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1. Introduction

Let T be a finite lattice and let E be the monoid of all join-morphisms from T to T .
If k is a commutative ring, the k-algebra of this monoid is the set kE of all k-linear
combinations of elements of E , with multiplication induced by bilinearity from the
composition in E . This k-algebra is of interest from a combinatorial point of view
because it reflects the structure of T in an algebraic fashion. Moreover, kE plays an
important role in our work on correspondence functors [BT1, BT2, BT3, BT4, BT5],
providing another motivation for the present work.

Let kEtot be the two-sided ideal of kE spanned by the set Etot of all join-
endomorphisms whose image is totally ordered. We proved in [BT2] that kEtot

is generated by a central idempotent etot. In other words, there is a ring isomor-
phism

kE ∼= kEtot ×D ,

where D is a complementary two-sided ideal. We also proved that kEtot is iso-
morphic to a product of matrix algebras over k, hence semi-simple when k is a
field.

Unfortunately, the definition of etot relies on some rather cumbersome construc-
tions. In the present paper, we give a new point of view for this idempotent. We
define an element ftot ∈ kE by means of an easy and explicit formula (see Defini-
tion 2.2), which has the advantage of allowing for computer calculations and which
does not depend on our previous work. Our main result is the following, which is
proved in Section 5.
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1.1. Theorem.

(a) ftot is a central idempotent of kE.
(b) ftot is the identity element of the ideal kEtot.

This implies that ftot coincides with the idempotent etot of our previous paper,
but with a much easier definition. However, no improvement is made here con-
cerning the semi-simplicity result mentioned above, which depends heavily on the
methods of [BT2].

Pole lattices are generalizations of totally ordered lattices and are defined in Sec-
tion 2. They play a role in our work on correspondence functors because they occur
in the semi-simple part of the representation theory developed in [BT5]. Let kEpole

be the two-sided ideal of kE spanned by the set Epole of all join-endomorphisms
whose image is a pole lattice. We proved in [BT5] that kEpole is generated by a
central idempotent epole, so that there is a ring isomorphism

kE ∼= kEpole ×D′

for some two-sided ideal D′. Moreover, we proved that kEpole is isomorphic to a
product of matrix algebras over either k or the group algebra of a group of order 2,
hence semi-simple when k is a field of characteristic different from 2.

In the present paper, we give also a new point of view for the idempotent epole,
but in a conjectural fashion. We define an element fpole ∈ kE by means of a formula
which is analogous to the definition of ftot. We then conjecture the following :

1.2. Conjecture.

(a) fpole is a central idempotent of kE.
(b) fpole is the identity element of the ideal kEpole.

In other words, we conjecture that fpole coincides with the idempotent epole of
our previous paper. Since the formula for fpole allows for computer calculations,
we were able to verify that the conjecture holds in a very large number of cases.

The paper is organized as follows. Section 2 is introductory and contains the
definition of ftot and fpole. The formula for ftot is simplified in Sections 3 and 4,
while the main theorem is proved in Section 5. Section 6 contains an alternative
proof of the equality ftot = etot, using the original approach of [BT2]. Finally
Section 7 deals with the conjecture in the case of pole lattices.

2. Endomorphisms of finite lattices

We first recall some basic facts we need about finite lattices. For the rest of this
paper, T denotes a finite lattice. Most constructions depend on T but we usually
do not include T in the subsequent notation in order to keep it simple. We write ≤
for the partial order of T , ∨ for its join, ∧ for its meet, 0̂ = 0̂T for its least element,
and 1̂ = 1̂T for its greatest element. Recall that an empty join is equal to 0̂, while
an empty meet is equal to 1̂. If x ≤ y, we define the intervals

[x, y] = {z ∈ T | x ≤ z ≤ y} and ]x, y[ = {z ∈ T | x < z < y} .
Recall that, because T is finite, the meet is uniquely determined by the join thanks
to the finite expression

x ∧ y =
∨
a∈T

a≤x,a≤y

a .

In particular, any join-closed subposet S of T is a lattice in its own right, with a
meet induced by its join, but this meet may not coincide with the meet of T . Note
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that S contains 0̂ (the empty join), but not necessarily 1̂. We emphasize that we
shall actually only use the join-semilattice structure of T .

If T ′ is another finite lattice, a join-morphism ϕ : T → T ′ is a map such that,
for any subset X ⊆ T , we have

ϕ
( ∨
x∈X

x
)

=
∨
x∈X

ϕ(x) .

The case X = ∅ yields the property ϕ(0̂) = 0̂. However, a join-morphism need not

respect the meet, and in particular need not map 1̂ to 1̂. We note that, whenever
ϕ : T → T ′ is a join-morphism, its image ϕ(T ) is a join-closed subposet of T ′, hence
a lattice. We let E be the set of all join-endomorphisms of T . This is a monoid for
the composition of maps and we let kE be the k-algebra of this monoid, where k is
a fixed commutative base ring.

Let F be a family of finite lattices, closed under the following two operations :

(a) If S ∈ F and S′ is a join-closed subposet of S, then S′ ∈ F .
(b) If S ∈ F and ϕ : S → S′ is a join-morphism, then ϕ(S) ∈ F .

In particular, F is closed under taking images of join-endomorphisms :

S ∈ F , α ∈ E =⇒ α(S) ∈ F .

We define EF to be the subset of E consisting of all join-morphisms α : T → T such
that the image α(T ) belongs to F . We let kEF be the k-linear span of EF in kE .

2.1. Lemma. kEF is a two-sided ideal of kE.

Proof : Let α ∈ EF and ϕ ∈ E . Since ϕ(T ) is a join-closed subposet of T , it
is clear that αϕ(T ) is a join-closed subposet of α(T ), hence belongs to F . Thus
αϕ ∈ EF . On the other hand, the lattice α(T ) belongs to F and is mapped by ϕ
to ϕα(T ) ∈ F . Therefore ϕα ∈ EF . The result follows by considering k-linear
combinations.

The monoid E is partially ordered by defining, for any α, β ∈ E ,

α ≤ β ⇐⇒ α(t) ≤ β(t) ∀t ∈ T .

It is actually also a lattice via the join

(α ∨ β)(t) = α(t) ∨ β(t) ,

and the induced meet. We are interested in the subposet {α ∈ E | α ≥ id} and

we note that, whenever α ≥ id, the join-closed image α(T ) contains 1̂ because

α(1̂) ≥ id(1̂) = 1̂.
If F is a family of finite lattices as above, we define

HF := {α ∈ E | α ≥ id, α(T ) ∈ F}
and consider its Möbius function µHF (β, α), viewing HF as a full subposet of E .
We then define the element

fF =
∑
α∈HF

∑
β∈HF

µHF (β, α)α ∈ kE ,

which will be our main concern throughout this paper. Since µHF (β, α) = 0 when-
ever β 6≤ α, the second sum actually runs over β ∈ HF such that β ≤ α. In
that case, µHF (β, α) is equal to the reduced Euler characteristic χ̃

(
]β, α[HF

)
of the

poset ]β, α[HF of all endomorphisms γ ∈ HF such that β < γ < α. It is convenient
to add to HF an element −∞, smaller than all elements of HF , so that∑

β∈HF

µHF (β, α) = −µHF (−∞, α) .
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The definition of fF then takes the following form :

2.2. Definition.

fF = −
∑
α∈HF

µHF (−∞, α)α .

