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Abstract: Let p be an odd prime number. We describe the
Whitehead group of all extra-special and almost extra-special
p-groups. For this we compute, for any finite p-group P , the
subgroup Cl1(ZP ) of SK1(ZP ), in terms of a genetic basis of P .
We also introduce a deflation map Cl1(ZP ) → Cl1

(
Z(P/N)

)
,

for a normal subgroup N of P , and show that it is always surjec-
tive. Along the way, we give a new proof of the result describing
the structure of SK1(ZP ), when P is an elementary abelian p-
group.
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Introduction

Whitehead groups were introduced by J.H.C. Whitehead in [23], as an algebraic
continuation of his work on combinatorial homotopy. The computation of the White-
head group Wh(G) of a finite group G is in general very hard, and a compendium on
the subject is the book by Bob Oliver ([17]) of 1988. Since then, it seems that not
much progress has been made on this subject (see however [16], [15], [22], [21]).

Let p be an odd prime number. In this paper, we describe the Whitehead group
of all extra-special and almost extra-special p-groups. The main reason for focusing
on these p-groups is that, apart from elementary abelian p-groups, they are exactly
the finite p-groups all proper factor groups of which are elementary abelian (see e.g.
Lemma 3.1 of [10]). In particular these groups appear naturally in various areas as
first crucial step in inductive procedures (see [10], [9], or the proof of Serre’s Theorem
in Section 4.7 of [3] for examples).

One of the main tools in our method is Theorem 9.5 of [17], which gives a first
description, for a finite p-group P , of the subgroup Cl1(ZP ), an essential part of the
torsion ofWh(P ). As this description requires the knowledge of the rational irreducible
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representations of P , it seems natural to try to translate it in terms of a genetic basis
of P , which provides an explicit description of the rational irreducible representations
of P , using only combinatorial informations on the poset of subgroups of P . The
notions of genetic subgroup and genetic basis come from biset functor theory ([7]).
They already have been used successfully for the computation of other groups related
to representations of finite p-groups, e.g. the group of units of Burnside rings (see [6]),
or the Dade group of endopermutation modules (see [5]).

Our first task is then to obtain a description of Cl1(ZP ) in terms of a genetic basis
of P . The advantage of this description is that it only requires data of a combinatorial
nature, and makes no use of linear representations. In particular this makes it much
easier to implement for computational purposes, using e.g. GAP software ([13]). This
also explains why in the proof of our main theorem (Theorem A below), we have
to consider separately two special cases of “small” p-groups, for which the lattice of
subgroups is in some sense too tight for the general argument to work.

We observe next on this description that for any normal subgroup N of P , there is
an obvious deflation operation DefPP/N : Cl1(ZP ) → Cl1

(
Z(P/N)

)
. Even if there seems

to be no inflation operation in the other direction, which would provide a section of
this map, we show that DefPP/N is always surjective. The existence of such a surjective
deflation map already follows from Corollary 3.10 of [17], and it is shown in [4] that
our deflation map is indeed the same as the map defined there.

As we will see in the next section, in the case of an extra-special or almost extra-
special p-group P , the group Cl1(ZP ) is equal to the torsion part SK1(ZP ) of Wh(P ),
so the computation of the Whitehead group of P comes down to the knowledge of
Cl1
(
Z
(
P/Φ(P )

))
, where Φ(P ) is the Frattini subgroup of P , and a detailed analysis

of what happens with the unique faithful rational irreducible representation of P . Our
main theorem is the following:

Theorem A. Let p be an odd prime, and let P be an extra-special p-group of order
at least p5 or an almost extra-special p-group of order at least p6. Set N = Φ(P ) = P ′.

1. The group Cl1(ZP ) is isomorphic to K × (Cp)
M , where M = pk−1−1

p−1
−
(
p+k−2

p

)
if

|P | = pk, and K is the kernel of DefPP/N : Cl1(ZP ) → Cl1
(
Z(P/N)

)
.

2. The group K is cyclic. More precisely, it is:

(a) trivial if P is extra-special of order p5 and exponent p2.

(b) of order p if P is almost extra-special of order p6.

(c) isomorphic to Z(P ) in all other cases.

It should be noted that our methods not only give the algebraic structure of the
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Whitehead group, but allow also for the determination of explicit generators of its
torsion subgroup (see. Remark 3.18 for details).

The paper is organized as follows: Section 1 is a review of definitions and ba-
sic results on Whitehead groups, genetic bases of p-groups, extra-special and almost
extra-special p-groups. In particular, the subgroups Cl1(ZG) and SK1(ZG) of the
Whitehead group Wh(G) of a group G are introduced. In Section 2, we give a proce-
dure (Theorem 2.4) to compute Cl1(ZP ) for a finite p-group P (with p odd) in terms
of a genetic basis of P . This procedure may be of independent interest, in particular
from an algorithmic point of view. Finally, in Section 3, we begin by giving a new
proof of the structure of Wh(P ) for an elementary abelian p-group P , for p odd, and
then we come to our main theorems. The first of them is Theorem 3.16, which will
give us point 1 of Theorem A, then Theorem 3.19 and Proposition 3.22 will deal with
the description of the group K, giving us point 2. With these results we completely
determine the structure of Wh(P ), when P is an extra-special or almost extra-special
p-group, for p odd.

1. Preliminaries

Let G be a group. We will write Z(G) for the center of G and G′ for its commutator
subgroup. The Frattini subgroup of G is denoted by Φ(G). If H is a subgroup of G,
the normalizer of H in G will be denoted by NG(H), and its centralizer by CG(H). If
H = ⟨h⟩ for an element h ∈ G, we may also write CG(H) = CG(h).

1.1. About the Whitehead group.

Let R be an associative ring with unit. The infinite general linear group of R,
denoted by GL(R), is defined as the direct limit of the inclusions GLn(R) → GLn+1(R)
as the upper left block matrix. If, for each n > 0, we denote by En(R) the subgroup of
GLn(R) generated by all elementary n×n-matrices – i.e. all those which are the identity
except for one non-zero off-diagonal entry – and we take the direct limit as before for
the groups En(R), we obtain a subgroup of GL(R), denoted by E(R). Whitehead’s
Lemma (Theorem 1.13 in [17], for instance) states that E(R) is equal to the derived
subgroup of GL(R). The group K1(R) is defined as the abelianization of GL(R), which
is then equal to GL(R)/E(R).

If G is a group and we take R as the group ring ZG, then elements of the form
±g for g ∈ G can be regarded as invertible 1 × 1-matrices over ZG and hence they
represent elements in K1(ZG). Let H be the subgroup of K1(ZG) generated by classes
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of elements of the form ±g with g ∈ G. The Whitehead group of G is defined as
Wh(G) = K1(ZG)/H.

If G is finite, the groups K1(ZG) and Wh(G) are finitely generated abelian groups
(see Theorem 2.5 in [17]).

For the rest of this section, G denotes a finite group.

1.2. Definition. Let D be an integral domain and K be its field of fractions, then
SK1(DG) denotes the kernel of the morphism

K1(DG) → K1(KG).

By Theorem 7.4 in [17], SK1(ZG) is isomorphic to the torsion subgroup of Wh(G).
Hence, Wh(G) is completely determined by SK1(ZG) and the rank of its free part
(i.e. its free rank). According to Theorem 2.6 in [17], this free rank is equal to r − q,
where r is the number of non-isomorphic irreducible R-representations of G and q is
the number of non-isomorphic irreducible Q-representations of G.

1.3. Definition. Consider the ring of p-adic integers Ẑp. The group Cl1(ZG) is
defined as the kernel of the localization morphism

l : SK1(ZG) →
⊕
p

SK1(ẐpG).

By Theorem 3.9 in [17], SK1(ẐpG) is trivial whenever p does not divide |G|, and l
is onto. In particular, SK1(ZG) sits in an extension

0 −→ Cl1(ZG) −→ SK1(ZG) −→
⊕
p

SK1(ẐpG) −→ 0.

This extension is used by Oliver in [17] to describe SK1(ZG) in many cases. The
important feature of the groups treated in this paper is that their derived subgroups
are central and so by Theorem 8.10 in [17], the group

⊕
p SK1(ẐpG) is trivial, then

describing SK1(ZG) amounts to describing Cl1(ZG).

1.4. About genetic bases.

A finite p-group Q is called a Roquette p-group if it has normal p-rank 1, i.e. if all its
abelian normal subgroups are cyclic. The Roquette p-groups (see [19] or Theorem 4.10
of [14] for details) of order pn are the cyclic groups Cpn , if p is odd, and the cyclic
groups C2n , the generalized quaternion groups Q2n , for n ⩾ 3, the dihedral groups D2n ,
for n ⩾ 4, and the semidihedral groups SD2n , for n ⩾ 4, if p = 2. A Roquette
p-group Q admits a unique faithful rational irreducible representation ΦQ (see e.g.
Proposition 9.3.5 in [7]).
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1.5. Definition. Let P be a finite p-group. A subgroup S of P is called genetic if the
section S ⊴ NP (S) ⩽ P satisfies

1. The group NP (S)/S is a Roquette group.

2. Let Φ = ΦNP (S)/S be the only faithful irreducible Q-representation of NP (S)/S

and V = IndP
NP (S)Inf

NP (S)
NP (S)/Sϕ, then the functor IndP

NP (S)Inf
NP (S)
NP (S)/S induces an

isomorphism of Q-algebras

EndQPV ∼= EndQ(NP (S)/S)Φ.

