g.

•
$$E = \emptyset$$
: then $Y_{\emptyset,k}(X) = k\mathcal{C}(X, \emptyset) \cong k, \ \forall X$.

•
$$E = \{\bullet\}$$
: then $Y_{\bullet,k}(X) = k\mathcal{C}(X, \bullet) \cong k(2^X), \ \forall X.$

The functor $Y_{E,k}$ is a projective object of \mathcal{F}_k , for any E.

- Direct summands of $Y_{E,k}$: by the Yoneda Lemma $End_{\mathcal{F}_k}(Y_{E,k}) \cong k\mathcal{C}(E, E)$. Let R be a preorder on E, i.e. $R \in \mathcal{C}(E, E)$ such that $\Delta_E \subseteq R = R^2$. Then $Y_{E,k}R : X \mapsto k\mathcal{C}(X, E)R$ is a projective object of \mathcal{F}_k .
- For $F \in \mathcal{F}_k$, the dual F^{\natural} of F

• Yoneda functors $Y_{E,k} : X \mapsto k\mathcal{C}(X, E)$ e.g.

•
$$E = \emptyset$$
: then $Y_{\emptyset,k}(X) = k\mathcal{C}(X, \emptyset) \cong k, \ \forall X$.

•
$$E = \{\bullet\}$$
: then $Y_{\bullet,k}(X) = k\mathcal{C}(X, \bullet) \cong k(2^X), \ \forall X.$

The functor $Y_{E,k}$ is a projective object of \mathcal{F}_k , for any E.

- Direct summands of Y_{E,k}: by the Yoneda Lemma End_{F_k}(Y_{E,k}) ≅ kC(E, E). Let R be a preorder on E, i.e. R ∈ C(E, E) such that Δ_E ⊆ R = R². Then Y_{E,k}R : X → kC(X, E)R is a projective object of F_k.
- For $F \in \mathcal{F}_k$, the dual F^{\natural} of F is defined by $F^{\natural}(X) = Hom_k (F(X), k)$

6

• Yoneda functors $Y_{E,k} : X \mapsto k\mathcal{C}(X, E)$ e.g.

•
$$E = \emptyset$$
: then $Y_{\emptyset,k}(X) = k\mathcal{C}(X, \emptyset) \cong k, \ \forall X$.

•
$$E = \{\bullet\}$$
: then $Y_{\bullet,k}(X) = k\mathcal{C}(X, \bullet) \cong k(2^X), \ \forall X.$

The functor $Y_{E,k}$ is a projective object of \mathcal{F}_k , for any E.

- Direct summands of Y_{E,k}: by the Yoneda Lemma End_{F_k}(Y_{E,k}) ≅ kC(E, E). Let R be a preorder on E, i.e. R ∈ C(E, E) such that Δ_E ⊆ R = R². Then Y_{E,k}R : X → kC(X, E)R is a projective object of F_k.
- For $F \in \mathcal{F}_k$, the dual F^{\natural} of F is defined by $F^{\natural}(X) = Hom_k(F(X), k)$ and $F^{\natural}(S) = {}^tF(S^{op})$ for $S \in \mathcal{C}(Y, X)$.

6

• Let X be a finite set

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

∃ ▶ ∢

• Let X be a finite set, and V be a simple kC(X, X)-module.

• Let X be a finite set, and V be a simple $k\mathcal{C}(X, X)$ -module. Then the functor $L_{X,V}$

• Let X be a finite set, and V be a simple $k\mathcal{C}(X, X)$ -module. Then the functor $L_{X,V}$ (recall that $L_{X,V}(Y) = k\mathcal{C}(Y, X) \otimes_{k\mathcal{C}(X,X)} V$)

• Let X be a finite set, and V be a simple kC(X, X)-module. Then the functor $L_{X,V}$ admits a unique maximal proper subfunctor $J_{X,V}$

• Let X be a finite set, and V be a simple kC(X, X)-module. Then the functor $L_{X,V}$ admits a unique maximal proper subfunctor $J_{X,V}$, and $S_{X,V} = L_{X,V}/J_{X,V}$ is a simple functor

• Let X be a finite set, and V be a simple $k\mathcal{C}(X, X)$ -module. Then the functor $L_{X,V}$ admits a unique maximal proper subfunctor $J_{X,V}$, and $S_{X,V} = L_{X,V}/J_{X,V}$ is a simple functor, such that $S_{X,V}(X) \cong V$.

- Let X be a finite set, and V be a simple $k\mathcal{C}(X, X)$ -module. Then the functor $L_{X,V}$ admits a unique maximal proper subfunctor $J_{X,V}$, and $S_{X,V} = L_{X,V}/J_{X,V}$ is a simple functor, such that $S_{X,V}(X) \cong V$.
- Conversely, if S is a simple functor such that $S(X) \neq 0$

- Let X be a finite set, and V be a simple $k\mathcal{C}(X, X)$ -module. Then the functor $L_{X,V}$ admits a unique maximal proper subfunctor $J_{X,V}$, and $S_{X,V} = L_{X,V}/J_{X,V}$ is a simple functor, such that $S_{X,V}(X) \cong V$.
- Conversely, if S is a simple functor such that $S(X) \neq 0$, then V = S(X) is a simple kC(X, X)-module

- Let X be a finite set, and V be a simple $k\mathcal{C}(X, X)$ -module. Then the functor $L_{X,V}$ admits a unique maximal proper subfunctor $J_{X,V}$, and $S_{X,V} = L_{X,V}/J_{X,V}$ is a simple functor, such that $S_{X,V}(X) \cong V$.
- Conversely, if S is a simple functor such that $S(X) \neq 0$, then V = S(X) is a simple kC(X, X)-module, and $S \cong S_{X,V}$.

- Let X be a finite set, and V be a simple $k\mathcal{C}(X, X)$ -module. Then the functor $L_{X,V}$ admits a unique maximal proper subfunctor $J_{X,V}$, and $S_{X,V} = L_{X,V}/J_{X,V}$ is a simple functor, such that $S_{X,V}(X) \cong V$.
- Conversely, if S is a simple functor such that $S(X) \neq 0$, then V = S(X) is a simple kC(X, X)-module, and $S \cong S_{X,V}$.
- If S is a simple functor, and if E is a set of minimal cardinality such that $S(E) \neq 0$

- Let X be a finite set, and V be a simple $k\mathcal{C}(X, X)$ -module. Then the functor $L_{X,V}$ admits a unique maximal proper subfunctor $J_{X,V}$, and $S_{X,V} = L_{X,V}/J_{X,V}$ is a simple functor, such that $S_{X,V}(X) \cong V$.
- Conversely, if S is a simple functor such that $S(X) \neq 0$, then V = S(X) is a simple kC(X, X)-module, and $S \cong S_{X,V}$.
- If S is a simple functor, and if E is a set of minimal cardinality such that S(E) ≠ 0, then S(E) is a simple module for the algebra E_E of essential relations on E

- Let X be a finite set, and V be a simple $k\mathcal{C}(X, X)$ -module. Then the functor $L_{X,V}$ admits a unique maximal proper subfunctor $J_{X,V}$, and $S_{X,V} = L_{X,V}/J_{X,V}$ is a simple functor, such that $S_{X,V}(X) \cong V$.
- Conversely, if S is a simple functor such that $S(X) \neq 0$, then V = S(X) is a simple kC(X, X)-module, and $S \cong S_{X,V}$.
- If S is a simple functor, and if E is a set of minimal cardinality such that $S(E) \neq 0$, then S(E) is a simple module for the algebra \mathcal{E}_E of

essential relations on
$$E\left(S(E) \xrightarrow{S(R)} S(E) \text{ if } E \xrightarrow{R} E \text{ with } |Y| < |E|\right).$$

- Let X be a finite set, and V be a simple $k\mathcal{C}(X, X)$ -module. Then the functor $L_{X,V}$ admits a unique maximal proper subfunctor $J_{X,V}$, and $S_{X,V} = L_{X,V}/J_{X,V}$ is a simple functor, such that $S_{X,V}(X) \cong V$.
- Conversely, if S is a simple functor such that $S(X) \neq 0$, then V = S(X) is a simple kC(X, X)-module, and $S \cong S_{X,V}$.
- If S is a simple functor, and if E is a set of minimal cardinality such that S(E) ≠ 0, then S(E) is a simple module for the algebra E_E of essential relations on E.

- Let X be a finite set, and V be a simple $k\mathcal{C}(X, X)$ -module. Then the functor $L_{X,V}$ admits a unique maximal proper subfunctor $J_{X,V}$, and $S_{X,V} = L_{X,V}/J_{X,V}$ is a simple functor, such that $S_{X,V}(X) \cong V$.
- Conversely, if S is a simple functor such that $S(X) \neq 0$, then V = S(X) is a simple kC(X, X)-module, and $S \cong S_{X,V}$.
- If S is a simple functor, and if E is a set of minimal cardinality such that S(E) ≠ 0, then S(E) is a simple module for the algebra E_E of essential relations on E.
- The simple \mathcal{E}_E -modules are parametrized by pairs (R, W)

- Let X be a finite set, and V be a simple $k\mathcal{C}(X, X)$ -module. Then the functor $L_{X,V}$ admits a unique maximal proper subfunctor $J_{X,V}$, and $S_{X,V} = L_{X,V}/J_{X,V}$ is a simple functor, such that $S_{X,V}(X) \cong V$.
- Conversely, if S is a simple functor such that $S(X) \neq 0$, then V = S(X) is a simple kC(X, X)-module, and $S \cong S_{X,V}$.
- If S is a simple functor, and if E is a set of minimal cardinality such that S(E) ≠ 0, then S(E) is a simple module for the algebra E_E of essential relations on E.
- The simple \mathcal{E}_E -modules are parametrized by pairs (R, W), where R is an order on E

- Let X be a finite set, and V be a simple $k\mathcal{C}(X, X)$ -module. Then the functor $L_{X,V}$ admits a unique maximal proper subfunctor $J_{X,V}$, and $S_{X,V} = L_{X,V}/J_{X,V}$ is a simple functor, such that $S_{X,V}(X) \cong V$.
- Conversely, if S is a simple functor such that $S(X) \neq 0$, then V = S(X) is a simple kC(X, X)-module, and $S \cong S_{X,V}$.
- If S is a simple functor, and if E is a set of minimal cardinality such that S(E) ≠ 0, then S(E) is a simple module for the algebra E_E of essential relations on E.
- The simple \mathcal{E}_E -modules are parametrized by pairs (R, W), where R is an order on E, and W is a simple kAut(E, R)-module.

- Let X be a finite set, and V be a simple $k\mathcal{C}(X, X)$ -module. Then the functor $L_{X,V}$ admits a unique maximal proper subfunctor $J_{X,V}$, and $S_{X,V} = L_{X,V}/J_{X,V}$ is a simple functor, such that $S_{X,V}(X) \cong V$.
- Conversely, if S is a simple functor such that $S(X) \neq 0$, then V = S(X) is a simple kC(X, X)-module, and $S \cong S_{X,V}$.
- If S is a simple functor, and if E is a set of minimal cardinality such that S(E) ≠ 0, then S(E) is a simple module for the algebra E_E of essential relations on E.
- The simple \mathcal{E}_E -modules are parametrized by pairs (R, W), where R is an order on E, and W is a simple kAut(E, R)-module.
- The simple correspondence functors over k are parametrized by triples (E, R, W)

A (10) F (10) F (10)

- Let X be a finite set, and V be a simple $k\mathcal{C}(X, X)$ -module. Then the functor $L_{X,V}$ admits a unique maximal proper subfunctor $J_{X,V}$, and $S_{X,V} = L_{X,V}/J_{X,V}$ is a simple functor, such that $S_{X,V}(X) \cong V$.
- Conversely, if S is a simple functor such that $S(X) \neq 0$, then V = S(X) is a simple kC(X, X)-module, and $S \cong S_{X,V}$.
- If S is a simple functor, and if E is a set of minimal cardinality such that S(E) ≠ 0, then S(E) is a simple module for the algebra E_E of essential relations on E.
- The simple \mathcal{E}_E -modules are parametrized by pairs (R, W), where R is an order on E, and W is a simple kAut(E, R)-module.
- The simple correspondence functors over k are parametrized by triples (E, R, W), where E is a finite set

▲ □ ► ▲ □ ► ▲

- Let X be a finite set, and V be a simple $k\mathcal{C}(X, X)$ -module. Then the functor $L_{X,V}$ admits a unique maximal proper subfunctor $J_{X,V}$, and $S_{X,V} = L_{X,V}/J_{X,V}$ is a simple functor, such that $S_{X,V}(X) \cong V$.
- Conversely, if S is a simple functor such that $S(X) \neq 0$, then V = S(X) is a simple kC(X, X)-module, and $S \cong S_{X,V}$.
- If S is a simple functor, and if E is a set of minimal cardinality such that S(E) ≠ 0, then S(E) is a simple module for the algebra E_E of essential relations on E.
- The simple \mathcal{E}_E -modules are parametrized by pairs (R, W), where R is an order on E, and W is a simple kAut(E, R)-module.
- The simple correspondence functors over k are parametrized by triples (E, R, W), where E is a finite set, R is an order on E

▲ □ ► ▲ □ ► ▲

- Let X be a finite set, and V be a simple $k\mathcal{C}(X, X)$ -module. Then the functor $L_{X,V}$ admits a unique maximal proper subfunctor $J_{X,V}$, and $S_{X,V} = L_{X,V}/J_{X,V}$ is a simple functor, such that $S_{X,V}(X) \cong V$.
- Conversely, if S is a simple functor such that $S(X) \neq 0$, then V = S(X) is a simple kC(X, X)-module, and $S \cong S_{X,V}$.
- If S is a simple functor, and if E is a set of minimal cardinality such that S(E) ≠ 0, then S(E) is a simple module for the algebra E_E of essential relations on E.
- The simple \mathcal{E}_E -modules are parametrized by pairs (R, W), where R is an order on E, and W is a simple kAut(E, R)-module.
- The simple correspondence functors over k are parametrized by triples (E, R, W), where E is a finite set, R is an order on E, and W is a simple kAut(E, R)-module.

