SIMPLE AND PROJECTIVE CORRESPONDENCE FUNCTORS

SERGE BOUC AND JACQUES THEVENAZ

ABSTRACT. A correspondence functor is a functor from the category of finite
sets and correspondences to the category of k-modules, where k is a commu-
tative ring. We determine exactly which simple correspondence functors are
projective. We also determine which simple modules are projective for the
algebra of all relations on a finite set. Moreover, we analyze the occurrence of
such simple projective functors inside the correspondence functor F' associated
with a finite lattice and we deduce a direct sum decomposition of F.

1. Introduction

In the present paper, we continue to develop the theory of correspondence functors,
namely functors from the category of finite sets and correspondences to the category
of k-modules, where k is a commutative ring. Assuming that & is a field, we showed
in [BT2] how to parametrize the simple correspondence functors Sg g,y by means
of a finite set F, an order relation R on F, and a simple k Aut(F, R)-module V (up
to isomorphism). Here, we determine which of them are projective (or equivalently
injective).

We say that a poset (E, R) is a pole poset if it is obtained by stacking posets
having either cardinality one or cardinality two with two incomparable elements
(see Section 2 for details).

1.1. Theorem. Let k be a field and let Sg ryv be the simple correspondence
functor parametrized by a finite set E, an order relation R on E, and a simple
k Aut(E, R)-module V. The following conditions are equivalent :

(a) Sg r,v is projective.

(b) The poset (E, R) is a pole poset and V is a projective k Aut(E, R)-module.

(¢) Fither (E,R) is a totally ordered poset or (E,R) is a pole poset and the
characteristic of k is different from 2.

Since the group Aut(FE, R) of automorphisms of a pole poset is a 2-group, (b)
and (c) are easily seen to be equivalent. However, it requires much more work to
prove that (a) implies (b), and also that (b) implies (a) (see Section 4). In the case
when (E, R) is totally ordered, the projectivity of Sg r v was already proved in
Corollary 11.11 of [BT3|.

Every simple functor Sg g,y has a precursor Sg g, called the fundamental functor
associated with the poset (E, R) (see Proposition 3.4). This functor Sg g has the
advantage of being defined over any commutative base ring k. In analogy with the
theorem above, we prove in Section 5 that Sg g is projective if and only if (E, R)
is a pole poset.
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As in [BT4], the theory of correspondence functors has consequences for the
representation theory of the monoid algebra kR x, where Rx is the monoid of all
relations on a finite set X. We show in Section 6 that, whenever |E| < |X|, the
evaluation Sg g v (X) is a projective kR x-module if and only if the simple functor
Sk,r,v is projective. This provides a criterion, again in terms of pole posets, for
the projectivity of a simple module for the monoid algebra kR x.

Associated with a finite lattice T', there is a correspondence functor Fr which is
defined over an arbitrary commutative ring k£ and which plays a crucial role in the
theory, see [BT3, BT4]. We know in particular that Fr is projective if and only if
the lattice T is distributive, for instance if T" is a pole lattice. Also, the assignment
T — Fr is known to be a fully faithful functor by [BT3].

If T is arbitrary, we show that Fr has direct summands corresponding to pole lat-
tices appearing inside T', by means of suitably constructed idempotents in End(Fr).
Actually, most of the work is done in End(T") (where morphisms between lattices
are defined to be k-linear combinations of join-morphisms), and then corresponding
results for End(Fr) are obtained using the fully faithful functor T+ Fp. The con-
struction of idempotents in End(T) is quite technical (see Section 7) but it provides
an explicit description of the part of End(T") which corresponds to pole lattices (see
Section 8).

In Section 9, we analyze the special case of a pole lattice @ (see Theorem 9.1 for
details).

1.2. Theorem. Let Q) be a pole lattice. Then End(Fg) is isomorphic to a direct
sum of matriz algebras

End(Fg) 2 End(Q) = @) M, q.p)(k Aut(P))
P

where P varies among pole lattices inside @ and n(Q, P) is some explicit integer.

From this, we obtain a decomposition of F; as a direct sum of projective functors
(Theorem 9.4) and each summand is also simple when & is a field (Corollary 9.11).
Finally, if T is an arbitrary finite lattice, we describe a projective direct summand
of Fr corresponding to all pole lattices which appear inside T' (Theorem 9.12).

2. Pole posets, pole lattices, and opposite morphisms

We first recall some standard facts about lattices and fix the terminology and the
notation. If T is a finite lattice, we denote by V its join, A its meet, and <p its
order relation. When the context is clear, we simply write < instead of <p. The
unique minimal element is written 0 and the unique maximal element 1. We let
T°P denote the opposite lattice, such that

TS7Y = Y <10 T .

A join-irreducible element in T is simply called irreducible. We write Irr(T') for the
full subposet of irreducible elements of T'. Recall that 0 is an empty join, hence is
not irreducible. Similarly Tis an empty meet. If e € T is irreducible, then the half-
open interval [6, e [r has a unique maximal element, written r(e). In other words,
r(e) = sup{z € T | z < e}. Similarly, if a is meet-irreducible (i.e. irreducible in
the opposite lattice T°P), then we define s(a) = inf{x € T | a < z}. Any finite
poset A is isomorphic to the full subposet of irreducible elements of a lattice, e.g.
the lattice I} (A) of all subsets of A closed under taking smaller elements.

Now we introduce one of the main concepts for the present a paper. Let A and
B be two finite posets. Define A x B to be the poset whose underlying set is the
disjoint union A U B and whose order relation is the union of the order relation



SIMPLE AND PROJECTIVE CORRESPONDENCE FUNCTORS 3

of A, the order relation of B, and the requirement that a < b for all a € A and
be B. If Ay,..., A, are finite posets, then Aj x Ay x...x A, is defined inductively.

A pole poset is a poset of the form Aq x As * ... * A, where each A; either has
cardinality one, or consists of exactly two incomparable elements. If a € A;, then
clearly a has height ¢ — 1 (with the usual convention that the minimal elements,
that is, those in A;, have height 0). The definition implies that there are two types
of elements in a pole poset P :

(a) If A; = {a} has cardinality one, then a is comparable to every element of P.

(b) If A; = {a,b} has cardinality two, then a is comparable to every element

of P — {b}. In that case, b will be called the twin of a and written d. In

particular, i = a.

Notice that a totally ordered poset is a pole poset (with no twins). We write Py

for the set of elements of the first type (the ‘totally ordered’ part of P) and P, for
the set of elements of the second type (the ‘twin’ part of P).

A pole lattice is a lattice whose underlying poset is a pole poset. Whenever

a and a are incomparable elements of height ¢ in a pole lattice P, then they are

both join-irreducible and meet-irreducible. In this case, there is a single element

of height ¢ — 1, namely r(a) = a A @, and a single element of height ¢ + 1, namely

s(a) = aV &. Clearly r(a) = r(d) and s(a) = s(@). Also, 0 is the unique element, of

height 0 and 1 is the unique element of maximal height. Finally, we note that this
discussion easily implies that any pole lattice is distributive.

2.1. Lemma. Let P be a pole lattice and let X = {0} U {s(a) | a € Py}. Then
P — X s the set of irreducible elements of P.

Proof : This is easy and is left to the reader. O

We aim to show that pole posets can be characterized by an internal condition
which will be useful later in Section 4. Recall that a relation R on a set X is a
subset R C X x X and that the opposite relation R°P is defined by :

(r,y) € R?? < (y,z) € R.
Moreover, the product of two relations S and T is the relation defined by
ST :={(z,z) e X x X | Jy € X such that (z,y) €S and (y,z) €T }.

Let ¥x be the symmetric group of all permutations of X. Associated with a
permutation o € X x, there is the relation

Ay i={(o(z),z) e X x X |z € X}.

In particular, we write Ay := Ajq for the identity morphism of the object X.
The map o — A, is a monoid homomorphism and A, is invertible for every

o € Yx. The symmetric group X x acts on relations by conjugation : we write
R = Ag—lRAU and R = AO-RAO-—I.

2.2. Proposition. Let P be a finite poset and let R C P x P be its order relation
(i.e. (x,y) € R <= x<y). Let R = (P x P)— R. The following are equivalent :

(a) P is pole poset.
(b) There exists a permutation T of P such that

Ve,ye P, if x Ly, theny <7(z).
(¢) There exists a permutation T of P such that R A,-1 C R.
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Moreover, if (b) holds, then T can be chosen to be an automorphism of the poset P
and, in that case, it is unique and it satisfies T(a) = a for all twins a € Ps.

Proof : First note that the equivalence of (b) and (c¢) follows immediately from
the definitions, because

tZy < (y,z) e R™
while we always have (z,7(x)) € A, -1.

Suppose that (a) holds and define 7 to be the permutation that preserves heights
and satisfies 7(a) = a for all twins a € P,. Let z,y € P such that x £ y. If x
is the unique element of its height, then x is comparable to all elements of P and
7(x) = x. Tt follows that y < x = 7(x). If z and ¥ are distinct elements of the same
height, i.e. twins, then z is comparable to every element of P — {&}. Therefore, if
y # &, then y < z, hence also y < & = 7(x), while if y = &, then y = 7(x). This
proves that we get y < 7(z) in all cases, hence (b) holds.

We assume now that (b) holds and we want to prove (a). We proceed by induc-
tion on the size of P, starting from the obvious case when |P| = 1. Suppose first
that P has at least two distinct maximal elements w and z. Since w £ z, we have
z < 7(w) by (b), hence z = 7(w) by maximality of z. Similarly, w = 7(z). Now if
r £ w, then w < 7(x) by (b), hence w = 7(x), so that = 7~ !(w) = z. In other
words, if x # w and z # z, then & < w. Similarly, if z # w and x # z, then x < z.
Therefore w and z are the unique maximal elements of P and P = @« {w, z}, where
Q=P —{w,z}.

If 2,y € Q and = £ y, then y < 7(x) by (b). But the permutation 7 exchanges
w and z, so it restricts to a permutation of Q). Therefore (b) holds for the poset @
and, by induction, Q) is a pole poset. It follows that P is a pole poset, as required.

Suppose now that P has a single maximal element w. If x # w, then w £ = by
maximality, hence z < 7(w) by (b). If 7(w) = w, then 7 restricts to a permutation
of @ = P — {w} and again we are done by induction.

So we assume now that our single maximal element w satisfies 7(w) # w. The
condition z < 7(w) obtained above means that 7(w) is the unique maximal element
of P — {w}. Assume by induction that w > 7(w) > ... > 7%(w) and that 77 (w)
is the unique maximal element of P — {w,..., 797 (w)}, for every j = 1,...,i.
Then if z # w,7(w),..., 7 (w), we have 7%(w) £ x, hence x < 74" (w) by (b).
But 7 (w) # 7(w), ..., 7 (w), otherwise 7/ (w) € {w, 7(w), ..., 7" (w)} which is
impossible by our induction assumption. Therefore, either 7¢*!(w) is the unique
maximal element of P — {w,...,7"(w)} and we continue our induction argument,
or 7 (w) = w.

Our induction argument must stop and we let 7 > 2 be the smallest integer
such that 7" (w) = w. Then w > 7(w) > ... > 7771 (w) and 77(w) is the unique
maximal element of P — {w,..., 77" }(w)}, for every j = 1,...,r — 1. Moreover,
setting Q = P — {w,..., 7" 1(w)}, we obtain

P=Q+{r" Y (w)}*...x{r(w)} * {w}

and @ must be invariant under 7. By our main induction procedure, @ is a pole
poset. It follows that P is a pole poset. This proves (a) and we are done.

In order to prove our additional statement, we continue the analysis of the permu-
tation 7, as above. In the case when P has two maximal elements w and z, then we
have seen that 7(w) = z. Moreover 7 restricts to a permutation of Q@ = P — {w, z}.
By induction, 7 can be replaced uniquely by an automorphism « of the pole
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poset @ such that o exchanges all the twins of (). Extending « to P by requir-
ing that « exchanges w and z (as it must, as we have seen for 7), we obtain an
automorphism of P having the additional required properties.

In the case when P has a single maximal element w, then we have seen that
7 permutes cyclically the subset S = {w,7(w),..., 7" *(w)} for some r > 1, and
it restricts to a permutation of ¢ = P —S. By induction, 7 can be replaced
uniquely by an automorphism « of the pole poset @ such that o exchanges all the
twins. Extending « by the identity on S, we obtain an automorphism of P having
the additional required properties. 0

A join-morphism from a lattice T to a lattice T” is a map f : T — T’ which
commutes with joins, i.e. such that

(\/Aa)= \/Af<a)

for any subset A of T'. Similarly, a meet-morphism is a map which commutes with
meets. It is easy to see that a join-morphism is order-preserving, by considering
the join t1 V to in the case where t; <p to in the 1att1ce T. Moreover, the case

= () shows that a join-morphism maps 0T to0eT. The following result is
Well known.

2.3. Lemma. Let P and T be finite lattices. Suppose that P is distributive and
let E = Trr(P). Then any order-preserving map ¢ : E — T extends uniquely to a
join-morphism @ : P — T.

Proof : For any p € P, we can write uniquely

=\ e

ecE
e<p

and then define the extension of ¢ by

e)=\/ #le).

eckE
e<p

To check that ¢ is a join-morphism, we use the fact that, for any e € E and
p,p’ € P, we have

e<pVp < e<por e<yp.
This is because, if e < pVp', then, e = eA(pVp') = (eAp)V(eAp') by distributivity,
hence by irreducibility, either e = e A p, i.e., e <p,ore=eAp’, ie., e <p. ]

2.4. Notation.

(a) We let L be the category whose objects are the finite lattices and where, for
any finite lattices P and T, Homg (P, T) is the set of all join-morphisms
from P toT.