Note that the right-hand side algebra is actually a skew field by Schur’s lemma.
So EndQPV is also a skew field, hence V is an indecomposable – that is, irreducible –
QP -module.

1.6. Notation. Let P be a finite p-group and S be a genetic subgroup of P . We write

V (S) = IndP
NP (S)Inf

NP (S)
NP (S)/SΦNP (S)/S.

Then V (S) is an irreducible Q-representation of P . Conversely, by Roquette’s
Theorem (Theorem 9.4.1 in [7]), for each irreducible Q-representation V of P , there
exists a genetic subgroup S of P such that V ∼= V (S).

The following theorem characterizes the genetic subgroups of a p-group. First some
notation: for a subgroup S of a finite p-group P , let ZP (S) ⩾ S be the subgroup of
NP (S) defined by ZP (S)/S = Z

(
NP (S)/S

)
. In particular ZP (S) = NP (S) if NP (S)/S

abelian, e.g. if NP (S)/S is a Roquette p-group for p odd.

1.7. Theorem. [Theorem 9.5.6 in [7]] Let P be a finite p-group and S be a subgroup of
P such that NP (S)/S is a Roquette group. Then the following conditions are equivalent:

1. The subgroup S is a genetic subgroup of P .

2. If x ∈ P is such that xS ∩ ZP (S) ⩽ S, then xS = S.

3. If x ∈ P is such that xS ∩ ZP (S) ⩽ S and Sx ∩ ZP (S) ⩽ S, then xS = S.

The next result is part of Theorem 9.6.1 in [7].

1.8. Theorem. Let P be a finite p-group and S and T be genetic subgroups of P . The
following conditions are equivalent:

1. The QP -modules V (S) and V (T ) are isomorphic.

2. There exist x, y ∈ P such that xT ∩ ZP (S) ⩽ S and yS ∩ ZP (T ) ⩽ T .

3. There exists x ∈ P such that xT ∩ ZP (S) ⩽ S and Sx ∩ ZP (T ) ⩽ T .
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If these conditions hold, then in particular the groups NP (S)/S and NP (T )/T are
isomorphic.

The relation between groups appearing in point 2 is denoted by S ̂P
T . The the-

orem shows that this relation is an equivalence relation on the set of genetic subgroups
of P , and we have the following definition.

1.9. Definition. [Definition 9.6.11 in [7]] Let P be a finite p-group. A genetic basis
of P is a set of representatives of the equivalence classes of ̂P

in the set of genetic
subgroups of P .

1.10. Lemma. Let P be a finite p-group and S be a genetic subgroup of P .

1. The kernel of V (S) is equal to the intersection of the conjugates of S in P .

2. In particular V (S) is faithful if and only S intersects Z(P ) trivially.

Proof. Denote by Φ the unique rational irreducible representation of the Roquette
group NP (S)/S. Then

V (S) = IndP
NP (S)Inf

NP (S)
NP (S)/SΦ

∼=
⊕

x∈[P/NP (S)]

x⊗ Φ,

where [P/NP (S)] is a chosen set of representatives of NP (S)-cosets in P . An element
g ∈ P acts trivially on V (S) if and only if it permutes trivially the summands of this
decomposition, that is if gx ∈ NP (S) for any x ∈ P , and if moreover gx acts trivially
on Φ, which means that gx ∈ S, since Φ is faithful. This proves Assertion 1.

Assertion 2 follows, since( ∩
x∈P

xS
)
∩ Z(P ) =

∩
x∈P

(
xS ∩ Z(P )

)
=
∩
x∈P

x
(
S ∩ Z(P )

)
= S ∩ Z(P ),

and since the normal subgroup T =
∩
x∈P

xS of P is trivial if and only if T ∩ Z(P ) = 1,

i.e. if S ∩ Z(P ) = 1.

1.11. Remark. If P is abelian, then a subgroup S of P is genetic if and only if P/S
is cyclic. Moreover the relation ̂P

is the equality relation in this case, so there is
a unique genetic basis of P , consisting of all the subgroups S of P such that P/S is
cyclic.

1.12. Remark. Let P be a finite p-group, and S be a subgroup of P such that
NP (S) is normal in P . If NP (S)/S is a Roquette group, then S is a genetic subgroup
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of P . Indeed if NP (S) is normal in P , then NP (S) = NP (
xS) for any x ∈ P . Hence

xS⊴NP (S), and the group xS · S/S is a normal subgroup of NP (S)/S. It is trivial if
and only if it intersects trivially the center ZP (S)/S of NP (S)/S. Then

xS = S ⇐⇒ xS · S/S = 1 ⇐⇒ xS · S ∩ ZP (S) =
(
xS ∩ ZP (S)

)
S = S

⇐⇒ xS ∩ ZP (S) ⩽ S.

1.13. About extra-special and almost extra-special p-groups.

1.14. Definition. Let p be a prime and P be a finite p-group.

1. The group P is called extra-special if Z(P ) = P ′ = Φ(P ) has order p.

2. The group P is called almost extra-special if P ′ = Φ(P ) has order p and Z(P ) is
cyclic of order p2.

Extra-special and almost extra-special p-groups can be classified in the following
way.

1.15. Notation. Let H, K and M be groups such that M ⩽ Z(H) and such that
there exists an injective map θ : M → Z(K). The central product of H and K with
respect to θ will be denoted by H ∗θ K, and simply by H ∗ K if θ is clear from the
context.

For any integer r ⩾ 1, we will write H∗r for the central product of r copies of the
group H, where M = Z(H), with the convention H∗1 = H.

For p ̸= 2, set

M(p) = ⟨x, y | xp = yp = 1, [x−1, y] = [y, x] = y[y, x]⟩
and

N(p) = ⟨x, y | xp2 = yp = 1, yx = x1+p⟩.
1.16. Theorem. Let p be a prime and P be a finite p-group.

1. If P is extra-special, then there exists an integer r ⩾ 1 such that P has order p2r+1

and P is isomorphic to only one of the following groups: D∗r
8 or Q8 ∗D∗(r−1)

8 if
p = 2, and M(p)∗r or N(p) ∗M(p)∗(r−1) if p ̸= 2.

2. If P is almost extra-special, then there exists an integer r ⩾ 1 such that P has
order p2r+2 and P is isomorphic to only one of the following groups: D∗r

8 ∗ C4 if
p = 2, and M(p)∗r ∗ Cp2 if p ̸= 2.

Proof. The proof of 1 can be found in Section 5.5 of [14]. As for point 2, one can
refer to Sections 2 and 4 of [10].
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Observe that if p is odd, the exponent of the group characterizes the isomorphism
type of extra-special p-groups, one of them has exponent p and the other one has
exponent p2.

If P is an (almost) extra-special group, the quotient P/P ′ is elementary abelian,
so it can be regarded as a (finite-dimensional) vector space E over the finite field Fp.
Moreover, if we take z a generator of P ′, then E is endowed with a bilinear form

b : E × E → Fp,

that sends an element (u, v) to b(u, v), the element of Fp satisfying [ũ, ṽ] = zb(u, v) for
all ũ ∈ u, ṽ ∈ v and u, v ∈ E. This bilinear form is alternating, i.e. b(v, v) = 0 for all
v ∈ E, hence it is antisymmetric, i.e. b(u, v) = −b(v, u) for all u, v ∈ E. Section 20 in
[11] is concerned with this bilinear form for extra-special groups, but the property of
being alternating is called symplectic.

Recall that if f : V ×V → K is a bilinear form on a finite dimensional vector space V
over a field K, its left radical V ⊥ is defined by V ⊥ = {v ∈ V | f(v, w) = 0∀w ∈ V },
and its right radical by ⊥V = {v ∈ V | f(w, v) = 0 ∀w ∈ V }. Clearly V ⊥ = ⊥V when
f is antisymmetric. The rank of f is the codimension of V ⊥. The form f is called
non-degenerate if V ⊥ = {0}.

With the help of Lemma 20.4 in [11], we have the following observation.

1.17. Observation. The bilinear form b is non-degenerate if and only if P is extra-
special. If P is almost extra-special, then E⊥ = π(Z(P )) is a line in E, where π : P →
P/P ′ is the projection morphism.

In section 3.2 we will use the following result, which is part of Lemma 2.6 in [9].
For the proof we refer the reader to this reference.