We shall be first interested in F = tot, the family of totally ordered lattices,
and the corresponding element ftot ∈ kE . Our main goal is to prove that ftot is a
central idempotent of kE and that it generates the two-sided ideal kEtot. To this
end, we use a series of reductions of the above formula to a much simpler form.
These reductions only work for the family of totally ordered lattices. They appear
in Sections 3 and 4.

Later in Section 7, we shall also consider the family of pole lattices and the
corresponding element fpole ∈ kE . Recall from [BT5] that a pole lattice is a finite
lattice P such that every x ∈ P is comparable to every element of P except at most
one. In the latter case, if x and y are not comparable, then y is called the twin of x
(and x is in turn the twin of y). In other words, x and y have the same height and
we have

P = P<{x,y} t {x, y} t P>{x,y} .

Moreover,

P<{x,y} = P<x = P<y = [0̂ , x ∧ y] and P>{x,y} = P>x = P>y = [x ∨ y , 1̂] .

Clearly, any totally ordered lattice is a pole lattice (with no twins). Some motivation
for working with the family of pole lattices comes from our work on correspondence
functors [BT5], because the part of this representation theory which is semi-simple
is closely related to pole lattices.

To end this preliminary section, recall that the opposite partial order on the
finite lattice T yields the opposite lattice T op, swapping the role of ∨ and ∧, and
with 0̂T op = 1̂T and 1̂T op = 0̂T . Associated with a join-morphism ϕ : T → T ′, there
is its opposite

ϕop : T ′op −→ T op , ϕop(t′) =
∨
t∈T

ϕ(t)≤t′

t .

2.3. Lemma. Let ϕ : T → T ′ be a join-morphism between two finite lattices.

(a) ϕop : T ′op → T op is a join-morphism (that is, a meet-morphism T ′ → T ).
(b) (ϕop)op = ϕ.
(c) If t′ ∈ ϕ(T ), then

ϕop(t′) =
∨
t∈T

ϕ(t)=t′

t = sup{t ∈ T | ϕ(t) = t′} ,

and in particular ϕ(ϕop(t′)) = t′.
(d) ∀t ∈ T and ∀t′ ∈ T ′, we have

ϕ(t) ≤ t′ ⇐⇒ t ≤ ϕop(t′) .

Proof : See Lemma 8.1 and Property 8.3 in [BT2].
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3. Endomorphisms with a totally ordered image

We consider the family F = tot of all totally ordered lattices. Recall that a chain
in T is a totally ordered subset of T . Recall also that

Htot := {α ∈ E | α ≥ id , α(T ) ∈ tot} .
Let σ ∈ Htot and let A := σ(T ) be its totally ordered image. Then A is a chain con-

taining 0̂ (because σ(0̂) = 0̂). Moreover, since σ ≥ id, the chain A also contains 1̂,
hence

A = {0̂ = a0 < a1 < . . . < an = 1̂}
for some n ≥ 0. We let Zn be the set of all chains of size (n+ 1) in T whose least

element is 0̂ and greatest element is 1̂ and we set Z :=
⋃
n≥0

Zn. Letting

bi = σop(ai) = sup{t ∈ T | σ(t) = ai} ,

we obtain a chain B = {0̂ = b0 < b1 < . . . < bn = 1̂} ending with 1̂ (because

σop(1̂) = 1̂) and starting with 0̂ (because id ≤ σ, hence b0 ≤ σ(b0) = 0̂). In other
words, A,B belong to Zn and σ is characterized by the rule

(3.1) σ(t) = ai ⇐⇒ t ≤ bi and t 6≤ bi−1 .

In particular, we have

(3.2) bi ≤ ai for all 0 ≤ i ≤ n ,
because bi = id(bi) ≤ σ(bi) = ai.

We now show the converse.

3.3. Lemma. Given two chains of the same length A,B ∈ Zn and satisfying
(3.2), the rule (3.1) defines a join-endomorphism σ ∈ Htot.

Proof : The rule (3.1) defines a map σ : T → T whose image is A. Let s, t ∈ T .
Since A = σ(T ) is totally ordered, we can assume that σ(s) ≤ σ(t). We let ai = σ(s)
and aj = σ(t), so that i ≤ j. In particular, bi ≤ bj . The rule (3.1) implies that
s ≤ bi and that t ≤ bj , t 6≤ bj−1. It follows that s∨t ≤ bj and s∨t 6≤ bj−1. Therefore

σ(s∨ t) = aj = σ(t) = σ(s)∨σ(t). Since we also have σ(0̂) = 0̂ by (3.1), this shows
that σ is a join-endomorphism. Finally (3.1) and (3.2) imply that σ ≥ id. It follows
that σ ∈ Htot.

3.4. Corollary. The set Htot is parametrized by the set of pairs (A,B) of chains
A,B ∈ Z of the same length and satisfying (3.2).

We write σAB for the endomorphism parametrized by A and B. We first show
that the case A = B plays a special role.

3.5. Lemma. Let A,B ∈ Zn satisfying (3.2) and let σ = σAB. Then σ2 = σ if
and only if A = B.

Proof : Suppose that σ2 = σ. Since σ(bi) = ai, we get σ(ai) = σ2(bi) = σ(bi) = ai,
hence

ai ≤ sup{t ∈ T | σ(t) = ai} = bi ≤ ai ,
using (3.2). Therefore ai = bi, hence A = B.

Suppose now that A = B. Since σ(bi) = ai, we get σ(ai) = ai. Now, for any
t ∈ T , we have σ(t) = ai for some i, hence σ2(t) = σ(ai) = ai. This shows that
σ2 = σ.
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In the case A = B, we write simply σA := σAA . By the rule (3.1), the map σA
can be described directly by the following formula :

(3.6) σA(t) = min{a ∈ A | t ≤ a}.
Because of its importance in what follows, we introduce another useful notation :

Gtot := {σ ∈ Htot | σ2 = σ} , i.e. Gtot := {σ ∈ E | σ ≥ id , σ(T ) ∈ tot , σ2 = σ} .
By Corollary 3.4 and Lemma 3.5, the set Gtot is parametrized by the set of chains
A ∈ Z, noticing that any pair (A,A) obviously satisfies Condition (3.2). The
endomorphism parametrized by A is σA and therefore

(3.7) Gtot = {σA | A ∈ Z} .