- **(()) (()) (())**
Simple functors

- Let X be a finite set, and V be a simple $k\mathcal{C}(X, X)$ -module. Then the functor $L_{X,V}$ admits a unique maximal proper subfunctor $J_{X,V}$, and $S_{X,V} = L_{X,V}/J_{X,V}$ is a simple functor, such that $S_{X,V}(X) \cong V$.
- Conversely, if S is a simple functor such that $S(X) \neq 0$, then V = S(X) is a simple kC(X, X)-module, and $S \cong S_{X,V}$.
- If S is a simple functor, and if E is a set of minimal cardinality such that S(E) ≠ 0, then S(E) is a simple module for the algebra E_E of essential relations on E.
- The simple \mathcal{E}_E -modules are parametrized by pairs (R, W), where R is an order on E, and W is a simple kAut(E, R)-module.
- The simple correspondence functors over k are parametrized by triples (E, R, W), where E is a finite set, R is an order on E, and W is a simple kAut(E, R)-module. Notation: (E, R, W) → S_{E,R,W}.

・ロト ・回ト ・ヨト ・

Bounded generation

Serge Bouc (CNRS-LAMFA)

• • • • • • • •

3 ×

Definition

Definition

Let $M \in \mathcal{F}_k$.

• Let $(E_i)_{i \in I}$ be a sequence of finite sets

Definition

- Let $M \in \mathcal{F}_k$.
 - Let (E_i)_{i∈I} be a sequence of finite sets, and for each i ∈ I, let m_i ∈ M(E_i).

Definition

Let $M \in \mathcal{F}_k$.

• Let $(E_i)_{i \in I}$ be a sequence of finite sets, and for each $i \in I$, let $m_i \in M(E_i)$. We say that M is generated by $(m_i)_{i \in I}$

Definition

Let $M \in \mathcal{F}_k$.

Let (E_i)_{i∈I} be a sequence of finite sets, and for each i ∈ I, let m_i ∈ M(E_i). We say that M is generated by (m_i)_{i∈I}, and write M = ⟨m_i⟩_{i∈I}

Definition

Let $M \in \mathcal{F}_k$.

Let (E_i)_{i∈I} be a sequence of finite sets, and for each i ∈ I, let m_i ∈ M(E_i). We say that M is generated by (m_i)_{i∈I}, and write M = ⟨m_i⟩_{i∈I}, if for any finite set X and any m ∈ M(X)

Definition

Let $M \in \mathcal{F}_k$.

Let (E_i)_{i∈I} be a sequence of finite sets, and for each i ∈ I, let m_i ∈ M(E_i). We say that M is generated by (m_i)_{i∈I}, and write M = ⟨m_i⟩_{i∈I}, if for any finite set X and any m ∈ M(X), there exists a finite subsequence J ⊆ I

Definition

Let $M \in \mathcal{F}_k$.

Let (E_i)_{i∈I} be a sequence of finite sets, and for each i ∈ I, let m_i ∈ M(E_i). We say that M is generated by (m_i)_{i∈I}, and write M = ⟨m_i⟩_{i∈I}, if for any finite set X and any m ∈ M(X), there exists a finite subsequence J ⊆ I and elements α_i ∈ kC(X, E_i), for j ∈ J

Definition

Let $M \in \mathcal{F}_k$.

Let (E_i)_{i∈I} be a sequence of finite sets, and for each i ∈ I, let m_i ∈ M(E_i). We say that M is generated by (m_i)_{i∈I}, and write M = ⟨m_i⟩_{i∈I}, if for any finite set X and any m ∈ M(X), there exists a finite subsequence J ⊆ I and elements α_j ∈ kC(X, E_j), for j ∈ J, such that m = ∑_{j∈J} M(α_j)(m_j).

Definition

- Let (E_i)_{i∈I} be a sequence of finite sets, and for each i ∈ I, let m_i ∈ M(E_i). We say that M is generated by (m_i)_{i∈I}, and write M = ⟨m_i⟩_{i∈I}, if for any finite set X and any m ∈ M(X), there exists a finite subsequence J ⊆ I and elements α_j ∈ kC(X, E_j), for j ∈ J, such that m = ∑_{j∈J} M(α_j)(m_j).
- M is finitely generated

Definition

- Let (E_i)_{i∈I} be a sequence of finite sets, and for each i ∈ I, let m_i ∈ M(E_i). We say that M is generated by (m_i)_{i∈I}, and write M = ⟨m_i⟩_{i∈I}, if for any finite set X and any m ∈ M(X), there exists a finite subsequence J ⊆ I and elements α_j ∈ kC(X, E_j), for j ∈ J, such that m = ∑_{j∈J} M(α_j)(m_j).
- **2** *M* is finitely generated if $M = \langle m_i \rangle_{i \in I}$, where *I* is finite.

- Let (E_i)_{i∈I} be a sequence of finite sets, and for each i ∈ I, let m_i ∈ M(E_i). We say that M is generated by (m_i)_{i∈I}, and write M = ⟨m_i⟩_{i∈I}, if for any finite set X and any m ∈ M(X), there exists a finite subsequence J ⊆ I and elements α_j ∈ kC(X, E_j), for j ∈ J, such that m = ∑_{j∈J} M(α_j)(m_j).
- **2** *M* is finitely generated if $M = \langle m_i \rangle_{i \in I}$, where *I* is finite.
- M has bounded type

- Let (E_i)_{i∈I} be a sequence of finite sets, and for each i ∈ I, let m_i ∈ M(E_i). We say that M is generated by (m_i)_{i∈I}, and write M = ⟨m_i⟩_{i∈I}, if for any finite set X and any m ∈ M(X), there exists a finite subsequence J ⊆ I and elements α_j ∈ kC(X, E_j), for j ∈ J, such that m = ∑_{j∈J} M(α_j)(m_j).
- **2** *M* is finitely generated if $M = \langle m_i \rangle_{i \in I}$, where *I* is finite.
- **③** *M* has bounded type if there is a finite set *E* such that $M = \langle M(E) \rangle$.

Let $M \in \mathcal{F}_k$.

- Let (E_i)_{i∈I} be a sequence of finite sets, and for each i ∈ I, let m_i ∈ M(E_i). We say that M is generated by (m_i)_{i∈I}, and write M = ⟨m_i⟩_{i∈I}, if for any finite set X and any m ∈ M(X), there exists a finite subsequence J ⊆ I and elements α_j ∈ kC(X, E_j), for j ∈ J, such that m = ∑_{j∈J} M(α_j)(m_j).
- **2** *M* is finitely generated if $M = \langle m_i \rangle_{i \in I}$, where *I* is finite.
- **③** *M* has bounded type if there is a finite set *E* such that $M = \langle M(E) \rangle$.

Example: The Yoneda functor $Y_{E,k}$ is finitely generated

Let $M \in \mathcal{F}_k$.

- Let (E_i)_{i∈I} be a sequence of finite sets, and for each i ∈ I, let m_i ∈ M(E_i). We say that M is generated by (m_i)_{i∈I}, and write M = ⟨m_i⟩_{i∈I}, if for any finite set X and any m ∈ M(X), there exists a finite subsequence J ⊆ I and elements α_j ∈ kC(X, E_j), for j ∈ J, such that m = ∑_{j∈J} M(α_j)(m_j).
- **2** *M* is finitely generated if $M = \langle m_i \rangle_{i \in I}$, where *I* is finite.
- **③** *M* has bounded type if there is a finite set *E* such that $M = \langle M(E) \rangle$.

Example: The Yoneda functor $Y_{E,k}$ is finitely generated (by the single element $\Delta_E \in Y_{E,k}(E) = k\mathcal{C}(E, E)$).

(4回) (4回) (4回)

Let $M \in \mathcal{F}_k$.

- Let $(E_i)_{i \in I}$ be a sequence of finite sets, and for each $i \in I$, let $m_i \in M(E_i)$. We say that M is generated by $(m_i)_{i \in I}$, and write $M = \langle m_i \rangle_{i \in I}$, if for any finite set X and any $m \in M(X)$, there exists a finite subsequence $J \subseteq I$ and elements $\alpha_j \in k\mathcal{C}(X, E_j)$, for $j \in J$, such that $m = \sum_{j \in J} M(\alpha_j)(m_j)$.
- **2** *M* is finitely generated if $M = \langle m_i \rangle_{i \in I}$, where *I* is finite.
- **③** *M* has bounded type if there is a finite set *E* such that $M = \langle M(E) \rangle$.

Example: The Yoneda functor $Y_{E,k}$ is finitely generated (by the single element $\Delta_E \in Y_{E,k}(E) = k\mathcal{C}(E, E)$). The functor $L_{E,V}$ has bounded type

(本部)と 本語 と 本語 と

Let $M \in \mathcal{F}_k$.

- Let (E_i)_{i∈I} be a sequence of finite sets, and for each i ∈ I, let m_i ∈ M(E_i). We say that M is generated by (m_i)_{i∈I}, and write M = ⟨m_i⟩_{i∈I}, if for any finite set X and any m ∈ M(X), there exists a finite subsequence J ⊆ I and elements α_j ∈ kC(X, E_j), for j ∈ J, such that m = ∑_{j∈J} M(α_j)(m_j).
- **2** *M* is finitely generated if $M = \langle m_i \rangle_{i \in I}$, where *I* is finite.
- **③** *M* has bounded type if there is a finite set *E* such that $M = \langle M(E) \rangle$.

Example: The Yoneda functor $Y_{E,k}$ is finitely generated (by the single element $\Delta_E \in Y_{E,k}(E) = k\mathcal{C}(E, E)$). The functor $L_{E,V}$ has bounded type, generated by $L_{E,V}(E) \cong V$.

イロト イヨト イヨト

Let $M \in \mathcal{F}_k$.

- Let (E_i)_{i∈I} be a sequence of finite sets, and for each i ∈ I, let m_i ∈ M(E_i). We say that M is generated by (m_i)_{i∈I}, and write M = ⟨m_i⟩_{i∈I}, if for any finite set X and any m ∈ M(X), there exists a finite subsequence J ⊆ I and elements α_j ∈ kC(X, E_j), for j ∈ J, such that m = ∑_{j∈J} M(α_j)(m_j).
- **2** *M* is finitely generated if $M = \langle m_i \rangle_{i \in I}$, where *I* is finite.
- **③** *M* has bounded type if there is a finite set *E* such that $M = \langle M(E) \rangle$.

Example: The Yoneda functor $Y_{E,k}$ is finitely generated (by the single element $\Delta_E \in Y_{E,k}(E) = k\mathcal{C}(E, E)$). The functor $L_{E,V}$ has bounded type, generated by $L_{E,V}(E) \cong V$. It is finitely generated

イロン イ理と イヨン イヨン

Let $M \in \mathcal{F}_k$.