1.18. Lemma. Let P be an (almost) extra-special p-group, and let Q be a non-trivial
subgroup of P . Then

1. Q ⊴ P ⇔ P ′ ⩽ Q.

2. If Q is not normal in P , then NP (Q) = CP (Q). In particular, it follows that in
this case Q is elementary abelian of rank at most r, for the integer r defined as
in Theorem 1.16, and we have |Q||CP (Q)| = |P |. Moreover, CP (Q) = Q × U ,
where U is (almost) extra-special of order |P |/|Q|2 or U = Z(P ).

2. Cl1 of finite p-group algebras for odd p

The goal of this section is to re-write Theorem 9.5 in [17] in terms of genetic bases,
in the most possible succinct way. We take the statement of this theorem appearing
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in Section 1 of [18], which says the following: let p be an odd prime, let P be a
finite p-group, and write QP ∼=

∏k
i=1Ai, where Ai is simple with irreducible module

Vi and center Ki = EndQPVi. By Roquette’s Theorem, for each 1 ⩽ i ⩽ k, the
field Ki is isomorphic to Q(ζri), where ζri is a primitive pri-th root of unity for some
non-negative ri, and Ai is isomorphic to a matrix algebra over Q(ζri).

Consider the abelian group T =
k∏

i=1

⟨ζri⟩. For each h ∈ P , define

ψh : CP (h) → T, ψh(g) = (detKi
(g, V h

i ))i

where V h
i = {x ∈ Vi | hx = x}. Here V h

i is viewed as a KiCP (h)-module, so
detKi

(g, V h
i ) is the determinant (in Ki) of the action of g in V h

i . Since P is a p-
group, this determinant is in ⟨ζri⟩. Then Theorem 9.5 in [17] can be written in the
following way.

2.1. Theorem. Let p be an odd prime and consider T and ψh : CP (h) → T , for each
h ∈ P , as before. Then

Cl1(ZP ) ∼= T/⟨Imψh | h ∈ P ⟩.
Now, since p is odd, if we let S = {S1, . . . , Sk} be a genetic basis of P , then

NP (Si)/Si is cyclic for every 1 ⩽ i ⩽ k and each simple QP -module Vi is isomor-
phic to V (Si) = IndinfPNP (Si)/Si

ΦNP (Si)/Si
. Then the abelian group T defined before

is isomorphic to Γ(P ) =
k∏

i=1

(
NP (Si)/Si

)
. This is because we can see the module

ΦNP (Si)/Si
∼= Q(ζri), where p

ri = |NP (Si)/Si| as actually being generated by a genera-
tor of NP (Si)/Si and thus the action of NP (Si)/Si on it can be seen as multiplication
on the group. In particular, detKi

(g, V h
i ), which is an element of the field Ki, can be

regarded as an element in NP (Si)/Si. The first step in re-writing Theorem 2.1 is to
find this element, for every Si, every element h ∈ P and every g ∈ CP (h).

2.2. Notation. Let p be and odd prime. If V is a simple QP -module and S is
a genetic subgroup of P corresponding to V , we will write detNP (S)/S(g, V

h) for the
element in NP (S)/S corresponding to detK(g, V

h), where K = EndQP (V ).

2.3. Lemma. Suppose p is an odd prime. Let V be a simple QP -module and S be a
genetic subgroup of P corresponding to V . Take an element h in P and let H = ⟨h⟩.
If g is in CP (H), let [H⟨g⟩\P/NP (S)] be a set of representatives of the double cosets
of P on H⟨g⟩ and NP (S). Then we have

detNP (S)/S

(
g, V h

)
=

∏
x∈[H⟨g⟩\P/NP (S)]
s.t.Hx∩NP (S)⩽S

lg, x,
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where lg, x is determined as follows: the set Ig,x = ⟨g⟩ ∩
(
H·xNP (S)

)
is actually a

subgroup of ⟨g⟩. Let m = |⟨g⟩ : Ig,x|. Then gm can be written as gm = h·xlg,x, for
h ∈ H and lg,x ∈ NP (S); the element lg, x may not be unique, but its class lg, x in
NP (S)/S is, thanks to the conditions on x.

Proof. Set Φ for ΦNP (S)/S. Let [P/NP (S)] be a set of representatives of the cosets of P
in NP (S). Since V ∼= IndinfPNP (S)/SΦ, we can write it as

⊕
a∈[P/NP (S)]

a⊗Φ. The action of

y ∈ P is given by y(a⊗ ω) = ya⊗ ω, which is equal to τy(a)⊗ ny, aω, if ya = τy(a)ny, a

for a corresponding ny, a in NP (S), with ny, a being its class in NP (S)/S.
If y ∈ H fixes an element u =

∑
a∈[P/NP (S)]

a⊗ ωa of V , we have

∑
a∈[P/NP (S)]

τy(a)⊗ ny, aωa =
∑

a∈[P/NP (S)]

a⊗ ωa =
∑

a∈[P/NP (S)]

τy(a)⊗ ωτy(a).

That is, for every a ∈ [P/NP (S)] we should have ny, aωa = ωτy(a). If τy(a) = a, then we
should have that y is in H ∩ aNP (S) and that Ha ∩NP (S) ⩽ S, if ωa is different from
zero. We consider then the set [H\P/NP (S)] and we have that

u =
∑

x∈[H\P/NP (S)]
s.t.Hx∩NP (S)⩽S

∑
z∈[H/H∩xNP (S)]

zx⊗ ωx.

This means that a Q-basis for V h is given by µx, ω =
∑

z∈[H/H∩xNP (S)]

zx ⊗ ω with x

running over F = {x ∈ [H\P/NP (S)] | Hx ∩ NP (S) ⩽ S} and ω running over a Q-
basis of Φ. Since Φ ∼= Q(ζr) ∼=EndQP (V ), where ζr is a primitive pr-th root of unity,
if the order of NP (S)/S is pr, then a Q(ζr)-basis of V

h is the set of µx = µx, 1 with x
running over F .

Now, for µx we have that gµx is equal to∑
z∈[H/H∩xNP (S)]

zhg, xσg(x)⊗ ng, x 1

if gx = hg, xσg(x)ng, x. That is

gµx, 1 = hg, xµσg(x), ng, x = µσg(x), ng, x ,

since µσg(x), ng, x is in V h. So we can write gµx = ng, xµσg(x), with ng, x seen as an
element in the field Q(ζr). This implies that the action of g in V h is given by a
monomial matrix A, the coefficient in the non-zero entry of a row being ng,x. Then,

10



the determinant of A is the product of the signature of the permutation σg by the
product of the coefficients ng, x. Since p is odd, the signature is +1, and

det(A) =
∏

x∈[H\P/NP (S)]
s.t.Hx∩NP (S)⩽S

ng, x.

Observe now that the group Hx ∩NP (S) ⩽ S does not change if we replace x by yx,
for y ∈ ⟨g⟩, since g centralizes H. Moreover the intersection Ig,x = ⟨g⟩ ∩

(
H·xNP (S)

)
is equal to ⟨g⟩∩

(
H·
(
xNP (S)∩CP (H⟨g⟩)

))
, by Dedekind’s modular law ([12], Hilfsatz

2.12.c), since g and H centralize H. Hence Ig,x is a subgroup of ⟨g⟩. Now a set R
of representatives of H\P/NP (S) is the set of elements yx, where x is in a set of
representatives of H⟨g⟩\P/NP (S), and y is in a set of representatives of ⟨g⟩/Ig,x. The
set of elements y can be taken as {1, g, g2, . . . , gm−1}. For y = gi, with 0 ⩽ i ⩽ m− 2,
we have gyx = gi+1x ∈ R, so ng,yx = 1. For i = m−1, we have gyx = gmx = h ·x · lg,x.

Our final version of Theorem 2.1 is the following.

2.4. Theorem. Let p be an odd prime and P be a finite p-group. Take a set C of
representatives of conjugacy classes of cyclic subgroups of P . For each H ∈ C, let
EH be a generating set of the factor group CP (H)/H and EH ⊆ CP (H) be a set of
representatives of the classes gH ∈ EH . Let also S be a genetic basis of P and for
each S ∈ S, let [H⟨g⟩\P/NP (S)] be a set of representatives of the double cosets of P
on H⟨g⟩ and NP (S). Then

Cl1(ZP ) ∼=

(∏
S∈S

(
NP (S)/S

))/
R,

where R is the subgroup generated by the elements uH,g = (uH,g,S)S∈S , for H ∈ C and
g ∈ EH ; for S ∈ S, the component uH,g,S of uH,g is given by

(2.5) uH,g,S =
∏

x∈[H⟨g⟩\P/NP (S)]
s.t.Hx∩NP (S)⩽S

lg, x,

where lg,x is the image in NP (S)/S of the element lg,x ∈ NP (S) determined as follows:
let m denote the index of ⟨g⟩ ∩

(
H·xNP (S)

)
in ⟨g⟩. Then gm ∈ H·xNP (S), so g

m can
be written as gm = h.xlg,x, for some h ∈ H and lg,x ∈ NP (S).