In the definition of ftot given by (2.2), the sum runs over all α ∈ Htot and they
have the form α = σAB for some chains A,B ∈ Z satisfying (3.2). Our first main
result asserts that many such terms have a zero coefficient in the expression of ftot.

3.8. Theorem. Let A,B ∈ Z satisfying (3.2).

(a) If A = B, we have µGtot(−∞, σA) = µHtot(−∞, σA).
(b) If A 6= B, we have µHtot

(−∞, σAB) = 0.

This will be proved in Section 4. It follows from (b) that the sum in the ex-
pression of ftot (in Definition 2.2) only runs over endomorphisms σA where A ∈ Z.
Therefore, using (a), we obtain

(3.9) ftot = −
∑
A∈Z

µHtot
(−∞, σA)σA = −

∑
A∈Z

µGtot(−∞, σA)σA .

The set Z is partially ordered by inclusion. It has no greatest element (unless T
is totally ordered) and we let ∞ be an additional element, larger than any A ∈ Z.

3.10. Lemma. Consider the map

θ : Z t {∞} −→ {−∞} t Gtot , θ(A) = σA and θ(∞) = −∞ .

(a) θ is an anti-isomorphism of posets : A ⊆ B ⇐⇒ σA ≥ σB.
(b) For any A ∈ Z, we have µGtot(−∞, σA) = µZ(A,∞).

Proof : By Corollary 3.4 and Lemma 3.5, the map θ is a bijection. Let A,B ∈ Z
and suppose first that A ⊆ B. Let t ∈ T and set a = σA(t), so in particular t ≤ a.
Then a ∈ A, hence a ∈ B, and so σB(a) = a. Thus

σB(t) ≤ σB(a) = a = σA(t)

and therefore σB ≤ σA.
Assume now that σB ≤ σA and let a ∈ A. Then

a ≤ σB(a) ≤ σA(a) = a ,

hence σB(a) = a, which implies that a ∈ B. Therefore A ⊆ B.
Statement (b) is an immediate consequence of (a).

Together with (3.9), Lemma 3.10 yields the following corollary :

3.11. Corollary. ftot = −
∑
A∈Z

µZ(A,∞)σA.

From now on, we shall work with this much simpler expression of ftot. For later
use, we show that the Möbius function of Z can be expressed in terms of the Möbius
function of T .
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3.12. Lemma. Let A = {0̂ = a0 < a1 < . . . < an = 1̂} be an element of Zn.
Then

µZ(A,∞) = (−1)n+1
n∏
k=1

µT (ak−1, ak) ,

where µT (ak−1, ak) denotes the Möbius function of T .

Proof : For any poset X, let si(X) be the number of chains of cardinality i in X.
For i = 0, there is the empty chain, so s0(X) = 1. It is well-known that

µZ(A,∞) = χ̃
(

]A,∞[
)

=
∑
i≥0

(−1)i−1si( ]A,∞[ ) .

The sign is (−1)i−1 because a chain of cardinality i is an (i−1)-simplex. Now if A′

is a chain with A ⊆ A′, then A′ is obtained from A by inserting a chain in each
interval ]ak−1, ak[ independently. Therefore

si( ]A,∞[ ) =
∑

i1,...,in≥0
i1+...+in=i

n∏
k=1

sik( ]ak−1, ak[ )

and it follows that

µZ(A,∞) =
∑

i1,...,in≥0

(−1)i1+...+in−1
n∏
k=1

sik( ]ak−1, ak[ )

= (−1)

n∏
k=1

( ∑
ik≥0

(−1)iksik( ]ak−1, ak[
)

= (−1)n+1
n∏
k=1

( ∑
ik≥0

(−1)ik−1sik( ]ak−1, ak[
)

= (−1)n+1
n∏
k=1

µT (ak−1, ak) ,

as was to be shown.

3.13. Remark. In the expression of ftot in Corollary 3.11, the sum could be
restricted to all A ∈ Z such that the lattice [ak−1, ak] is complemented for each k =

1, . . . , n, where A = {0̂ = a0 < a1 < . . . < an = 1̂}. This is because

µZ(a,∞) = (−1)n+1
n∏
k=1

µT (ak−1, ak)

by Lemma 3.12 and µT (ak−1, ak) = 0 whenever the lattice [ak−1, ak] is not com-
plemented, by Crapo’s formula (see Exercice 92 of Chapter 3 in [St]).

4. Proof of Theorem 3.8

Throughout this section, we simplify notation and define H = Htot and G = Gtot.
By Corollary 3.4, the elements of H have the form σAB where A,B ∈ Z satisfy (3.2).
By (3.7), the elements of G have the form σA := σAA where A ∈ Z. For any τ ∈ H,
we also write G≤τ := {σ ∈ G | σ ≤ τ} and G<τ := {σ ∈ G | σ < τ}. We shall use
some of Quillen’s basic results on homotopy of posets from [Qu].
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4.1. Theorem. For any λ ∈ H − G, the poset G≤λ is contractible.

Before proving Theorem 4.1, we first show that Theorem 3.8 follows easily from
Theorem 4.1.

4.2. Lemma. Let τ ∈ H.

(a) The inclusion map G<τ ↪→ H<τ is a homotopy equivalence.
(b) If τ ∈ G, we have µG(−∞, τ) = µH(−∞, τ).
(c) If τ /∈ G, we have µH(−∞, τ) = 0.

Proof : (a) For any σ ∈ H<τ , the poset G≤σ is contractible. This is obvious if σ ∈ G
because G≤σ is a cone on σ, while this follows from Theorem 4.1 if σ /∈ G. Thus
Proposition 1.6 in [Qu] applies and the inclusion map G<τ ↪→ H<τ is a homotopy
equivalence.

(b) This follows from (a) by taking reduced Euler characteristics.
(c) We have G<τ = G≤τ because τ /∈ G. Thus G<τ is contractible by Theorem 4.1

and so isH<τ by the homotopy equivalence of part (a). Therefore the reduced Euler
characteristic of H<τ is zero, in other words the Möbius function in (c) vanishes.

Proof of Theorem 3.8 : By Corollary 3.4, any τ ∈ H has the form τ = σAB for
A,B ∈ Z satisfying (3.2). Moreover, τ ∈ G if and only if A = B, by Lemma 3.5.
Now parts (a) and (b) of Theorem 3.8 are exactly parts (b) and (c) of Lemma 4.2,
written differently.

Proof of Theorem 4.1 : Using Corollary 3.4 and Lemma 3.5, we fix λ = σAB
with A 6= B and we write

A = {0̂ = a0 < a1 < . . . < an = 1̂} and B = {0̂ = b0 < b1 < . . . < bn = 1̂} .

For any 1 ≤ k ≤ n, replace {bk, . . . , bn} by {ak, . . . , an} and define

Bk = {0̂ = b0 < . . . < bk−1 < ak < . . . < an = 1̂} .