- Let $(E_i)_{i \in I}$ be a sequence of finite sets, and for each $i \in I$, let $m_i \in M(E_i)$. We say that M is generated by $(m_i)_{i \in I}$, and write $M = \langle m_i \rangle_{i \in I}$, if for any finite set X and any $m \in M(X)$, there exists a finite subsequence $J \subseteq I$ and elements $\alpha_j \in k\mathcal{C}(X, E_j)$, for $j \in J$, such that $m = \sum_{j \in J} M(\alpha_j)(m_j)$.
- **2** *M* is finitely generated if $M = \langle m_i \rangle_{i \in I}$, where *I* is finite.
- **③** *M* has bounded type if there is a finite set *E* such that $M = \langle M(E) \rangle$.

Example: The Yoneda functor $Y_{E,k}$ is finitely generated (by the single element $\Delta_E \in Y_{E,k}(E) = k\mathcal{C}(E, E)$).

The functor $L_{E,V}$ has bounded type, generated by $L_{E,V}(E) \cong V$. It is finitely generated if and only if V is finitely generated.

イロト イヨト イヨト イヨト

Serge Bouc (CNRS-LAMFA)

・ロト ・ 日 ト ・ ヨ ト ・

Let $M \in \mathcal{F}_k$.

э

・ロト ・ 日 ト ・ 田 ト ・

Let $M \in \mathcal{F}_k$. The following are equivalent:

< ∃ > <

Let $M \in \mathcal{F}_k$. The following are equivalent:

• *M* is finitely generated.

< ∃ > <

Let $M \in \mathcal{F}_k$. The following are equivalent:

• M is finitely generated.

2 *M* is isomorphic to a quotient of a finite direct sum $\bigoplus_{i=1}^{n} Y_{E_{i},k}$.

Let $M \in \mathcal{F}_k$. The following are equivalent:

- M is finitely generated.
- **2** *M* is isomorphic to a quotient of a finite direct sum $\bigoplus_{i=1}^{n} Y_{E_i,k}$.
- So M is isomorphic to a quotient of a finite direct sum $(Y_{E,k})^{\oplus n}$.

Let $M \in \mathcal{F}_k$. The following are equivalent:

• M is finitely generated.

2 *M* is isomorphic to a quotient of a finite direct sum $\bigoplus_{i=1}^{n} Y_{E_i,k}$.

③ *M* is isomorphic to a quotient of a finite direct sum $(Y_{E,k})^{\oplus n}$. If moreover *k* is a field, these conditions are equivalent to:

Let $M \in \mathcal{F}_k$. The following are equivalent:

• M is finitely generated.

2 *M* is isomorphic to a quotient of a finite direct sum $\bigoplus_{i=1}^{n} Y_{E_i,k}$.

• *M* is isomorphic to a quotient of a finite direct sum $(Y_{E,k})^{\oplus n}$. If moreover k is a field, these conditions are equivalent to:

Solution the exist positive real numbers a, b, r such that dim_k M(X) ≤ ab^{|X|} for any finite set X with |X| ≥ r.

Let $M \in \mathcal{F}_k$. The following are equivalent:

• M is finitely generated.

2 *M* is isomorphic to a quotient of a finite direct sum $\bigoplus_{i=1}^{n} Y_{E_i,k}$.

• *M* is isomorphic to a quotient of a finite direct sum $(Y_{E,k})^{\oplus n}$. If moreover k is a field, these conditions are equivalent to:

Solution the exist positive real numbers a, b, r such that dim_k M(X) ≤ ab^{|X|} for any finite set X with |X| ≥ r.

M has finite length.

- Let $M \in \mathcal{F}_k$. The following are equivalent:
 - M is finitely generated.
 - **2** *M* is isomorphic to a quotient of a finite direct sum $\bigoplus_{i=1}^{m} Y_{E_i,k}$.
 - **3** *M* is isomorphic to a quotient of a finite direct sum $(Y_{E,k})^{\oplus n}$.

If moreover k is a field, these conditions are equivalent to:

- Solution the exist positive real numbers a, b, r such that dim_k M(X) ≤ ab^{|X|} for any finite set X with |X| ≥ r.
- M has finite length.

- Let $M \in \mathcal{F}_k$. The following are equivalent:
 - M is finitely generated.
 - **2** *M* is isomorphic to a quotient of a finite direct sum $\bigoplus_{i=1}^{m} Y_{E_i,k}$.
 - **3** *M* is isomorphic to a quotient of a finite direct sum $(Y_{E,k})^{\oplus n}$.

If moreover k is a field, these conditions are equivalent to:

Solution the exist positive real numbers a, b, r such that dim_k M(X) ≤ ab^{|X|} for any finite set X with |X| ≥ r.

M has finite length.

Proof (sketch):

- Let $M \in \mathcal{F}_k$. The following are equivalent:
 - M is finitely generated.
 - **2** *M* is isomorphic to a quotient of a finite direct sum $\bigoplus_{i=1}^{m} Y_{E_i,k}$.
 - **3** *M* is isomorphic to a quotient of a finite direct sum $(Y_{E,k})^{\oplus n}$.

If moreover k is a field, these conditions are equivalent to:

Solution the exist positive real numbers a, b, r such that dim_k M(X) ≤ ab^{|X|} for any finite set X with |X| ≥ r.

M has finite length.

Proof (sketch): • $1 \Leftrightarrow 2$

- Let $M \in \mathcal{F}_k$. The following are equivalent:
 - M is finitely generated.
 - **2** *M* is isomorphic to a quotient of a finite direct sum $\bigoplus_{i=1}^{m} Y_{E_i,k}$.
 - **3** *M* is isomorphic to a quotient of a finite direct sum $(Y_{E,k})^{\oplus n}$.

If moreover k is a field, these conditions are equivalent to:

- Solution the exist positive real numbers a, b, r such that dim_k M(X) ≤ ab^{|X|} for any finite set X with |X| ≥ r.
- M has finite length.

Proof (sketch): • $1 \Leftrightarrow 2 \Leftrightarrow 3$

- Let $M \in \mathcal{F}_k$. The following are equivalent:
 - M is finitely generated.
 - **2** *M* is isomorphic to a quotient of a finite direct sum $\bigoplus_{i=1}^{m} Y_{E_i,k}$.
 - **3** *M* is isomorphic to a quotient of a finite direct sum $(Y_{E,k})^{\oplus n}$.

If moreover k is a field, these conditions are equivalent to:

- Solution the exist positive real numbers a, b, r such that dim_k M(X) ≤ ab^{|X|} for any finite set X with |X| ≥ r.
- M has finite length.

Proof (sketch): • $1 \Leftrightarrow 2 \Leftrightarrow 3 \Rightarrow 4$ are easy
- Let $M \in \mathcal{F}_k$. The following are equivalent:
 - M is finitely generated.
 - **2** *M* is isomorphic to a quotient of a finite direct sum $\bigoplus_{i=1}^{m} Y_{E_i,k}$.
 - **3** *M* is isomorphic to a quotient of a finite direct sum $(Y_{E,k})^{\oplus n}$.

If moreover k is a field, these conditions are equivalent to:

- Solution the exist positive real numbers a, b, r such that dim_k M(X) ≤ ab^{|X|} for any finite set X with |X| ≥ r.
- M has finite length.

- Let $M \in \mathcal{F}_k$. The following are equivalent:
 - M is finitely generated.
 - **2** *M* is isomorphic to a quotient of a finite direct sum $\bigoplus_{i=1}^{m} Y_{E_i,k}$.
 - **3** *M* is isomorphic to a quotient of a finite direct sum $(Y_{E,k})^{\oplus n}$.

If moreover k is a field, these conditions are equivalent to:

- Solution the exist positive real numbers a, b, r such that dim_k M(X) ≤ ab^{|X|} for any finite set X with |X| ≥ r.
- M has finite length.

Proof (sketch): • 1 \Leftrightarrow 2 \Leftrightarrow 3 \Rightarrow 4 are easy, as $dim_k Y_{E,k}(X) = (2^{|E|})^{|X|}$. • Let $S_{E,R,W}$ be a simple correspondence functor,

- Let $M \in \mathcal{F}_k$. The following are equivalent:
 - M is finitely generated.
 - **2** *M* is isomorphic to a quotient of a finite direct sum $\bigoplus_{i=1}^{m} Y_{E_i,k}$.
 - **3** *M* is isomorphic to a quotient of a finite direct sum $(Y_{E,k})^{\oplus n}$.

If moreover k is a field, these conditions are equivalent to:

- Solution the exist positive real numbers a, b, r such that dim_k M(X) ≤ ab^{|X|} for any finite set X with |X| ≥ r.
- M has finite length.

Proof (sketch): • 1 \Leftrightarrow 2 \Leftrightarrow 3 \Rightarrow 4 are easy, as $dim_k Y_{E,k}(X) = (2^{|E|})^{|X|}$. • Let $S_{E,R,W}$ be a simple correspondence functor, and $V = S_{E,R,W}(E)$.

- Let $M \in \mathcal{F}_k$. The following are equivalent:
 - M is finitely generated.
 - **2** *M* is isomorphic to a quotient of a finite direct sum $\bigoplus_{i=1}^{m} Y_{E_i,k}$.
 - **3** *M* is isomorphic to a quotient of a finite direct sum $(Y_{E,k})^{\oplus n}$.

If moreover k is a field, these conditions are equivalent to:

- Solution the exist positive real numbers a, b, r such that dim_k M(X) ≤ ab^{|X|} for any finite set X with |X| ≥ r.
- M has finite length.

- Let $S_{E,R,W}$ be a simple correspondence functor, and $V = S_{E,R,W}(E)$.
 - There exists c > 0 and $N \in \mathbb{N}$ such that

- Let $M \in \mathcal{F}_k$. The following are equivalent:
 - M is finitely generated.
 - **2** *M* is isomorphic to a quotient of a finite direct sum $\bigoplus_{i=1}^{m} Y_{E_i,k}$.
 - **3** *M* is isomorphic to a quotient of a finite direct sum $(Y_{E,k})^{\oplus n}$.

If moreover k is a field, these conditions are equivalent to:

- Solution the exist positive real numbers a, b, r such that dim_k M(X) ≤ ab^{|X|} for any finite set X with |X| ≥ r.
- M has finite length.

Proof (sketch): • 1 \Leftrightarrow 2 \Leftrightarrow 3 \Rightarrow 4 are easy, as $dim_k Y_{E,k}(X) = (2^{|E|})^{|X|}$.

• Let $S_{E,R,W}$ be a simple correspondence functor, and $V = S_{E,R,W}(E)$.

• There exists
$$c > 0$$
 and $N \in \mathbb{N}$ such that $c|E|^{|X|} \leq \dim_k S_{E,R,W}(X) \leq (2^{|E|})^{|X|}$ if $|X| \geq N$.

- Let $M \in \mathcal{F}_k$. The following are equivalent:
 - M is finitely generated.
 - **2** *M* is isomorphic to a quotient of a finite direct sum $\bigoplus_{i=1}^{m} Y_{E_i,k}$.
 - **3** *M* is isomorphic to a quotient of a finite direct sum $(Y_{E,k})^{\oplus n}$.

If moreover k is a field, these conditions are equivalent to:

- Solution the exist positive real numbers a, b, r such that dim_k M(X) ≤ ab^{|X|} for any finite set X with |X| ≥ r.
- M has finite length.

Proof (sketch): • 1 \Leftrightarrow 2 \Leftrightarrow 3 \Rightarrow 4 are easy, as $dim_k Y_{E,k}(X) = (2^{|E|})^{|X|}$.

• Let $S_{E,R,W}$ be a simple correspondence functor, and $V = S_{E,R,W}(E)$.

• There exists c > 0 and $N \in \mathbb{N}$ such that $c|E|^{|X|} \leq \dim_k S_{E,R,W}(X) \leq (2^{|E|})^{|X|}$ if $|X| \geq N$. Hence $5 \Rightarrow 4$.

- Let $M \in \mathcal{F}_k$. The following are equivalent:
 - M is finitely generated.
 - **2** *M* is isomorphic to a quotient of a finite direct sum $\bigoplus_{i=1}^{m} Y_{E_i,k}$.
 - **3** *M* is isomorphic to a quotient of a finite direct sum $(Y_{E,k})^{\oplus n}$.

