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Correspondence functors

For finite sets X and Y , let C(Y ,X ) denote the set of correspondences
from X to Y , i.e. the set of subsets of Y × X .
When k is a commutative ring, let kC be the following category:

the objects of kC are the finite sets,

HomkC(X ,Y ) = kC(Y ,X ),

composition of morphisms extends composition of correspondences,

the identity morphism of X is ∆X ∈ kC(X ,X ).

A correspondence functor (over k) is a k-linear functor from kC to k-Mod.
Let Fk denote the category of correspondence functors over k . It is an
abelian category.
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Remarks on kC

1 For S ∈ C(Y ,X ), let Sop = {(x , y) | (y , x) ∈ S} ∈ C(X ,Y ). The
functor sending each finite set to itself and S ∈ C(Y ,X ) to
Sop ∈ C(X ,Y ) induces an equivalence of k-linear categories
kC → kCop.

2 Let X and Y be finite sets such that |X | ≤ |Y |. Let i : X ↪→ Y be an
injective map, and set

i∗ =
{(

i(x), x
)
| x ∈ X

}
∈ C(Y ,X ),

i∗ =
{(

x , i(x)
)
| x ∈ X

}
∈ C(X ,Y ).

Then i∗i∗ = ∆X . If F ∈ Fk , then F (X ) is isomorphic to a direct
summand of F (Y ). In particular F (X ) 6= 0 implies F (Y ) 6= 0.
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Examples of correspondence functors

Yoneda functors YE ,k : X 7→ kC(X ,E ) e.g.

E = ∅: then Y∅,k(X ) = kC(X , ∅) ∼= k, ∀X .
E = {•}: then Y•,k(X ) = kC(X , •) ∼= k(2X ), ∀X .

The functor YE ,k is a projective object of Fk , for any E .

Direct summands of YE ,k : by the Yoneda Lemma
EndFk

(YE ,k) ∼= kC(E ,E ). Let R be a preorder on E , i.e.
R ∈ C(E ,E ) such that ∆E ⊆ R = R2.
Then YE ,kR : X 7→ kC(X ,E )R is a projective object of Fk .

For F ∈ Fk , the dual F \ of F is defined by F \(X ) = Homk

(
F (X ), k

)
and F \(S) = tF (Sop) for S ∈ C(Y ,X ).
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Simple functors

Let X be a finite set

, and V be a simple kC(X ,X )-module. Then the
functor LX ,V admits a unique maximal proper subfunctor JX ,V , and
SX ,V = LX ,V /JX ,V is a simple functor, such that SX ,V (X ) ∼= V .

Conversely, if S is a simple functor such that S(X ) 6= 0, then
V = S(X ) is a simple kC(X ,X )-module, and S ∼= SX ,V .

If S is a simple functor, and if E is a set of minimal cardinality such
that S(E ) 6= 0, then S(E ) is a simple module for the algebra EE of

essential relations on E .

The simple EE -modules are parametrized by pairs (R,W ), where R is
an order on E , and W is a simple kAut(E ,R)-module.

The simple correspondence functors over k are parametrized by triples
(E ,R,W ), where E is a finite set, R is an order on E , and W is a
simple kAut(E ,R)-module. Notation: (E ,R,W ) 7→ SE ,R,W .
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Bounded generation

Definition

Let M ∈ Fk .

1 Let (Ei )i∈I be a sequence of finite sets, and for each i ∈ I , let
mi ∈ M(Ei ). We say that M is generated by (mi )i∈I , and write
M = 〈mi 〉i∈I , if for any finite set X and any m ∈ M(X ), there exists a
finite subsequence J ⊆ I and elements αj ∈ kC(X ,Ej), for j ∈ J, such
that m =

∑
j∈J

M(αj)(mj).