Define λk = σABk
and notice that λn = σAB = λ and λ1 = σAA = σA ∈ G. Using (3.1),

it is elementary to check that

(4.3) λk ≤ λk+1 , ∀ 1 ≤ k ≤ n− 1 .

Our strategy is to pass from G≤λn
to the single point {λ1} by a sequence of

homotopy equivalences.
We first need to characterize the elements of G≤λk

.

4.4. Lemma. Let C ∈ Z and 1 ≤ k ≤ n.

σC ∈ G≤λk
⇐⇒

{
if 1 ≤ i ≤ k − 1 and t ≤ bi, then σC(t) ≤ ai.
ak, . . . , an ∈ C.

Proof : Suppose that σC ≤ λk. If t ≤ bi with i ≤ k − 1, then σC(t) ≤ λk(t) ≤
λk(bi) = ai. If i ≥ k, then since id ≤ σC , we have ai ≤ σC(ai) ≤ λk(ai) = ai, hence
σC(ai) = ai, that is, ai ∈ C.

Suppose conversely that the right hand side conditions hold. If 1 ≤ i ≤ k − 1,
t ≤ bi, and t 6≤ bi−1, then σC(t) ≤ ai = λk(t) by applying the rule (3.1) to λk. If
k ≤ i ≤ n, t ≤ ai, t 6≤ ai−1 (respectively t 6≤ bk−1 in case i = k), then ai ∈ C and
therefore σC(t) ≤ σC(ai) = ai = λk(t), by applying again the rule (3.1) to λk.
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For any chain C satisfying ak, . . . , an ∈ C and for any k ≤ i ≤ n, we let

Ci := {c ∈ C | c < ai, c 6≤ ai−1} and C6≤ak−1
:= {c ∈ C | c 6≤ ak−1} .

It should be noticed that such a chain C may be (much) longer than A, because
Ci = C ∩ ]ai−1, ai[ if i ≥ k + 1 and this may be nonempty. For any 1 ≤ k ≤ n,
define now

G′≤λk
= {σC ∈ G≤λk

| C 6≤ak−1
= {ak, . . . , an} } ,

In other words, σC ∈ G′≤λk
if and only if Ci = ∅ for any k ≤ i ≤ n. It follows that,

whenever σC ∈ G′≤λk
, we obtain

k ≤ i ≤ n, t ≤ ai, t 6≤ ai−1 =⇒ σC(t) = ai ,

(whereas (3.6) only implies an inequality σC(t) ≤ ai when |Ci| ≥ 2). Clearly, (4.3)
implies that G≤λk

⊆ G≤λk+1
and G′≤λk

⊆ G′≤λk+1
for any k < n. It follows that we

have inclusions

G′≤λk
⊆ G≤λk

∩ G′≤λk+1
⊆ G≤λk

.

Now define

ρn : G≤λn
−→ G′≤λn

, ρn(σC) = σC−Cn
,

and similarly, for 1 ≤ k ≤ n− 1,

ρk : G≤λk
∩ G′≤λk+1

−→ G′≤λk
, ρk(σC) = σC−Ck

.

4.5. Lemma. ρk is a map of posets and is a homotopy equivalence.

Proof : If σC ∈ G≤λk
∩ G′≤λk+1

(respectively σC ∈ G≤λn
if k = n), then Ci = ∅ for

any i > k and therefore (C −Ck)i = ∅ for any i ≥ k. It follows that σC−Ck
∈ G′≤λk

and so the map ρk is well-defined. It is order-preserving because, by Lemma 3.10,

σC ≥ σC′ ⇒ C ⊆ C ′ ⇒ C − Ck ⊆ C ′ − C ′k ⇒ σC−Ck
≥ σC′−C′k ,

using the fact that C ′k ∩ C = Ck.
Since C−Ck ⊆ C, we have ρk(σC) ≥ σC . Therefore, if j : G′≤λk

→ G≤λk
∩G′≤λk+1

(respectively j : G′≤λk
→ G≤λk

if k = n) denotes the inclusion map, then ρkj = id

and jρk ≥ id. By Property 1.3 in [Qu], jρk is homotopic to id and it follows that
ρk is a homotopy equivalence.

Now for 2 ≤ k ≤ n, define

πk : G′≤λk
−→ G≤λk−1

∩ G′≤λk
, πk(σC) = σC∪{ak−1} .

4.6. Lemma. πk is a map of posets and is a homotopy equivalence.

Proof : Let σC ∈ G′≤λk
, so that C 6≤ak−1

= {ak, . . . , an}. We first prove that

C ∪ {ak−1} is totally ordered (i.e. a chain in Z), so that σC∪{ak−1} makes sense.
We must show that any c ∈ C is comparable to ak−1. This is clear if c ≤ ak−1,
so we may assume that c 6≤ ak−1. Then c = ai for some i ≥ k by the definition
of G′≤λk

, hence c = ai > ak−1.

Now we get ak−1, ak, . . . , an ∈ C∪{ak−1} and Lemma 4.4 implies that σC∪{ak−1} ∈
G≤λk−1

. It follows that σC∪{ak−1} ∈ G≤λk−1
∩G′≤λk

and the map πk is well-defined.
It is order-preserving, by using Lemma 3.10.

Since C ∪ {ak−1} ⊇ C, we have πk(σC) ≤ σC . Therefore, if j : G≤λk−1
∩G′≤λk

→
G′≤λk

denotes the inclusion map, then πkj = id and jπk ≤ id. By Property 1.3

in [Qu], jπk is homotopic to id and it follows that πk is a homotopy equivalence,
as was to be shown.
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Now the sequence of homotopy equivalences ρn, πn, ρn−1, πn−1, . . . , ρ2, π2, ρ1 shows
that G≤λn

is homotopy equivalent to G′≤λ1
. But for any σC ∈ G′≤λ1

, we have

C = {0̂ = a0 < a1 < . . . < an = 1̂} = A ,

so σC = σA = λ1. Thus G′≤λ1
is a singleton, hence contractible, and therefore G≤λn

is contractible as well. This completes the proof of Theorem 4.1.

5. The main theorem

In this section, we prove the main properties of the element ftot, establishing the
connection between ftot and the two-sided ideal kEtot of the k-algebra kE . In order
to simplify notation throughout this section, we write µ instead of µZ and σA
instead of σAA .

5.1. Theorem. Let ftot be as in Corollary 3.11.

(a) ftot is a central idempotent of kE.
(b) ftot is the identity element of the ideal kEtot.

The proof depends on a main lemma.

5.2. Lemma. ftot ψ = ψ, for all ψ ∈ Etot.

Proof : By Corollary 3.11, recall that ftot = −
∑
A∈Z

µ(A,∞)σA. Let X = Im(ψ),

which is totally ordered because ψ ∈ Etot. We decompose ψ as the composite of
a surjective join-morphism T → X followed by the inclusion map iX : X → T .
It suffices to prove that ftot iX = iX for any chain X in T starting with 0̂. Note
that ftot iX is a k-linear combination of maps from X to T , so all the following
computations must take place in the k-linear span of all maps X → T . Now we
have

(5.3) ftot iX = −
∑
A∈Z

µ(A,∞)σAiX =
∑

ϕ:X→T

(
−

∑
A∈Z

σAiX=ϕ

µ(A,∞)
)
ϕ .