11



Proof. As we said at the beginning of the section, since p is odd, we have Cl1(ZP ) ∼=
Γ(P )/R, where

Γ(P ) =
∏
S∈S

(
NP (S)/S

)
and R is the subgroup generated by all the elements uh,g = (uh,g,S)S∈S , with g ∈ CP (h)
and uh,g,S = detNP (S)/S

(
g, V (S)h

)
, where V (S) = IndinfPNP (S)/SΦNP (S)/S.

We first observe that uh,g = uyh,yg, for any y ∈ G. Indeed, setting V = V (S), we
have a commutative diagram

V h g //

y

��

V h

y

��
V

yh
yg // V

yh

where the arrows are given by the actions of the labelling elements. It follows that
the determinant of yg acting on V

yh is equal to the determinant of g acting on V h.
Hence to generate the subgroup R of Γ(P ), it suffices to take the elements uh,g, where
(h, g) runs through a set of representatives of conjugacy classes of pairs of commuting
elements in P .

Now clearly for each h ∈ H, the map g 7→ uh,g is a group homomorphism from
CP (h) to Γ(P ), hence R is generated by the elements uh,g, where h ∈ P and g runs
through a set of generators of CP (h). Moreover, as h acts as the identity on V h, the
group generated by h is contained in the kernel of this morphism.

Finally, by Lemma 2.3, setting H = ⟨h⟩, we have

uh,g,S =
∏

x∈[H⟨g⟩\P/NP (S)]
s.t.Hx∩NP (S)⩽S

lg, x

and this depends only on H, so we may denote it by uH,g,S, and by uH,g the corre-
sponding element of Γ(P ).

It follows that R is generated by the elements uH,g, where H is a cyclic subgroup
of P up to conjugation, and for a given H, the element g runs through a subset of
CP (H) which, together with H, generates CP (H). Together with Lemma 2.1, this
completes the proof.

To finish the section, we observe that if N is a normal subgroup of a finite p-group P
with p odd, then there is surjective deflation morphism

DefPP/N : Cl1(ZP ) → Cl1
(
Z(P/N)

)
.
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2.6. Proposition. Let p be an odd prime and P be a finite p-group. Suppose N is a
normal subgroup of P . Let S be a genetic basis of P and SN = {S ∈ S | N ⩽ S}. Let
B̃ be the set of subgroups S̃ = S/N of P̃ = P/N , for S ∈ SN .

1. The set {S̃ | S ∈ SN} is a genetic basis of P̃ , and for S ∈ SN , the projection
P 7→ P̃ induces an isomorphism πS : NP (S)/S → NP̃ (S̃)/S̃.

2. The composition

s : Γ(P ) =
∏
S∈S

(
NP (S)/S

)
//
∏

S∈SN

(
NP (S)/S

)∏
πS //
∏̃
S∈S̃

(
NP̃ (S̃)/S̃

)
= Γ(P̃ )

induces a surjective deflation morphism DefPP/N : Cl1(ZP ) → Cl1
(
Z(P/N)

)
. In

particular Cl1
(
Z(P/N)

)
is isomorphic to a quotient of Cl1(ZP ).

Proof. For Assertion 1, it is clear from the definitions that if S/N is a genetic subgroup
of P/N , then S is a genetic subgroup of P . Moreover the irreducible representation of P
associated to S is obtained by inflation from P/N to P of the irreducible representation
of P/N associated to S/N , up to the obvious isomorphism πS : NP (S)/S ∼= NP̃ (S̃)/S̃.

For Assertion 2, as the map s : Γ(P ) → Γ(P̃ ) is surjective, all we have to check
is that the subgroup R of defining relations for Cl1(ZP ) ∼= Γ(P )/R is mapped by s
inside the corresponding subgroup R̃ of defining relations for Cl1(ZP̃ ) ∼= Γ(P̃ )/R̃. So
let H be a cyclic subgroup of P , let g ∈ CP (H), and let S ∈ SN . Then H̃ = HN/N is
cyclic, and g̃ = gN ∈ CP̃ (H̃). Moreover the map

H\P/NP (S) ∋ HxNP (S) 7→ H̃x̃NP̃ (S̃) ∈ H̃\P̃ /NP̃ (S̃),

where x̃ = xN ∈ P̃ , is a bijection, since HxNP (S) = HxNNP (S) = HNxNP (S) as
NP (S) ⩾ S ⩾ N . Hence we may identify the sets of representatives [H\P/NP (S)] and
[H̃\P̃ /NP̃ (S̃)] via this map. Moreover

Hx ∩NP (S) ⩽ S ⇐⇒ (HN)x ∩NP (S) ⩽ S ⇐⇒ H̃ x̃ ∩NP̃ (S̃) ⩽ S̃.

Now, for x ∈ [H\P/NP (S)] such that Hx∩NP (S) ⩽ S, the equality gx = hg,xσg(x)ng,x,

where hg,x ∈ H, σg(x) ∈ [H\P/NP (S)], and ng,x ∈ NP (S), implies g̃x̃ = h̃g,xσ̃g(x)ñg,x

in P/N . In other words πS
(
ng,x

)
= ng̃,x̃, that is s(uH,g) = uH̃,g̃. This completes the

proof.

2.7. Remark. It is shown in [4] (where Γ(P ) is called the genome of P ) that the map
s is the deflation map in a structure of biset functor on Γ, but we will not need the
corresponding additional operations of induction, restriction and inflation in this paper.
It also follows from [4] that the deflation map DefPP/N : Cl1(ZP ) → Cl1

(
Z(P/N)

)
we

obtain here is the same as the map given by Corollary 3.10 of [17].
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3. Computing some Whitehead groups

As we noted in Section 1, the examples we will consider in this section are all finite
p-groups with p odd that satisfy that the group SK1(ZP ) is equal to Cl1(ZP ). Hence,
we will use Theorem 2.4 to calculate Cl1(ZP ). If P is abelian, Theorem 2.4 has a
simpler expression, as it was already noted in Observation 1.13 of [18].

As we said in the introduction, to calculate the free rank of the Whitehead group of
the groups in question, we will use Theorem 2.6 in [17]. We will also use Exercise 13.9
in Serre [20], which says that if G is a group of odd order and c is the number of
irreducible non-isomorphic complex representations of G, then (c+1)/2 is the number
of irreducible non-isomorphic real representations of G.

We introduce some notation that will be helpful in both of our examples.

3.1. Notation. Let p be a prime. Suppose that W is a finite-dimensional vector space
over the finite field Fp. We denote by S(W ) the symmetric algebra of W and by Sp(W )
its homogeneous part of degree p. If ψ : W → Fp is a linear functional, the map

w1 ⊗Fp . . .⊗Fp wn ∈ W⊗n 7→ ψ(w1) . . . ψ(wn) ∈ Fp

induces a well defined linear functional S(W ) → Fp, that we denote by A 7→ A(ψ).
The choice of a basis {x1, . . . , xk} of W over Fp yields a standard identification of

S(W ) with the polynomial ring Fp[x1, . . . , xk].
With such an identification, if A = A(x1, . . . , xk) ∈ S(W ) and ψ is a linear form

on W , then A(ψ) = A
(
ψ(x1), . . . , ψ(xk)

)
. In particular A(ψ) = 0 for all ψ if and only

if the polynomial function associated to A is equal to zero, that is if A(r1, . . . , rk) = 0
for any (r1, . . . , rk) ∈ Fk

p: indeed since {x1, . . . , xk} is a basis of W , for any such k-
tuple (r1, . . . , rk) ∈ Fk

p, there is a unique linear form ψ on W such that ψ(xi) = ri for
1 ⩽ i ⩽ k.

3.2. Elementary abelian p-groups.

3.3. Lemma. Let p be an odd prime and P be an elementary abelian p-group of
rank k, the free rank of Wh(P ) is equal to

(pk − 1)(p− 3)

2(p− 1)
.

Proof. The number of non-isomorphic irreducible R-representations of P is (pk+1)/2.
On the other hand, the number of non-isomorphic irreducible Q-representations of P
is equal to (pk+p−2)/(p−1), since the genetic basis for P is given by all its subgroups
of index p plus P itself. The result follows from Theorem 2.6 in [17].
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The description of SK1 for elementary abelian groups appeared first in Alperin et
al. [1]. We prove this result using our combinatorial approach with genetic bases. Our
proof has some similarities with the one in [1], but makes no use of characters. It will
also be useful when dealing with extra-special p-groups.

3.4. Lemma. Let p be a prime and let W be a finite-dimensional vector space
over Fp. For x and y in W , we set Bx, y = xp−1y ∈ Sp(W ). Then Sp(W ) is generated
by the elements Bx, y with x and y running over W .

Proof. Recall that if x1, . . . , xm are m (not necessarily different) commuting variables,
then for any n

(x1 + · · ·+ xm)
n =

∑
α1,...,αm s.t.
α1+···+αm=n

n!

α1! · · ·αm!
xα1
1 · · · xαm

m .