(b) We denote by Inj.(P,T) the set of all injective join-morphisms P — T.

(¢) We denote by Surg (T, P) the set of all surjective join-morphisms T — P.

Recall from Section 8 of [BT3] that, for any join-morphism f : T — P, there is
an opposite morphism f°P : P°P — T°P defined by

Py = \/ t.

f()<p
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2.5. Lemma. Let P andT be finite lattices and let f : T — P be a join-morphism.
(a) foP: P°P — TP is a join-morphism. In other words, for any subset A of P,
PN @)= N\ ()
acA a€cA

(because the meet A is the join in the opposite lattice).
(b) If g : P — Q is a join-morphism, then (gf)°P = foPg°P.
(c) (fr)» = f.
(d) If f is surjective, then ff°P = idp. In particular, f°F is injective and, for
any p € P,
)=\ t=sup(f ().
ft)=p
(e) If f is injective, then f°Pf =idr. In particular, f°P is surjective.
(f) Passing to the opposite induces bijections Inj (P, T) — Surz(T°P, P°P) and
Sur (T, P) — Inj,(P°P,T°P).

Proof : (a), (b) and (c) are proved in Section 8 of [BT3].

(d) Let p € P. The equality \/ t = \/ t follows from the fact that f is
F®)<p ft)=p
surjective and order-preserving. Moreover, it is clear that \/ t = sup ( f _1(p)).
ft)=p
Since f is a join-morphism, we get f(sup (ffl(p))) = p, hence ff°P =idp.

(e) This follows from (b), (c), and (d) by passing to opposite morphisms.
(f) This follows from (d) and (e). 0

For later use, we now prove a specific result in the case when P is a pole lattice.

2.6. Lemma. Let T be a finite lattice and let P be a pole lattice. Then there is a
bijection between Inj,(P,T) and Surg (T, P).

Proof : Associated with the pole lattice P, there is the set
Ey = {ala a1,a2,02, - 0n, &n}
consisting of all the twins a;, @;, indexed in such a way that a; < as < ... < ay.
Here n is a positive integer (which is zero whenever P is totally ordered). We define
wi:ai/\di, vi:ai\/di, (].SZS’H),

and we also set vg = 0 and Wpy1 = 1. Just above the pair of twins a;, a;, there is a
totally ordered interval [v;, w;11]. Also, we have a totally ordered interval [vg, w1]
below the pair aq, a1, and a totally ordered interval [v,,, w,1] above the pair a,, d,.
Note that we may have v; = w;1.

Let A € Inj,(P,T). We want to define an injective meet-morphism NPT
associated with \. First we set

Mai) = Mai),  Ma)=Ma) (1<i<n).
Since A is a join-morphism, we have
Mvg) =0, M) =Ma;)VA@GE) (1<i<n).
Note also that
AMw;) < Aag) AXa;) (1<i<n), AMwniq) <1 .
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We have to define A on each interval [vi—1,w;], 1 <4 < m+ 1, and there are two
cases for each i.

If 1 < i <m, either A(w;) = A(a;) A A@;) or AMw;) < A(a;) A A(a;). In the first
case, we simply set

AMz) = Az), Ve vi—,w],
while in the second, we set

Naz) = A(s(x)) V€ [vim1, wi, and AMw;) = Mag) AN (d;) ,
where s denotes the shift upwards in the totally ordered interval [v;_1,w;], that is,
s(z) =inf{y | z < y}.

Similarly, if i = n + 1, either A(wy41) = 1 or A(wpy1) < 1. In the first case, we
simply set
Mz) = Az), YV z € [vp, Wnt1] ,
while in the second, we set

Az) = A(s(z)) V€ [up, Wnt1], and Mwpi) =1.
It is easy to see that \is order-preserving and injective, and moreover
Mai A @) = Mw;) = Mag) ANa;) = Mai) A XNés) -
In view of the structure of pole lattices, this means that X: P — Tis a meet-

morphism, or in other words a join-morphism X : PP — TP, Therefore \ €
Inj . (P°P, T°P) and this defines a map

Qpr:Inj (P, T) — Inj (P, TP), A+ X.

In the other direction, we proceed as follows. The same construction, applied to
P°P and T°P, defines a map

Qpor rov : Inj (PP, TP) — Inj (P, T)

and it is elementary to check that Qpor 7or maps A to A, because the shift upwards
x + s(z) in the opposite [v, w]°? of a totally ordered interval corresponds to the shift
downwards x — r(x) in the original interval [v, w]. In other words the composite
Qpor ror 0 Qpr is the identity. Similarly, Qp 7 o Qpor 7or is the identity and it
follows that £2por 7or is a bijection.

Now it suffices to compose with the bijection Inj,(P°?,T°?) — Sur.(T,P) of
Lemma 2.5 to obtain a bijection between Inj.(P,T") and Surs(T, P). 0

3. Correspondence functors

We recall the basic facts we need about correspondence functors and we refer to
Sections 2—4 of [BT2] and Section 2 of [BT3] for more details. We denote by C the
category of finite sets and correspondences. Its objects are the finite sets and the
set C(Y, X)) of morphisms from X to Y (using a reverse notation which is convenient
for left actions) is the set of all correspondences from X to Y, namely all subsets of
Y x X. A correspondence from X to X is also called a relation on X. Given two
correspondences R C Z x Y and S CY Xx X, their composition RS is defined by

RS:={(z,2) € Zx X | 3y €Y such that (z,9y) € R and (y,z) € S},

and this generalizes the product of relations, defined in Section 2.

For any commutative ring k, we let kC be the k-linearization of C. The objects
are again the finite sets and kC(Y, X) is the free k-module with basis C(Y, X). In
particular, kRx := kC(X, X) is the monoid algebra of the monoid Rx of all rela-
tions on X. A correspondence functor is a k-linear functor from kC to k-Mod. We
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let Fj be the category of all correspondence functors (for some fixed commutative
ring k). We define a minimal set for a correspondence functor F' to be a finite
set X of minimal cardinality such that F(X) # {0}. For a nonzero functor, such a
minimal set always exists and is unique up to bijection.

The first instances of correspondence functors are the representable functors
kC(—, E), where E is a finite set, and more generally the functors

Lgw =kC(—,FE) Qrry W

where W is a left kR g-module. Actually, the functor W +— Lg w is left adjoint of
the evaluation functor

Fir — kRp-Mod,  Fw F(E).

The correspondence functor Lg w has a subfunctor Jg w defined on any finite
set X by

Jew(X) = {Z‘bi Qw; € Lpw(X) |V € kC(E,X), Y (¥éi) - wi = 0} .
We shall work with the functor Lgw/Jgw for some specific choices of kRpg-
modules W.

Recall from Section 5 of [BT1] or Section 3 of [BT4] that, for a suitable two-sided
ideal I, there is a quotient algebra kPrp = kRg/I, called the algebra of permuted
orders because it has a k-basis Pg consisting of all relations on E of the form A, R,
where o runs through the symmetric group X g and R is an order relation on E. The
product of two order relations R and .S in the basis Pg is the transitive closure of
RU S if this closure is an order relation, and zero otherwise. This product, together
with the conjugation action of permutations on relations, describes completely the
algebra structure of Pg.

Among the kR g-modules, there is the fundamental module kPg fr, associated
with a poset (E, R), where E is a finite set and R denotes the order relation on E
which defines the poset structure. Here fr is a suitable idempotent in kPg, de-
pending on R, and kPg fg is the left ideal generated by fr. The main thing we need
to know about the fundamental module kPg fg is its structure as a bimodule. This
is described in the next result, which combines Corollary 7.3 and Proposition 8.5
of [BT1].

3.1. Proposition. Let E be a finite set and R an order relation on E.

(a) The fundamental module kPg fr is a (kRg, k Aut(E, R))-bimodule and the
right action of k Aut(E, R) is free.

(b) kPrfr is a free k-module with a k-basis consisting of the elements A, fr,
where o runs through the group X g of all permutations of E.

(c) The action of the algebra of relations kR on the module kPg fr is given
as follows. For any relation Q € Rg,

QA f o A.,-JfR Zf dr € X g such thatAEQAT_lQQ °R,
o/R=17 0 otherwise .

Moreover, T is unique in the first case.

Using the bimodule structure on kPg fr, we define

Tryv = kPrfr ®rauw(e,r) V
where V' is any k Aut(E, R)-module. Then T v is a left kR g-module for the action
induced from the action of kR g on kPg fr described in Proposition 3.1 above. The

main thing we need to know about Tr is the following result, which is part of
Theorem 8.1 in [BT1].
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3.2. Proposition. Assume that k is a field. If V is a simple k Aut(E, R)-module,
then Tg,y s a simple kR g-module.

Associated with the above kR g-modules, we can now define some specific corre-
spondence functors, as in [BT2] and [BT3]. Using the fundamental module kPg fr,
we define

Se.R = LEkPotn/JEkPsfr
and we call it the fundamental functor associated with the poset (E, R). Using the
module Ty, we define

SE,R,V = LEyTR,V/JE»TR,V .

Note that Sg.-r = Sg g and Sg,or,-v = Sg.gr,v, for any permutation o € Xg.
Our next result is Proposition 2.6 in [BT3].

3.3. Proposition.

(a) The set E is a minimal set for Sg.r and Sg r(F) = kPrfr as left kRg-
modules.

(b) The set E is a minimal set for Sg rv and Sg ryv(E) = Tryv as left kRg-
modules.

(c) Ifk is a field and V is a simple k Aut(E, R)-module, then Sg r,v is a simple
correspondence functor.

It is proved in Theorem 4.7 of [BT2] that, when & is a field, any simple functor has
the form Sg g v for some triple (E, R, V') and that the set of isomorphism classes
of simple correspondence functors is parametrized by the set of isomorphism classes
of triples (E, R, V) where E is a finite set, R is an order relation on E, and V is a
simple k Aut(E, R)-module.

We note that the fundamental functor Sg g is a precursor of Sg g v, in the sense
of the following result.

3.4. Proposition.  Suppose that V is a simple k Aut(E, R)-module, hence in
particular generated by a single element v.

(a) Consider the surjective morphism of correspondence functors
S: Lewpsfn — LE TR
induced by the surjective homomorphism of kPg-modules
Qg kPefr — kPEfR @k Aut(e,R) V = TRV, a—a®u.
Then ® induces a surjective morphism of correspondence functors
Se,r — SE,R,V -
(b) ® induces an isomorphsim

Se.R @k Auw(E,R) YV = SERV -

Proof : (a) is Lemma 2.7 in [BT3], while (b), which is far from being obvious, is
Theorem 7.9 in [BT4]. 0

In short, it it is possible to recover Sg g v from Sg g by simply tensoring with V.
Consequently, the fundamental functors play a crucial role throughout our work.

Another important construction of correspondence functors is obtained from
finite lattices (see [BT3] for details).
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3.5. Definition. IfT is a finite lattice and X is a finite set, define Fr(X) = kT,
the free k-module on the set T of all functions X — T. Given ¢ : X — T and a
correspondence S € C(Y, X), then Sp : Y — T is defined by the formula

So)w) =\ el2).

(y,)eS
Then Fr becomes in this way a correspondence functor.

We want to recall two main properties of this construction but we first need
some notation. Let £ be the category of finite lattices and join-morphisms, as in
Notation 2.4. The k-linearization kL of £ has the same objects and Homy.(T,T")
is the free k-module k Hom,(T,T") with basis Hom,(T,T”). The composition of
morphisms in kL is the k-bilinear extension of the composition in £. The following
results appear in Theorems 4.8 and 4.12 of [BT3].

3.6. Theorem.

(a) The assignment T — Fr extends to a k-linear functor Fr : kL — Fy.
Moreover, Fy is fully faithful.

(b) If T is a finite lattice, then Fr is projective in Fy, if and only if T is dis-
tributive. In particular, if P is a pole lattice, then Fp is projective.

This provides a fruitful method for handling correspondence functors. Any en-
domorphism in kL induces an endomorphism in F. In particular, any idempotent
endomorphism of an object T" in kL produces a direct summand of the correspon-
dence functor Fr. This mechanism will be exploited in Sections 7, 8, and 9.

Our next lemma gives another realization of the functor Fr in a special case.
Let E be a finite set and R an order relation on E (i.e. (E, R) is a finite poset). As
in [BT3], let I, (E, R) be the lattice of all subsets of E closed under taking smaller
elements with respect to R. Then (F, R) is isomorphic to the poset of irreducible
elements of I (E, R) via the map e — F<. = {r € E | © < e}. Notice that
r(E<e) = E< in the lattice I\ (E, R).

3.7. Lemma. Let (E,R) be a finite poset and let T = I (E,R). For any finite
set X, define a map

px : Pron(X) — kC(X,E)R,  px(¢) = {(z,0) | e ¢ p(a)} C X x E,

where ¢ : X — T°P is any basis element in Frop(X). Then this induces an isomor-
phism of correspondence functors p : Froo — kC(—, E)R.

Proof : The result can be obtained by combining Proposition 4.5 and Remark 8.7
in [BT3], using the isomorphism, via complementation, I|(E, R°?) = I (E, R)P.
We provide instead a direct proof.