By the definition of σA, the equation σAiX = ϕ means that, for any x ∈ X, the
element ϕ(x) is the least element of A such that ϕ(x) ≥ x. In other words, the
condition σAiX = ϕ is equivalent to

(5.4) [x, ϕ(x)] ∩A = {ϕ(x)} , ∀x ∈ X .

Any map ϕ : X → T appearing in the sum (5.3) must satisfy the following 3
conditions :

(a) ϕ is order-preserving and ϕ(0̂) = 0̂ (that is, ϕ is a join-morphism).
(b) ϕ(x) ≥ x, for all x ∈ X.
(c) If x, y ∈ X satisfy x ≤ y ≤ ϕ(x), then ϕ(y) = ϕ(x).

In order to prove this, we note that the coefficient of ϕ in (5.3) is nonzero only if
there exists at least one A ∈ Z such that σAiX = ϕ. Condition (a) follows from

the fact that both iX and σA are order-preserving and map 0̂ to 0̂, hence ϕ = σAiX
has the same properties. Condition (b) is clear because σA ≥ id. For condition (c),
note that the only element of [x, ϕ(x)] ∩ A is ϕ(x), so the definition of σA yields
σA(y) = ϕ(x), that is, ϕ(y) = ϕ(x).

Now we prove that, if ϕ satisfies (b) and (c), then (5.4) is equivalent to

(5.5)
( ⋃
x∈X

[x, ϕ(x)]
)
∩A = ϕ(X) .
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It is clear that (5.4) implies (5.5). Assume now (5.5) and let x ∈ X. Notice that
[x, ϕ(x)] ∩ A is nonempty because ϕ(x) ∈ ϕ(X), hence ϕ(x) ∈ A by (5.5), and
so ϕ(x) ∈ [x, ϕ(x)] ∩ A. For any b ∈ [x, ϕ(x)] ∩ A, we have b ∈ ϕ(X) by (5.5),
that is, b = ϕ(y) for some y ∈ X. Since X is totally ordered, we have either
x ≤ y ≤ ϕ(y) = b ≤ ϕ(x), hence ϕ(y) = ϕ(x) by (c), or y ≤ x ≤ b = ϕ(y), hence
ϕ(x) = ϕ(y) by (c) again. Therefore b = ϕ(x), showing that [x, ϕ(x)]∩A = {ϕ(x)}.
This proves that (5.5) implies (5.4).

We now fix a map ϕ : X → T satisfying (a), (b), (c), and we set

C =
⋃
x∈X

[x, ϕ(x)] and D = ϕ(X) ,

so that (5.5) becomes C ∩ A = D. Since ϕ is order-preserving and ϕ(0̂) = 0̂, the

set D is a chain in T starting with 0̂. Let C = C ∪ {1̂} and D = D ∪ {1̂}, so that

D ∈ Z. Clearly, 1̂ /∈ C if and only if 1̂ /∈ D, and therefore the condition C ∩A = D
is equivalent to C ∩A = D. It follows that the coefficient of ϕ in (5.3) is equal to

−
∑
A∈Z

σAiX=ϕ

µ(A,∞) = −
∑
A∈Z

C∩A=D

µ(A,∞) = −
∑
A∈Z

C∩A=D

µ(A,∞) ,

because the condition σAiX = ϕ is equivalent to (5.5) by the discussion above.
By the defining property of the Möbius function, we obtain

−
∑
A∈Z

C∩A=D

µ(A,∞) =
∑

A,B∈Z
A⊆B

C∩A=D

µ(A,B) =
∑
B∈Z
D⊆B

∑
A∈Z
A⊆B

C∩A=D

µ(A,B) .

For a fixed B ∈ Z, the chain A runs over the interval [D,B] with the additional
condition C ∩A = D, which can also be written (C ∩B) ∩A = D because A ⊆ B.
By a well-known property of the Möbius function (Corollary 3.9.3 in [St]), the
corresponding sum ∑

A∈[D,B]

(C∩B)∩A=D

µ(A,B)

is zero, provided the fixed element C ∩ B is not equal to the top element B. If
otherwise C ∩ B = B, then B ⊆ C and A = C ∩ A = D, so that the sum over A
has the single term µ(D,B) for A = D.

Going back to the coefficient of ϕ in (5.3), we obtain

−
∑
A∈Z

σAiX=ϕ

µ(A,∞) =
∑
B∈Z

D⊆B⊆C

µ(D,B) =
∑
B∈ZC

D⊆B

µ(D,B) = −µ(D,∞)

where the latter symbol∞ denotes a top element added to the poset ZC (consisting

of all chains in C having least element 0̂ and greatest element 1̂).
Recall that ϕ ≥ iX by condition (b). We now assume that ϕ > iX and we want

to prove that µ(D,∞) = 0. Let y ∈ X be minimal such that ϕ(y) > y. We claim
that, for any B ∈ ZC , the union B ∪ {y} is totally ordered. We have to prove that

any b ∈ B is comparable with y. Since b ∈ C, either b = 1̂ and then we are done
because y ≤ 1̂, or there exists x ∈ X such that b ∈ [x, ϕ(x)]. If y ≤ x, then y ≤ b
and we are done again. We can assume now that y 6≤ x, hence x < y because X is
totally ordered. By minimality of y, we must have ϕ(x) = x, hence [x, ϕ(x)] = {x}
and b = x. It follows that b < y. This completes the proof that B ∪ {y} is totally
ordered.

We claim now that y does not belong to D = ϕ(X). Otherwise y = ϕ(z) for
some z ∈ X. If we had z = y, we would obtain ϕ(y) = y, contrary to the choice of y.
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It follows that the relation z ≤ ϕ(z) = y must be a strict inequality z < ϕ(z). This
contradicts the minimality of y and proves the claim. Moreover, y /∈ D because
y < ϕ(y), hence y 6= 1̂. Consequently, the poset ]D,∞[ is conically contractible
(see 1.5 in [Qu]) via the contraction

B ≤ B ∪ {y} ≥ D ∪ {y}

and it follows that µ(D,∞) = 0.
This shows that the coefficient of ϕ in (5.3) is zero whenever ϕ > iX . Therefore

we are left with a single term for ϕ = iX , namely

ftot iX = −µ(D,∞) iX .

But for ϕ = iX , we have

C =
⋃
x∈X

[x, ϕ(x)] =
⋃
x∈X
{x} = X = iX(X) = D ,

and consequently the only chain in C containing D is D itself. In other words
]D,∞[= ∅ and µ(D,∞) = −1. The required equality ftot iX = iX follows and this
completes the proof of Lemma 5.2.