This allows us to show that for any n

(3.5)
∑

∅≠A⊆{1,...,n}

(−1)n−|A|

(∑
i∈A

xi

)n

= n! x1 · · · xn,

and so if p is prime, then

∑
∅≠A⊆{1,...,p−1}

(−1)p−1−|A|

(∑
i∈A

xi

)p−1

xp = (p− 1)!x1 · · · xp,

which by Wilson’s Lemma gives

∑
∅≠A⊆{1,...,p−1}

(−1)p−|A|

(∑
i∈A

xi

)p−1

xp = x1 · · · xp,

that is

(3.6)
∑

∅̸=A⊆{1,...,p−1}

(−1)p−|A|B∑
i∈A

xi,xp = x1 · · · xp.

This completes the proof, by taking x1, . . . , xp ∈ W = S1(W ), which indeed commute
in S(W ).
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3.7. Theorem. [Theorem 2.4 in [1]] Let p be an odd prime and P be an elementary
abelian p-group of rank k, then SK1(ZP ) is isomorphic to (Cp)

N where

N =
pk − 1

p− 1
−
(
p+ k − 1

p

)
.

Proof. As we said before, the genetic basis of P consists of P itself and all its subgroups
of index p, so SK1(ZP ) is isomorphic to the quotient of

Γ(P ) =
∏

[P :Q]=p

(P/Q)

by the subgroup generated by the elements ux, y for x, y in P , where

(ux, y)Q =

{
yQ if x ∈ Q
1 otherwise.

On the other hand, we can see P as a vector space over Fp, and for each subgroup Q
of index p, i.e. for each hyperplane Q of P , consider ψQ : P → Fp, a linear functional
with kernel Q. The product of these ψQ induces an isomorphism from Γ(P ) to

V =
∏

[P :Q]=p

Fp,

and the elements ux, y can be seen as

(ux, y)Q =

{
ψQ(y) if x ∈ Q

0 otherwise.

We define a morphism r : Sp(P ) → V , sending A ∈ Sp(P ) to the vector whose Q-
component is equal to A(ψQ). We will show that Im(r) is equal to the subspace of V
generated by the elements ux, y, and that r is injective. This will give us the result.

We show first that the elements ux, y are in Im(r). For x, y ∈ P , let Bx, y = xp−1y ∈
Sp(P ). Then

Bx, y(ψQ) = ψQ(x)
p−1ψQ(y) =

{
0 if x ∈ Q

ψQ(y) otherwise

since λp−1 = 1 if λ is in Fp − {0} and 0p−1 = 0. In particular By,y(ψQ) = ψQ(y) for all
y ∈ P , thus r(By,y −Bx, y) = ux, y.
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On the other hand, by Lemma 3.4, Sp(P ) is generated by the elements Bx, y where
x and y run through P , so we have that Im(r) is contained in (hence equal to) the
subspace of V generated by the elements ux, y.

Finally, we prove that r is injective. Let A be in the kernel of r, then A(ψQ) = 0
for every Q of index p in P . If ψ is any other linear functional of P with kernel Q,
then there exists λ ∈ Fp such that ψ = λψQ, and so A(ψ) = λpA(ψQ) = 0, since A is
homogeneous of degree p. Choosing a basis of P over Fp as in Notation 3.1, we can
view A as a homogeneous polynomial of degree p, and the polynomial function A is
zero. It remains to see that A is actually the zero polynomial, but this follows from
Lemma 2.1 of [1].

3.8. Corollary. Let p be an odd prime, and P be a finite p-group. If |P/Φ(P )| = pk,
then SK1(ZP ) has a subquotient isomorphic to (Cp)

N , where

N =
pk − 1

p− 1
−
(
p+ k − 1

p

)
,

and in particular SK1(ZP ) ̸= 0 if k ⩾ 3.

Proof. Indeed Cl1
(
Z
(
P/Φ(P )

)) ∼= (Cp)
N , for N = pk−1

p−1
−
(
p+k−1

p

)
, by Theorem 3.7.

Moreover, this group is a quotient of Cl1(ZP ), by Proposition 2.6. Finally Cl1(ZP ) is
a subgroup of SK1(ZP ), and N > 0 if k ⩾ 3.

3.9. Extra-special and almost extra-special p-groups.

We begin by finding a genetic basis of an (almost) extra-special p-group.

3.10. Proposition. Let p be a prime and P be an (almost) extra-special p-group.
A genetic basis of P is given by all its subgroups of index p, together with P and a
subgroup Y of maximal order such that Y ∩ Z(P ) = 1. In particular P has a unique
faithful rational irreducible representation, up to isomorphism.

Proof. We abbreviate Z(P ) by Z.
By theorems 1.7 and 1.8, the subgroups of P of index 1 or p are genetic and are

not linked modulo ̂P
. They clearly intersect Z non-trivially. On the other hand,

any genetic subgroup S ̸= P which intersects Z non-trivially must have index p, since
P ′ ⩽ S and so the cyclic group P/S ∼= (P/P ′)/(S/P ′), should have order p. This
implies that if there is another group in S, it must intersect Z trivially.

Let Y ⩽ P be of maximal order with the property Y ∩Z = 1. By Lemma 1.18, we
have that CP (Y ) = NP (Y ) = Y Z. In particular NP (Y )⊴P and NP (Y )/Y ∼= Z is a
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Roquette group. Then Y is genetic, by Remark 1.12. Also, by Lemma 1.18, we have
that if Y1 ⩽ P is a group such that Y1 ∩ Z = 1, but it is not maximal order with this
property, then CP (Y1) = NP (Y1), but NP (Y1)/Y1 is not cyclic. Thus Y1 is not a genetic
subgroup of P .

Finally, if Y is a subgroup of P of maximal order such that Y ∩Z = 1, then Y has
|P/Y Z| = |Y | distinct conjugates in P , by Lemma 1.18. These conjugates are sub-
groups of index p in the elementary abelian group Y P ′, and they all intersect trivially
(that is, they don’t contain) the group P ′. Since there are exactly |Y | subgroups of
Y P ′ not containing P ′, these subgroups are exactly the conjugates of Y in P .

Now if Y0 is another subgroup of P such that Y0 ∩ Z = 1, then Y0 ∩ Y P ′ is a
subgroup of Y P ′ which does not contain P ′. Hence it is contained in some conjugate
of Y , and there exists x ∈ P such that Y0 ∩ Y P ′ ⩽ Y x. It follows that Y0 ∩ Y Z ⩽ Y x,
for Y P ′ is the subgroup of Y Z consisting of elements of order at most p. In other
words

xY0 ∩ ZP (Y ) = xY0 ∩ Y Z = x(Y0 ∩ Y Z) ⩽ Y.

Now if Y0 is another subgroup of maximal order such that Y0 ∩Z = 1, exchanging the
roles of Y and Y0 in the previous argument shows that there also exists an element
y ∈ P such that yY ∩ Y0Z ⩽ Y0. By Theorem 1.8, it follows that Y0 ̂P

Y . The last
assertion now follows from Lemma 1.10.

As a first consequence of this result we have.

3.11. Lemma. Let p be an odd prime, and n be a positive integer.

1. Let P be an extra-special p-group of order p2n+1. Then the free rank of Wh(P )
is equal to

(p2n + p− 2)(p− 3)

2(p− 1)
.

2. Let P be an almost extra-special group of order p2n+2. Then the free rank of
Wh(P ) is equal to

(p2n+1 + p2 + p+ 1)(p− 3) + 8

2(p− 1)
.

Proof. The free rank of Wh(P ) is equal to r − q, where r (resp. q) is the number of
irreducible real (resp. rational) representations of P , up to isomorphism. In general,
for a finite p-group P and a field K of characteristic 0, the irreducible representations
of P over K can be recovered from the knowledge of a genetic basis B of P (see [2]):
this is because the functor RK of representations of p-groups over K is rational in the
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sense of Definition 10.1.3 of [7], as can be easily deduced from Theorem 10.6.1 of [7].
A proof of this fact can also be found in [8]. In particular, the number lK(P ) of such
representations, up to isomorphism, is equal to

lK(P ) =
∑
S∈B

∂lK
(
NP (S)/S

)
,

where ∂lK(Q) denotes the number of faithful irreducible representations of a p-group Q
over K, up to isomorphism. For a Roquette p-group Q, we have moreover ∂lK(Q) = 1
if Q = 1, and ∂lK(Q) = lK(Q) − lK(Q/Z) otherwise, where Z is the unique central
subgroup of order p of Q.

If p is odd, all the groups NP (S)/S, for S ∈ B, are cyclic. Now for Q = Cpm , with
m ⩾ 0, we have

lR(Q) =
pm + 1

2
and lQ(Q) = m+ 1.