Since px (¢) is a subset of X x E, it is an element of C(X, E). It is right invariant
by R because if (z,€) € px (), i.e. € ¢ p(x), and if (e, f) € R, then (z, f) € px(¢)
because f ¢ ¢(z) (otherwise we would have e € ¢(x) since p(x) is closed under
taking smaller elements). Hence px(¢) = px(¢)R € C(X, E)R. Tt is elementary
to check that p is a morphism of functors. Moreover, it is an isomorphism because
there is an inverse morphism mapping S € C(X, E)R to the function pg : X — T°P
defined by

ps(z) ={eec E | (z,e) ¢ S}.
The fact that S is right invariant by R implies that ¢g(x) is closed under taking
smaller elements. Details are left to the reader. 0

There is a direct connection between the functors associated with lattices and
the fundamental functors. This is Theorem 6.5 in [BT3].
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3.8. Theorem. Let(E,R) be a finite poset. There is a unique surjective morphism
O: FIL(E)ROP) — SE,R
mapping the inclusion map j : E — I (E, R°P) to fr € Sg,r(E) = kPrfr.
We now recall another main result from [BT3], which will be used in Section 4

(and also in Theorem 9.7). Let T' = I (E, R) and, as in Section 9 of [BT3], consider
the element

(3.9) yro= Y (=)A€ Pro(E) .
ACE
Here 7% : E — T°P is the map defined by
0y ) T(B<e)=FEc ife€d,
”A(e)_{ Ee. ifed A,

with values in the lattice T', but viewed as elements of T°P.

3.10. Theorem. Let (E,R) be a finite poset and let T = I (E, R). The subfunctor
of Frror generated by yr is isomorphic to the fundamental functor Sg r. Moreover,
the isomorphism

<’)/T>(E) — SE,R(E) = kPEfR

maps yr to fr.

Proof : The first statement is Theorem 9.5 in [BT3]. The second statement can be
traced in the proof of that theorem. More precisely, if j : E — I (E, R°?) denotes
the inclusion map, it is shown that y7 € Fro»(E) is the image of j € F (g, ger)(E)
under a morphism

§: Fry(g,Rory — Frov .
On the other hand, by Theorem 3.8 above, there is a surjective morphism

O: Fh(E’Rop) — SE,R

mapping the inclusion map j to fr € Sg r(E) = kPgfr. Both morphisms £ and
© are proved to have the same kernel and this induces the required isomorphism
<yr> = Sg, . It follows that this isomorphism maps yr to fr. 0

4. Characterization of simple projective functors

Throughout this section, assume that the base ring k is a field and let (E, R) be a
finite poset. Our aim is to characterize the triples (F, R, V') such that the simple
correspondence functor Sg gy is projective.

Since Sg,g,v is isomorphic to a quotient of the fundamental functor Sg r (see
Proposition 3.4), we shall actually work with the latter. We have Sg p = <vy7> by
Theorem 3.10, where T'= I (E, R) and ~yp is defined by (3.9). We let

CZ <vyr> — Frop
be the inclusion morphism. We also let
p: Frop —» kC(—, E)R

be the isomorphism of correspondence functors described in Lemma 3.7 and we
define

6 := pClyr) = plyr) € KC(E, E)R .
In view of the isomorphism p, the subfunctor <d> of kC(—, E)R generated by 0 is
isomorphic to <vy7>, hence to Sg r. We shall work with ¢ and we first need its
precise description as a linear combination of relations.
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4.1. Lemma. Let§:= p(yr) € kC(E, E)R, where ~yr is defined by (5.9), and let
A be a subset of E.

(a) p(n%) = R UA4, where R = (E x E) — R and Ay = {(a,a) | a € A} C

E x E.
() 5= (~D)ME"UAL).
ACE

(C) R(EOPUAA)ZEOPUAA.
(d) Ryr =~r and R6 = 6.

Proof : Throughout this proof, we write z < y for (z,y) € R.

(a) By Lemma 3.7, we have

0y — 0o J {fie)eExEles f} if ecA,
pmﬂ—ﬂﬁ@eExEu¢mun_{{“@eExEegf}ﬁ6¢A.
But {(f,e) e ExE|e¥L f} = R” Ifec A, we need to add to R the element
(e, €), because e £ e. Therefore p(n%) = R U Ay, as required.

(b) This follows from (a) and the fact that § = p(yr) = ZAQE(—I)M'p(nOA).
(¢) Since Ag C R, we have an inclusion
RPUA,=ApR"UAL) CRER"UA,).

In order to prove the reverse inclusion, we let (a,¢) € R(R” U A,). Then there
exists b € E such that a < b and (b,¢) € R UA,.

If (b,c) € R™, that is, ¢ £ b, then ¢ £ a, otherwise we would have ¢ < a < b.
Therefore (a,c) € R”.

If (b,c) € A4, then b = ¢ € A and there are two cases. If a = b, then (a,c¢) =
(a,a) € Ay. If a # b, then a < b = ¢, hence ¢ £ a, that is, (a,c¢) € ™.

This completes the proof that R(EOP UA4) C R” U A4, hence equality.

(d) It follows from (b) and (c) that RJ = J, hence also Ryr = yr because p is an
isomorphism mapping vr to §. The latter equality was also proved in Lemma 9.3
of [BT3]. 0

We also need some technical computations involving §.

4.2. Lemma. As above, consider § = Z (-DIARP UAL). Let S € C(E,E)R
ACE
(that is, SC E x E and S = SR).
(a) S # 0 if and only if there exists a permutation o € X g such that S = A, R.
(b) If S = RS and S # 0, then there exists an automorphism o € Aut(E, R)
such that S = A, R. B
(¢) If (E,R) is a pole poset and if (R UAL)8 # 0, then

A=F and RPUAL=AR,

where T is the automorphism of (E, R) satisfying 7(a) = a for all a € Ey
(the twin part of E) and 7(a) = a for all a € Ey (the totally ordered part
of E).
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Proof : (a) The condition S§ # 0 is equivalent to Syr # 0 (because p maps yr
to §), hence also to Sfr # 0 by Theorem 3.10. By Proposition 3.1, we obtain

S6#0 < Sfr#0 = JoeXp suchthat Ap CAJISCR
= Jo € Xp such that RC AJISRC R?
= Joe€Xp suchthat RCAJISCR
— do € Xg such that S=A,R,

using the equalities S = SR and R? = R (by transitivity and reflexivity of R).
Conversely, if S = A, R, then, by Lemma 4.1, we obtain

S6=A,R)=A,6#0,
because § # 0 since it generates a nonzero subfunctor.

(b) We have S = A,R by (a) and since S = RS, we obtain RA,R = A,R,
or in other words R°R = R, where R° = AJ'RA,. Since Ap C R, we get
R? C R°R = R, hence R° = R because both relations have the same cardinality.
This means that A, commutes with R, that is, o is an automorphism of the poset
(E,R).

(¢) By (b) applied to S = R” UA 4 (which satisfies S = RS by Lemma 4.1), we

have

R U Aq=AsR
for some automorphism o € Aut(E, R). Since (F, R) is a pole poset, o is the identity
on E; and interchanges some of the twins e, é € E», so in particular ¢ = o~ 1.

If e € By and ¢ is its twin, then & £ e, hence (e,é) € R C A,R. Therefore
(e,o(e)) € A, and (o(e),€) € R, that is o(e) < €. This shows that o(e) cannot be
equal to e, i.e. o(e) = é. Thus o interchanges all the twins, that is, it is equal to
the automorphism 7 of the statement.

If e € Fy, then (e,e) € A, and (e,e) € R, so (e,e) € A,;R. If conversely
(e,e) € AR, then (e,0(e)) € A, and (o(e),e) € R, that is, o(e) < e. This cannot
hold if e € Ejy, because o(e) = € £ e, and therefore e € E;. It follows that

e€ B, < (e,e) € AR < (e,e) e RPUA, < (e,e) €Ay — e€ A,

the third equivalence using the fact that (e,e) ¢ R’ because e < e. This shows
that A = F; and completes the proof. O

One of the key parts of the proof of the main result is contained in the next
lemma, which will also be used again in Section 5.

4.3. Lemma. Suppose that k is a field. Let Sg r be the fundamental functor
associated with a finite poset (E, R) and let M be a nonzero direct summand of Sg, .
If M is projective, then (E, R) is a pole poset.

Proof : Since Sg r = <yr> by Theorem 3.10, we can view M as a direct summand
of <yr> and we let w : M — <~vypr> be the inclusion morphism. As above, we
let ¢ : <yp> — Fpop be the inclusion morphism and p : Fro» — kC(—, E)R be
the isomorphism of correspondence functors described in Lemma 3.7. Finally let

a:M — kC(—, E)R

be the composite a = plw.

Since M is projective and the base ring k is a field, M is also injective, by
Theorem 10.6 in [BT2]. Therefore the injective morphism « splits, that is, there
exists a surjective morphism

o:kC(-,E)R — M



14 SERGE BOUC AND JACQUES THEVENAZ

such that oo = id. Thus ao is an idempotent endomorphism of kC(—, E)R. Since
R € kC(E,E) is a generator of kC(—, E)R, its image ¢ := o(R) € M(FE) is a
generator of M. Now ~p generates <vyp>, so we can write w(c) = vy for some
v € kC(E, E). We know that Ryr = vy by Lemma 4.1 and therefore vyr = vRyp.
Replacing v by vR, we can assume that v = vR and we do so. Thus v € kC(E, F)R.
Note that ¢ # 0, hence vyr # 0.

Now for any u € kC(X, E), we have

ao(uR) = wao(R) = walc) = wpw(c) = u-p¢(vyr) = uv-pl(yr) = wvd .

where § = p{(yr) = p(vyr) as in Lemma 4.1. In particular, using the fact that
d = 0R (because 0 € kC(E, E)R), we obtain

ao(d) = ao(6R) = 0vd .
Since vyr is nonzero, so is its image v = p((vyr) under the injective morphism p¢
and therefore
0 #v5 = ao(R) = (a0)*(R) = ac(vd) = v-ac(d) = vévs ,

from which it follows that dvd # 0.
Summarizing, we have proved that, under the assumption that M is projective,
the element 0 = p(vyr) € kC(E, E)R satisfies :

(4.4) Jv € kC(E,E)R with 0vd #0 .

Our aim is to show that (4.4) implies that (E, R) is a pole poset.

The condition dvd # 0 implies that there exists a relation S (in the expression
of v € kC(E,E)R as a linear combination of relations) such that 656 # 0. In
particular Sé # 0, hence S = A, R for some 7 € ¥, by Lemma 4.2. In view of the
expression of § obtained in Lemma 4.1, there exists a subset A C E such that

(R UAL)A RS0 .
Again, this implies that the relation (R” U A4)A,R has the form
(R UAA)AR=A,R

for some ¢ € ¥g, by Lemma 4.2. Since the left hand side is invariant under
left multiplication by R (by Lemma 4.1), part (b) of Lemma 4.2 implies that A,
commutes with R (i.e. o € Aut(E, R)). It follows that

(R UALA,,~1R=R.
In particular, we deduce that
ROpAw CR, where ¢ =710 1.

By the characterization of Proposition 2.2, this implies that (E, R) is a pole poset,
as was to be shown. 0

4.5. Theorem. Let k be a field and let Sg gy be the simple correspondence
functor parametrized by a finite set E, an order relation R on E, and a simple
k Aut(E, R)-module V. The following conditions are equivalent.

(a) The simple correspondence functor Sg gy is projective.

(b) (E,R) is a pole poset and V is a projective k Aut(E, R)-module.

(c¢) Either (E,R) is a totally ordered poset or (E,R) is a pole poset and the
characteristic of k is different from 2.
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Proof : (b) <= (c¢). For a pole poset (F, R), the group Aut(E, R) is a 2-group
(elementary abelian), generated by all the possible transpositions of twins. In case
(E, R) is totally ordered, this group is trivial and the unique simple k-module & is
automatically projective. In case (E, R) is a pole poset but is not totally ordered,
then Aut(E, R) is nontrivial and the characteristic of k comes into play. If char(k) #
2, then all simple k& Aut(F, R)-module V are projective (by Maschke’s theorem). If
char(k) = 2, then the unique simple k Aut(F, R)-module is the trivial module,
which is not projective (by the converse of Maschke’s theorem).

(a) = (b). Since Sg g,v is projective by assumption and isomorphic to a quotient
of the fundamental functor Sg r by Proposition 3.4, it is isomorphic to a direct
summand of Sg r. Therefore Lemma 4.3 can be applied and it follows that (E, R)
is a pole poset.

We also have to prove that V is a projective k Aut(E, R)-module. Let

T =Trv =kPefr Ok aut(e,r) V

be the simple kC(E, E)-module appearing in the definition Sg g v := Lgr/Je 1.
By adjunction, there is an isomorphism

End]:k (LE,T) = Homkc(EE) (T7 LE7T(E)) = EndkC(E,E) (T)

and this is a skew field by Schur’s lemma (it is actually the field k). This has no
nontrivial idempotent and so Lg 7 is indecomposable. But the surjective morphism

m:Lgr — Legr/Jeor = Se Ry

splits because Sg g,y is projective by assumption. Therefore 7 is an isomorphism,
by indecomposability of Lg 1, hence L r is projective.

Evaluating this projective functor at the finite set FE, we obtain a kC(E, E)-
module

Lpr(E)=T =kPgfr®kaueEr V

which must be projective, by Lemma 10.1 in [BT2]. Now kPgfr @k aut(e,r) V is
actually a module for the quotient algebra kPr = kR /I (see Section 3). It follows
that kPpfr @k aut(e,r) V is a projective module for the algebra kPg, because of
the splitting of the composition of surjective homomorphisms

kRg — kPre — kPefr @k aut(e,R) V -
Finally, by Theorem 7.5 in [BT1], there is an isomorphism of algebras

kPp = [ [ M, (k Aut(E, R))
R

for some integers ngr, where R runs over all order relations on E up to isomorphism
(see also Remark 3.4 in [BT4]). Thus there is a Morita equivalence

kPg-Mod = [ kAut(E, R)-Mod
R
and the bimodule inducing the equivalence is @ k¥Pr fr (see Remark 7.6 in [BT1]).
Therefore kPp fr @ aut(p,r) V corresponds to the k Aut(E, R)-module V' under
this equivalence. Since projectivity is preserved by a Morita equivalence, V is a
projective k Aut(E, R)-module, as required.