Proof of Theorem 5.1 : We first show that ftot is idempotent. Lemma 5.2
implies that ftot σA = σA for any A ∈ Z, hence

(ftot)
2 = ftot

(
−
∑
A∈Z

µ(A,∞)σA
)

= −
∑
A∈Z

µ(A,∞)σA = ftot ,

as required.
Next we want to pass to opposite lattices and use Lemma 5.2 for T op. To this end,

we include T in the notation, so we write ≤T for ≤ and we define ftot(T ) = ftot,
Etot(T ) = Etot, and Z(T ) = Z. Since σA is an endomorphism of T , σopA is an
endomorphism of T op and we claim that σopA = σAop , where Aop is equal to A, with
its opposite order inside T op. In order to prove the claim, we let s, t ∈ T . Clearly
σA(t) ≤T s if and only if s ≤T op σA(t). Since σA(t) ∈ A and since σAop(s) is the
smallest element of Aop containing s in T op, by (3.6), we get

s ≤T op σA(t) ⇐⇒ σAop(s) ≤T op σA(t) ⇐⇒ σA(t) ≤T σAop(s) ⇐⇒ t ≤T σAop(s) ,

where the latter equivalence comes from the fact that σAop(s) ∈ A and σA(t) is the
smallest element of A containing t in T , by (3.6) again. Now the definition of σopA
yields

σopA (s) =
∨
t∈T

σA(t)≤
T
s

t =
∨
t∈T

t≤
T
σAop (s)

t

by the above, and the latter element is obviously equal to σAop(s). Therefore
σopA = σAop , proving the claim.

Now the opposite of our idempotent is

ftot(T )op = −
∑

A∈Z(T )

µ(A,∞)σopA = −
∑

A∈Z(T )

µ(A,∞)σAop .

Using the fact that the passage to opposite chains preserves the inclusion relation
between chains, we obtain

ftot(T )op = −
∑

Aop∈Z(T op)

µ(Aop,∞)σAop ,

that is, ftot(T )op = ftot(T
op).
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Lemma 5.2 for the lattice T op asserts that ftot(T
op) ρ = ρ for every ρ ∈ Etot(T

op).
Since ρ = ψop for some ψ ∈ Etot(T ) (namely ψ = ρop), we get ftot(T )op ψop = ψop,
that is, ψ ftot(T ) = ψ, for all ψ ∈ Etot. Together with Lemma 5.2 for T , we obtain

(5.6) ψ ftot = ψ = ftot ψ , ∀ψ ∈ Etot ,

showing that ftot is the identity element of the two-sided ideal kEtot.
To prove that ftot is central in kE , let ϕ ∈ E . Applying (5.6) to both ftot ϕ and

ϕftot (which belong to kEtot), we see that

ftot ϕ = ftot ϕftot = ϕftot ,

as required. This completes the proof of Theorem 5.1.

5.7. Corollary. There is a two-sided ideal D of kE and a ring isomorphism

kE ∼= kEtot ×D ,

(where kEtot is identified with kEtot × {0} and D with {0} × D, as usual).

Proof : By Theorem 5.1, the central idempotent, ftot generates kEtot and therefore
the central idempotent id−ftot generates a complementary two-sided ideal D.

Corollary 5.7 was first proved as Theorem 10.8 in [BT2], by means of a completely
different approach which produces a central idempotent etot generating the two-
sided ideal kEtot.

5.8. Corollary. etot = ftot.

Proof : By Theorem 5.1, ftot is the identity element of the ideal kEtot. By
Theorem 10.8 in [BT2], etot is also the identity element of kEtot. Therefore they
must be equal.

The formula for etot given in Theorem 10.8 of [BT2] comes from rather elaborate
constructions, which we revisit in Section 6 below.

6. The original approach to the idempotent

In this section, we use the original approach of [BT2] and we consider the idempo-
tent etot, defined in Theorem 10.8 of [BT2] by an explicit, but complicated, formula.
Our goal is to give a second proof of Corollary 5.8, namely etot = ftot, using the
formula for ftot obtained in Corollary 3.11. In other words, we want to prove the
following :

(6.1) etot = −
∑
A∈Z

µ(A,∞)σA ,

where we use again the simplified notation of Section 5. We will start from the
expression of etot given in [BT2]. By using rather delicate arguments, we will show
that this expression can be greatly simplified and finally reduces to the right hand
side of (6.1).

This second proof of (6.1) is slightly shorter than the proof of Corollary 5.8
obtained by using the developments of Sections 4 and 5. However, it has the
disadvantage of being quite technical, as it uses the cumbersome constructions
of [BT2]. Moreover, this proof does not seem to provide useful ideas for proving
Conjecture 7.1 below about pole lattices.

We first need to define the notation. For any n ∈ N, we write n = {0, 1, . . . , n},
a totally ordered lattice with 0̂n = 0 and 1̂n = n. We use the set Pn of all chains
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B = {b0 < b1 < . . . < bn = 1̂} in T whose greatest element is 1̂. The set Pn
parametrizes the set of surjective join-morphisms π : T → n via the rule

bi = πop(i) = sup{t ∈ T | π(t) = i} .
Instead of n, it will be convenient to use a totally ordered lattice P of cardinality
n + 1, that is, a lattice isomorphic to n, and to define r(p) = sup{q ∈ P | q < p},
for any p ∈ P − {0̂}. With this notation, a surjective join-morphism π : T → P
corresponds to a chain B = {bp | p ∈ P} defined by

bp = πop(p) = sup{t ∈ T | π(t) = p} ,
and satisfying bp < bq whenever p < q. We write πB : T → P for the surjective

join-morphism corresponding to the chain B ∈ Pn. Then πB(t) = 0̂ if t ≤ b0 and
otherwise we recall the rule

πB(t) = p if t ≤ bp and t 6≤ br(p) .

For any given B ∈ Pn, we choose an element ap ∈ [br(p), bp] for each p ∈ P −{0̂}.
This defines a family A = (ap)p∈P−{0̂} of elements of T . We let JB be the set of

all families A = (ap)p∈P−{0̂} of elements of T such that ap ∈ [br(p), bp] for every

p ∈ P − {0̂}. If A ∈ JB , we also set a0̂ = 0̂ and we define

jBA : P −→ T , jBA (p) = ap .

Clearly jBA is order-preserving (because if p < q in P , then p ≤ r(q), hence ap ≤
bp ≤ br(q) ≤ aq), and it also maps 0̂ to 0̂. Therefore jBA is a join-morphism.

Now let B− = {br(p) | p ∈ P − {0̂}} and for any A ∈ JB , write

µ(B−, A) =
∏

p∈P−{0̂}

µ(br(p), ap) ,

where µ(br(p), ap) denotes the Möbius function for the lattice T . Now we allow the

family A to vary (i.e. ap varies in [br(p), bp] for each p 6= 0̂) and we define

jB = (−1)n
∑
A∈JB

µ(B−, A) jBA ∈ HomkL(P, T ) .