If moreover k is a field, these conditions are equivalent to:

- Solution the exist positive real numbers a, b, r such that dim_k M(X) ≤ ab^{|X|} for any finite set X with |X| ≥ r.
- M has finite length.

- Let $S_{E,R,W}$ be a simple correspondence functor, and $V = S_{E,R,W}(E)$.
 - There exists c > 0 and $N \in \mathbb{N}$ such that $c|E|^{|X|} \leq \dim_k S_{E,R,W}(X) \leq (2^{|E|})^{|X|}$ if $|X| \geq N$. Hence $5 \Rightarrow 4$.
 - If $F \in \mathcal{F}_k$

- Let $M \in \mathcal{F}_k$. The following are equivalent:
 - M is finitely generated.
 - **2** *M* is isomorphic to a quotient of a finite direct sum $\bigoplus_{i=1}^{m} Y_{E_i,k}$.
 - **3** *M* is isomorphic to a quotient of a finite direct sum $(Y_{E,k})^{\oplus n}$.

If moreover k is a field, these conditions are equivalent to:

- Solution the exist positive real numbers a, b, r such that dim_k M(X) ≤ ab^{|X|} for any finite set X with |X| ≥ r.
- M has finite length.

- Let $S_{E,R,W}$ be a simple correspondence functor, and $V = S_{E,R,W}(E)$.
 - There exists c > 0 and $N \in \mathbb{N}$ such that $c|E|^{|X|} \leq \dim_k S_{E,R,W}(X) \leq (2^{|E|})^{|X|}$ if $|X| \geq N$. Hence $5 \Rightarrow 4$.
 - If $F \in \mathcal{F}_k$, then V is a subquotient of F(E)

- Let $M \in \mathcal{F}_k$. The following are equivalent:
 - M is finitely generated.
 - **2** *M* is isomorphic to a quotient of a finite direct sum $\bigoplus_{i=1}^{m} Y_{E_i,k}$.
 - **3** *M* is isomorphic to a quotient of a finite direct sum $(Y_{E,k})^{\oplus n}$.

If moreover k is a field, these conditions are equivalent to:

- Solution the exist positive real numbers a, b, r such that dim_k M(X) ≤ ab^{|X|} for any finite set X with |X| ≥ r.
- M has finite length.

- Let $S_{E,R,W}$ be a simple correspondence functor, and $V = S_{E,R,W}(E)$.
 - There exists c > 0 and $N \in \mathbb{N}$ such that $c|E|^{|X|} \leq \dim_k S_{E,R,W}(X) \leq (2^{|E|})^{|X|}$ if $|X| \geq N$. Hence $5 \Rightarrow 4$.
 - If F ∈ F_k, then V is a subquotient of F(E) if and only if S_{E,R,W} is a subquotient of F.

- Let $M \in \mathcal{F}_k$. The following are equivalent:
 - M is finitely generated.
 - **2** *M* is isomorphic to a quotient of a finite direct sum $\bigoplus_{i=1}^{m} Y_{E_i,k}$.
 - **3** *M* is isomorphic to a quotient of a finite direct sum $(Y_{E,k})^{\oplus n}$.

If moreover k is a field, these conditions are equivalent to:

- Solution the exist positive real numbers a, b, r such that dim_k M(X) ≤ ab^{|X|} for any finite set X with |X| ≥ r.
- M has finite length.

- Let $S_{E,R,W}$ be a simple correspondence functor, and $V = S_{E,R,W}(E)$.
 - There exists c > 0 and $N \in \mathbb{N}$ such that $c|E|^{|X|} \leq \dim_k S_{E,R,W}(X) \leq (2^{|E|})^{|X|}$ if $|X| \geq N$. Hence $5 \Rightarrow 4$.
 - If F ∈ F_k, then V is a subquotient of F(E) if and only if S_{E,R,W} is a subquotient of F. Hence (.../...)

- Let $M \in \mathcal{F}_k$. The following are equivalent:
 - M is finitely generated.
 - **2** *M* is isomorphic to a quotient of a finite direct sum $\bigoplus_{i=1}^{m} Y_{E_i,k}$.
 - **3** *M* is isomorphic to a quotient of a finite direct sum $(Y_{E,k})^{\oplus n}$.

If moreover k is a field, these conditions are equivalent to:

- Solution the exist positive real numbers a, b, r such that dim_k M(X) ≤ ab^{|X|} for any finite set X with |X| ≥ r.
- M has finite length.

- Let $S_{E,R,W}$ be a simple correspondence functor, and $V = S_{E,R,W}(E)$.
 - There exists c > 0 and $N \in \mathbb{N}$ such that $c|E|^{|X|} \leq \dim_k S_{E,R,W}(X) \leq (2^{|E|})^{|X|}$ if $|X| \geq N$. Hence $5 \Rightarrow 4$.
 - If F ∈ F_k, then V is a subquotient of F(E) if and only if S_{E,R,W} is a subquotient of F. Hence (.../...) 4 ⇒ 1

- Let $M \in \mathcal{F}_k$. The following are equivalent:
 - M is finitely generated.
 - **2** *M* is isomorphic to a quotient of a finite direct sum $\bigoplus_{i=1}^{m} Y_{E_i,k}$.
 - **3** *M* is isomorphic to a quotient of a finite direct sum $(Y_{E,k})^{\oplus n}$.

If moreover k is a field, these conditions are equivalent to:

- Solution the exist positive real numbers a, b, r such that dim_k M(X) ≤ ab^{|X|} for any finite set X with |X| ≥ r.
- M has finite length.

- Let $S_{E,R,W}$ be a simple correspondence functor, and $V = S_{E,R,W}(E)$.
 - There exists c > 0 and $N \in \mathbb{N}$ such that $c|E|^{|X|} \leq \dim_k S_{E,R,W}(X) \leq (2^{|E|})^{|X|}$ if $|X| \geq N$. Hence $5 \Rightarrow 4$.
 - If F ∈ F_k, then V is a subquotient of F(E) if and only if S_{E,R,W} is a subquotient of F. Hence (.../...) 4 ⇒ 1 and 4 ⇒ 5.

Serge Bouc (CNRS-LAMFA)

・ロト ・回ト ・ヨト

Let $M \in \mathcal{F}_k$ and E be a finite set.

Let $M \in \mathcal{F}_k$ and E be a finite set. Define $\overline{M}(E) = M(E)/$

Let $M \in \mathcal{F}_k$ and E be a finite set. Define $\overline{M}(E) = M(E) / \sum_{|F| < |E|} kC(E, F)M(F).$

3 1 4

Let $M \in \mathcal{F}_k$ and E be a finite set. Define $\overline{M}(E) = M(E) / \sum_{|F| < |E|} k\mathcal{C}(E,F)M(F).$

Theorem

Let k be a noetherian (commutative) ring

3 1 4

Let $M \in \mathcal{F}_k$ and E be a finite set. Define $\overline{M}(E) = M(E) / \sum_{|F| < |E|} k\mathcal{C}(E,F)M(F).$

Theorem

Let k be a noetherian ring, let $M \subseteq L$ in \mathcal{F}_k

Let $M \in \mathcal{F}_k$ and E be a finite set. Define $\overline{M}(E) = M(E) / \sum_{|F| < |E|} k\mathcal{C}(E,F)M(F).$

Theorem

Let $M \in \mathcal{F}_k$ and E be a finite set. Define $\overline{M}(E) = M(E) / \sum_{|F| < |E|} k\mathcal{C}(E,F)M(F).$

Theorem

Let k be a noetherian ring, let $M \subseteq L$ in \mathcal{F}_k , and let E and F be finite sets.

• If
$$L = \langle L(F) \rangle$$
 and $\overline{M}(E) \neq 0$

• = • •

Let $M \in \mathcal{F}_k$ and E be a finite set. Define $\overline{M}(E) = M(E) / \sum_{|F| < |E|} k\mathcal{C}(E,F)M(F).$

Theorem

Let k be a noetherian ring, let $M \subseteq L$ in \mathcal{F}_k , and let E and F be finite sets.

• If
$$L = \langle L(F) \rangle$$
 and $\overline{M}(E) \neq 0$, then $|E| \leq 2^{|F|}$.

• = • •

Let $M \in \mathcal{F}_k$ and E be a finite set. Define $\overline{M}(E) = M(E) / \sum_{|F| < |E|} kC(E,F)M(F).$

Theorem

Let k be a noetherian ring, let $M \subseteq L$ in \mathcal{F}_k , and let E and F be finite sets.

< 3 > < 3

Let $M \in \mathcal{F}_k$ and E be a finite set. Define $\overline{M}(E) = M(E) / \sum_{|F| < |E|} kC(E,F)M(F).$

Theorem

Let k be a noetherian ring, let $M \subseteq L$ in \mathcal{F}_k , and let E and F be finite sets.

• If
$$L = \langle L(F) \rangle$$
 and $\overline{M}(E) \neq 0$, then $|E| \leq 2^{|F|}$.

2 If
$$L = \langle L(F) \rangle$$
 and $|E| \ge 2^{|F|}$, then $M = \langle M(E) \rangle$.

< ∃ > <

Let $M \in \mathcal{F}_k$ and E be a finite set. Define $\overline{M}(E) = M(E) / \sum_{|F| < |E|} kC(E,F)M(F).$

Theorem

Let k be a noetherian ring, let $M \subseteq L$ in \mathcal{F}_k , and let E and F be finite sets.

• If
$$L = \langle L(F) \rangle$$
 and $\overline{M}(E) \neq 0$, then $|E| \leq 2^{|F|}$.

• If
$$L = \langle L(F) \rangle$$
 and $|E| \ge 2^{|F|}$, then $M = \langle M(E) \rangle$.

If L has bounded type

< ∃ > <

Let $M \in \mathcal{F}_k$ and E be a finite set. Define $\overline{M}(E) = M(E) / \sum_{|F| < |E|} kC(E,F)M(F).$

Theorem

- If $L = \langle L(F) \rangle$ and $\overline{M}(E) \neq 0$, then $|E| \leq 2^{|F|}$.
- 2 If $L = \langle L(F) \rangle$ and $|E| \ge 2^{|F|}$, then $M = \langle M(E) \rangle$.
- If L has bounded type, then M has bounded type.

Let $M \in \mathcal{F}_k$ and E be a finite set. Define $\overline{M}(E) = M(E) / \sum_{|F| < |E|} k\mathcal{C}(E, F)M(F).$

Theorem

- If $L = \langle L(F) \rangle$ and $\overline{M}(E) \neq 0$, then $|E| \leq 2^{|F|}$.
- 2 If $L = \langle L(F) \rangle$ and $|E| \ge 2^{|F|}$, then $M = \langle M(E) \rangle$.
- If L has bounded type, then M has bounded type.
- If L is finitely generated

Let $M \in \mathcal{F}_k$ and E be a finite set. Define $\overline{M}(E) = M(E) / \sum_{|F| < |E|} k\mathcal{C}(E, F)M(F).$

Theorem

- If $L = \langle L(F) \rangle$ and $\overline{M}(E) \neq 0$, then $|E| \leq 2^{|F|}$.
- 2 If $L = \langle L(F) \rangle$ and $|E| \ge 2^{|F|}$, then $M = \langle M(E) \rangle$.
- If L has bounded type, then M has bounded type.
- **If** *L* is finitely generated, then *M* is finitely generated.

Let $M \in \mathcal{F}_k$ and E be a finite set. Define $\overline{M}(E) = M(E) / \sum_{|F| < |E|} k\mathcal{C}(E, F)M(F).$

Theorem

Let k be a noetherian ring, let $M \subseteq L$ in \mathcal{F}_k , and let E and F be finite sets.

- If $L = \langle L(F) \rangle$ and $\overline{M}(E) \neq 0$, then $|E| \leq 2^{|F|}$.
- 2 If $L = \langle L(F) \rangle$ and $|E| \ge 2^{|F|}$, then $M = \langle M(E) \rangle$.
- If L has bounded type, then M has bounded type.
- **If** *L* is finitely generated, then *M* is finitely generated.

Proof (sketch):

Let $M \in \mathcal{F}_k$ and E be a finite set. Define $\overline{M}(E) = M(E) / \sum_{|F| < |E|} k\mathcal{C}(E, F)M(F).$

Theorem

Let k be a noetherian ring, let $M \subseteq L$ in \mathcal{F}_k , and let E and F be finite sets.