(b) = (a). We assume that (F, R) is a pole poset and, as before, we write z <y
for (z,y) € R. Our aim is to compute 62 and show that it is an idempotent. In
view of the expression of § in Lemma 4.1, we have to consider terms of the form
(EOZ) UA4)d. By Lemma 4.2, this can be nonzero only if A = F; and RPUA, =
A, R, where 7 € Aut(E, R) is the automorphism exchanging all twins e, € € Fy and
fixing £y = F — E5 pointwise.
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Thus R7 U A g, 1s the only term which can come into play and we now show
that it is indeed equal to A;R. For any a € Fj, we have (a,7(a)) € A, and
7(a) = a < a, hence (a,a) € A;R. Therefore Ag, C A;R. Since (E, R) is a pole
poset, Proposition 2.2 implies that R” C RA, = AR, using the fact that 7 is an
automorphism of (E, R). So we obtain

R”UAp, CAR.

In order to prove the reverse inclusion, we let (a,7(a)) € A, (since 7 = 771) and
(r(a),b) € R,i.e. 7(a) <b. If a € Ey, then 7(a) = @, hence & < b. Then b £ a, that
is, (a,b) € R”. If a € Ey, then 7(a) = a, hence a < b. If a = b, then (a,b) € Ap,,
while if @ # b, then a < b, hence b £ a, that is, (a,b) € R”’. This shows the
required reverse inclusion and therefore

R”UAp, =AR,
as claimed. In particular (EOP UAg,)0 = A;R6 = A6 by Lemma 4.1. Therefore

02 =Y (-D)MERTUALS = (-1)PIRT UAR)S = (-1)PALS.
ACE
Since 7 permutes all the subsets A C E and preserves their cardinality, we have
A:§ = 6A,. Consequently

((—1)|E1‘A75)2 = (=1)2EIA252 = 62 = (—1)|B1IA S,

so we obtain an idempotent.

Right multiplication by this idempotent defines an idempotent endomorphism
of the correspondence functor kC(—, E)R (notice that both A; and § commute
with R). The image of this endomorphism is the subfunctor generated by the ele-
ment (—1)/F1IA_§, that is, the subfunctor generated by § because A, is invertible.
But we know that <> is isomorphic to the fundamental functor Sg r. Therefore
Sg.r is isomorphic to a direct summand of kC(—, E)R, hence a direct summand
of kC(—, E) because R? = R is idempotent. Since kC(—, E) is a projective functor
by Yoneda’s lemma, we conclude that Sg g is projective.

Our assumption (b) also says that the k Aut(E, R)-module V is projective. By
Proposition 3.4, Sg r,v is isomorphic to Sg, g @y Aut(r,r) V', Which is in turn a direct
summand of Sg r ®p aut(p,r) kK Aut(E, R) = Sg r. Therefore Sg v is projective,
proving (a). 0

Another proof of the implication (b) = (a) will be given later in Corollary 9.11.

5. Projectivity of fundamental functors

Given a poset (FE,R), we know from Proposition 3.4 that every simple functor
SE,r,v has a precursor Sg g, called the fundamental functor associated with the
poset (E, R). This is actually defined over any commutative base ring k. The main
result of this section is analogous to Theorem 4.5.

5.1. Theorem. Let (E,R) be a finite poset. Then Sg g is a projective functor if
and only if (E, R) is a pole poset.

Proof : Assume first that Sg g is a projective functor. We allow the base ring
k to vary and we write a superscript (k) to emphasize that a functor belongs to
the category Fj of correspondence functors defined over the base ring k. Let m
be a maximal ideal of k and let C' = k/m be the corresponding field. The scalar
extension functor

Fr — Feo F—C®,F
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is left adjoint of the scalar ‘restriction’ functor, which is obviously exact. Therefore,
scalar extension sends projective objects to projective objects. In particular, we see
that C ® S%)R is projective.

By Theorem 6.6 in [BT4], the evaluation S%?R(X ) at a finite set X has an explicit
k-basis By. This basis is defined independently of k, so that it remains a k’-basis
for any ring extension k — k’. Therefore, the natural surjection

C @k Sy p(X) — SER(X)

is an isomorphism. Since this holds for any X, we have C ® Sg)R ~ Sg’:g% and it

follows that Sg;% is projective. Now the functor M := SEE?})% satisfies the assump-
tions of Lemma 4.3 and this lemma then asserts that (E, R) is a pole poset, as was
to be shown.

For the converse, we use the proof of (b) = (a) in Theorem 4.5. This proof
(except the last paragraph) tells us precisely that, whenever (E, R) is a pole poset,
the fundamental functor Sg g is projective. 0

Another proof of the projectivity of Sg g whenever (E, R) is a pole poset will be
given later (see Remark 9.9).

6. Simple and projective modules for the algebra of relations

In this section, we assume that k is a field and we use the close link between
simple correspondence functors and simple modules for the monoid algebra kR x =
kC(X, X), in order to determine all the simple kR x-modules which are projective.
Let us first recall this link, which is Theorem 8.1 in [BT4].

6.1. Theorem. Let X be a finite set and let k be a field.

(a) The set of isomorphism classes of simple Rx-modules is parametrized by
the set of isomorphism classes of triples (E, R, V'), where E is a finite set
with |E| < |X|, R is an order relation on E, and V is a simple k Aut(E, R)-
module.

(b) The simple module parametrized by the triple (E, R, V) is Sg rv(X), where
Se.r,v 15 the simple correspondence functor corresponding to the triple
(E,R,V).

Pole posets appear again in the main result of this section.
6.2. Theorem. Assume that k is a field. Let X be a finite set and let (E, R, V)
be a triple as in Theorem 6.1 above. The following conditions are equivalent.

(a) The simple kR x-module Sg rv(X) is projective.

(b) The simple correspondence functor Sg gy is projective.
(c) (E,R) is a pole poset and V is a projective k Aut(E, R)-module.

Proof : By Theorem 4.5, we already know that (b) and (c) are equivalent.
(a) = (b). Let W = Sg g v(X). By the adjunction mentioned in Section 3,
the identity map W — Sg g v (X) gives rise to a morphism

m:Lxw — SerVv,

which is surjective by simplicity of Sg g . Since, by assumption, the KR x-module
W is projective and indecomposable, the functor Lx y is projective and indecom-
posable (see Lemma 2.4 in [BT2]) and is therefore the projective cover of Sg g v.
By Theorem 10.7 in [BT2], we have

Se.ryv = Lxw/Rad(Lxw) = Soc(Lx,w) .
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Suppose that Lx w is not simple. Then the simple functor Sg g1y appears at
least twice in a composition series of Lx . Therefore, the simple kR x-module
W = Sg rv(X) appears at least twice in a composition series of the kR x-module
Lxw(X). But Lxw(X) = kRx ®rryx W = W is simple and we obtain a con-
tradiction. It follows that Lx y must be simple and so 7 : Lx w — Sg,gv is an
isomorphism. Since Lx y is projective, so is Sg gr,v, as was to be shown.

(b) = (a). The simple functor Sg gy must be generated by its nonzero eval-
uation Sg gy (X) and it is projective by assumption. Therefore, by Lemma 7.3
in [BT2], the kR x-module Sg g v (X) is projective. 0

7. Morphisms and idempotents corresponding to pole lattices

In this section, we construct explicit families of morphisms in the category kL of
finite lattices, where k is a commutative ring, in particular orthogonal idempotent
endomorphisms of a fixed lattice T. They involve a pole lattice P and they have
remarkable properties which will be used in Section 8 to obtain structural results
about the endomorphism algebra Endy (7). By means of the fully faithful functor
T — Fp, we will then see in Section 9 how to deduce structural results about the
correspondence functor Frpr, and in particular about projective direct summands
of FT.

Our results generalize those obtained in [BT3] in the special case when P is a
totally ordered lattice. We follow the same line of development, but with many
necessary additions and technical adaptations.

We first fix a pole lattice P and a surjective join-morphism 7 : 7' — P. Recall
that P; denotes the subset of elements p € P such that p is comparable to every
element of P, while P5 denotes the subset consisting of all twins. Let E = Irr(P) be
the set of irreducible elements of P, described in Lemma 2.1. We write £y = ENP;
and Ey = EN Py (so that in fact Fy = Py).

7.1. Notation. We define a notation associated with the surjective join-morphism
m: T — P.

(a) For every p € P, let by = 7°P(p) = sup (ﬂ'_l(p)). Whenever  is fized, we
write simply b, = by .

(b) B = Im(n°?) = {b, | p € P}. Notice that B is a subposet of T°P which
is join-closed, hence a subposet of T which is meet-closed and isomorphic
to P.

(c) For every e € Ey, let b, = by(¢y and bf = b., where r(e) = supl0, e[p.

(d) For every e € Ey and if € is the twin of e, let b, = b, and bf = by(.), where

-~

s(e) = infle,1]p = eVeé.

7.2. Remark. The definition in (¢) and (d) is not uniform since we have b, = b
in one case and b, = b_ in the other. This strange behavior will be explained in
Remark 7.10, where a uniform explanation will be given.

For every e € E, choose a. € [b.,b}]r (where the subscript 7' emphasizes that

the interval is taken within the lattice T'). This defines a family A = (a¢)ccp with
the following property.
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7.3. Lemma. Let A = (ac)ecr be a family of elements of T such that a. €
[bo,bF |1 for every e € E. Then, whenever e, f € E,

e’’e

e<pf = a.<ray.

Proof : If e € E5 and f € E; with e <p f, then e <p s(e) <p r(f) <p f and
therefore
e <7 b5 = byey <1 bo(py = by <ray.

The other cases are easier and are left to the reader. 0

By Lemma 2.3, since P is a distributive lattice, the order-preserving map £ — T,
e — a., extends to a join-morphism
ja:P—1T, D ap .

Explicitly, we have a5 = 0 and Geve = Ge V ag whenever e € Fy with twin & (these

are the only non-irreducible elements of P by Lemma 2.1). Note that j7% is not

necessarily a section of 7 (see the beginning of the proof of Proposition 7.9).
Define the family B~ = (b_ )ecr and write

B, A) = H u(be s ac)
ecE
where pu(—, —) denotes the Mobius function of the lattice T. Allowing the family

A to vary (i.e. a. varies in [b,bf ] for each e € E), define

(7.4) iT= (=) (B, A) 5%
A

This is a k-linear combination of join-morphisms, hence an element of kL(P,T).
The morphisms j™ have remarkable properties, in particular when j™ is composed
with the surjection m. We are going to explore those properties in a series of
propositions. We first start with a lemma.

7.5. Lemma. Let A = (a.)ecr and A= (@e)ecr be two families as above and
fix some g € E. Suppose that a. = ae for all e € E —{g}. Then the following are
equivalent :

(a) j%(p) = jA(p) for allp € P —{g}.
A
(b) If g € Eo, then a, V ay = a4 V ay where § is the twin of g.

Proof : Suppose that (b) hold/s\. Ifp=ce € E —A{g}, thgn . = a. by assumption,
that is, j%(e) = ji(e). If p =0, then j%(0) = 0 = j3(0). If now p € P — E and
p # 0, then p = uVa for some u € Fo, by the definition of a pole lattice. If g # u, i,
then
J5(p) =5V i) =ay Vag =ayVay = ji(uVia)=jip) .
If ¢ = u, then the assumption (b) implies that
i5) =359V ) =agVas =agVa;=agVag=ji(gVag) =7jilp),

proving (a).

Assume conversely that (a) holds. If g € E4, then condition (b) is empty and
there is nothing to prove. So suppose that g € Fy. Then

agVag=ag VagZJ}(Q\/é) =JjalgVvg) =agVay,
proving (b). a0
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7.6. Definition.  Associated with the subset E = Irr(P), there is a subfunctor
Hp of Fp defined as follows. For any finite set X, the evaluation Hp(X) is the
k-submodule of Fp(X) generated by all functions ¢ : X — P such that E € p(X).

This subfunctor is important in the theory of correspondence functors (see Sec-
tion 5 of [BT3] for details).

7.7. Proposition. Let 7 € Surg (T, P) and let j™ : P — T be the morphism
defined in (7.4).

(a) For any finite set X and any function ¢ : X — P such that E € ¢(X), we
have j7¢ = 0.

(b) §j™ induces a morphism Fj~ : Fp — Fr vanishing on Hp, hence induces in
turn a morphism

Fjw :Fp/Hp—)FT.

Proof : Since (b) immediately follows from (a), it suffices to prove (a). We have

i = ()EIN (B A)jre = Y (-UlEl‘( ) M(B’,A))w :
A »:X—T A
Jap=1
For a fixed 1, we have to prove that the inner sum over A is zero. If this inner
sum is empty, then the sum is zero and we are done. Otherwise, we can choose
A such that j5¢ = . Let g € E be such that g ¢ ¢(X). Then we can modify
the family A into A, by changing only the image j3(9) = ay € [b,,bf]r into
J%(9) = ag4 € [by,b5]r, with the extra condition that @, V ay = ag V a; in case
g € E5. The point of such a modification is that it is precisely the only kind which
does not change the equality j3¢ = 9, by Lemma 7.5. We set A" = (a¢)ecr—{g}

and B'™ = (b7 )ecp—{g) and we let
jaE—{g9} — 1T, e ae ,

which we extend to a join morphism j7%, : P — {g} — T. We obtain

S B A = S B AN iy a,)
LA A’ a
Jae=1v Jnre=1
where the inner sum runs over all @, € [b,,bf]r, with the extra condition that
agVag=agVagin case g € Es.