2 M is finitely generated if M = 〈mi 〉i∈I , where I is finite.

3 M has bounded type if there is a finite set E such that M = 〈M(E )〉.

Example: The Yoneda functor YE ,k is finitely generated (by the single
element ∆E ∈ YE ,k(E ) = kC(E ,E )).
The functor LE ,V has bounded type, generated by LE ,V (E ) ∼= V . It is
finitely generated if and only if V is finitely generated.
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Finite generation

Theorem

Let M ∈ Fk . The following are equivalent:

1 M is finitely generated.

2 M is isomorphic to a quotient of a finite direct sum
n
⊕
i=1

YEi ,k .

3 M is isomorphic to a quotient of a finite direct sum (YE ,k)⊕n.

If moreover k is a field, these conditions are equivalent to:

4 there exist positive real numbers a, b, r such that dimk M(X ) ≤ ab|X |

for any finite set X with |X | ≥ r .

5 M has finite length.
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4 there exist positive real numbers a, b, r such that dimk M(X ) ≤ ab|X |

for any finite set X with |X | ≥ r .

5 M has finite length.

Proof (sketch): • 1⇔ 2⇔ 3⇒ 4 are easy, as dimkYE ,k(X ) = (2|E |)|X |.
• Let SE ,R,W be a simple correspondence functor, and V = SE ,R,W (E ).

There exists c > 0 and N ∈ N such that
c |E ||X | ≤ dimkSE ,R,W (X ) ≤ (2|E |)|X | if |X | ≥ N. Hence 5⇒ 4.

If F ∈ Fk , then V is a subquotient of F (E ) if and only if SE ,R,W is a
subquotient of F . Hence (. . . /. . . ) 4⇒ 1 and 4⇒ 5.
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The noetherian case

Let M ∈ Fk and E be a finite set. Define

M(E ) = M(E )/
∑
|F |<|E |

kC(E ,F )M(F ).

Theorem

Let k be a noetherian ring, let M ⊆ L in Fk , and let E and F be finite
sets.

1 If L = 〈L(F )〉 and M(E ) 6= 0, then |E | ≤ 2|F |.

2 If L = 〈L(F )〉 and |E | ≥ 2|F |, then M = 〈M(E )〉.
3 If L has bounded type, then M has bounded type.

4 If L is finitely generated, then M is finitely generated.

Corollary

Functors of bounded type form an abelian subcategory Fb
k of Fk . Finitely

generated functors form an abelian subcategory F f
k of Fb

k .
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Proof (sketch):

Assertion 1 by localization + Artin-Rees lemma.
Then 1 ⇒ 2 ⇒ 3, 4 easy.
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The noetherian case

Proposition

Let k be a noetherian ring.

1 If M ∈ F f
k , then EndFk

(M) is a finitely generated k-module.

2 For any M,N ∈ F f
k , the k-module HomFk

(M,N) is finitely generated.

3 If k is a field, then the Krull-Remak-Schmidt theorem holds for
finitely generated correspondence functors over k.

Proof: 1) M is a quotient of a projective functor
n
⊕
i=1

kC(−,E ), so

EndFk
(M) is a quotient of a k-submodule of the finitely generated

k-module Mn

(
kC(E ,E )

)
.

2) HomFk
(M,N) is a direct summand of EndFk

(M ⊕ N).
3) Splitting M ∈ Fk amounts to splitting the identity as a sum of
orthogonal idempotents in the finite dimensional k-algebra EndFk

(M).
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Evaluation - Adjunction

Let E be a finite set, and RE = kC(E ,E ). Recall that the evaluation
functor

M ∈ Fk 7→ M(E ) ∈ RE -Mod
has a left adjoint V 7→ LE ,V , defined by

X 7→ LE ,V (X ) := kC(X ,E )⊗RE
V .

In particular LE ,V (E ) ∼= V .

If M is projective in Fk , and M = 〈M(E )〉, then M ∼= LF ,M(F ) for any
finite set F with |F | ≥ |E |, and M(F ) is a projective RF -module.

The functor LE ,V is projective (resp. indecomposable) if and only if V
is a projective (resp. indecomposable) RE -module.
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Symmetry

Theorem
1 Let E be a finite set, and RE = kC(E ,E ). Define tE : RE → k by

∀R ∈ C(E ,E ), tE (R) =

{
1 if R ∩∆E = ∅,
0 otherwise.