- If $L = \langle L(F) \rangle$ and $\overline{M}(E) \neq 0$, then $|E| \leq 2^{|F|}$.
- 2 If $L = \langle L(F) \rangle$ and $|E| \ge 2^{|F|}$, then $M = \langle M(E) \rangle$.
- If L has bounded type, then M has bounded type.
- **If** *L* is finitely generated, then *M* is finitely generated.

Proof (sketch): Assertion 1 by localization

Let $M \in \mathcal{F}_k$ and E be a finite set. Define $\overline{M}(E) = M(E) / \sum_{|F| < |E|} k\mathcal{C}(E, F)M(F).$

Theorem

Let k be a noetherian ring, let $M \subseteq L$ in \mathcal{F}_k , and let E and F be finite sets.

- If $L = \langle L(F) \rangle$ and $\overline{M}(E) \neq 0$, then $|E| \leq 2^{|F|}$.
- 2 If $L = \langle L(F) \rangle$ and $|E| \ge 2^{|F|}$, then $M = \langle M(E) \rangle$.
- If L has bounded type, then M has bounded type.
- **If** *L* is finitely generated, then *M* is finitely generated.

Proof (sketch): Assertion 1 by localization + Artin-Rees lemma.

Let $M \in \mathcal{F}_k$ and E be a finite set. Define $\overline{M}(E) = M(E) / \sum_{|F| < |E|} k\mathcal{C}(E, F)M(F).$

Theorem

Let k be a noetherian ring, let $M \subseteq L$ in \mathcal{F}_k , and let E and F be finite sets.

- If $L = \langle L(F) \rangle$ and $\overline{M}(E) \neq 0$, then $|E| \leq 2^{|F|}$.
- 2 If $L = \langle L(F) \rangle$ and $|E| \ge 2^{|F|}$, then $M = \langle M(E) \rangle$.
- If L has bounded type, then M has bounded type.
- **If** *L* is finitely generated, then *M* is finitely generated.

Proof (sketch): Assertion 1 by localization + Artin-Rees lemma. Then $1 \Rightarrow 2 \Rightarrow 3$, 4 easy.

Let $M \in \mathcal{F}_k$ and E be a finite set. Define $\overline{M}(E) = M(E) / \sum_{|F| < |E|} k\mathcal{C}(E, F)M(F).$

Theorem

Let k be a noetherian ring, let $M \subseteq L$ in \mathcal{F}_k , and let E and F be finite sets.

- If $L = \langle L(F) \rangle$ and $\overline{M}(E) \neq 0$, then $|E| \leq 2^{|F|}$.
- 2 If $L = \langle L(F) \rangle$ and $|E| \ge 2^{|F|}$, then $M = \langle M(E) \rangle$.
- If L has bounded type, then M has bounded type.
- **If** *L* is finitely generated, then *M* is finitely generated.

Corollary

Functors of bounded type

Let $M \in \mathcal{F}_k$ and E be a finite set. Define $\overline{M}(E) = M(E) / \sum_{|F| < |E|} k\mathcal{C}(E, F)M(F).$

Theorem

Let k be a noetherian ring, let $M \subseteq L$ in \mathcal{F}_k , and let E and F be finite sets.

- If $L = \langle L(F) \rangle$ and $\overline{M}(E) \neq 0$, then $|E| \leq 2^{|F|}$.
- 2 If $L = \langle L(F) \rangle$ and $|E| \ge 2^{|F|}$, then $M = \langle M(E) \rangle$.
- If L has bounded type, then M has bounded type.
- **If** *L* is finitely generated, then *M* is finitely generated.

Corollary

Functors of bounded type form an abelian subcategory \mathcal{F}_k^b of \mathcal{F}_k .

Let $M \in \mathcal{F}_k$ and E be a finite set. Define $\overline{M}(E) = M(E) / \sum_{|F| < |E|} k\mathcal{C}(E, F)M(F).$

Theorem

Let k be a noetherian ring, let $M \subseteq L$ in \mathcal{F}_k , and let E and F be finite sets.

- If $L = \langle L(F) \rangle$ and $\overline{M}(E) \neq 0$, then $|E| \leq 2^{|F|}$.
- If $L = \langle L(F) \rangle$ and $|E| \ge 2^{|F|}$, then $M = \langle M(E) \rangle$.
- If L has bounded type, then M has bounded type.
- **If** *L* is finitely generated, then *M* is finitely generated.

Corollary

Functors of bounded type form an abelian subcategory \mathcal{F}_k^b of \mathcal{F}_k . Finitely generated functors

Let $M \in \mathcal{F}_k$ and E be a finite set. Define $\overline{M}(E) = M(E) / \sum_{|F| < |E|} k\mathcal{C}(E, F)M(F).$

Theorem

Let k be a noetherian ring, let $M \subseteq L$ in \mathcal{F}_k , and let E and F be finite sets.

- If $L = \langle L(F) \rangle$ and $\overline{M}(E) \neq 0$, then $|E| \leq 2^{|F|}$.
- If $L = \langle L(F) \rangle$ and $|E| \ge 2^{|F|}$, then $M = \langle M(E) \rangle$.
- If L has bounded type, then M has bounded type.
- **1** If L is finitely generated, then M is finitely generated.

Corollary

Functors of bounded type form an abelian subcategory \mathcal{F}_k^b of \mathcal{F}_k . Finitely generated functors form an abelian subcategory \mathcal{F}_k^f of \mathcal{F}_k^b .

Serge Bouc (CNRS-LAMFA)

- ∢ ∃ ▶
The noetherian case

Proposition

• If
$$M \in \mathcal{F}_k^f$$

Let k be a noetherian ring.

• If $M \in \mathcal{F}_k^f$, then $End_{\mathcal{F}_k}(M)$ is a finitely generated k-module.

- If $M \in \mathcal{F}_k^f$, then $End_{\mathcal{F}_k}(M)$ is a finitely generated k-module.
- **2** For any $M, N \in \mathcal{F}_k^f$

- If $M \in \mathcal{F}_k^f$, then $End_{\mathcal{F}_k}(M)$ is a finitely generated k-module.
- **2** For any $M, N \in \mathcal{F}_k^f$, the k-module $Hom_{\mathcal{F}_k}(M, N)$ is finitely generated.

- **1** If $M \in \mathcal{F}_k^f$, then $End_{\mathcal{F}_k}(M)$ is a finitely generated k-module.
- **2** For any $M, N \in \mathcal{F}_k^f$, the k-module $Hom_{\mathcal{F}_k}(M, N)$ is finitely generated.
- If k is a field, then the Krull-Remak-Schmidt theorem holds for finitely generated correspondence functors over k.

Let k be a noetherian ring.

- **1** If $M \in \mathcal{F}_k^f$, then $End_{\mathcal{F}_k}(M)$ is a finitely generated k-module.
- **2** For any $M, N \in \mathcal{F}_k^f$, the k-module $Hom_{\mathcal{F}_k}(M, N)$ is finitely generated.
- If k is a field, then the Krull-Remak-Schmidt theorem holds for finitely generated correspondence functors over k.

Proof: 1) *M* is a quotient of a projective functor $\bigoplus_{i=1}^{n} kC(-, E)$

Let k be a noetherian ring.

- **1** If $M \in \mathcal{F}_k^f$, then $End_{\mathcal{F}_k}(M)$ is a finitely generated k-module.
- **2** For any $M, N \in \mathcal{F}_k^f$, the k-module $Hom_{\mathcal{F}_k}(M, N)$ is finitely generated.
- If k is a field, then the Krull-Remak-Schmidt theorem holds for finitely generated correspondence functors over k.

Proof: 1) *M* is a quotient of a projective functor $\bigoplus_{i=1}^{n} k\mathcal{C}(-, E)$, so $End_{\mathcal{F}_k}(M)$ is a quotient of a *k*-submodule of the finitely generated *k*-module $M_n(k\mathcal{C}(E, E))$.

Let k be a noetherian ring.

- **1** If $M \in \mathcal{F}_k^f$, then $End_{\mathcal{F}_k}(M)$ is a finitely generated k-module.
- **2** For any $M, N \in \mathcal{F}_k^f$, the k-module $Hom_{\mathcal{F}_k}(M, N)$ is finitely generated.
- If k is a field, then the Krull-Remak-Schmidt theorem holds for finitely generated correspondence functors over k.

Proof: 1) M is a quotient of a projective functor $\bigoplus_{i=1}^{n} k\mathcal{C}(-, E)$, so $End_{\mathcal{F}_k}(M)$ is a quotient of a k-submodule of the finitely generated k-module $M_n(k\mathcal{C}(E, E))$. 2) $Hom_{\mathcal{F}_k}(M, N)$ is a direct summand of $End_{\mathcal{F}_k}(M \oplus N)$.

Let k be a noetherian ring.

- **1** If $M \in \mathcal{F}_k^f$, then $End_{\mathcal{F}_k}(M)$ is a finitely generated k-module.
- **2** For any $M, N \in \mathcal{F}_k^f$, the k-module $Hom_{\mathcal{F}_k}(M, N)$ is finitely generated.
- If k is a field, then the Krull-Remak-Schmidt theorem holds for finitely generated correspondence functors over k.

Proof: 1) *M* is a quotient of a projective functor $\bigoplus_{i=1}^{n} kC(-, E)$, so $End_{\mathcal{F}_k}(M)$ is a quotient of a *k*-submodule of the finitely generated *k*-module $M_n(kC(E, E))$. 2) $Hom_{\mathcal{F}_k}(M, N)$ is a direct summand of $End_{\mathcal{F}_k}(M \oplus N)$. 3) Splitting $M \in \mathcal{F}_k$

→ ∃ →

Let k be a noetherian ring.

- **1** If $M \in \mathcal{F}_k^f$, then $End_{\mathcal{F}_k}(M)$ is a finitely generated k-module.
- **2** For any $M, N \in \mathcal{F}_k^f$, the k-module $Hom_{\mathcal{F}_k}(M, N)$ is finitely generated.
- If k is a field, then the Krull-Remak-Schmidt theorem holds for finitely generated correspondence functors over k.

Proof: 1) M is a quotient of a projective functor $\bigoplus_{i=1}^{n} kC(-, E)$, so $End_{\mathcal{F}_k}(M)$ is a quotient of a k-submodule of the finitely generated k-module $M_n(kC(E, E))$. 2) $Hom_{\mathcal{F}_k}(M, N)$ is a direct summand of $End_{\mathcal{F}_k}(M \oplus N)$. 3) Splitting $M \in \mathcal{F}_k$ amounts to splitting the identity as a sum of orthogonal idempotents

・ロト ・聞 ト ・ 国 ト ・ 国 ト …

Let k be a noetherian ring.

- **1** If $M \in \mathcal{F}_k^f$, then $End_{\mathcal{F}_k}(M)$ is a finitely generated k-module.
- **2** For any $M, N \in \mathcal{F}_k^f$, the k-module $Hom_{\mathcal{F}_k}(M, N)$ is finitely generated.
- If k is a field, then the Krull-Remak-Schmidt theorem holds for finitely generated correspondence functors over k.

Proof: 1) *M* is a quotient of a projective functor $\bigoplus_{i=1}^{n} k\mathcal{C}(-, E)$, so $End_{\mathcal{F}_k}(M)$ is a quotient of a *k*-submodule of the finitely generated k-module $M_n(k\mathcal{C}(E, E))$. 2) $Hom_{\mathcal{F}_k}(M, N)$ is a direct summand of $End_{\mathcal{F}_k}(M \oplus N)$. 3) Splitting $M \in \mathcal{F}_k$ amounts to splitting the identity as a sum of orthogonal idempotents in the finite dimensional *k*-algebra $End_{\mathcal{F}_k}(M)$.

イロト 不得下 イヨト イヨト

Evaluation - Adjunction

Serge Bouc (CNRS-LAMFA)

3 ×

• Let *E* be a finite set

• Let *E* be a finite set, and $\mathcal{R}_E = k\mathcal{C}(E, E)$.