It follows that ∂lR(Q) =
pm−pm−1

2
if m > 0, and ∂lR(Q) = 1 if m = 0. On the other

hand ∂lQ(Q) = 1 for any m.
In case P is extra-special of order p2n+1, the genetic basis obtained in Proposi-

tion 3.10 consists of the group S = P , for which NP (S)/S is trivial, of p2n−1
p−1

subgroups

S of index p in P , for which NP (S)/S ∼= Cp, and the subgroup S = Y , for which
NP (S)/S ∼= Z(P ) ∼= Cp. This gives

r = lR(P ) = 1 +
p2n − 1

p− 1

p− 1

2
+
p− 1

2
=
p2n + p

2
,

and

q = lQ(P ) = 1 +
p2n − 1

p− 1
+ 1 =

p2n + 2p− 3

p− 1
.

In case P is almost extra-special of order p2n+2, the genetic basis obtained in Propo-
sition 3.10 consists of the group S = P , for which NP (S)/S is trivial, of p2n+1−1

p−1

subgroups S of index p in P , for which NP (S)/S ∼= Cp, and the subgroup S = Y , for
which NP (S)/S ∼= Z(P ) ∼= Cp2 . This gives

r = lR(P ) = 1 +
p2n+1 − 1

p− 1

p− 1

2
+
p2 − p

2
=
p2n+1 + p2 − p+ 1

2
,

and

q = lQ(P ) = 1 +
p2n+1 − 1

p− 1
+ 1 =

p2n+1 + 2p− 3

p− 1
.

This completes the proof.
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To calculate Cl1(ZP ) we will need the following result.

3.12. Lemma. Let p be an odd prime. Let W be a vector space over Fp of finite
dimension k, which is endowed with a bilinear, alternating form b : W × W → Fp.
Suppose that the rank of b is not equal to 2.

For x and y in W , we still set Bx, y = xp−1y ∈ Sp(W ). Then we have

Sp(W ) = ⟨Bx, y | x, y ∈ W s.t. b(x, y) = 0⟩.

Proof. We will write O for ⟨Bx, y | x, y ∈ W s.t. b(x, y) = 0⟩. We will prove that
Bx,y ∈ O for any x, y ∈ W , and by Lemma 3.4, it will follow that Sp(W ) = O.

Observe that, since Bx,y ∈ O for an x, y ∈ W with b(x, y) = 0, it follows from
formula 3.6 that x1x2 . . . xp−1y ∈ O for any elements x1, . . . , xp−1 of W such that
b(xi, y) = 0 for 1 ⩽ i ⩽ p− 1.

If b = 0, there is nothing to prove. Otherwise let x, y ∈ W such that b(x, y) ̸= 0.
Since Bx,λy = λBx,y for λ ∈ Fp, to prove that Bx,y ∈ O, we can assume without
loss of generality that b(x, y) = 1, up to replacing y by a suitable scalar multiple. If
the restriction of b to ⟨x, y⟩⊥ was identically 0, then ⟨x, y⟩⊥ would be precisely the
radical of b, so b would have rank 2, contradicting our assumption. Hence we can find
z, t ∈ ⟨x, y⟩⊥ such that b(z, t) ̸= 0, and up to replacing t by some scalar multiple, we
can assume that b(z, t) = 1.

Now let α ∈ Fp, and set u = αx+ t and v = y + αz. Then

b(u, v) = αb(x, y) + α2b(x, z) + b(t, y) + αb(t, z) = 0,

since b(x, y) = 1 = −b(t, z) and b(x, z) = 0 = b(t, y).
It follows that Bu,v ∈ O. But Bu,v is equal to

(3.13) (αx+ t)p−1(y + αz) =

p−1∑
i=0

(
p− 1

i

)
αixiytp−1−i +

p−1∑
i=0

(
p− 1

i

)
αi+1tp−1−izxi.

By the observation at the beginning of the proof, the element xiytp−1−i is inO whenever
p− 1− i > 0, since b(x, t) = b(y, t) = b(t, t) = 0. Similarly tp−1−izxi ∈ O if i > 0, since
b(t, x) = b(z, x) = b(x, x) = 0. It follows that in (3.13), the only elements possibly not
in O correspond to p − 1 − i = 0 in the first summation and to i = 0 in the second.
Hence

αp−1xp−1y + αtp−1z ∈ O,
and this holds for any α ∈ Fp. For α = 1, this gives xp−1y+tp−1z ∈ O, and for α = −1,
this gives xp−1y − tp−1z ∈ O. It follows that xp−1y ∈ O, as was to be shown.
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3.14. Remark. If the rank of b is equal to 2, then the result of Lemma 3.12 is no
longer true: for example in the non-degenerate case, that is when W has dimension 2,
saying that b(x, y) = 0 for x ̸= 0 is equivalent to saying that y is a scalar multiple of x.
In this case O is the subspace of Sp(W ) generated by the elements xp, for x ∈ W .
So O has dimension 2, whereas Sp(W ) has dimension p+ 1.

We now come to our main theorem, describing the structure of Cl1(ZP ) when
P is an extra-special or almost extra-special p-group for p odd. We first recall that
Oliver ([17] Example 7 page 16) showed that if P is extra-special of order p3, then
Cl1(ZP ) ∼= (Cp)

p−1, and that if P is almost extra-special of order p4, then Cl1(ZP ) ∼=
(Cp)

(p2+p−2)/2. Hence in what follows, we may assume that P is an extra-special group
of order at least p5, or an almost extra-special p-group of order at least p6.

3.15. Notation. Let p be an odd prime and n be a positive integer. Let P be an
extra-special p-group of order p2n+1 or an almost extra-special p-group of order p2n+2.
Let Z denote the center of P , and N = P ′ ⩽ Z be the Frattini subgroup of P . Let Y
be a subgroup of P of maximal order such that Y ∩ Z = 1, as in Proposition 3.10.
Recall that Y is elementary abelian. In any case, the group P can be written as a
semidirect product P = X · Y , where X ⩾ Z is an abelian normal subgroup of P with
CP (X) = X and Y ∩X = 1:

• If P is extra-special of exponent p, the group X is equal to C × X0, for some
subgroup X0

∼= (Cp)
n and C = N = Z.

• If P is extra-special of exponent p2, the group X is equal to C × X0, for some
subgroup X0

∼= (Cp)
n−1, some subgroup C ∼= Cp2 , and N = Z < C.

• If P is almost extra-special, then X = C ×X0, for some subgroup X0
∼= (Cp)

n,
and N < Z = C ∼= Cp2 .

So in all cases we have X = C ×X0, for some cyclic subgroup C ⩾ Z ⩾ N .
Moreover the subgroup Y is elementary abelian of order pn. It is maximal subject

to the condition Y ∩ Z = 1, so by Proposition 3.10, we have a genetic basis of P
consisting of P itself, its subgroups of index p, and Y . The normalizer NP (Y ) is equal
to Z · Y , so

Γ(P ) ∼=
( ∏

[P :Q]=p

(P/Q)
)
× Z.

3.16. Theorem. Let p be an odd prime, and let P be an extra-special p-group of order
at least p5, or an almost extra-special p-group of order at least p6. Let N = P ′ be the
Frattini subgroup of P , and Z be the center of P . Then there is a split sequence of
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abelian groups

0 // K // Cl1(ZP )
DefPP/N // Cl1

(
Z(P/N)

)
// 0,

where K is cyclic, isomorphic to a quotient of Z. In particular Cl1(ZP ) is isomorphic

to K × (Cp)
M , where K is cyclic of order dividing p2, and M = pk−1−1

p−1
−
(
p+k−2

p

)
if

|P | = pk.

Proof. The product
∏

[P :Q]=p

(P/Q) identifies with Γ(P/N), and we have a surjective

projection map DefPP/N : Γ(P ) → Γ(P/N), with kernel isomorphic to Z. By Proposi-
tion 2.6, this map induces a surjective deflation map

DefPP/N : Cl1(ZP ) = Γ(P )/R → Cl1
(
Z(P/N)

)
= Γ(P/N)/R,

where R is the subgroup of Γ(P ) generated by the elements uH,g introduced in The-
orem 2.4, and H is a cyclic subgroup of P with g ∈ CP (H). Similarly R is the
corresponding subgroup of Γ(P/N) generated by the elements uF,c, where F is a cyclic
subgroup of P/N and c ∈ P/N (we always have c ∈ CP/N(F ), as P/N is abelian).

The proof of Theorem 2.6 shows that DefPP/N(uH,g) = uHN/N,gN . Conversely, if F
is a cyclic subgroup of P/N , generated by f , and if c ∈ P/N , then there exists a pair
(H, g) of a cyclic subgroup H of P and an element g ∈ CP (H) such that HN/N = F
and gN = c if and only if b(f, c) = 0, where b is the bilinear alternating form on P/N
with values in Fp induced by taking commutators in P . Our assumptions on P imply
that the rank of b is not 2, so we can apply Lemma 3.12. This shows that the subspace
of Γ(P/N) generated by the elements uF,c, where F = ⟨f⟩ for f ∈ P/N , and c ∈ P/N
such that b(f, c) = 0, generate Sp(P/N) = R, by Lemma 3.4. It follows that DefPP/N

induces a surjective map e : R → R. Let L denote the kernel of this map. We have a
commutative diagram with exact rows

0 // L

l
��

// R
i

��

e // R
j

��

// 0

0 // Z // Γ(P )
DefPP/N // Γ(P/N) // 0

where the vertical maps i and j are the inclusion maps. The Snake’s Lemma now shows
that the map l is injective, and moreover we have an exact sequence of cokernels

(3.17) 0 // K // Cl1(ZP )
DefPP/N // Cl1

(
Z(P/N)

)
// 0,
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whereK = Z/l(L). Since the kernel Z of DefPP/N corresponds to the component of Γ(P )
indexed by Y , the image l(L) is generated by the components wY ∈ NP (Y )/Y ∼= Z of
vectors w in the kernel of the deflation map e : R → R. Hence l(L) is a subgroup of
the group generated by all the elements uH,g,Y , where H is a cyclic subgroup of P and
g ∈ CP (H).