Then tE is a symmetrizing form for RE .

2 If k is a field (or more generally if k is self injective), any finitely
generated projective in Fk is also injective. In particular F f

k has
infinite global dimension.

Proof: 1) Let R,S ∈ C(E ,E ). Then tE (RS) = 1⇔ R ⊆ (E × E )− Sop.
The matrix

(
tE (RS)

)
R,S∈C(E ,E)

is the product of a permutation matrix

(S 7→ (E × E )− Sop) with the matrix of an order (⊆), hence it is
invertible (over Z).
2) A similar argument shows that the Yoneda functor kC(−,E ) is selfdual.

Serge Bouc (CNRS-LAMFA) 2 - Finiteness properties ICRA 2018 12 / 15



Symmetry

Theorem
1 Let E be a finite set

, and RE = kC(E ,E ). Define tE : RE → k by

∀R ∈ C(E ,E ), tE (R) =

{
1 if R ∩∆E = ∅,
0 otherwise.

Then tE is a symmetrizing form for RE .

2 If k is a field (or more generally if k is self injective), any finitely
generated projective in Fk is also injective. In particular F f

k has
infinite global dimension.

Proof: 1) Let R,S ∈ C(E ,E ). Then tE (RS) = 1⇔ R ⊆ (E × E )− Sop.
The matrix

(
tE (RS)

)
R,S∈C(E ,E)

is the product of a permutation matrix

(S 7→ (E × E )− Sop) with the matrix of an order (⊆), hence it is
invertible (over Z).
2) A similar argument shows that the Yoneda functor kC(−,E ) is selfdual.

Serge Bouc (CNRS-LAMFA) 2 - Finiteness properties ICRA 2018 12 / 15



Symmetry

Theorem
1 Let E be a finite set, and RE = kC(E ,E ).

Define tE : RE → k by

∀R ∈ C(E ,E ), tE (R) =

{
1 if R ∩∆E = ∅,
0 otherwise.

Then tE is a symmetrizing form for RE .

2 If k is a field (or more generally if k is self injective), any finitely
generated projective in Fk is also injective. In particular F f

k has
infinite global dimension.

Proof: 1) Let R,S ∈ C(E ,E ). Then tE (RS) = 1⇔ R ⊆ (E × E )− Sop.
The matrix

(
tE (RS)

)
R,S∈C(E ,E)

is the product of a permutation matrix

(S 7→ (E × E )− Sop) with the matrix of an order (⊆), hence it is
invertible (over Z).
2) A similar argument shows that the Yoneda functor kC(−,E ) is selfdual.

Serge Bouc (CNRS-LAMFA) 2 - Finiteness properties ICRA 2018 12 / 15



Symmetry

Theorem
1 Let E be a finite set, and RE = kC(E ,E ). Define tE : RE → k by

∀R ∈ C(E ,E ), tE (R) =

{
1 if R ∩∆E = ∅,
0 otherwise.

Then tE is a symmetrizing form for RE .

2 If k is a field (or more generally if k is self injective), any finitely
generated projective in Fk is also injective. In particular F f

k has
infinite global dimension.

Proof: 1) Let R,S ∈ C(E ,E ). Then tE (RS) = 1⇔ R ⊆ (E × E )− Sop.
The matrix

(
tE (RS)

)
R,S∈C(E ,E)

is the product of a permutation matrix

(S 7→ (E × E )− Sop) with the matrix of an order (⊆), hence it is
invertible (over Z).
2) A similar argument shows that the Yoneda functor kC(−,E ) is selfdual.

Serge Bouc (CNRS-LAMFA) 2 - Finiteness properties ICRA 2018 12 / 15



Symmetry

Theorem
1 Let E be a finite set, and RE = kC(E ,E ). Define tE : RE → k by

∀R ∈ C(E ,E ), tE (R) =

{
1 if R ∩∆E = ∅,

0 otherwise.

Then tE is a symmetrizing form for RE .

2 If k is a field (or more generally if k is self injective), any finitely
generated projective in Fk is also injective. In particular F f

k has
infinite global dimension.