 $M \in \mathcal{F}_k \mapsto M(E) \in \mathcal{R}_E$ -Mod

 $M \in \mathcal{F}_k \mapsto M(E) \in \mathcal{R}_E$ -Mod

has a left adjoint $V \mapsto L_{E,V}$

$$M \in \mathcal{F}_k \mapsto M(E) \in \mathcal{R}_E\text{-Mod}$$

has a left adjoint $V \mapsto L_{E,V}$, defined by
 $X \mapsto L_{E,V}(X) := k\mathcal{C}(X, E) \otimes_{\mathcal{R}_E} V.$

 $M \in \mathcal{F}_k \mapsto M(E) \in \mathcal{R}_E\text{-Mod}$ has a left adjoint $V \mapsto L_{E,V}$, defined by $X \mapsto L_{E,V}(X) := k\mathcal{C}(X, E) \otimes_{\mathcal{R}_E} V.$ In particular $L_{E,V}(E) \cong V.$

 $M \in \mathcal{F}_k \mapsto M(E) \in \mathcal{R}_E \text{-Mod}$ has a left adjoint $V \mapsto L_{E,V}$, defined by $X \mapsto L_{E,V}(X) := k\mathcal{C}(X, E) \otimes_{\mathcal{R}_E} V.$ In particular $L_{E,V}(E) \cong V.$ • If M is projective in \mathcal{F}_k

Serge Bouc (CNRS-LAMFA)

 $M \in \mathcal{F}_k \mapsto M(E) \in \mathcal{R}_E\text{-Mod}$ has a left adjoint $V \mapsto L_{E,V}$, defined by $X \mapsto L_{E,V}(X) := k\mathcal{C}(X, E) \otimes_{\mathcal{R}_E} V.$ In particular $L_{E,V}(E) \cong V.$

• If *M* is projective in \mathcal{F}_k , and $M = \langle M(E) \rangle$

 $M \in \mathcal{F}_k \mapsto M(E) \in \mathcal{R}_E\text{-Mod}$ has a left adjoint $V \mapsto L_{E,V}$, defined by $X \mapsto L_{E,V}(X) := k\mathcal{C}(X, E) \otimes_{\mathcal{R}_E} V.$ In particular $L_{E,V}(E) \cong V.$

If M is projective in F_k, and M = ⟨M(E)⟩, then M ≅ L_{F,M(F)} for any finite set F with |F| ≥ |E|

 $M \in \mathcal{F}_k \mapsto M(E) \in \mathcal{R}_E\text{-Mod}$ has a left adjoint $V \mapsto L_{E,V}$, defined by $X \mapsto L_{E,V}(X) := k\mathcal{C}(X, E) \otimes_{\mathcal{R}_E} V.$ In particular $L_{E,V}(E) \cong V.$

• If *M* is projective in \mathcal{F}_k , and $M = \langle M(E) \rangle$, then $M \cong L_{F,M(F)}$ for any finite set *F* with $|F| \ge |E|$, and M(F) is a projective \mathcal{R}_F -module.

 $M \in \mathcal{F}_k \mapsto M(E) \in \mathcal{R}_E\text{-Mod}$ has a left adjoint $V \mapsto L_{E,V}$, defined by $X \mapsto L_{E,V}(X) := k\mathcal{C}(X, E) \otimes_{\mathcal{R}_E} V.$ In particular $L_{E,V}(E) \cong V.$

- If *M* is projective in \mathcal{F}_k , and $M = \langle M(E) \rangle$, then $M \cong L_{F,M(F)}$ for any finite set *F* with $|F| \ge |E|$, and M(F) is a projective \mathcal{R}_F -module.
- The functor $L_{E,V}$ is projective

 $M \in \mathcal{F}_k \mapsto M(E) \in \mathcal{R}_E \text{-Mod}$ has a left adjoint $V \mapsto L_{E,V}$, defined by $X \mapsto L_{E,V}(X) := k\mathcal{C}(X, E) \otimes_{\mathcal{R}_E} V.$ In particular $L_{E,V}(E) \cong V.$

- If *M* is projective in \mathcal{F}_k , and $M = \langle M(E) \rangle$, then $M \cong L_{F,M(F)}$ for any finite set *F* with $|F| \ge |E|$, and M(F) is a projective \mathcal{R}_F -module.
- The functor $L_{E,V}$ is projective (resp. indecomposable)

$$M \in \mathcal{F}_k \mapsto M(E) \in \mathcal{R}_E$$
-Mod

has a left adjoint $V \mapsto L_{E,V}$, defined by $X \mapsto L_{E,V}(X) := k\mathcal{C}(X, E) \otimes_{\mathcal{R}_E} V.$ In particular $L_{E,V}(E) \cong V.$

- If *M* is projective in \mathcal{F}_k , and $M = \langle M(E) \rangle$, then $M \cong L_{F,M(F)}$ for any finite set *F* with $|F| \ge |E|$, and M(F) is a projective \mathcal{R}_F -module.
- The functor $L_{E,V}$ is projective (resp. indecomposable) if and only if V is a projective (resp. indecomposable) \mathcal{R}_E -module.

• • = • • = •

Serge Bouc (CNRS-LAMFA)

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Theorem

• Let E be a finite set

イロト イ団ト イヨト イヨト

Theorem

• Let *E* be a finite set, and $\mathcal{R}_E = k\mathcal{C}(E, E)$.

-

• • • • • • • • • • • •

Theorem

• Let E be a finite set, and $\mathcal{R}_E = k\mathcal{C}(E, E)$. Define $t_E : \mathcal{R}_E \to k$ by

 $\forall R \in \mathcal{C}(E, E), t_E(R) =$

→ ∃ →

Theorem

• Let *E* be a finite set, and $\mathcal{R}_E = k\mathcal{C}(E, E)$. Define $t_E : \mathcal{R}_E \to k$ by

$$\forall R \in \mathcal{C}(E, E), \ t_E(R) = \begin{cases} 1 & \text{if } R \cap \Delta_E = \emptyset \end{cases}$$

-

・ロト ・ 日 ト ・ ヨ ト ・

Theorem

• Let *E* be a finite set, and $\mathcal{R}_E = k\mathcal{C}(E, E)$. Define $t_E : \mathcal{R}_E \to k$ by

$$orall R \in \mathcal{C}(E,E), \; t_E(R) = \left\{egin{array}{cc} 1 & \textit{if } R \cap \Delta_E = \emptyset \ 0 & \textit{otherwise.} \end{array}
ight.$$

-

・ロト ・ 日 ト ・ ヨ ト ・

Theorem

• Let E be a finite set, and $\mathcal{R}_E = k\mathcal{C}(E, E)$. Define $t_E : \mathcal{R}_E \to k$ by

$$\forall R \in \mathcal{C}(E, E), \ t_E(R) = \begin{cases} 1 & \text{if } R \cap \Delta_E = \emptyset \\ 0 & \text{otherwise.} \end{cases}$$

Then t_E is a symmetrizing form for \mathcal{R}_E .

< ∃ > <

Theorem

• Let E be a finite set, and $\mathcal{R}_E = k\mathcal{C}(E, E)$. Define $t_E : \mathcal{R}_E \to k$ by

$$\forall R \in \mathcal{C}(E, E), \ t_E(R) = \left\{ egin{array}{cc} 1 & \textit{if } R \cap \Delta_E = \emptyset \\ 0 & \textit{otherwise.} \end{array}
ight.$$

Then t_E is a symmetrizing form for \mathcal{R}_E . 2 If k is a field

3 1 4

Theorem

• Let E be a finite set, and $\mathcal{R}_E = k\mathcal{C}(E, E)$. Define $t_E : \mathcal{R}_E \to k$ by

$$\forall R \in \mathcal{C}(E, E), \ t_E(R) = \left\{ egin{array}{cc} 1 & \textit{if } R \cap \Delta_E = \emptyset \\ 0 & \textit{otherwise.} \end{array}
ight.$$

Then t_E is a symmetrizing form for R_E.
If k is a field (or more generally if k is self injective)

Theorem

1 Let E be a finite set, and $\mathcal{R}_E = k\mathcal{C}(E, E)$. Define $t_E : \mathcal{R}_E \to k$ by

$$\forall R \in \mathcal{C}(E, E), \ t_E(R) = \left\{ egin{array}{cc} 1 & \textit{if } R \cap \Delta_E = \emptyset \ 0 & \textit{otherwise.} \end{array}
ight.$$

Then t_E is a symmetrizing form for \mathcal{R}_E .

If k is a field (or more generally if k is self injective), any finitely generated projective in F_k is also injective.
1 Let E be a finite set, and $\mathcal{R}_E = k\mathcal{C}(E, E)$. Define $t_E : \mathcal{R}_E \to k$ by

$$\forall R \in \mathcal{C}(E, E), \ t_E(R) = \left\{ egin{array}{cc} 1 & \textit{if } R \cap \Delta_E = \emptyset \ 0 & \textit{otherwise.} \end{array}
ight.$$

Then t_E is a symmetrizing form for \mathcal{R}_E .

2 If k is a field (or more generally if k is self injective), any finitely generated projective in \mathcal{F}_k is also injective. In particular \mathcal{F}_k^f has infinite global dimension.

1 Let E be a finite set, and $\mathcal{R}_E = k\mathcal{C}(E, E)$. Define $t_E : \mathcal{R}_E \to k$ by

$$\forall R \in \mathcal{C}(E, E), \ t_E(R) = \left\{ egin{array}{cc} 1 & \textit{if } R \cap \Delta_E = \emptyset \ 0 & \textit{otherwise.} \end{array}
ight.$$

Then t_E is a symmetrizing form for \mathcal{R}_E .

2 If k is a field (or more generally if k is self injective), any finitely generated projective in \mathcal{F}_k is also injective. In particular \mathcal{F}_k^f has infinite global dimension.

Proof:

1 Let E be a finite set, and $\mathcal{R}_E = k\mathcal{C}(E, E)$. Define $t_E : \mathcal{R}_E \to k$ by

$$orall R \in \mathcal{C}(E, E), \ t_E(R) = \left\{ egin{array}{cc} 1 & \textit{if } R \cap \Delta_E = \emptyset \ 0 & \textit{otherwise.} \end{array}
ight.$$

Then t_E is a symmetrizing form for \mathcal{R}_E .

2 If k is a field (or more generally if k is self injective), any finitely generated projective in \mathcal{F}_k is also injective. In particular \mathcal{F}_k^f has infinite global dimension.

Proof: 1) Let $R, S \in \mathcal{C}(E, E)$.

1 Let E be a finite set, and $\mathcal{R}_E = k\mathcal{C}(E, E)$. Define $t_E : \mathcal{R}_E \to k$ by

$$orall R \in \mathcal{C}(E, E), \ t_E(R) = \left\{ egin{array}{cc} 1 & \textit{if } R \cap \Delta_E = \emptyset \ 0 & \textit{otherwise.} \end{array}
ight.$$

Then t_E is a symmetrizing form for \mathcal{R}_E .

2 If k is a field (or more generally if k is self injective), any finitely generated projective in \mathcal{F}_k is also injective. In particular \mathcal{F}_k^f has infinite global dimension.

Proof: 1) Let $R, S \in \mathcal{C}(E, E)$. Then $t_E(RS) = 1 \Leftrightarrow R \subseteq (E \times E) - S^{op}$.

1 Let E be a finite set, and $\mathcal{R}_E = k\mathcal{C}(E, E)$. Define $t_E : \mathcal{R}_E \to k$ by

$$orall R \in \mathcal{C}(E,E), \ t_E(R) = \left\{ egin{array}{cc} 1 & \textit{if } R \cap \Delta_E = \emptyset \ 0 & \textit{otherwise.} \end{array}
ight.$$

Then t_E is a symmetrizing form for \mathcal{R}_E .

2 If k is a field (or more generally if k is self injective), any finitely generated projective in \mathcal{F}_k is also injective. In particular \mathcal{F}_k^f has infinite global dimension.

Proof: 1) Let $R, S \in C(E, E)$. Then $t_E(RS) = 1 \Leftrightarrow R \subseteq (E \times E) - S^{op}$. The matrix $(t_E(RS))_{R,S \in C(E,E)}$

1 Let E be a finite set, and $\mathcal{R}_E = k\mathcal{C}(E, E)$. Define $t_E : \mathcal{R}_E \to k$ by

$$orall R \in \mathcal{C}(E, E), \ t_E(R) = \left\{ egin{array}{cc} 1 & \textit{if } R \cap \Delta_E = \emptyset \ 0 & \textit{otherwise.} \end{array}
ight.$$

Then t_E is a symmetrizing form for \mathcal{R}_E .

2 If k is a field (or more generally if k is self injective), any finitely generated projective in \mathcal{F}_k is also injective. In particular \mathcal{F}_k^f has infinite global dimension.