It remains to see that the exact sequence 3.17 splits. To see this, consider the
completed diagram

0

��

0

��

0

��

0 // L

l
��

// R
i

��

e // R
j

��

// 0

0 // Z

��

// Γ(P )

a

��

c // Γ(P/N)

t

kk eb_\Y

b
��

// 0

0 // K

��

// Cl1(ZP )

��

d // Cl1
(
Z(P/N)

)s

KK

'
�
�

��

// 0,

0 0 0

where a and b are the projection maps, and c, d are the respective deflation maps,
and e is the restriction of c to R. The map b is split surjective, because Γ(P/N) and
Cl1
(
Z(P/N)

)
are both elementary abelian. Similarly, the map c is split surjective by

construction. Let s be a section of b and let t : Γ(P/N) → Γ(P ) be a section of c.
Then

d ◦ a ◦ t ◦ s = b ◦ c ◦ t ◦ s = b ◦ s = Id,

so the map a ◦ t ◦ s is a section of d. To complete the proof, observe that K is a
isomorphic to a quotient of Z, and that Z is cyclic of order p or p2.

3.18. Remark. It follows from this proof that to obtain a minimal setM of generators
of Cl1(ZP ), we can take a subset (vS)S∈S of the canonical basis of Γ(P/N) (as Fp-vector
space), corresponding to a set S of subgroups of index p of P , which maps by b to a
basis of Cl1

(
Z(P/N)

)
. Then vS is a generator of the component P/S ∼= (P/N)

/
(S/N)

of Γ(P ), for S ∈ S. If K is trivial3, we set T = S. Otherwise, we also choose a
generator vY of Z ∼= NP (Y )/Y , and we set T = S ⊔ {Y }. Then we take for M the
image in Cl1(ZP ) by the projection map a of the set {vS | S ∈ T }.

3This will occur only in Assertion 1 of Proposition 3.22 below, i.e. when P is extra-special of order
p5 and exponent p2
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As we can see from this procedure, the splitting of the exact sequence of Theo-
rem 3.16 is not canonical: first we have made a choice for the genetic subgroup Y , and
then we also make a choice of a set S and of generators vS, for S ∈ T .

We now come to the proof of Theorem A, which we split in two parts: first the
“generic” case, when the group P is large enough, and then two special cases of “small”
groups of order p5 and p6. The generic case is the following one.

3.19. Theorem. Let p be an odd prime, and let P be a p-group of order pk which is
either:

1. extra-special of exponent p with k ⩾ 5, or

2. extra-special of exponent p2 with k ⩾ 7, or

3. almost extra-special with k ⩾ 8.

Then Cl1(ZP ) is (non-canonically) isomorphic to Z × (Cp)
M , where Z is the center

of P (so Z ∼= Cp in cases 1 and 2, and Z ∼= Cp2 in case 3), and M = pk−1−1
p−1

−
(
p+k−2

p

)
.

Proof. We keep Notation 3.15 throughout. We know from Theorem 3.16 that

Cl1(ZP ) ∼= K × (Cp)
M , where M = pk−1−1

p−1
−
(
p+k−2

p

)
.

Moreover the group K is isomorphic to the quotient of Z by the subgroup generated
by the elements wY , where w is an element in the kernel of the deflation map e : R → R.
Such an element wY is a product of elements uH,g,Y , for some pairs (H, g) of a cyclic
subgroup H of P , and an element g ∈ CP (H). We start by computing uH,g,Y for such
a pair (H, g), using formula 2.5. We will show that uH,g,Y = 1 in the cases of the
statement of the theorem, and it will follow that K ∼= Z. We have

uH,g,Y =
∏
x∈D

lg, x

where D is a chosen set of representatives of those double cosets H⟨g⟩xNP (Y ) in P
for which Hx ∩NP (Y ) ⩽ Y . For each x ∈ D, if mx is the index of ⟨g⟩ ∩

(
H · xNP (Y )

)
in ⟨g⟩, the element gmx can be written gmx = hx · xlg,x, for hx ∈ H and lg,x ∈ NP (Y ).
Since NP (Y ) = ZY is a normal subgroup of p, by Lemma 1.18, the group H · xNP (Y )
and the integer mx do not depend on x. Let m denote this integer. Since gp ∈ Z for
any g ∈ P , we have m = 1 if g ∈ HZY , and m = p otherwise.

Since H⟨g⟩ZY is also a normal subgroup of P , we have H⟨g⟩tZY = H⟨g⟩ZY t =
tH⟨g⟩ZY , for any t ∈ P . Hence D is a subset of a set of representatives of P/H⟨g⟩ZY .
If D is empty, we have uH,g,Y = 1, so we can assume D ̸= ∅. If H t ∩ ZY ⩽ Y , then
H t ∩ Z ⩽ Y ∩ Z = 1. Then H ∩ Z = 1, so H has order 1 or p, since hp ∈ Z for any
h ∈ P .
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• If H ∩ ZY = 1 then H t ∩ ZY = (H ∩ ZY )t = 1 for any t ∈ P , so our set D is a
set of representatives of P/H⟨g⟩ZY .

• If H∩ZY ̸= 1, then H ⩽ ZY . If there exists t0 ∈ P with H t0∩ZY ⩽ Y , we have
H t0 ⩽ Y , and up to replacing H by H t0 , we can assume H ⩽ Y . Then for t ∈ P ,
we have H t ∩ ZY = H t, and H t ⩽ Y implies [H,H t] ⩽ Z ∩ Y = 1. In other
words H t ∩ ZY ⩽ Y if and only if t ∈ CP (H). Here D is a set of representatives
of CP (H)/H⟨g⟩ZY = CP (H)/⟨g⟩ZY .

So in each case, there are subgroups M and Q of P with ZY ⩽ M ⩽ Q such that D
is a set of representatives of Q/M .

We have gm = h·z·y, for some h ∈ H, z ∈ Z and y ∈ Y . Observe that z = gp

and h = y = 1 if m = p. Then for x ∈ D, we have gm = h·z·x(yx) = h·x(z[y, x]y), so
with the identification NP (Y )/Y ∼= Z, we have lg,x = z[y, x]. It follows that uH,g,Y =∏
x∈D

(
z[y, x]

)
= z|D|[y,

∏
x∈D

x]. Now the commutator [y,
∏
x∈D

x] only depends of the images

of y and
∏
x∈D

x in the elementary abelian group P/N . AsM ⩾ N , the map x 7→ x = xN

is a bijection from Q/M to Q/M , where Q = Q/N and M = M/N . The subgroup
M admits a supplement W in the elementary abelian group Q, and W is a set of
representatives of Q/M . Since

∑
w∈W

w = 0 as p is odd, it follows that
∏
x∈D

x maps to 0

in P/N , that is
∏
x∈D

x ∈ N ⩽ Z, and [y,
∏
x∈D

x] = 1. This gives finally

(3.20) uH,g,Y =

{
z|D| if g ∈ HzY for some z ∈ Z,
gp|D| otherwise.

• If P is extra-special of order p2l+1, with l ⩾ 2, then Y has order pl and Z has order p.

- As we said, if g ∈ HzY , for z ∈ Z, we have uH,g,Y = z|D|. If H ≰ ZY , then

|D| = |P : H⟨g⟩ZY | = |P : HZY | ⩾ p2l+1/(p·p·pl) = pl−1.

Now if we assume H ⩽ Y , then g ∈ HZY = ZY , and

|D| = |CP (H) : ⟨g⟩ZY | = [CP (H) : ZY | ⩾ p2l/pl+1 = pl−1

again. For l ⩾ 2, this is a multiple of p = |Z|, and uH,g,Y = 1.

- If g /∈ HZY , then uH,g,Y = gp|D|. So uH,g,Y = 1 unless g has order p2, and then
gp generates Z. If H ≰ ZY , then

|D| = |P : H⟨g⟩ZY | = |P : H⟨g⟩Y | ⩾ p2l+1/p·p2·pl = pl−2.
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On the other hand, if H ⩽ Y , then

|D| = |CP (H) : ⟨g⟩ZY | = |CP (H) : ⟨g⟩Y | ⩾ p2l/p2·pl = pl−2

again. Hence |D| is a multiple of p if l ⩾ 3, so uH,g,Y = 1.