By Proposition 10.2 of [BT2], fB = jBπB is an idempotent in E and when n ≥ 0
varies and B ∈ Pn varies, the idempotents fB are pairwise orthogonal (Corol-
lary 10.5 of [BT2]). The idempotent etot is then defined by the formula

etot =

N∑
n=0

∑
B∈Pn

fB ,

see Theorem 10.8 of [BT2]. For each B ∈ Pn, the idempotent fB is a linear
combination of join-morphisms jBAπ

B . We are going to prove that most of these
join-morphisms cancel pairwise in the sum

(6.2) etot =

N∑
n=0

∑
B∈Pn

(−1)n
∑
A∈JB

µ(B−, A) jBAπ
B .

More precisely, we consider all triples {(n,B,A) | n ∈ N, B ∈ Pn, A ∈ JB} such
that ax < bx for some x ∈ P . For such a triple, we let p ∈ P be minimal with
respect to the condition ap < bp. Since ap ∈ [br(p), bp] for p 6= 0̂, we can either have

br(p) = ap < bp or br(p) < ap < bp. The case p = 0̂ is special because we always

have a0̂ = 0̂. It follows that p must satisfy one of the following 4 cases :

A1. p 6= 0̂, r(p) 6= 0̂, br(p) = ap < bp, and ax = bx for any x < p.

A2. p 6= 0̂, r(p) = 0̂, br(p) = ap < bp, and 0̂ = a0̂ = b0̂.
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B1. p 6= 0̂, br(p) < ap < bp, and ax = bx for any x < p.

B2. p = 0̂ and 0̂ = a0̂ < b0̂.

We now examine each of these cases successively.

Case A1. Suppose we are in Case A1. Define

P̃ = P − {p} , b̃q = bq ∀ q ∈ P̃ − {r(p)} , b̃r(p) = bp .

This defines a chain B̃ in T and a surjective join-morphism πB̃ : T → P̃ , satisfying

in particular πB̃(bp) = r(p). Let Ã ∈ JB̃ be the family defined by

ãq = aq ∀ q ∈ P̃ − {r(p)} , ãr(p) = br(p) ,

and let jB̃
Ã

: P̃ → T be the corresponding join-morphism. Then we obtain

br(r(p)) < br(p) < bp , that is, b̃r(r(p)) < ãr(p) < b̃r(p) ,

so that P̃ and its element r(p) are in Case B1 (because r(p) 6= 0̂ by assumption A1).

Moreover, jBAπ
B = jB̃

Ã
πB̃ . This is easy to check on most elements of T , the only

nontrivial case being

jBAπ
B(bp) = jBA (p) = ap = br(p) = ãr(p) = jB̃

Ã
(r(p)) = jB̃

Ã
πB̃(bp) .

Finally, since µ(br(p), ap) = µ(br(p), br(p)) = 1, the coefficient of jBAπ
B is equal to

(−1)nµ(B−, A) = (−1)n
∏

x∈P−{0̂}

µ(br(x), ax)

= (−1)n
∏

x∈P−{0̂,p}

µ(br(x), ax)

= (−1)n
∏

x∈P̃−{0̂}

µ(̃br(x), ãx)

= −(−1)n−1µ(B̃−, Ã) ,

using the fact that, for x = r(p), we have ãr(p) = br(p) and also ar(p) = br(p) by
minimality of the choice of p. This shows that

(−1)nµ(B−, A) jBAπ
B and (−1)n−1µ(B̃−, Ã) jB̃

Ã
πB̃

cancel in the sum (6.2). Thus any Case A1 cancels with some Case B1.

Case B1. Suppose we are in Case B1. Define

P̂ = P<p t {s} t P≥p ,
with the total order defined by x < s for all x ∈ P<p and s < x for all x ∈ P≥p, so
that r(p) = s. Moreover, define

b̂q = bq ∀ q ∈ P̂ − {s} , b̂s = ap .

This defines a chain B̂ in T and a surjective join-morphism πB̂ : T → P̂ , satisfying

in particular πB̂(ap) = s and πB̂(bp) = p. Finally, let Â ∈ JB̂ be the family defined
by

âq = aq ∀ q ∈ P̂ − {s} , âs = ap ,

and let jB̂
Â

: P̂ → T be the corresponding join-morphism. Then we obtain

ap < bp , that is, b̂r(p) = âp < b̂p ,

so that P̂ and its element p are in Case A1 (because r(p) = s 6= 0̂). Applying the

procedure described in Case A1, we note that P̂ − {p} is isomorphic to P and it
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follows easily that we recover the Case B1 we started with. Thus every Case B1
has been canceled with a corresponding Case A1.

Case A2. Suppose we are in Case A2. Since r(p) = 0̂, p is the least element

of P − {0̂}. Define

P̃ = P − {p} , b̃q = bq ∀ q ∈ P̃ − {0̂} , b̃0̂ = bp .

This defines a chain B̃ in T and a surjective join-morphism πB̃ : T → P̃ , satisfying

in particular πB̃(bp) = 0̂. Let Ã ∈ JB̃ be the family defined by

ãq = aq ∀ q ∈ P̃ − {0̂} , ã0̂ = b0̂ ,

and let jB̃
Ã

: P̃ → T be the corresponding join-morphism. We have 0̂ = b0̂ by

minimality of p and we obtain

0̂ = b0̂ < bp , that is, 0̂ = ã0̂ < b̃0̂ ,

so that P̃ and its element 0̂ are in Case B2. The argument for the Möbius function
holds in the same way as in Case A1 and it follows that any Case A2 cancels with
some Case B2 in the sum (6.2).

Case B2. Suppose we are in Case B2. Define

P̂ = {s} t P ,

with the total order defined by s < x for all x ∈ P , so that r(p) = s = 0̂P̂ .
Moreover, define

b̂q = bq ∀ q ∈ P , b̂s = 0̂ .

This defines a chain B̂ in T and a surjective join-morphism πB̂ : T → P̂ , satisfying

in particular πB̂(bp) = p. Finally, let Â ∈ JB̂ be the family defined by

âq = aq ∀ q ∈ P , âp = 0̂ ,

and let jB̂
Â

: P̂ → T be the corresponding join-morphism. Then we obtain

0̂ < bp , that is, 0̂ = â0̂ = b̂0̂ = âp < b̂p ,

so that P̂ and its element p are in Case A2. Applying the procedure described in

Case A2, we note that P̂ − {p} is isomorphic to P and it follows easily that we
recover the Case B2 we started with. Thus every Case B2 has been canceled with
a corresponding Case A2.