Proof: 1) Let R,S ∈ C(E ,E ). Then tE (RS) = 1⇔ R ⊆ (E × E )− Sop.
The matrix

(
tE (RS)

)
R,S∈C(E ,E)

is the product of a permutation matrix

(S 7→ (E × E )− Sop) with the matrix of an order (⊆), hence it is
invertible (over Z).
2) A similar argument shows that the Yoneda functor kC(−,E ) is selfdual.

Serge Bouc (CNRS-LAMFA) 2 - Finiteness properties ICRA 2018 12 / 15



Symmetry

Theorem
1 Let E be a finite set, and RE = kC(E ,E ). Define tE : RE → k by

∀R ∈ C(E ,E ), tE (R) =

{
1 if R ∩∆E = ∅,
0 otherwise.

Then tE is a symmetrizing form for RE .

2 If k is a field (or more generally if k is self injective), any finitely
generated projective in Fk is also injective. In particular F f

k has
infinite global dimension.

Proof: 1) Let R,S ∈ C(E ,E ). Then tE (RS) = 1⇔ R ⊆ (E × E )− Sop.
The matrix

(
tE (RS)

)
R,S∈C(E ,E)

is the product of a permutation matrix

(S 7→ (E × E )− Sop) with the matrix of an order (⊆), hence it is
invertible (over Z).
2) A similar argument shows that the Yoneda functor kC(−,E ) is selfdual.

Serge Bouc (CNRS-LAMFA) 2 - Finiteness properties ICRA 2018 12 / 15



Symmetry

Theorem
1 Let E be a finite set, and RE = kC(E ,E ). Define tE : RE → k by

∀R ∈ C(E ,E ), tE (R) =

{
1 if R ∩∆E = ∅,
0 otherwise.

Then tE is a symmetrizing form for RE .

2 If k is a field (or more generally if k is self injective), any finitely
generated projective in Fk is also injective. In particular F f

k has
infinite global dimension.

Proof: 1) Let R,S ∈ C(E ,E ). Then tE (RS) = 1⇔ R ⊆ (E × E )− Sop.
The matrix

(
tE (RS)

)
R,S∈C(E ,E)

is the product of a permutation matrix

(S 7→ (E × E )− Sop) with the matrix of an order (⊆), hence it is
invertible (over Z).
2) A similar argument shows that the Yoneda functor kC(−,E ) is selfdual.

Serge Bouc (CNRS-LAMFA) 2 - Finiteness properties ICRA 2018 12 / 15



Symmetry

Theorem
1 Let E be a finite set, and RE = kC(E ,E ). Define tE : RE → k by

∀R ∈ C(E ,E ), tE (R) =

{
1 if R ∩∆E = ∅,
0 otherwise.

Then tE is a symmetrizing form for RE .

2 If k is a field

(or more generally if k is self injective), any finitely
generated projective in Fk is also injective. In particular F f

k has
infinite global dimension.

Proof: 1) Let R,S ∈ C(E ,E ). Then tE (RS) = 1⇔ R ⊆ (E × E )− Sop.
The matrix

(
tE (RS)

)
R,S∈C(E ,E)

is the product of a permutation matrix

(S 7→ (E × E )− Sop) with the matrix of an order (⊆), hence it is
invertible (over Z).
2) A similar argument shows that the Yoneda functor kC(−,E ) is selfdual.

Serge Bouc (CNRS-LAMFA) 2 - Finiteness properties ICRA 2018 12 / 15



Symmetry

Theorem
1 Let E be a finite set, and RE = kC(E ,E ). Define tE : RE → k by

∀R ∈ C(E ,E ), tE (R) =

{
1 if R ∩∆E = ∅,
0 otherwise.

Then tE is a symmetrizing form for RE .

2 If k is a field (or more generally if k is self injective)

, any finitely
generated projective in Fk is also injective. In particular F f

k has
infinite global dimension.