If g ¢ E5, then the sum runs over all a, € [b;,b;r]T and this is zero by the
definition of the Mébius function (because b, = b,(gy <r by = b}). If g € Ea, then
the extra condition is equivalent to a, V (by Vay) = a, V ay (because by = b, < ay),
S0 G, runs over the interval [by, ag V az]r with the condition that its join with the
fixed element by V ay is equal to the top element a4 V agz. By a well-known property
of the Mébius function (Corollary 3.9.3 in [St]), the corresponding sum

> p(by , ag)
ag€lbg,agVaglr
ayV(bgVag)=agVay
is zero, provided the fixed element b, V ay is not equal to the bottom element b,,.
But this is indeed the case since by V ay >1 by V by >1 by, the latter inequality
coming from the fact that n(by Vby) = gV § >p g = w(by). It follows that the
coefficient of every v is zero, hence j7¢ = 0. 0



SIMPLE AND PROJECTIVE CORRESPONDENCE FUNCTORS 21

Now we want to compute the composite 7j”. For any subset Y of F, we define

e ifeeY,
(7.8) py :E— P, py(e)=qr(e) fe€F,edY,
s(e) fe€Erye¢dY.

It is easy to see that py is order-preserving (because, if e € Fy, f € Fj, and
e<p f,then e <p s(e) <p r(f) <p f, while the other cases are easier). Therefore,
by Lemma 2.3, py extends to a join-morphism py : P — P because the pole
lattice P is distributive. Note that py (p) = p for any p ¢ E. This is clear if p = 0.
Otherwise p = e V ¢ for some e € Fy by Lemma 2.1 and

p=eVeé<ppy(e)Vpy(e) <ps(e)Vs(é)=pVp=rp,
forcing equality and py (p) = py (e) V py (€) = p.

7.9. Proposition. Let m# € Sury(T, P) and let j© : P — T be the morphism
defined in (7.4).

(a) Tj™ = Z (=DIE=Ylpy where py is defined by (7.8).
ICYCE
(b) If Y # E, then E Z py (P).

Proof : For simplicity, we write < instead of <p and < instead of <p.

(a) If e € By and by < x in T, then 7(e) < m(x) because b,y = sup{t € T' |
n(t) = r(e)}. Thus if x €]by(c),be]r, we get 7(e) < m(x) < e, hence 7(x) = e.
Similarly, if e € Ey and x € Jbe, by(e)] 7, then m(x) = s(e). It follows that

e if e € By and j%5(e) €]b7,bF]r =|by(e), be] T
riT(e) = e if e € By and j%(e) = b, = b, ,

r(e) if e€ Ey and jj(e) = b = by ,

s(e) if e € By and jj(e) €]b,,bf |1 =]be, by(e)lT

We see that mj7 = py for a suitable subset Y C E and therefore

mT= 3 DS wBTA)py
A

90CYCE .
T)A=PY

For a fixed subset Y, in order to realize the condition mj} = py, we have the
following possibilities :

e If e € Y N Ey, then j7(e) can run freely in |b., bF]r.

o If e € Y N Ey, then j7(e) must be equal to b, = be.

o Ife € (E—Y)N Ey, then j7%(e) must be equal to by = by.(c).

e Ife e (E—Y)N Fsy, then j75(e) can run freely in |b_, bt |r.
It follows that the coefficient, (—1)%1! Z u(B~, A) is equal to

A
TjA=PY
oI (X wne)) I (X wbia)
c€YNEL a.elbs by c€(BE-Y)NE2  acelbs ,bd]r

= _1)\E1| . (_1>\Y0E1| . (_1)|(E—Y)HE2\
= (=1 \(E-Y)NEL], (_1)|(E—Y)HE2\

= (_1)‘E7Y| )
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using the fact that

0= Z ﬂ(b;vae) =1+ Z ﬂ(bg,ae) :

This shows that

as required.

(b) Suppose that Y is a proper subset of F and let ¢ € E be maximal such
that g ¢ Y. We want to prove that g ¢ py (P). We let p € P and we prove that
py (p) # 9-

If p> g, then p € Y and py (p) = p # g, while if p = g, then py (g9) # g.

Assume now that p #? g and g € E7. Then p < g and py (p) < py(g9) =r(g) < g.

Assume now that p 2 g and g € E5. Then either p < g or p = g, the twin of g.

If p < gand p € Ey, then py(p) < p < g. If p < g and p € Es, then
py (p) < s(p) < g. But s(p) is reducible since s(p) = p V p, while g is irreducible.
Therefore s(p) # g, hence py (p) < g.

If p = g, then p € Ey and py(p) is either p or s(p). But neither p nor s(p) is
equal to g.

We have proved that py (p) # ¢ in all cases, as was to be shown. O

7.10. Remark. In the special case when 7' = P and 7 = id, we find that ji¢ is
a linear combination of the maps py. It turns out that j¢ is actually an avatar
of the element ypor € Fp(E®) which is defined in (3.9), where E = Trr(P°P).
We know that the element 7 plays an important role throughout the theory of
correspondence functors (see Section 9 of [BT3] and Section 4 of the present paper).
The advantage of ypor is that it has a uniform definition, contrary to j (as observed
in Remark 7.2).

To make this explicit, let £ = Irr(P), viewed as a subposet of P and E° =
Irr(P°P), viewed also as a subposet of P (so that it is actually (E°)°P which is
the subposet of irreducible elements of P°P). Since P is a distributive lattice, it
is isomorphic to the lattice I\ (E) of all subsets of E closed under taking smaller
elements. The passage to complements induces an isomorphism I} (E) = IT(E)°P,
where IT(E) is the lattice of all subsets of E closed under taking greater elements.
On restriction to F, this induces an order-preserving isomorphism « : E — E°,
which turns out to map e € E; to r(e) € EY (in the totally ordered part) and
e € By to its twin € € ES (in the twin part).

Now Ypor is a linear combination of maps E° — P and we precompose it with
at, where 7 : E — FE exchanges all the twins and fixes all the other elements. We
obtain a linear combination of maps £ — P and, after an explicit computation, it
turns out that

Ypor T = + jid
the sign being actually (—1)I"1l. (This computation appears explicitly in the proof
of Theorem 9.7, using a bijection w : E° — E which is actually the inverse of a7.)
The definition of py in (7.8) was not uniform and, accordingly, j' has a rather
strange behavior. However, by means of the isomorphism a7, the translation of all
this in terms of ypor becomes uniform.

Unfortunately, we need to work with ji¢ rather than vypor. The reason is that
ypor € Fp(E®) is a linear combination of maps E° — P, whereas, after composing
with «a, we obtain order-preserving maps E — P which are extendible to endomor-
phisms P — P (because P is a distributive lattice, see Lemma 2.3). The key fact
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is that endomorphisms are better because they can be composed, in particular it
makes sense to consider idempotent endomorphisms.

We can now prove a main result concerning the composite j77m and obtain con-
sequences for the correspondence functor Fp associated with the pole lattice P.

7.11. Proposition. Let 7 € Surg (T, P) and let j7 : P — T be the morphism
defined in (7.4). Let q : Fp — Fp/Hp be the canonical surjection, where Hp is
defined by (7.6).
(a) j™7 is an idempotent endomorphism of T.
(b) The composite of Fj= : Fp/Hp — Fr and qF, : Fr — Fp/Hp is the
identity morphism of Fp/Hp.
(¢) Fij= : Fp/Hp — Fr is injective and embeds Fp/Hp as a direct summand
Of FT.
(d) Fj=Fy is an idempotent endomorphism of Fr whose image is isomorphic
to FP/HP,

Proof : (a) This follows from (d), which is proved below, because the functor
Fy : kL — Fy, is fully faithful by Theorem 3.6. Alternatively, it is not difficult to
compute directly

i =7 Y (=D)E Yy = idp+ Y (=)E ey = 57
0CYCE Y+E

because E & py(P) if Y # E by Proposition 7.9, hence j"py = 0 by Proposi-
tion 7.7. Then the equality j™mj™ = j™ implies that j77 is an idempotent.

(b) By Proposition 7.9, for any finite set X and any function ¢ : X — P,
FeFye(p)=mj"o= > ()P Vpyp=0+ > (-1)F Vpye.
OCYCE Y#E

But E & py(P) if Y # E by Proposition 7.9, hence E Z py¢(X). In other words,
py € Hp(X), so that

FrFj=(p) = ¢ (mod Hp(X)) .

Composing with the canonical map ¢ : Fp(X) — Fp(X)/Hp(X) and writing
q(¢) = @, we obtain

0FFjr(9) = qFxFi=(9) = q(¢) = 7,
as was to be shown.
(c) This follows immediately from (b).

(d) This follows immediately from (b) and the obvious equality Fj-~qF, =
Fjx Fy.

One of our aims is to show that the idempotents j™m are orthogonal. In order
to understand the product of two idempotents j%0 and j™7 we need to have more
information about #j™. This is the purpose of our next three propositions, but we
first need a lemma.
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7.12. Lemma. Let Q be a pole lattice, let 0 € Surp (T, Q), and let [t1,ta]T be an
interval in T'. For every q € Q, define

UT=6""(q) N[tr,to]r = {a € [, ta]7 | 8(a) = q)} € [tr, t2)7
Let g1 = 0(t1) and assume that Uq1 is not reduced to the singleton t1. Then for

each q € Q, we have Z (t1,a) = 0.
acU4

Proof : The result is obvious if U? = (3, so we assume that U? is nonempty. Since
all elements of U? have the same image under 6, so has their join and therefore U4
has a supremum

u? =sup(U?) € U?.
Now we have [t1, 2] = UzeqU? and, by assumption, U% = [t1, u? ]y is a nontrivial

interval, so that
Z p(ti,a) =0.

acUN
This is the starting point of an induction argument. We fix ¢ € @) and we assume

by induction that Z wu(t1,a) = 0 for every r € @ such that g1 < r < g. Then we

acU"™
obtain
0= > utna= 3, ) ot
a€lty,ul]p q1<r<q a€U"
= D utua+ 3 Y plta)
acU4 q1<r<q acU"™
= Z :u(tlva) )
acU1
using the induction assumption. This completes the proof. 0

7.13. Proposition. Let 7 € Surg (T, P) and 6 € Surs(T,Q), where P and Q
are pole lattices, and let j™ : P — T be the morphism defined in (7.4). Suppose
that 05™ # 0. Then the restriction of 0 to the subset B = Im(w°P) is injective. In
particular, |P| < |Q)|.

Proof : Let E = Irr(P). By the definition of j™, we have

07 = ()P uBm A 0E = Y (C0E Y wB ).
A A

P:P—Q
0ja=y

Now fix some morphism ¢ : P — @ and, for every e € E and every ¢ € @, define
Ud =6 @) N b0 )r ={a € [b7, 0] | 6(a) = @)} C [z, 08 )7

e’ ”’e er’e er’e

Here, we write B = {b, | p € P}, as before. Then, since a join-morphism from P is
entirely determined on E = Irr(P), we have

0i%7 =1 < ji(e) e Ul Vee E < a.c U VeecE .

In particular, if ¢ appears in the expression of 5™, then Ul © # () for every e € E.
It follows now that the coefficient of 1 is, up to sign, equal to

SouBmA=TI( X ner.a).
ejf:w e€E 4 cyt®

Suppose that 6jp : B — @Q is not injective. Then we want to prove that the

coefficient of v is zero. This is the case if er(e) = () for some e € E, because we
get an empty sum, which is zero. So we assume that ud © # () for every e € E.



SIMPLE AND PROJECTIVE CORRESPONDENCE FUNCTORS 25

The noninjectivity of §|p implies that there exist two adjacent elements w < y in P
such that 0(b,) = 6(b,). There are three cases.

Case 1. y € E; and w = r(y). Then b,, = b, and b, = b;r. Choosing a € Ugj(y),
we obtain
0(bw) = 0(b,) <q 0(a) <q 0(b,) = 0(by)
hence 0(b, ) = 0(a) = 0(b;;). Since 6(a) = 1 (y), it follows that the whole interval

[b , b} )7 is mapped to ¢ (y) under 6, that is, [b,bF]r = Uy ™). But then

Z /L(b;’ay):(),

ayeU;p(y)

by the definition of the M&bius function (because b, # b;‘ ). Therefore the coeffi-
cient of v is zero.

Case 2. w € Ep and y = s(w). Then b,, = b, and b, = b};,. Choosing a € Uff(w),
we obtain
0(bw) = 0(b,,) <q 0(a) <q O(b;) = 0(by) ,
hence (b)) = 6(a) = 6(b). Since 6(a) = ¥(w), it follows that the whole interval
(b2, bF]r is mapped to ¥ (w) under 6, that is, [b, b+]r = UL™). But then

wr rw wr W
Z M(b;’ aw) =0,
aweU:é’(w)
and the coefficient of 1) is zero.

Case 3. y € Ey and w = r(y). Let z = ¢ be the twin of y, so that b, = b,.
Since w < z, we have b, < b, and

0(by v b.) = 0(by) V O(b.) = 0(by) V 0(b) = 0(by V b.) = 0(bs) .