Applying the cancelations described above, we can now eliminate all the join-
morphisms jBAπ

B corresponding to a triple (n ∈ N, B ∈ Pn, A ∈ JB) satisfying
ax < bx for some x ∈ P . We are left with the triples satisfying ax = bx for all
x ∈ P . In such a case, we have b0̂ = 0̂, that is, 0̂ ∈ B, hence B ∈ Zn, where Zn
is the set of chains described at the beginning of Section 3. Thus the second sum
in (6.2) runs over B ∈ Zn. Moreover, A = B − {0̂} =: B+ and so the third sum
in (6.2) reduces to a single term.

Now we have jBB+πB(t) = bp if πB(t) = p, that is, if t ≤ bp but t 6≤ br(p). In
other words,

jBB+πB(t) = min{b ∈ B | t ≤ b}
and this is exactly the definition of the endomorphism σB considered in Section 3,
see the formula (3.6). Thus

jBB+πB = σB ∀ B ∈ Zn .
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Moreover, the coefficient of jBB+πB in the expression for etot is the Möbius function

(−1)nµ(B−, B+) = (−1)n
∏

p∈P−{0̂}

µ(br(p), bp) = −µZ(B,∞) ,

by Lemma 3.12, where the latter Möbius function is the Möbius function of the
poset Z t {∞}. It follows that the expression for etot given in (6.2) reduces to

etot =

N∑
n=0

∑
B∈Zn

(−1) µZ(B,∞)σB = −
∑
B∈Z

µZ(B,∞)σB .

This completes the proof of (6.1).

6.3. Remark. It is proved in Theorem 10.6 of [BT2] that the two-sided ideal
kEtot is isomorphic to a product of matrix algebras

kEtot
∼=

N∏
n=0

M|Zn|(k) ,

where N is the maximal length of a chain in T . It should be noticed that the new
approach to the generating idempotent of kEtot explained in the present paper does
not simplify in any way the proof of this result. In particular, if T is totally ordered,
then

kE = kEtot
∼=

N∏
n=0

M|Zn|(k) ,

and this is a semi-simple algebra whenever k is a field. As noticed in Remark 11.3
of [BT2], this result is similar, but not equivalent, to a theorem proved in [FHH]
about the planar rook algebra.

7. The case of pole lattices

Pole lattices are generalizations of totally ordered lattices and are defined in Sec-
tion 2. They play a role in our work [BT5] on correspondence functors because
they have a property of semi-simplicity analogous to the results of Remark 6.3.

We consider now the endomorphism fpole obtained by using the family of pole
lattices instead of totally ordered lattices. Recall from Definition 2.2 that

fpole := −
∑

α∈Hpole

µHpole
(−∞, α)α ,

where Hpole = {α ∈ E | α ≥ id, α(T ) ∈ pole}. Recall also that kEpole denotes the
two-sided ideal generated by all endomorphisms α ∈ E whose image α(T ) is a pole
lattice. In analogy with Theorem 5.1, we conjecture the following :

7.1. Conjecture. Let fpole be as as above.

(a) fpole is a central idempotent of kE.
(b) fpole is the identity element of the ideal kEpole.

By Theorem 8.3 of [BT5], we know that kE = kEpole ⊕ D′ for some two-sided
ideal D′. The projection of id onto the first factor is an idempotent epole satisfying
the two properties of the Conjecture, but constructed in a very different way. Thus
Conjecture 7.1 asserts in fact that fpole = epole.

By using the computer system [GAP4], we can prove that Conjecture 7.1 holds
in very many cases. Actually, the idea of the formula in Definition 2.2 slowly
emerged in 2018 from complicated calculations using already the GAP software
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[GAP4], based on existing lists of finite posets (either from a personal database or
from [Mc]).

In order to verify the conjecture, we consider a finite partially ordered set E and
the lattices admitting E as subposet of join-irreducible elements. As there are in
general too many such lattices for any given E, we deal only with two of them.
The largest one is the distributive lattice D(E) of all lower subsets of E. There is
also a smallest such lattice K(E), which is not hard to construct as the image of a
suitable closure operator in the lattice D(E).

We have checked Conjecture 7.1 forD(E) and |E| ≤ 5, and forK(E) and |E| ≤ 8.
In the case |E| = 8, two weeks were needed for running the program for K(E). In
the next case, there are so many posets E of cardinal 9 that running the program
for K(E) and |E| = 9 would require too much time.

7.2. Remark. In the case of totally ordered lattices, we were able to replace Htot

by the subposet Gtot of all α ∈ Htot satisfying the additional condition α2 = α.
This was achieved by means of a homotopy equivalence Gtot,<τ ↪→ Htot,<τ (see
Lemma 4.2). No such reduction is possible in the case of pole lattices, because in
the sum defining fpole it may happen that some terms α are not idempotent (i.e.
α2 6= α). The first instance of this occurs with the lattice

1̂

v
w

u

0̂

If [x, y, z] denotes the endomorphism of this lattice such that u 7→ x, v 7→ y, w 7→ z,
we obtain

fpole = [v, 1̂, 1̂]− [u, 1̂, 1̂]− [v, v, 1̂]− [v, 1̂, w] + [u, v, 1̂] + [u, 1̂, w] + [v, v, w]

and neither [v, 1̂, 1̂] nor [v, 1̂, w] are idempotent.
On the other hand, we easily get

ftot = −[1̂, 1̂, 1̂] + [u, v, 1̂] + [1̂, 1̂, w] .

7.3. Remark. One may wonder if the definition of fF for other families F gives
rise to a central idempotent generating the ideal kEF . Despite various attempts, we
could not find any sufficient evidence for a result of this kind. There is a positive
answer in many small cases, but also a negative one in some easy cases, such as the
family tot(r) of all totally ordered lattices of size ≤ r. The two-sided ideal kEtot(r) is
generated by a central idempotent, but its expression may involve endomorphisms
α of T which do not satisfy the condition α ≥ id. This is obvious when r = 1
since the constant map c0̂ onto 0̂ is the only join-endomorphism of T whose image
is totally ordered of size 1 (so that kEtot(1) has rank one), but c0̂ 6≥ id (whenever
|T | ≥ 2).
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[BT5] S. Bouc, J. Thévenaz. Simple and projective correspondence functors, Representation The-
ory 25 (2021), 224–264.

[FHH] D. Flath, T. Halverson, K. Herbig. The planar rook algebra and Pascal’s triangle, Enseign.
Math. 55 (2009), no. 1-2, 77–92.

[GAP4] The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.11.0, 2020.

http://www.gap-system.org

[Mc] B. D. McKay. Digraphs.

http://users.cecs.anu.edu.au/bdm/data/digraphs.html

[Qu] D. Quillen, Homotopy properties of the poset of nontrivial p-subgroups of a group, Adv.
Math. 28 (1978), 101–128.

[St] R. P. Stanley. Enumerative Combinatorics, Vol. I, Second edition, Cambridge studies in

advanced mathematics 49, Cambridge University Press, 2012.