Proof: 1) Let $R, S \in C(E, E)$. Then $t_E(RS) = 1 \Leftrightarrow R \subseteq (E \times E) - S^{op}$. The matrix $(t_E(RS))_{R,S \in C(E,E)}$ is the product of a permutation matrix $(S \mapsto (E \times E) - S^{op})$

1 Let E be a finite set, and $\mathcal{R}_E = k\mathcal{C}(E, E)$. Define $t_E : \mathcal{R}_E \to k$ by

$$orall R \in \mathcal{C}(E, E), \ t_E(R) = \left\{ egin{array}{cc} 1 & \textit{if } R \cap \Delta_E = \emptyset \ 0 & \textit{otherwise.} \end{array}
ight.$$

Then t_E is a symmetrizing form for \mathcal{R}_E .

2 If k is a field (or more generally if k is self injective), any finitely generated projective in \mathcal{F}_k is also injective. In particular \mathcal{F}_k^f has infinite global dimension.

Proof: 1) Let $R, S \in C(E, E)$. Then $t_E(RS) = 1 \Leftrightarrow R \subseteq (E \times E) - S^{op}$. The matrix $(t_E(RS))_{R,S \in C(E,E)}$ is the product of a permutation matrix $(S \mapsto (E \times E) - S^{op})$ with the matrix of an order (\subseteq)

- A I - A I

1 Let E be a finite set, and $\mathcal{R}_E = k\mathcal{C}(E, E)$. Define $t_E : \mathcal{R}_E \to k$ by

$$orall R \in \mathcal{C}(E,E), \ t_E(R) = \left\{ egin{array}{cc} 1 & \textit{if } R \cap \Delta_E = \emptyset \ 0 & \textit{otherwise.} \end{array}
ight.$$

Then t_E is a symmetrizing form for \mathcal{R}_E .

2 If k is a field (or more generally if k is self injective), any finitely generated projective in \mathcal{F}_k is also injective. In particular \mathcal{F}_k^f has infinite global dimension.

Proof: 1) Let $R, S \in C(E, E)$. Then $t_E(RS) = 1 \Leftrightarrow R \subseteq (E \times E) - S^{op}$. The matrix $(t_E(RS))_{R,S \in C(E,E)}$ is the product of a permutation matrix $(S \mapsto (E \times E) - S^{op})$ with the matrix of an order (\subseteq), hence it is invertible (over \mathbb{Z}).

A E N A E N

1 Let E be a finite set, and $\mathcal{R}_E = k\mathcal{C}(E, E)$. Define $t_E : \mathcal{R}_E \to k$ by

$$orall R \in \mathcal{C}(E, E), \ t_E(R) = \left\{egin{array}{cc} 1 & \textit{if } R \cap \Delta_E = \emptyset \ 0 & \textit{otherwise.} \end{array}
ight.$$

Then t_E is a symmetrizing form for \mathcal{R}_E .

2 If k is a field (or more generally if k is self injective), any finitely generated projective in \mathcal{F}_k is also injective. In particular \mathcal{F}_k^f has infinite global dimension.

Proof: 1) Let $R, S \in C(E, E)$. Then $t_E(RS) = 1 \Leftrightarrow R \subseteq (E \times E) - S^{op}$. The matrix $(t_E(RS))_{R,S \in C(E,E)}$ is the product of a permutation matrix $(S \mapsto (E \times E) - S^{op})$ with the matrix of an order (\subseteq), hence it is invertible (over \mathbb{Z}). 2) A similar argument shows that the Yoneda functor kC(-, E) is selfdual.

Serge Bouc (CNRS-LAMFA)

Theorem

Let k be a field

3 1 4

Theorem

Let k be a field, and $M \in \mathcal{F}_k^f$.

Theorem

Let k be a field, and $M \in \mathcal{F}_k^f$. The following are equivalent:

.∃ >

Theorem

Let k be a field, and $M \in \mathcal{F}_k^f$. The following are equivalent:

• *M* is projective and indecomposable.

Theorem

- *M* is projective and indecomposable.
- **2** *M* is projective and admits a unique maximal proper subfunctor.

Theorem

- *M* is projective and indecomposable.
- Ø M is projective and admits a unique maximal proper subfunctor.
- **(3)** *M* is projective and admits a unique minimal non-zero subfunctor.

Theorem

- *M* is projective and indecomposable.
- **2** *M* is projective and admits a unique maximal proper subfunctor.
- **3** *M* is projective and admits a unique minimal non-zero subfunctor.
- M is injective and indecomposable.

Theorem

- *M* is projective and indecomposable.
- Ø M is projective and admits a unique maximal proper subfunctor.
- **③** *M* is projective and admits a unique minimal non-zero subfunctor.
- M is injective and indecomposable.
- M is injective and admits a unique maximal proper subfunctor.

Theorem

- *M* is projective and indecomposable.
- **(2)** *M* is projective and admits a unique maximal proper subfunctor.
- **③** *M* is projective and admits a unique minimal non-zero subfunctor.
- M is injective and indecomposable.
- **(9)** *M* is injective and admits a unique maximal proper subfunctor.
- **(1)** *M* is injective and admits a unique minimal non-zero subfunctor.

Theorem

- *M* is projective and indecomposable.
- **(2)** *M* is projective and admits a unique maximal proper subfunctor.
- **③** *M* is projective and admits a unique minimal non-zero subfunctor.
- M is injective and indecomposable.
- **(9)** *M* is injective and admits a unique maximal proper subfunctor.
- **(1)** *M* is injective and admits a unique minimal non-zero subfunctor.

Theorem

Let k be a field, and $M \in \mathcal{F}_k^f$. The following are equivalent:

- *M* is projective and indecomposable.
- **2** *M* is projective and admits a unique maximal proper subfunctor.
- **3** *M* is projective and admits a unique minimal non-zero subfunctor.
- M is injective and indecomposable.
- **(9)** *M* is injective and admits a unique maximal proper subfunctor.
- **•** *M* is injective and admits a unique minimal non-zero subfunctor.

Theorem

Let k be a field.

• Let
$$M \in \mathcal{F}_k^f$$
 be a projective functor.

Theorem

Let k be a field, and $M \in \mathcal{F}_k^f$. The following are equivalent:

- *M* is projective and indecomposable.
- **2** *M* is projective and admits a unique maximal proper subfunctor.
- **③** *M* is projective and admits a unique minimal non-zero subfunctor.
- M is injective and indecomposable.
- **(9)** *M* is injective and admits a unique maximal proper subfunctor.
- **()** M is injective and admits a unique minimal non-zero subfunctor.

Theorem

Let k be a field.

• Let
$$M \in \mathcal{F}_k^f$$
 be a projective functor. Then $M/Rad(M) \cong Soc(M)$.

Theorem

Let k be a field, and $M \in \mathcal{F}_k^f$. The following are equivalent:

- *M* is projective and indecomposable.
- **2** *M* is projective and admits a unique maximal proper subfunctor.
- **S** *M* is projective and admits a unique minimal non-zero subfunctor.
- M is injective and indecomposable.
- **(9)** *M* is injective and admits a unique maximal proper subfunctor.
- **()** M is injective and admits a unique minimal non-zero subfunctor.

Theorem

Let k be a field.

- Let $M \in \mathcal{F}_k^f$ be a projective functor. Then $M/Rad(M) \cong Soc(M)$.
- 2 Let $M, N \in \mathcal{F}_k^f$ be projective functors.

Theorem

Let k be a field, and $M \in \mathcal{F}_k^f$. The following are equivalent:

- *M* is projective and indecomposable.
- **2** *M* is projective and admits a unique maximal proper subfunctor.
- **S** *M* is projective and admits a unique minimal non-zero subfunctor.
- M is injective and indecomposable.
- **(9)** *M* is injective and admits a unique maximal proper subfunctor.
- **(1)** M is injective and admits a unique minimal non-zero subfunctor.

Theorem

Let k be a field.

• Let
$$M \in \mathcal{F}_k^f$$
 be a projective functor. Then $M/Rad(M) \cong Soc(M)$.

2 Let $M, N \in \mathcal{F}_k^f$ be projective functors. Then

 $\dim_k Hom_{\mathcal{F}_k}(M,N) = \dim_k Hom_{\mathcal{F}_k}(N,M)$

Evaluation - Stability

Serge Bouc (CNRS-LAMFA)

・ロト ・日下 ・ 日下

Let k be a noetherian ring, let $M, N \in \mathcal{F}_k$, and let E, F be finite sets.

Let k be a noetherian ring, let $M, N \in \mathcal{F}_k$, and let E, F be finite sets.

• If $M = \langle M(E) \rangle$

3 1 4

Let k be a noetherian ring, let $M, N \in \mathcal{F}_k$, and let E, F be finite sets.

• If $M = \langle M(E) \rangle$, then for $|F| \ge 2^{|E|}$

< ∃ > <

Let k be a noetherian ring, let $M, N \in \mathcal{F}_k$, and let E, F be finite sets.

• If $M = \langle M(E) \rangle$, then for $|F| \ge 2^{|E|}$, the evaluation map $Hom_{\mathcal{F}_k}(M, N) \to Hom_{\mathcal{R}_F}(M(F), N(F))$

Let k be a noetherian ring, let $M, N \in \mathcal{F}_k$, and let E, F be finite sets.

• If $M = \langle M(E) \rangle$, then for $|F| \ge 2^{|E|}$, the evaluation map $Hom_{\mathcal{F}_k}(M, N) \to Hom_{\mathcal{R}_F}(M(F), N(F))$

is an isomorphism.

Let k be a noetherian ring, let $M, N \in \mathcal{F}_k$, and let E, F be finite sets.

• If $M = \langle M(E) \rangle$, then for $|F| \ge 2^{|E|}$, the evaluation map $Hom_{\mathcal{F}_k}(M, N) \to Hom_{\mathcal{R}_F}(M(F), N(F))$

is an isomorphism.

If M has bounded type

Let k be a noetherian ring, let $M, N \in \mathcal{F}_k$, and let E, F be finite sets.

- If $M = \langle M(E) \rangle$, then for $|F| \ge 2^{|E|}$, the evaluation map $Hom_{\mathcal{F}_k}(M, N) \to Hom_{\mathcal{R}_F}(M(F), N(F))$
 - is an isomorphism.
- **2** If *M* has bounded type, then for any $i \in \mathbb{N}$, there exists $n_i \in \mathbb{N}$

Let k be a noetherian ring, let $M, N \in \mathcal{F}_k$, and let E, F be finite sets.

• If $M = \langle M(E) \rangle$, then for $|F| \ge 2^{|E|}$, the evaluation map $Hom_{\mathcal{F}_k}(M, N) \to Hom_{\mathcal{R}_F}(M(F), N(F))$

is an isomorphism.

If M has bounded type, then for any i ∈ N, there exists n_i ∈ N such that if |F| ≥ n_i

Let k be a noetherian ring, let $M, N \in \mathcal{F}_k$, and let E, F be finite sets.

• If
$$M = \langle M(E) \rangle$$
, then for $|F| \ge 2^{|E|}$, the evaluation map
 $Hom_{\mathcal{F}_k}(M, N) \to Hom_{\mathcal{R}_F}(M(F), N(F))$

is an isomorphism.

If M has bounded type, then for any i ∈ N, there exists n_i ∈ N such that if |F| ≥ n_i, the map

$$Ext^{i}_{\mathcal{F}_{k}}(M,N) \to Ext^{i}_{\mathcal{R}_{F}}(M(F),N(F))$$

Let k be a noetherian ring, let $M, N \in \mathcal{F}_k$, and let E, F be finite sets.

• If
$$M = \langle M(E) \rangle$$
, then for $|F| \ge 2^{|E|}$, the evaluation map
 $Hom_{\mathcal{F}_k}(M, N) \to Hom_{\mathcal{R}_F}(M(F), N(F))$

is an isomorphism.

If M has bounded type, then for any i ∈ N, there exists n_i ∈ N such that if |F| ≥ n_i, the map
 Extⁱ_{F_i}(M, N) → Extⁱ_{R_F}(M(F), N(F))

is an isomorphism.

< □ > < ---->

3 ×
Definition

Let \mathcal{G}_k be the following category:

Definition

- Let \mathcal{G}_k be the following category:
 - the objects are pairs (E, U)

.∃ >

Definition

Let \mathcal{G}_k be the following category:

• the objects are pairs (E, U), where E is a finite set

Definition

- Let \mathcal{G}_k be the following category:
 - the objects are pairs (E, U), where E is a finite set, and U is an \mathcal{R}_E -module.