Letting g1 = 6(b.), we see that UJ* contains both the minimal element b, = b, of
the interval [b7, b} |7 and another element b, Vb, because b, < b, Vb, < by, = b}.

zr7z

Thus the assumption of Lemma 7.12 is satisfied and it follows that
Z p(d;,az) =0.
a.eUy®

Again the coefficient of 9 is zero and we are done.
This completes the proof of the injectivity of 65 : B — (). Since 7°P is injective
(by Lemma 2.5), its image B has cardinality |P| and therefore |P| < |Q)|. 0

Let @ be a pole lattice and x € Surz (7T, Q). Using a slightly abusive notation, it
is convenient to define Ker(jX) to be the kernel of left composition with jX. More
precisely, for our fixed lattice P, we let Ker(jX) be the kernel of the k-linear map

kL(P,Q) — KL(P,T), ¢ = %Y.

We use this notation in the rest of the present section.

7.14. Proposition. Let © € Surg (T, P) and 6,x € Surg(T,Q), where P and Q
are pole lattices. Suppose that jX05™ £ 0.
(a) There exists a unique isomorphism T : P — @Q of lattices such that
05" =7 (mod Ker(jX)) .
(b) Moreover, 0(b,) = 7(p), for all p € P (where b, = b = 7°P(p), as before).
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Proof : We assume that jX0j™ # 0, and in particular 65 # 0. Let F = Irr(P)
and write first

07 = ()P Y uBm 0g= Y (0P Y wBmA)w
A P:P—Q A

05a=1

Let ¢ : P — @ be a map appearing with a nonzero coefficient in the expression
of 5™ and let A be such that 6% = 1. Since jX0;57 # 0, we can also assume that
1 is such that jXi # 0. Proposition 7.7 implies that the function ¥ : P — @ must
satisfy Irr(Q) C (P). Since ¢ = 657 is a join-morphism and Irr(Q) generates @Q,
the map 1 : P — @ must be surjective. By Proposition 7.13, 8™ # 0 implies that
|P| < |Q|. Therefore |P| = |Q|. It follows that ¢ is a bijective join-morphism,
hence an isomorphism of lattices.

Proposition 7.13 also asserts that the map 6jp : B — @ is injective. Since
|B| = |P| = |Q)|, it is a bijection and therefore there is a unique isomorphism
7 : P — @ such that

0(bp) =7(p), VpeP.
For any e € E, we have ¢(e) = 05%(e) = 6(a.) for some a. € [b,,bf]r. If e € Fy,
then b = b, hence
P(e) = b(ae) <q 0(be) = 7(e) .
Therefore e <p ¥~17(e), so that 1~17(e) = e because 1)~!7 is an automorphism
of P, hence height-preserving. Similarly, if e € Ey, then b, = b., hence

7(e) = 0(b) <q b(ac) = ¥(e) ,

so that ¥ ~!7(e) <p e and ¥»~'7(e) = e. This shows that Y|g = T|g, hence ¢ = 7.
Therefore, whenever A is such that jX0;j7% # 0, then 653 = 7. It follows that the
functions 1 which appear with a nonzero coefficient in the expression of 5™ are T
and maps P — @ lying in Ker(j%). 0

In the situation of Proposition 7.14, we can replace § by 6’ := 7710 and jX by
jX' = jX 7. The effect of this is that we are reduced to the case where Q = P and
T = idp, that is,

0(by) =p, VpeP.
For simplicity, we use this reduction in our final result, which is the key for under-
standing the composition of the morphisms we have introduced.

7.15. Proposition. Let 7,0, x € Surg (T, P), where P is a pole lattice. Suppose
that 0(b,) = p for allp € P (where b, = b = n°(p), as before).

(a) If jX05™ # 0, then 6 = 7.

(b) We have
jxejﬂ': jX Zf0:7r7
0 ifO#£m.

Proof : (a) By Proposition 7.14, we have 6™ = idp (mod Ker(jX)), because the
automorphism 7 is the identity by assumption. Moreover, as in the proof of the
previous propositions, the coefficient of idp in the expression of 657 is equal to

CORIED SRR ENCIE | (D DRTCS) P

A ecE a.€cU,
0ja=idp

where we write simply

Ue:=U ={a€[b,,bf]r|0(a) =e} C[b,bF]r .

er’e
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Since the coefficient of idp in the expression of 85™ is nonzero (it is 1), every sum
Ya.cu, H(b; s ac) is nonzero, and in particular U, # 0.
As in the proof of Lemma 7.12, U, has a supremum u, € U,. We also define

Ve :={a€ by ,0f]r [ 0(a) <pr(e)}
so that [b_, ue]7 = Ve U U, because any a <t u, satisfies 8(a) <p e, hence either
0(a) < r(e) or O(a) = e. There are two cases.
Case A. V. = ). Then U. = [b;,uc]r. The nonzero sum ), ., pu(b;,ac)
forces b, = u., hence U, = {b, }.
Case B. V. # (). Then again V, must have a supremum v, € V,, so that
Ve = [b,,ve]r and v, < u.. In that case, we obtain

0 7& Z N(b;’ae) = Z M(be_vafi) - Z ;U'(be_vae) - — Z ,U*(be_vae) )

a.€U, ac€[bs ,ue]r ac€Ve ac€Ve

because the sum over [b., ue]r is zero since b, <r v, <t u.. Therefore

Z M(be_aae) = Z M(be_7ae) 7é 0

aeE[b;er]T ac€Ve
and this forces b, = v,, hence U, =]b_ , u,].

By assumption, we know that 6(b.) = e for all e € E, hence b, € U,. If e € Es,
then b, = b_, hence b, € U,. This forces to be in case A and therefore we obtain :

Case A. U, = {b.} if e € E.

If e € Fy, then b, = b, hence b} € U.. This forces to be in case B with
moreover u, = bf. Since by = by(), we get :

Case B. U. =b,(c), be] if e € E1.

Let ¢, = 6°P(p) = sup (9_1(}9)) (that is, ¢, = bg using Notation 7.1). Since
we assume that 6(b,) = p, we have b, <7 ¢, for all p € P. We now prove that
b, = ¢, by descending induction in the lattice 7', starting from the obvious equality
by, = 1r = cg,- For simplicity, we write < and < for the order relation in T
Suppose now that p € P and b, = ¢, for every ¢ > p. We have to discuss three
cases.

Assume that p = r(e) with e € E;y. Then b, < ¢, < ¢ = b, hence ¢, €
[br(e), be]T = {bp} LU (Case B). But 0(c,) = p # e, so ¢, & U,. Therefore c, = b,.

Assume that p € Es. Then

b; = bp < < Cs(p) = bs(p) = b;’; .

Therefore ¢, € [b,,b} |7 = UpUlb, , b |7 (Case A). Since 6(c,) = p, we have ¢, €
Up = {bp}, hence ¢, = by.

Assume now that p = e A é where e € Ey with twin é. Then b, = ¢, and bs = cg.
Thus we obtain

bp:be/\é:be/\bé:ce/\cé:ce/\é:cpa

as was to be shown. We have now covered all cases, completing the proof that
b, =c, forall p € P.

Now we obtain 6°P(p) = ¢, = b, = w°P(p) for all p € P, hence §°7 = 1°P. Passing
to the opposite, it follows that § = 7, as was to be shown.

(b) We now know by (a) that § = m whenever jX05™ # 0. Moreover, in that
case, Proposition 7.14 implies that 757 is the sum of idp and an element of Ker(5X),
using our assumption that 6(b,) = p, for all p € P. Applying jX, it follows that
T = . 0
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Keeping our fixed finite lattice T, we now allow the pole lattice P to vary.

7.16. Notation.

(a) Polr is a set of representatives of isomorphism classes of pole lattices P
such that Surg (T, P) is nonempty (hence in particular |P| < |T|, so that
Polr is finite).

(b) For any P € Poly, the group Aut(P) acts on Surg(T, P) (by composition)
and we let Surg (T, P) be a fized chosen set of representatives of the orbits.

(c) If x,0 € Surg(T, P) and 7 € Aut(P), we define

fxro=3%10:T —T.

In particular, fridp,~ = 77 is the idempotent of Proposition 7.11.

7.17. Remark.

(a) Let X' = ox € Surg(T, P) be the image of x under the action of o, for
some o € Aut(P). Then jX' = jXg~1. This is proved by going back to
Notation 7.1 and using the associated elements by = x°P(p), respectively

by = X" (p) = XP(@” () = xPo T (p) = b1y,

from which the associated morphism jX, respectively jX/7 is constructed, as
in (7.4). It is then elementary to check that X = jxo1,

(b) Changing the choice of orbit representatives has the following effect. Let
X' = ox € Surs(T,P) and 0" = pf € Sur,(T, P), where o,p € Aut(P). Tt
follows from (a) that we obtain jX o7p~ 10" = jX70.

(¢) In particular, fridp.» = j7m is independent of the choice of 7 in its Aut(P)-
orbit.

Now we come to the crucial relations among the endomorphisms f, .

7.18. Theorem. Let T be a finite lattice and let P,Q € Poly.

(a) Let x,0 € Surg(T,P) and 7 € Aut(P). Let also 7,k € Surgs(T,Q) and
o € Aut(Q). Then

TO,K if P= and (9:7r,
fx,‘rﬂ fw,a,ﬁ = {fX7 i f Q

0 otherwise .

(b) When P varies in Poly and m varies in Surz (T, P), the idempotents fridp x
are pairwise orthogonal.

Proof : Let \' = 7' € Surz (T, P), so that jX" = jX7, by Remark 7.17. If P # Q,
there is no isomorphism between P and @, by our choice of Poly. Therefore we
obtain jxlej” = 0, by Proposition 7.14. It follows that

fx,r,@ .fﬂ',a,/{ = jXTGjﬂ—O'Ii = jX,ngFO-K =0.

So we now assume that P = Q. Suppose that f, r¢ fr.ox 7 0. In particular,
JXT05™ #£ 0, that is, jXIHj7T # 0. By Proposition 7.14, there is a unique isomorphism
p: P — P such that ;7 = p (mod Ker(jX')). Let @ = p=10 and x” = p~'y/,
hence jX” = jX/p = jX7p. Then we obtain

0 # X057 = jXr05™ = Xrpp~ 67 = X 05" .
Moreover, since 857 = p + h with jxlh = 0, we have jX”p_lh = 0. Therefore

"

07 = o205 = idp+p~'h —idp (mod Ker(j¥")) .
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The uniqueness of the automorphism in Proposition 7.14 also implies that we have
¢'(by) = p for all p € P (where b7 = 7°P(p), as before).

We are now in the assumptions of Proposition 7.15 for 7, 6/, and x”. We deduce
that 8’ =, so that § and 7 belong to the same orbit under the action of Aut(P).
But # and 7 belong to a chosen system of representatives Surg (7, P). Thus we
must have p = idp and 0 = 7.

It now follows that we can write 8™ = idp +h, where jX,h = 0, that is, jX7h = 0.
Therefore

frr 0 frow = 3X105" 0k = jX7(idp +h)ok = jXToKk = fy romx

as was to be shown.
(b) This follows from (a). 0

8. Subalgebras corresponding to pole lattices

In this section, we show how the results of Section 7 imply some precise information
about the structure of the endomorphism algebra Endg(7T') of a finite lattice T,
where k is a commutative ring.

We continue to use Notation 7.16, so P is a pole lattice running through the set
Poly and Sur, (T, P) denotes a set of representatives of Aut(P)-orbits in Sur (T, P).
Let M, r,py(k Aut(P)) denote the matrix algebra of size n(T, P) = [Sur (T, P)],
with rows and columns indexed by the set Sur. (T, P), and coefficients in the group
algebra k Aut(P). If x,0 € Surg (7T, P) and 7 € Aut(P), we let m, ¢ denote the
elementary matrix having coefficient 7 in position (x, ) and zero elsewhere.

With this notation, we can now state a main result, which was already obtained
in [BT3] in the special case when P runs over totally ordered lattices.

8.1. Theorem. Let T be a finite lattice. For each P € Polr, let Surs (T, P) be a
set of representatives of the orbits for the action of the group Aut(P) on Surg (T, P)
and let n(T, P) = |Surg(T, P)|.

(a) The map
Ir: @ Myrp)(kAut(P)) — Endpe(T),  myr = froro
PePolr

is an algebra homomorphism (without unit elements).

(b) Zr is injective.

(¢) The image of Ir is equal to the subalgebra Ep (without unit element) of
Endyz(T) having a k-basis consisting of all join-morphisms T — T whose
image is a pole lattice.

Proof : (a) Let P,Q € Poly. If P # (), then m, ¢ and m, ., are not in the
same block, so their product is 0, while the product fy r¢fr o« is also zero. If
P = @, then the relations of Theorem 7.18 are the standard relations within a
matrix algebra of size n(T, P) with coeflicients in the group algebra k Aut(P).

(b) Since the elements m, ¢ form a k-basis of @ pcpyy, Mn(r,p)(k Aut(P)), it

suffices to prove that their images fy ¢ are k-linearly independent. Suppose that

Z )\X,T,e fx,7’,0 =0 ;

X,T,0



30 SERGE BOUC AND JACQUES THEVENAZ

where A, -4 € k. Multiplying on the left by fr ia, . and on the right by fr »», we
are left with the terms for which x = x and § = w. Therefore we obtain

E )\I{,T,’Tl' fﬂ',idp,li fko,T,ﬂ' fw,a,fr = § )\n,’r,fr f7r,To',7r =0.
T T

Now, by Definition 7.4, fr ;o = j77Tom is a linear combination of distinct maps
T — T, one of them being j7,_7ow, appearing with coefficient 41, where we use
Notation 7.1 and set B~ = (b )ccg. We claim that the functions j7_7o7m are
pairwise distinct when 7 varies. This implies that each coefficient A, . must be
zero, proving the required linear independence.