Proof: 1) Let R,S ∈ C(E ,E ). Then tE (RS) = 1⇔ R ⊆ (E × E )− Sop.
The matrix

(
tE (RS)

)
R,S∈C(E ,E)

is the product of a permutation matrix

(S 7→ (E × E )− Sop) with the matrix of an order (⊆), hence it is
invertible (over Z).
2) A similar argument shows that the Yoneda functor kC(−,E ) is selfdual.

Serge Bouc (CNRS-LAMFA) 2 - Finiteness properties ICRA 2018 12 / 15



Symmetry

Theorem
1 Let E be a finite set, and RE = kC(E ,E ). Define tE : RE → k by

∀R ∈ C(E ,E ), tE (R) =

{
1 if R ∩∆E = ∅,
0 otherwise.

Then tE is a symmetrizing form for RE .

2 If k is a field (or more generally if k is self injective), any finitely
generated projective in Fk is also injective.

In particular F f
k has

infinite global dimension.

Proof: 1) Let R,S ∈ C(E ,E ). Then tE (RS) = 1⇔ R ⊆ (E × E )− Sop.
The matrix

(
tE (RS)

)
R,S∈C(E ,E)

is the product of a permutation matrix

(S 7→ (E × E )− Sop) with the matrix of an order (⊆), hence it is
invertible (over Z).
2) A similar argument shows that the Yoneda functor kC(−,E ) is selfdual.

Serge Bouc (CNRS-LAMFA) 2 - Finiteness properties ICRA 2018 12 / 15



Symmetry

Theorem
1 Let E be a finite set, and RE = kC(E ,E ). Define tE : RE → k by

∀R ∈ C(E ,E ), tE (R) =

{
1 if R ∩∆E = ∅,
0 otherwise.

Then tE is a symmetrizing form for RE .

2 If k is a field (or more generally if k is self injective), any finitely
generated projective in Fk is also injective. In particular F f

k has
infinite global dimension.

Proof: 1) Let R,S ∈ C(E ,E ). Then tE (RS) = 1⇔ R ⊆ (E × E )− Sop.
The matrix

(
tE (RS)

)
R,S∈C(E ,E)

is the product of a permutation matrix

(S 7→ (E × E )− Sop) with the matrix of an order (⊆), hence it is
invertible (over Z).
2) A similar argument shows that the Yoneda functor kC(−,E ) is selfdual.

Serge Bouc (CNRS-LAMFA) 2 - Finiteness properties ICRA 2018 12 / 15



Symmetry

Theorem
1 Let E be a finite set, and RE = kC(E ,E ). Define tE : RE → k by

∀R ∈ C(E ,E ), tE (R) =

{
1 if R ∩∆E = ∅,
0 otherwise.

Then tE is a symmetrizing form for RE .

2 If k is a field (or more generally if k is self injective), any finitely
generated projective in Fk is also injective. In particular F f

k has
infinite global dimension.

Proof:

1) Let R, S ∈ C(E ,E ). Then tE (RS) = 1⇔ R ⊆ (E × E )− Sop.
The matrix

(
tE (RS)

)
R,S∈C(E ,E)

is the product of a permutation matrix

(S 7→ (E × E )− Sop) with the matrix of an order (⊆), hence it is
invertible (over Z).
2) A similar argument shows that the Yoneda functor kC(−,E ) is selfdual.

Serge Bouc (CNRS-LAMFA) 2 - Finiteness properties ICRA 2018 12 / 15



Symmetry

Theorem
1 Let E be a finite set, and RE = kC(E ,E ). Define tE : RE → k by

∀R ∈ C(E ,E ), tE (R) =

{
1 if R ∩∆E = ∅,
0 otherwise.

Then tE is a symmetrizing form for RE .

2 If k is a field (or more generally if k is self injective), any finitely
generated projective in Fk is also injective. In particular F f

k has
infinite global dimension.

Proof: 1) Let R, S ∈ C(E ,E ).

Then tE (RS) = 1⇔ R ⊆ (E × E )− Sop.
The matrix

(
tE (RS)

)
R,S∈C(E ,E)

is the product of a permutation matrix

(S 7→ (E × E )− Sop) with the matrix of an order (⊆), hence it is
invertible (over Z).
2) A similar argument shows that the Yoneda functor kC(−,E ) is selfdual.