So uH,g,Y = 1 if P is extra-special, unless possibly if P has exponent p2 and order p5.

• If P is almost extra-special of order p2l+2, with l ⩾ 2, then Y has order pl and Z is
cyclic of order p2.

- If g ∈ HzY , for z ∈ Z, then uH,g,Y = z|D|. If H ≰ ZY , we have

|D| = |P : H⟨g⟩ZY | = |P : HZY | ⩾ p2l+2/(p·p2·pl) = pl−1.

If we now assume H ⩽ Y , then g ∈ HZY = ZY , and

|D| = |CP (H) : ⟨g⟩ZY | = |CP (H) : ZY | ⩾ p2l+1/p2·pl = pl−1

again. Hence then |D| is a multiple of p2 if l ⩾ 3, so uH,g,Y = 1.

- If g /∈ HZY , then uH,g,Y = gp|D|. If H ≰ ZY , since ⟨g⟩Z has order at most p3 as
gp ∈ Z, we have

|D| = |P : H⟨g⟩ZY | ⩾ p2l+2/p·p3·pl = pl−2,

If we now assume H ⩽ Y , then

|D| = |CP (H) : ⟨g⟩ZY | ⩾ p2l+1/p3·pl = pl−2

again. Hence then |D| is a multiple of p if l ⩾ 3, and uH,g,Y = gp|D| = 1.

So uH,g,Y = 1 if P is almost extra-special, unless possibly if P has order p6.

So we are left with the special cases where P is either extra-special of order p5 and
exponent p2, or almost extra-special of order p6. In both cases, we will use the next
lemma, where the notation is again as in 3.15.

3.21. Lemma. Let P be extra-special of order p5 and exponent p2, or almost extra-
special of order p6. Then there exist a ∈ X0 and b ∈ Y with the following properties:

1. The elements a and b both have order p, and centralize C.

2. The group U = ⟨a, b⟩ is extra-special of order p3 and exponent p. Its center is
equal to N .
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3. For α ∈ {0, . . . , p− 1}, set Hα = ⟨abα⟩. Also set H∞ = ⟨b⟩, and denote by L the
set {0, . . . , p−1,∞}. Then ⟨Hα, Hβ⟩ = U for any pair (α, β) of distinct elements
of L, and the map α ∈ L 7→ HαN is a bijection from L to the set of subgroups of
order p2 of U .

Proof. In both cases Y ∼= (Cp)
2. Since [C, Y ] ⩽ Z ⩽ C, the group Y normalizes C,

and CY (C) ̸= 1 since the automorphism group of C is cyclic. We choose a non
trivial element b of CY (C). Then b does not centralize X0, for otherwise b centralizes
CX0 = X, contradicting CP (X) = X. Hence we can choose a ∈ X0 such that [a, b] ̸= 1.
Then the group U = ⟨a, b⟩ is extra-special of order p3 and exponent p, as a and b have
order p and [a, b] generates N . In particular N is equal to the center of U .

The groups Hα, for α ∈ L, all have order p, and are different from N . So the groups
HαN are subgroups of order p2 of U . Clearly ⟨Hα, Hβ⟩ = U for any distinct element
α, β of L, hence the subgroups HαN , for α ∈ L, are all distinct. This completes the
proof, as U has exactly p+ 1 = |L| subgroups of order p2.

We now proceed with the proof of the above mentioned two special cases.

3.22. Proposition.

1. Let P be extra-special of order p5 and exponent p2. Then the group K of Theorem
3.16 is trivial.

2. Let P be almost extra-special of order at least p6. Then the group K of Theorem
3.16 has order p.

Proof. We keep the notation of Lemma 3.21.
1) Suppose first that P is extra-special of order p5 and exponent p2. Then we have
X = C ×X0, where C ∼= Cp2 contains the center Z = N of order p of P , and X0

∼= Cp.
On the other hand Y ∼= (Cp)

2 in this case. We will build an element w in the kernel of
e : R → R with non trivial component wY ∈ Z. Then wY will generate Z, so K will
be trivial in this case, as stated.

In order to build w, we first fix a generator g of C. Next we consider the set L and
the subgroups Hα of CP (C) = CP (g), for α ∈ L, introduced in Lemma 3.21. We now
set

w = (u1,g)
−1
∏
α∈L

uHα,g.

For an arbitrary cyclic subgroup H of CP (g), the component uH,g,S of uH,g at a genetic
subgroup S of P is given by Formula 2.5. When |P : S| = p, this formula comes down
to

uH,g,S =

{
1 if H ≰ S,
g otherwise,
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where g is the image of g in P/S. It follows that the component wS of w at S is equal
to (g)−1+nS , where nS = |{α ∈ L | Hα ⩽ S}|. Then either S ⩾ U = ⟨a, b⟩, and S ⩾ Hα

for all α ∈ L, so nS = p+ 1, and wS = (g)p = 1, since P/S has order p; or S ≱ U , and
then S ∩ U is a subgroup of index p of U . So |S ∩ U | = p2, and S ∩ U = HαZ for a
unique α ∈ L. Hence Hα ⩽ S, and Hβ ≰ S for β ∈ L− {α}. It follows that nS = 1 in
this case, so wS = (g)−1+1 = 1 again. This shows that w is in the kernel of the map
e : R → R.

We now compute the component wY of w indexed by Y , using 3.20: we consider a
cyclic subgroup H of order at most p of CP (g). Then g /∈ HZY , because HZY has
exponent p. Then uH,g,Y = gp|D|, where D is a set of representatives of those double
cosets H⟨g⟩tZY such that H t ∩ ZY ⩽ Y .

We know moreover that |D| = |P : H⟨g⟩ZY | = |P : HCY | if H ≰ ZY , since
Z ⩽ C = ⟨g⟩, and that |D| = |CP (H) : ⟨g⟩ZY | = |CP (H) : CY | if H ⩽ Y .

If H = 1, then |D| = |P |/(|C||Y |) = p5/(p2·p2) = p, so uH,g,Y = gp
2
= 1. If H =

Hα, for α ∈ L−{∞}, then |D| = |P : HαCY | = p5/(p·p2·p2) = 1, for Hα ≰ CY . Then
uHα,g,Y = gp. Finally, if H = H∞, we have |D| = |CP (H∞) : CY | = p4/(p2·p2) = 1, so
uHα,g,Y = gp again.

This gives wY = 1−1
∏
α∈L

gp = gp(p+1) = gp, and gp is a generator of Z. So we have

indeed built an element w in the kernel of e : R → R such that the component wY

generates Z. It follows that the group K is trivial in this case, as claimed.

2) Suppose now that P is almost extra-special of order p6. Then we have C = Z ∼=
Cp2 > P ′ = N . In this case, let g ∈ P and H be a subgroup of order 1 or p of CP (H),
Equation 3.20 shows that uH,g,Y is equal to (vH,g)

|D| for some vH,g ∈ Z, where D is a
set of representatives of double cosets H⟨g⟩tZY such that H t ∩ ZY ⩽ Y . We claim
that uH,g,Y ∈ N . Indeed, if g /∈ HZY , then vH,g = gp ∈ N . So we can assume that g ∈
HZY . Then if H ≰ ZY , we have |D| = |P : H⟨g⟩ZY | = |P : HZY | ⩾ p6/(p·p2·p2) =
p. If H ⩽ Y , then g ∈ HZY = ZY , and |D| = |CP (H) : ZY | ⩾ p5/(p2·p2) = p. In
both cases |D| is a multiple of p, so uH,g,Y = (vH,g)

|D| ∈ N again, as claimed.
As in the proof of Assertion 1, we will build an element w in the kernel of e : R → R

such that wY generates N . This will show that K ∼= Z/N ∼= Cp, as claimed. We first
choose a generator g of Z = C. The formal definition of w is then the same as in the
proof of Assertion 1:

w = (u1,g)
−1
∏
α∈L

uHα,g.

The computation of the component wS for a subgroup S of index p of P is also very
similar to what we did for Assertion 1: for a subgroup S of index p of P , we have
wS = (g)−1+nS , where nS = |{α ∈ L | Hα ⩽ S}|. We have nS = 1 or nS = p + 1, thus
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wS = 1, and w lies in the kernel of e : R → R.
As for the component wY of w, we observe that uH,g,Y = g|D| since g ∈ Z, where

D is as above. If H = 1, then |D| = |P : ZY | = p2, and u1,g,Y = g|P :ZY | = gp
2
= 1.

For α ∈ L − {∞}, we have |D| = |P : Hα⟨g⟩ZY | = |P/HαZY | = p6/p·p2·p2 = p,
so uHα,g,Y = gp. Finally, for H = H∞ ⩽ Y , we have |D| = |CP (H∞) : ⟨g⟩ZY | =
|CP (H∞) : ZY | = p5/(p2·p2) = p, so uH∞,g,Y = gp again.

It follows that wY = 1−1(gp)p+1 = gp
2+p = gp, so wY generates N , as was to be

shown.
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