To prove the claim, we write for simplicity p = 7o and we allow p to vary. The
group Aut(P) is isomorphic to Cy x Cy X ... x Cy, where each Cy acts by exchanging
two twin elements of Ey and fixing the others (where E = Irr(P), as before). So
we consider some e € E5 and we let € be its twin. Then we get

be if ple) =e,

Jp-pmlbe) = jp-ple) = by = {bv it ple) = &

We see that the functions j%_ pm are pairwise distinct when p varies, proving the
claim.

() It is clear that Er is a subalgebra. Moreover, every map j is a join-morphism,
where A is a family as in Lemma 7.3. Therefore jX76 is a join-morphism whose
image is a pole lattice, by construction. It follows that f, - ¢ = jX70 belongs to Er
and hence Im(Zr) C &r.

Now we want to show that £ has a k-basis consisting of all morphisms ¢y
described as follows. First we fix P € Poly and we let

O\, re = ATT P

where m € Surg(T,P), 7 € Aut(P), A € Inj (P, T), and where Inj,(P,T) de-
notes a set of representatives of Aut(P)-orbits in Inj.(P,T). If ¢ : T — T is a
join-morphism whose image is isomorphic to P, it is the composite ¢ = A7 of a
surjection 7 € Surz (T, P) and an injection \e Inj-(P,T). By our choice of orbit
representatives, we have 7 = 77w where 7 € Surg (7T, P) and 71 € Aut(P), and
similarly X\ = Ay where A € Inj(P,T) and 75 € Aut(P). Then ¢ = A7 = Ox 7o
where 7 = m»71. It follows that

{orrn | mESW,(T,P), A€ Inj.(P,T), 7 € Aut(P)}

is a k-basis of the submodule 7 p generated by all endomorphisms whose image is
isomorphic to P. Allowing P to vary in Poly, we deduce that

B= |J {orrn|meSus(T,P), A€ j,(P,T), 7 € Aut(P)}
PePolr

is a k-basis of Ep = EBPGPO]T Er.p.
On the other hand, it follows from (a) and (b) that

B = |J {fcrolx.0€Surc(T,P),7 € Aut(P)}
PePolr

is a k-basis of Im(Zy). By Lemma 2.6, there is a bijection between Inj,(P,T)
and Surg (T, P). We can also choose representatives to obtain a bijection between
Inj.(P,T) and Surz (T, P), because Aut(P) acts freely on each side. Therefore B
and B’ have the same cardinality. In other words Im(Zr) and Er are free k-modules
of the same rank. We want to prove that the inclusion Im(Zy) C & is an equality
(which is obvious if & is a field since the dimensions are equal).
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We now allow the base ring k to vary and we write a superscript (k) to emphasize
the dependence on k. Thus we have an injective algebra homomorphism

IV P Mur,py(kAut(P)) — X C Endye(T)
PePolr

and we let X*) := Eék) / Im(I(Tk))7 so that we have a short exact sequence

Jk

0 — Im(Z{M) gl P x®) 0,

where jj is the inclusion map and pj the canonical surjection. In the case of the
ring of integers Z, we see that X' is a finite abelian group, because Im(I(TZ)) and

5}2) are free Z-modules of the same rank. Tensoring with k is right exact, so we
obtain an exact sequence

kom(T?) 2% o e® P g x® — .

Using the canonical bases B and B’ of Im(Iéwk)) and E}k) respectively, we see that
ko Im(ZP) 2 Im(z¥)  and kol =l

Moreover the map 1 ® jz corresponds, under these isomorphisms, to the inclusion
map ji. In particular, considering the prime field I, for any prime number p, we
obtain an exact sequence

Im(Z37) 2 g 2P p g @

Since I, is a field and the dimensions are equal, the inclusion map jr, is an equality.
Therefore F, ® X® = {0} and this holds for every prime p. Thus we must have
X% = {0}, because X?) is finite, so that the inclusion map jz, : Im(I;Z)) — E;Z) is
an equality. Tensoring with &, it follows that the inclusion map jj : Im(I;k)) — 5¥€>
is an equality as well, as required. 0

8.2. Remark. Let B and B’ be the two bases of &y = Im(Zr) described in the
proof. The change of basis from B to B’ is not obvious. By construction, every map
Jx70 belongs to B, but beware of the fact that if 6 and x belong to Sur. (T, P),
then j%76 may be a composite T — P’ — T for some pole lattice P’ smaller
than P. This is because, in the construction of j%, the family A = (a.)cer does
not necessarily consist of distinct elements (where E = Irr(P) as before).

The image under Zz of the identity element of B pcpyy,. Mn(r,p)(k Aut(P)) is
an idempotent er of Endy,(T) and et is an identity element of 7. We now prove
more.

8.3. Theorem. For every finite lattice T, let Er = Im(Zr) be the subalgebra
of Endy.(T) appearing in Theorem 8.1, and let er be the identity element of Er.

(0,) er = Z Z fﬂ',idp,ﬂ'-
PePolr reSur, (T, P)

(b) For any finite lattice T' and any morphism o« € Homy,(T,T"), we have
aer = epra. In other words, the family of idempotents e, for T € L, is a
natural transformation of the identity functor idgc.

(¢) er is a central idempotent of Endy,(T).

(d) The subalgebra Erp is a direct product factor of Endis(T), that is, there
exists a subalgebra D such that Endg,(T) = Ep x D (where Er is identified
with Er x {0} and D with {0} x D, as usual).
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Proof : (a) The identity element of @ M, r,py(k Aut(P)) is equal to
PePolr

§ E Myidp,n -

PePolr reSur, (T, P)
Taking its image under Zr yields the required formula.

(b) We have seen in the proof of Theorem 8.1 that every element of the canonical
basis B of &r has the form ¢y .. = Arm, where 7 € Surg (T, P), A € Inj (P, T)
and 7 € Aut(P). Passing to the opposite, we obtain

op __ .op_opyop __ ,op,_—1lyop
Oxrg = TPTPAP = PT72X

with 7P € Inj,(P°P,T°P) and A°P € Sur. (TP, P°P). Tt follows that the opposite of
the canonical basis element ¢y ;» of &7 is the canonical basis element @ op ;-1 yop
of Epop. Therefore, the opposite of the identity element er of & must belong
to Erop. Moreover, it must be the identity element of Erop, because taking opposites
behaves well with respect to composition. Therefore (e7)°? = erop.

Now if o : T — T" is a join-morphism (i.e. « is in L), then the image of a pole
sublattice of T is a pole sublattice of T". It follows that composition with o maps
er to a linear combination of join-morphisms with a pole lattice as an image, hence
invariant under the idempotent element er/. In other words, we have

aer =erraer .

Applying this equation to 7'°?, T°P, and the morphism a® : T'? — TP, we
obtain a°P erop = epop a°P eqrop. Passing to opposites and using the above equality
(er)°P = eqor, We get

err Xer = et (.
The two displayed equations yield cer = epra. This holds as well if « is replaced
by a k-linear combination of join-morphisms (i.e. « is in kL), as was to be shown.

(c) This is a special case of (b).

(d) This follows immediately from (c). 0

9. Correspondence functors for pole lattices

In this section, we first consider the special case of the endomorphism algebra of a
pole lattice Q. We determine completely the structure of this algebra. Applying
then the fully faithful functor T' — Fr, we deduce a direct sum decomposition of
the correspondence functor Fy, providing an explicit description of Fg for any pole
lattice Q. In particular, when k is a field of characteristic different from 2, Fy is
semi-simple. At the end of the section, we return to an arbitrary finite lattice T
and describe direct summands of Fp corresponding to pole lattices inside 7. The
results are generalizations of those obtained in [BT3] in the special case of totally
ordered lattices.

9.1. Theorem. Let () be a pole lattice.
(a) The homomorphism of k-algebras of Theorem 8.1
IQ : @ Mn(Q_’p)(k Aut(P)) — Endk[;(Q), My,7,0 > fX’T,g ,
PEPOIQ

s an isomorphism.
(b) In particular, if k is a field and if either Q is totally ordered or if k is a
field of characteristic different from 2, then Endg.(Q) is semi-simple.
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Proof : (a) Since any join-morphism ¢ : @ — @ has an image which is a pole
lattice, the subalgebra &g of Endi.(Q) appearing in Theorem 8.1 is the whole
of Endyz(Q). Therefore, the homomorphism Zg is surjective. By Theorem 8.1, Zg
is injective, hence an isomorphism.

(b) If @ is totally ordered, then so is each P and Aut(P) is the trivial group. Thus
we get matrix algebras M, g, py(k). If Q is not totally ordered, then each Aut(P)
is a 2-group (and at least one of them is nontrivial, namely Aut(Q)). The group
algebra k Aut(P) is semi-simple when the characteristic of k is different from 2
(Maschke’s theorem). Therefore any matrix algebra M, (k Aut(P)) is semi-simple
and it follows that the direct sum is semi-simple as well. 0

Now we consider the central idempotents of Endg.(Q) corresponding to the
above decomposition into matrix algebras.

9.2. Notation. For any pole lattice P € Polg, set
BQ,P = Z f7r,idp,7r .

meSur, (Q,P)

In particular, when P = @, then Surg(Q,Q) = Aut(Q) and Surs(Q, Q) is a sin-
gleton which can be chosen to be {idg}. We then define

£q = Bq.qQ = fidg,ido.idg = jide = Z (—D)E Yy,
0CYCE

using Proposition 7.9, with E = Irr and py € End defined by (7.8).
g Prop : (@) p c(Q) defined by (7.8)

9.3. Proposition. The elements Bg,p, for P € Polg, are orthogonal central
idempotents of Endy,(Q), and their sum is equal to the identity. In particular, the
central idempotent e satisfies

e Endis(Q) = k Aut(Q) .

Proof : For every m € Surs(Q, P), the inverse image of fr 4, » under the al-
gebra isomorphism Zg of Theorem 9.1 is the matrix my jq, » of the component
M, g, p)(k Aut(P)) indexed by P. Summing over all 7 € Surz(Q, P), it follows that
the inverse image of Bq p under Zg is the identity element of M, p)(k Aut(P)).
The first statement follows.

In the case P = @, we know that Sur,(Q, Q) is a singleton, so that the cor-
responding matrix algebra has size 1. The inverse image of ¢ under Zy is the
identity element miq,, idg,id, Of the component M (k Aut(Q)) = k Aut(Q). Clearly
£q Endys(Q) = Mi(k Aut(Q)) = k Aut(Q). U

We want to use the fully-faithful functor F; : kL — Fj (see Theorem 3.6) to
deduce information on the correspondence functor Fip. We already know that Fg
is projective, because the pole lattice @ is distributive (see Theorem 3.6). We apply
the functor F» : kL — Fy, to the map j™ € Homy, (P, Q) defined in (7.4), where

m € Surz(Q, P). By Proposition 7.7 we obtain a morphism
Fj‘rr : Fp — FQ

which vanishes on Hp, where Hp is defined by (7.6). By Proposition 7.11, this
induces an injective morphism

Fj‘lr ZFP/HP —)FQ
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which embeds Fp/Hp as a direct summand of F, corresponding to the idempotent
fridp,x = j7m. In particular, for P = Q, we have fiq,,idg,ido = jlde = eq and we
obtain an idempotent endomorphism F;, of Fp with kernel Hg,.

9.4. Theorem. Let Q) be a pole lattice and define S := Fo/Hg, where Hq is
defined by (7.6).

(a) Sq is a projective correspondence functor.
(b) There are isomorphisms of correspondence functors

FeoFg = Sq,
Fgo n Fo ST};(Q’P) , for each P € Polg ,

n(Q.P)
Fg P sp.
P€ePolg

1%

1

Proof : (a) Since the pole lattice @ is distributive, Fy is projective (Theorem 3.6).
Therefore so is its direct summand Sgq.

(b) Since the functor F; : kL — Fy, is fully faithful (Theorem 3.6), it induces an
isomorphism of k-algebras

Endkﬁ(Q) = End]:k (FQ) .

Now the idempotents fr idp.» of Endg,(Q), for m € Sur(Q, P) and P € Polg, are
orthogonal and their sum is equal to the identity, by Theorem 9.1. It follows that
the endomorphisms Fy,_ ., of Fg are orthogonal idempotents, and their sum is
the identity. Hence we obtain a decomposition of correspondence functors
FQ = @ Ffw,idp,w (FQ) .
P€Polg

meSurg (Q,P)
By surjectivity of 7 : Q@ — P, the image of Fy_,, . = Fj=F; : Fo — Fq is
equal to the image of Fj~ : Fp — Fg. Therefore Fy ., (Fg) = Fj=(Fp). By
Proposition 7.11, the image Fj~ (Fp) is isomorphic to Sp = Fp/Hp and it follows
that

Ffvap(FQ) =Sp .
Taking P = Q and fiag.idg,ido = jide = €q, we obtain the first isomorphism
F.,Fg = Sq. Summing over all m € Surg(Q, P) for a fixed P, we obtain the

second isomorphism. Finally, summing over all P € Polg and all 7 € Surg(Q, P),
we obtain the third isomorphism. O

9.5. Corollary. Let P and P’ be pole lattices. Then

_ [ {0} ifP#P,
Homz, (Sp,Spr) = { kAut(P) ifP=P'.

Proof : Since Sp & F, . Fp, the case P = P’ follows from Proposition 9.3. Now if
P 2 P’ it is easy to choose a large enough pole lattice Q such that Sur.(Q, P) # 0
and Surg(Q, P') # 0. Using the central idempotents g p and Sg pr of Proposi-
tion 9.3, we obtain

Hom]:k(FﬂQ,PFQ’F/BQTP/FQ) = HOII]}‘}C (SP7SP,)R(Q7P)H(Q7P') .
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Since Fp, , and Fp, , are central idempotents of Endz, (), and since they are
orthogonal if P % P’, it follows that Homz, (FBQ,PF@F%‘P,FQ) =0if P2 P,
hence Homg, (Sp,Sp/) = {0}. 0

9.6. Remark. Corollary 9.5 actually holds for the fundamental functors associ-
ated with any two finite posets. This more general result will be proved in another

paper.