Serge Bouc (CNRS-LAMFA) 2 - Finiteness properties ICRA 2018 12 / 15



Symmetry

Theorem
1 Let E be a finite set, and RE = kC(E ,E ). Define tE : RE → k by

∀R ∈ C(E ,E ), tE (R) =

{
1 if R ∩∆E = ∅,
0 otherwise.

Then tE is a symmetrizing form for RE .

2 If k is a field (or more generally if k is self injective), any finitely
generated projective in Fk is also injective. In particular F f

k has
infinite global dimension.

Proof: 1) Let R, S ∈ C(E ,E ). Then tE (RS) = 1⇔ R ⊆ (E × E )− Sop.

The matrix
(
tE (RS)

)
R,S∈C(E ,E)

is the product of a permutation matrix

(S 7→ (E × E )− Sop) with the matrix of an order (⊆), hence it is
invertible (over Z).
2) A similar argument shows that the Yoneda functor kC(−,E ) is selfdual.

Serge Bouc (CNRS-LAMFA) 2 - Finiteness properties ICRA 2018 12 / 15



Symmetry

Theorem
1 Let E be a finite set, and RE = kC(E ,E ). Define tE : RE → k by

∀R ∈ C(E ,E ), tE (R) =

{
1 if R ∩∆E = ∅,
0 otherwise.

Then tE is a symmetrizing form for RE .

2 If k is a field (or more generally if k is self injective), any finitely
generated projective in Fk is also injective. In particular F f

k has
infinite global dimension.

Proof: 1) Let R, S ∈ C(E ,E ). Then tE (RS) = 1⇔ R ⊆ (E × E )− Sop.
The matrix

(
tE (RS)

)
R,S∈C(E ,E)

is the product of a permutation matrix

(S 7→ (E × E )− Sop) with the matrix of an order (⊆), hence it is
invertible (over Z).
2) A similar argument shows that the Yoneda functor kC(−,E ) is selfdual.

Serge Bouc (CNRS-LAMFA) 2 - Finiteness properties ICRA 2018 12 / 15



Symmetry

Theorem
1 Let E be a finite set, and RE = kC(E ,E ). Define tE : RE → k by

∀R ∈ C(E ,E ), tE (R) =

{
1 if R ∩∆E = ∅,
0 otherwise.

Then tE is a symmetrizing form for RE .

2 If k is a field (or more generally if k is self injective), any finitely
generated projective in Fk is also injective. In particular F f

k has
infinite global dimension.

Proof: 1) Let R, S ∈ C(E ,E ). Then tE (RS) = 1⇔ R ⊆ (E × E )− Sop.
The matrix

(
tE (RS)

)
R,S∈C(E ,E)

is the product of a permutation matrix

(S 7→ (E × E )− Sop)

with the matrix of an order (⊆), hence it is
invertible (over Z).
2) A similar argument shows that the Yoneda functor kC(−,E ) is selfdual.

Serge Bouc (CNRS-LAMFA) 2 - Finiteness properties ICRA 2018 12 / 15



Symmetry

Theorem
1 Let E be a finite set, and RE = kC(E ,E ). Define tE : RE → k by

∀R ∈ C(E ,E ), tE (R) =

{
1 if R ∩∆E = ∅,
0 otherwise.

Then tE is a symmetrizing form for RE .

2 If k is a field (or more generally if k is self injective), any finitely
generated projective in Fk is also injective. In particular F f

k has
infinite global dimension.

Proof: 1) Let R, S ∈ C(E ,E ). Then tE (RS) = 1⇔ R ⊆ (E × E )− Sop.
The matrix

(
tE (RS)

)
R,S∈C(E ,E)

is the product of a permutation matrix

(S 7→ (E × E )− Sop) with the matrix of an order (⊆)

, hence it is
invertible (over Z).
2) A similar argument shows that the Yoneda functor kC(−,E ) is selfdual.