Definition

- Let \mathcal{G}_k be the following category:
 - the objects are pairs (E, U), where E is a finite set, and U is an \mathcal{R}_E -module.
 - a morphism $(E, U) \rightarrow (F, V)$

Definition

- Let \mathcal{G}_k be the following category:
 - the objects are pairs (E, U), where E is a finite set, and U is an \mathcal{R}_E -module.

• a morphism $(E, U) \to (F, V)$ is a morphism of \mathcal{R}_E -modules $U \to k\mathcal{C}(E, F) \otimes_{\mathcal{R}_F} V$.

Definition

- Let \mathcal{G}_k be the following category:
 - the objects are pairs (E, U), where E is a finite set, and U is an \mathcal{R}_E -module.
 - a morphism $(E, U) \rightarrow (F, V)$ is a morphism of \mathcal{R}_E -modules $U \rightarrow k\mathcal{C}(E, F) \otimes_{\mathcal{R}_F} V$.
 - the composition of

 $(E, U) \rightarrow (F, V)$

Definition

- Let \mathcal{G}_k be the following category:
 - the objects are pairs (E, U), where E is a finite set, and U is an \mathcal{R}_E -module.
 - a morphism $(E, U) \rightarrow (F, V)$ is a morphism of \mathcal{R}_E -modules $U \rightarrow k\mathcal{C}(E, F) \otimes_{\mathcal{R}_F} V$.
 - the composition of

 $U \to k\mathcal{C}(E,F) \otimes_{\mathcal{R}_F} V$

Definition

- Let \mathcal{G}_k be the following category:
 - the objects are pairs (E, U), where E is a finite set, and U is an \mathcal{R}_E -module.
 - a morphism $(E, U) \rightarrow (F, V)$ is a morphism of \mathcal{R}_E -modules $U \rightarrow k\mathcal{C}(E, F) \otimes_{\mathcal{R}_F} V.$
 - the composition of

 $U \to k\mathcal{C}(E,F) \otimes_{\mathcal{R}_F} V$ and $(F,V) \to (G,W)$

Definition

- Let \mathcal{G}_k be the following category:
 - the objects are pairs (E, U), where E is a finite set, and U is an \mathcal{R}_E -module.
 - a morphism $(E, U) \rightarrow (F, V)$ is a morphism of \mathcal{R}_E -modules $U \rightarrow k\mathcal{C}(E, F) \otimes_{\mathcal{R}_F} V$.
 - the composition of

 $U \to k\mathcal{C}(E,F) \otimes_{\mathcal{R}_F} V$ and $V \to k\mathcal{C}(F,G) \otimes_{\mathcal{R}_G} W$

Definition

- Let \mathcal{G}_k be the following category:
 - the objects are pairs (E, U), where E is a finite set, and U is an \mathcal{R}_E -module.
 - a morphism $(E, U) \rightarrow (F, V)$ is a morphism of \mathcal{R}_E -modules $U \rightarrow k\mathcal{C}(E, F) \otimes_{\mathcal{R}_F} V$.
 - the composition of

 $U \to k\mathcal{C}(E, F) \otimes_{\mathcal{R}_F} V \text{ and } V \to k\mathcal{C}(F, G) \otimes_{\mathcal{R}_G} W$ is $U \to k\mathcal{C}(E, F) \otimes_{\mathcal{R}_F} V$

Definition

- Let \mathcal{G}_k be the following category:
 - the objects are pairs (E, U), where E is a finite set, and U is an \mathcal{R}_E -module.
 - a morphism $(E, U) \rightarrow (F, V)$ is a morphism of \mathcal{R}_E -modules $U \rightarrow k\mathcal{C}(E, F) \otimes_{\mathcal{R}_F} V$.
 - the composition of

 $U \to k\mathcal{C}(E,F) \otimes_{\mathcal{R}_F} V \text{ and } V \to k\mathcal{C}(F,G) \otimes_{\mathcal{R}_G} W$ is $U \to k\mathcal{C}(E,F) \otimes_{\mathcal{R}_F} V \to k\mathcal{C}(E,F) \otimes_{\mathcal{R}_F} k\mathcal{C}(F,G) \otimes_{\mathcal{R}_G} W$

Definition

- Let \mathcal{G}_k be the following category:
 - the objects are pairs (E, U), where E is a finite set, and U is an \mathcal{R}_E -module.
 - a morphism (E, U) → (F, V) is a morphism of *R_E*-modules
 U → kC(E, F) ⊗_{*R_F*} V.
 - the composition of

 $U \to k\mathcal{C}(E,F) \otimes_{\mathcal{R}_F} V \text{ and } V \to k\mathcal{C}(F,G) \otimes_{\mathcal{R}_G} W$ is $U \to k\mathcal{C}(E,F) \otimes_{\mathcal{R}_F} V \to k\mathcal{C}(E,F) \otimes_{\mathcal{R}_F} k\mathcal{C}(F,G) \otimes_{\mathcal{R}_G} W$

Definition

- Let \mathcal{G}_k be the following category:
 - the objects are pairs (E, U), where E is a finite set, and U is an \mathcal{R}_E -module.
 - a morphism (E, U) → (F, V) is a morphism of *R_E*-modules
 U → kC(E, F) ⊗_{*R_F*} V.
 - the composition of

 $U \to k\mathcal{C}(E,F) \otimes_{\mathcal{R}_F} V \text{ and } V \to k\mathcal{C}(F,G) \otimes_{\mathcal{R}_G} W$ is $U \to k\mathcal{C}(E,F) \otimes_{\mathcal{R}_F} V \to k\mathcal{C}(E,F) \otimes_{\mathcal{R}_F} k\mathcal{C}(F,G) \otimes_{\mathcal{R}_G} W$ $\to k\mathcal{C}(E,G)$

Definition

- Let \mathcal{G}_k be the following category:
 - the objects are pairs (E, U), where E is a finite set, and U is an \mathcal{R}_E -module.
 - a morphism (E, U) → (F, V) is a morphism of *R_E*-modules
 U → kC(E, F) ⊗_{*R_F*} V.
 - the composition of

 $U \to k\mathcal{C}(E,F) \otimes_{\mathcal{R}_F} V \text{ and } V \to k\mathcal{C}(F,G) \otimes_{\mathcal{R}_G} W$ is $U \to k\mathcal{C}(E,F) \otimes_{\mathcal{R}_F} V \to k\mathcal{C}(E,F) \otimes_{\mathcal{R}_F} k\mathcal{C}(F,G) \otimes_{\mathcal{R}_G} W$ $\to k\mathcal{C}(E,G) \otimes_{\mathcal{R}_G} W$

Definition

- Let \mathcal{G}_k be the following category:
 - the objects are pairs (E, U), where E is a finite set, and U is an \mathcal{R}_E -module.
 - a morphism $(E, U) \rightarrow (F, V)$ is a morphism of \mathcal{R}_E -modules $U \rightarrow k\mathcal{C}(E, F) \otimes_{\mathcal{R}_F} V$.
 - the composition of

$$U \to k\mathcal{C}(E,F) \otimes_{\mathcal{R}_F} V \text{ and } V \to k\mathcal{C}(F,G) \otimes_{\mathcal{R}_G} W$$

is $U \to k\mathcal{C}(E,F) \otimes_{\mathcal{R}_F} V \to k\mathcal{C}(E,F) \otimes_{\mathcal{R}_F} k\mathcal{C}(F,G) \otimes_{\mathcal{R}_G} W$
 $\to k\mathcal{C}(E,G) \otimes_{\mathcal{R}_G} W$

• the identity morphism of (E, U)

Definition

o †

- Let \mathcal{G}_k be the following category:
 - the objects are pairs (E, U), where E is a finite set, and U is an \mathcal{R}_E -module.
 - a morphism (E, U) → (F, V) is a morphism of R_E-modules
 U → kC(E, F) ⊗_{R_F} V.
 - the composition of

$$U \to k\mathcal{C}(E,F) \otimes_{\mathcal{R}_F} V \text{ and } V \to k\mathcal{C}(F,G) \otimes_{\mathcal{R}_G} W$$

is $U \to k\mathcal{C}(E,F) \otimes_{\mathcal{R}_F} V \to k\mathcal{C}(E,F) \otimes_{\mathcal{R}_F} k\mathcal{C}(F,G) \otimes_{\mathcal{R}_G} W$
 $\to k\mathcal{C}(E,G) \otimes_{\mathcal{R}_G} W$
he identity morphism of (E,U) is $U \stackrel{\cong}{\to} k\mathcal{C}(E,E) \otimes_{\mathcal{R}_F} U$.

< ∃ > <

Definition

- Let \mathcal{G}_k be the following category:
 - the objects are pairs (E, U), where E is a finite set, and U is an \mathcal{R}_E -module.
 - a morphism $(E, U) \rightarrow (F, V)$ is a morphism of \mathcal{R}_E -modules $U \rightarrow k\mathcal{C}(E, F) \otimes_{\mathcal{R}_F} V$.
 - the composition of

$$U \to k\mathcal{C}(E,F) \otimes_{\mathcal{R}_F} V \text{ and } V \to k\mathcal{C}(F,G) \otimes_{\mathcal{R}_G} W$$

is $U \to k\mathcal{C}(E,F) \otimes_{\mathcal{R}_F} V \to k\mathcal{C}(E,F) \otimes_{\mathcal{R}_F} k\mathcal{C}(F,G) \otimes_{\mathcal{R}_G} W$
 $\to k\mathcal{C}(E,G) \otimes_{\mathcal{R}_G} W$
he identity morphism of (E,U) is $U \stackrel{\simeq}{\to} k\mathcal{C}(E,E) \otimes_{\mathcal{R}_F} U$.

Theorem

t

• The assignment $(E, U) \mapsto L_{E,U}$ is a fully faithful k-linear functor $\mathcal{G}_k \to \mathcal{F}_k^b$.

Definition

- Let \mathcal{G}_k be the following category:
 - the objects are pairs (E, U), where E is a finite set, and U is an \mathcal{R}_E -module.
 - a morphism $(E, U) \rightarrow (F, V)$ is a morphism of \mathcal{R}_E -modules $U \rightarrow k\mathcal{C}(E, F) \otimes_{\mathcal{R}_F} V$.
 - the composition of

$$U \to k\mathcal{C}(E,F) \otimes_{\mathcal{R}_F} V \text{ and } V \to k\mathcal{C}(F,G) \otimes_{\mathcal{R}_G} W$$

is $U \to k\mathcal{C}(E,F) \otimes_{\mathcal{R}_F} V \to k\mathcal{C}(E,F) \otimes_{\mathcal{R}_F} k\mathcal{C}(F,G) \otimes_{\mathcal{R}_G} W$
 $\to k\mathcal{C}(E,G) \otimes_{\mathcal{R}_G} W$
he identity morphism of (E,U) is $U \stackrel{\cong}{\to} k\mathcal{C}(E,E) \otimes_{\mathcal{R}_F} U$.

Theorem

t

The assignment (E, U) → L_{E,U} is a fully faithful k-linear functor G_k → F^b_k.
 When k is noetherian, it is an equivalence of categories

Definition

- Let \mathcal{G}_k be the following category:
 - the objects are pairs (E, U), where E is a finite set, and U is an \mathcal{R}_E -module.
 - a morphism $(E, U) \rightarrow (F, V)$ is a morphism of \mathcal{R}_E -modules $U \rightarrow k\mathcal{C}(E, F) \otimes_{\mathcal{R}_F} V$.
 - the composition of

$$U \to k\mathcal{C}(E, F) \otimes_{\mathcal{R}_F} V \text{ and } V \to k\mathcal{C}(F, G) \otimes_{\mathcal{R}_G} W$$

is $U \to k\mathcal{C}(E, F) \otimes_{\mathcal{R}_F} V \to k\mathcal{C}(E, F) \otimes_{\mathcal{R}_F} k\mathcal{C}(F, G) \otimes_{\mathcal{R}_G} W$
 $\to k\mathcal{C}(E, G) \otimes_{\mathcal{R}_G} W$
he identity morphism of (E, U) is $U \xrightarrow{\cong} k\mathcal{C}(E, E) \otimes_{\mathcal{R}_F} U$.

Theorem

t

The assignment (E, U) → L_{E,U} is a fully faithful k-linear functor G_k → F^b_k.
When k is noetherian, it is an equivalence of categories. In particular G_k is abelian.