Now we prove that the functor Sg is actually isomorphic to a fundamental functor
and we compute the ranks of all its evaluations.

9.7. Theorem. Let Q) be a pole lattice and let R be the order relation on the set
E =Trr(Q) of irreducible elements of Q. Let Sg = Fg/Hg.

(a) Sq is isomorphic to the fundamental functor Sg, ger.
(b) For any finite set X, the k-module Sg(X) is free of rank

|E|

rank(Sq (X)) = Z(—w‘(

=0

E|
i

RS

Proof : (a) We use the element vger € Fo(E®) defined in (3.9), where E* =
Irr(Q°P). By a well-known result of lattice theory (Theorem 6.2 in [Ro]), the dis-
tributive lattice Q°P is isomorphic to I (E°, R%), where R is the order relation
on EY viewed as a subset of QP so that (EY, R?) is the poset of irreducible ele-
ments in Q°P. Note that the isomorphism Q°7 = I|(E°, R?) can also be checked
easily and directly because Q°P is a pole lattice. Recall that

Yoor = Y (=D)MIng
ACE®
where 1% : E° — @ denotes the same map as 1 : E° — Q°P and 7 is defined by

s(e) ifeV e A,

0 0 0y __
Ve EE,T}A(e)—{eo ifeO¢A,

because 7(e”) in the lattice QP is equal to s(e”) in the lattice Q.
Now we define w : E° = Q by

s(e?) ife’ € EY
w(eo):{ e(g ) ifeoéEéJ

and we notice that w is actually a bijection between E° and E = Irr(Q), because
in a pole lattice we have F; = s(EY) and E; = ES (by an easy application of
Lemma 2.1). Then w € Fo(E°) and when we apply the idempotent F., we claim
that we obtain

(9.8) Fog(w) = (=1)Frlyge

The definition of e¢ (see Notation 9.2) yields

F.o(w)=equw= Z (—1)E Yoy

YCE
The definition of py in (7.8) splits into two cases. If ¢® € EY, then

(py w)(e”) = py (s(e")) = { iﬁiiio» = 1§§§§3§ ;— § f
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If now €’ € EY, then
(v o)) =or() ={ Sy oo gy
For each Y C E, we define A C E° by
Y NE; =s(ANEY) and YNEy=Fy— (ANEy).
Thus we have decompositions
Y=(YNE)U(YNE)CE and A=(ANE)U(ANEY) C E°

and A runs through all subsets of E° when Y runs through all subsets of E. If
eV € EY, then

s eYNE, < € ANE)
while if € € EY, then

¢YNE, & " € ANES.

Therefore the two cases merge into one and we obtain

v o)) ={ o) o E

so that py w =n.
As far as the signs are concerned, we have

|E—Y|= B~ (YNE)| +|B:— (YN Ey)| = |E} — (AN EY)| + |AN B3],
hence
(—1)EYT = ()L ()l ANELL L (L) ANES] — ()l ()il

It now follows that

Fow) = S (-1)F Yy
YCE
= (=)=l Z (_1>\A|77104
ACED

This proves Claim 9.8 above.

Now Fy is generated by w € Fg(E®), because it is generated by ¢ € Fp(E)
(where ¢ : E — Q is the inclusion), hence also by any injection from the set E°
to @, by composing ¢ with a bijection between E° and E. Since F, is an idempotent
endomorphism of the correspondence functor Fg, we see that F., Fg is generated by
F.,(w). In other words, in view of Claim 9.8 above, F;, Fy is generated by ygor €
Fo(EY). Now Theorem 3.10 asserts that the subfunctor of Fy generated by yger
is isomorphic to Sgo ro, where (E°, R°) is the poset of irreducible elements in Q°P.
But (E° R°) = (E,R°P) via the map w : E° — E described above. Therefore,
using the isomorphism of Theorem 9.4, we obtain

SQ = FEQFQ = <7Q°”> = SED,RO = SE’ROp :

(b) By Definition 7.6, the canonical k-basis of Sq(X) = Fo(X)/Hg(X) is the
set Z(X) of all maps ¢ : X — @ such that £ C ¢(X) C Q. Therefore Sg(X) is free
of rank |Z(X)|. The number of maps in Z(X) has been computed in Lemma 8.1
of [BT2] and the formula is actually well-known. The formula asserts that this rank

is equal to
2]

2001 = L0 ()o@ -
i=0
as required. 0
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9.9. Remark. In view of the projectivity of Sg (Theorem 9.4), the isomorphism
Sq = Sk, rer provides another proof of the projectivity of the fundamental functor
Sg,ro» whenever (E, R°P) is a pole poset. This was first proved in Theorem 5.1.

9.10. Remark. The formula for the rank in Theorem 9.7 is a special case of the
general formula proved in [BT4] for the rank of the evaluation of any fundamental
functor. We have given here a direct proof in the case of a pole lattice because it
is easy, while the proof in the general case is much more elaborate.

When £k is a field, we get even more.

9.11. Corollary. Let k be a field. Let Q be a pole lattice and let (E, R) be the
poset of irreducible elements in Q.

(a) For any simple k Aut(Q)-module V', the functor Sq @ aut(q) V is simple,
isomorphic to Sg ror v .

(b) The correspondence functor Sq is projective and injective.

(c) If either Aut(Q) is trivial (which occurs if Q is totally ordered) or if the
characteristic of k is different from 2, the correspondence functor Sg gor v
1s simple, projective, and injective.

(d) Under the assumption of (c), Sq decomposes as a direct sum of simple (and
projective) functors

Sq = @SE,ROP,V .
1%

where V' runs over simple k Aut(Q)-modules up to isomorphism.
(e) Under the assumption of (¢), Fq decomposes as a direct sum of simple (and
projective) functors

Fo = @ @(SEP,R;P,VP)MQ’P),

PEPOIQ Vp

where (Ep, Rp) denotes the poset of irreducible elements in P and where
Vp runs over simple k Aut(P)-modules up to isomorphism.

Proof : (a) Using Lemma 2.1, it is easy to check that Aut(Q) = Aut(E,R) =
Aut(E, R°P), so V is a k Aut(E, R°?)-module. Recall that the fundamental corre-
spondence functor Sg, ger has a right k Aut(E, R°P)-module structure (in the sense
that each evaluation Sg ror (X) is a right k Aut(E, R°?)-module, in a compatible
way with all morphisms, which act on the left). Moreover, by Proposition 3.4, we
know that the simple functor Sg ger v is obtained from the fundamental functor
SEg,ror by simply tensoring with V' :

SE,Ror v = SE Rov @Au(E,RoP) V5 that is,  Sg Rrerv =Sq Ok au(@) V>
as required.

(b) Sg is projective by Theorem 9.4. Since k is a field, it is also injective by
Theorem 10.6 in [BT2].

(¢) When either Aut(Q) is trivial or the characteristic of k is different from 2,
k Aut(Q) is semi-simple and every simple k& Aut(Q)-module is projective. Moreover,
every simple k Aut(@)-module has dimension 1 because Aut(Q) is an elementary
abelian 2-group (the only roots of unity needed are +1). Therefore we have an
isomorphism of k Aut(Q)-modules

kAut(Q) = P V,

V simple
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where V' runs over all simple k& Aut(Q)-modules up to isomorphism. It follows that

Sq 2 Sq @k au@) FAWMQ) = P S Graw)VE P Serev -
V simple V simple
Since Sq is projective and injective by (b), so is each of its simple direct summands
SE,ROP,V .
(d) The decomposition of Sg was proved above.

(e) The decomposition of Fg follows immediately from (d) and Theorem 9.4.

In the special case of totally ordered lattices, the results of Corollary 9.11 were
already obtained in Corollary 11.11 of [BT3]. Also, notice that (c) provides another
proof of the implication (b) = (a) in Theorem 4.5.

Our last purpose in this section is to find, for any finite lattice T, all the direct
summands of Fp isomorphic to a functor Sp corresponding to a pole lattice P.
Recall that er denotes the central idempotent of Endg.(T") which is an identity
element for the subalgebra & (see Theorem 8.3).

9.12. Theorem. Let T be a finite lattice. For every finite set X, let FR'°(X) be
the k-submodule of Fr(X) generated by all the maps ¢ : X — T such that o(X) is
a pole subposet of T.

(a) F2° = F, (Fr) and this is a subfunctor of Fr.
(b) F£°le is a projective direct summand of Fr, isomorphic to

F;ole ) @ Sp = @ S;(T,P) .

PePolr PePolr
weSur, (T,P)

(c) If Q is a pole lattice, the image of any morphism Fgo — Fr in Fy is con-
tained in FTPOIE, In particular, any subfunctor of Fr isomorphic to the
functor Sq is contained in FR°.

(d) Homz, (F°, Fia —ep (Fr)) = {0} and Homz, (Fiq—eq (Fr), FR') = {0}.

(e) The splitting of the surjection F,, : Fr — F;Ole is natural in T.

Proof: (a) Let ¢ : X — T be a map such that p(X) is a pole subposet of T'. Let Q
be the join-closure of p(X), so that ¢ = ji, where v : X — @ and where j : Q — T
is the inclusion map. It is easy to see that @) is a join-closed pole lattice. Thus
j € Homy,(Q,T) and so j = jeq because eg € Endi.(Q) is the identity morphism
by Theorem 9.1. Now jeg = erj by Theorem 8.3, hence j = erj. Therefore

¢ =jy =erjp =erp="Fe,(p),
proving that ¢ € (Fo, (Fr))(X).
Conversely, if ¢ € (Fe,(Fr))(X), then we can write ¢ = F,,.(¢) = ery where
1 is a k-linear combination of maps X — 7. Since er is, by construction, a
linear combination of maps whose image is a pole poset, so is ert, proving that
p € FR7°(X).
This shows that Fg)le = F,,(Fr) and the latter is a subfunctor of Fr.

(b) As in the proof of Theorem 9.4, we apply the fully faithful functor k£ — F
defined by T+ Fr. There is a direct sum decomposition of functors

Fr = Fop(Fp) ® Fa _ep(Fr) = FR° @ F o, (Fr) .

The idempotent er is the sum of the orthogonal idempotents fr ia, » of Endgs(T),
for m € Surg (T, P) and P € Polr. It follows that the endomorphisms Ffroiapn
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of Fr are orthogonal idempotents with sum F.,. Hence we obtain a direct sum
decomposition of correspondence functors

F;ole _ FeT (FT) = @ Ffmidpnr (FT) !

PcPolr
weSurg (T,P)

By Proposition 7.11, the image of Fy,_,, = Fj=, is isomorphic to Fp/Hp = Sp
and is projective by Theorem 9.4, proving the result.

(c) Let o : Fg — Fr be a morphism of correspondence functors where @ is a
pole lattice. Since the functor T' — Frp is full, « is the image of a morphism Q — T
in kL, which is in turn a linear combination of join-morphisms f : Q — T. Any
such f has an image which is a pole subposet of T. Therefore, for any function
p: X — @, the image of fy is a pole subposet of T'. It follows that the image of
the map F¢(X) : Fo(X) — Fp(X) is contained in F;OIQ(X). Therefore, the image
of the map F is contained in F2°'° and so the image of o is contained in FR°".

The special case follows from the fact that Sg is a subfunctor of Fi, by Theo-
rem 9.4.

(d) The first statement is a consequence of (b) and (c¢), while the second one
follows from a dual argument. Details are left to the reader.

(e) By Theorem 8.3, the family of idempotents ey, for T' € L, is a natural trans-
formation of the identity functor idgs. Therefore the family of idempotents Fe,.,
for T € L, is a natural transformation of the identity functor id, . ]

9.13. Corollary. Let F be a correspondence functor and let FP°' be the sum of
all the images of morphisms Fp — F, where P varies among pole lattices.

(a) The subfunctor FP°'° is the image of an idempotent natural transformation
erp: F — F, so that FP°'° is a direct summand of F.

(b) Homz, (P9, (id &) (F)) = {0}.

(¢) The idempotent e is natural in F. In other words, when F varies among
correspondence functors, the family of idempotents eg is a natural transfor-
mation of the identity functor Fi — Fi.

Proof : We only sketch the main arguments of the proof. By Yoneda’s lemma
applied to a set of generators of F', there is some index set I and a surjective
morphism from a direct sum of representable functors

m:@krC(— Ei) — F
icl
and each kC(—, E;) is projective. Moreover, kC(—, E;) is isomorphic to Fr, for some
distributive lattice T; (by Lemma 3.7). It follows that there is an exact sequence
Br, P F 0
= iel

where U; is again a distributive lattice for each j in some index set J. Let us
write € for the direct sum of the idempotent endomorphisms of Theorem 9.12,
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independently of the lattices involved. Thus we have a commutative diagram

@FUj H@Fn T F—>0
jedJ 1€l

kT

Pr, —Pr,—+F—0

jeJ iel
where ep : F' — F' is induced by e. It is easy to check that er is an idempotent
morphism and that Im(ep) C FP° because Im(er) = Im(me) and this is the image
under 7 of correspondence functors associated to pole lattices, by Theorem 9.12.
Moreover, any pole lattice P is distributive, so Fp is projective. Therefore any
morphism Fp — F' lifts to a morphism Fp — @, ; F'r, whose image must be
contained in Im(¢). Thus FP°' is contained in 7(Im(e)) = Im(cx).

The proofs of (b) and (c) are similar. 0
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