Serge Bouc (CNRS-LAMFA) 2 - Finiteness properties ICRA 2018 12 / 15



Symmetry

Theorem
1 Let E be a finite set, and RE = kC(E ,E ). Define tE : RE → k by

∀R ∈ C(E ,E ), tE (R) =

{
1 if R ∩∆E = ∅,
0 otherwise.

Then tE is a symmetrizing form for RE .

2 If k is a field (or more generally if k is self injective), any finitely
generated projective in Fk is also injective. In particular F f

k has
infinite global dimension.

Proof: 1) Let R, S ∈ C(E ,E ). Then tE (RS) = 1⇔ R ⊆ (E × E )− Sop.
The matrix

(
tE (RS)

)
R,S∈C(E ,E)

is the product of a permutation matrix

(S 7→ (E × E )− Sop) with the matrix of an order (⊆), hence it is
invertible (over Z).

2) A similar argument shows that the Yoneda functor kC(−,E ) is selfdual.

Serge Bouc (CNRS-LAMFA) 2 - Finiteness properties ICRA 2018 12 / 15



Symmetry

Theorem
1 Let E be a finite set, and RE = kC(E ,E ). Define tE : RE → k by

∀R ∈ C(E ,E ), tE (R) =

{
1 if R ∩∆E = ∅,
0 otherwise.

Then tE is a symmetrizing form for RE .

2 If k is a field (or more generally if k is self injective), any finitely
generated projective in Fk is also injective. In particular F f

k has
infinite global dimension.

Proof: 1) Let R, S ∈ C(E ,E ). Then tE (RS) = 1⇔ R ⊆ (E × E )− Sop.
The matrix

(
tE (RS)

)
R,S∈C(E ,E)

is the product of a permutation matrix

(S 7→ (E × E )− Sop) with the matrix of an order (⊆), hence it is
invertible (over Z).
2) A similar argument shows that the Yoneda functor kC(−,E ) is selfdual.

Serge Bouc (CNRS-LAMFA) 2 - Finiteness properties ICRA 2018 12 / 15



More on projective functors

Theorem

Let k be a field, and M ∈ F f
k . The following are equivalent:

1 M is projective and indecomposable.

2 M is projective and admits a unique maximal proper subfunctor.

3 M is projective and admits a unique minimal non-zero subfunctor.

4 M is injective and indecomposable.

5 M is injective and admits a unique maximal proper subfunctor.

6 M is injective and admits a unique minimal non-zero subfunctor.

Theorem

Let k be a field.

1 Let M ∈ F f
k be a projective functor. Then M/Rad(M) ∼= Soc(M).

2 Let M,N ∈ F f
k be projective functors. Then

dimk HomFk
(M,N) = dimk HomFk

(N,M)
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Evaluation - Stability

Theorem

Let k be a noetherian ring, let M,N ∈ Fk , and let E ,F be finite sets.

1 If M = 〈M(E )〉, then for |F | ≥ 2|E |, the evaluation map
HomFk

(M,N)→ HomRF

(
M(F ),N(F )

)
is an isomorphism.

2 If M has bounded type, then for any i ∈ N, there exists ni ∈ N such
that if |F | ≥ ni , the map

Ext iFk
(M,N)→ Ext iRF

(
M(F ),N(F )

)
is an isomorphism.
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An equivalence of categories

Definition

Let Gk be the following category:
the objects are pairs (E ,U), where E is a finite set, and U is an
RE -module.
a morphism (E ,U)→ (F ,V ) is a morphism of RE -modules
U → kC(E ,F )⊗RF

V .
the composition of

U → kC(E ,F )⊗RF
V and V → kC(F ,G )⊗RG

W
is U → kC(E ,F )⊗RF

V → kC(E ,F )⊗RF
kC(F ,G )⊗RG

W
→ kC(E ,G )⊗RG

W

the identity morphism of (E ,U) is U
∼=→ kC(E ,E )⊗RE

U.

Theorem
1 The assignment (E ,U) 7→ LE ,U is a fully faithful k-linear functor
Gk → Fb

k .
2 When k is noetherian, it is an equivalence of categories. In particular
Gk is abelian.
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