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Abstract

Let k£ be an algebraically closed field of positive characteristic p, and F be an algebraically closed
field of characteristic 0. We consider the F-linear category IFppkA of finite groups, in which the set of
morphisms from G to H is the F-linear extension FT'®(H, G) of the Grothendieck group T (H, G)
of p-permutation (kH, kG)-bimodules with (twisted) diagonal vertices. The F-linear functors from
Fppg to F-Mod are called diagonal p-permutation functors. They form an abelian category ]-'1%%.

We study in particular the functor FT® sending a finite group G to the Grothendieck group
FT(G) of p-permutation kG-modules, and show that FT* is a semisimple object of ]-"Iﬁ)k, equal to
the direct sum of specific simple functors parametrized by isomorphism classes of pairs (P, s) of a
finite p-group P and a generator s of a p’-subgroup acting faithfully on P. This leads to a precise
description of the evaluations of these simple functors. In particular, we show that the simple
functor indexed by the trivial pair (1,1) is isomorphic to the functor sending a finite group G to

FKy(kG), where Ko(kG) is the group of projective kG-modules.
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1. Introduction

Let p be a prime number. Throughout we denote by F an algebraically closed
field of characteristic zero, and by k£ an algebraically closed field of characteristic p.
The p-permutation modules play a crucial role in the study of modular representation
theory of finite groups. A splendid Rickard equivalence, introduced by Rickard [8],
between blocks of finite group algebras is given by a chain complex consisting of
p-permutation bimodules. Also a p-permutation equivalence, introduced by Boltje
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and Xu [1], and studied extensively later by Boltje and Perepelitsky [7], is an element
in the Grothendieck group of p-permutation bimodules.

In [5], Ducellier studied p-permutation functors: Consider the category Fppy
where the objects are finite groups and the morphisms between groups GG and H are
given by the Grothendieck group F®y;T(H, G) of p-permutation (kH, kG)-bimodules.
A p-permutation functor is an F-linear functor from Fpp;, to F-Mod. The indecompos-
able direct summands of the bimodules that appears in a p-permutation equivalence
between blocks of finite group algebras have twisted diagonal vertices. Therefore,
inspired by the work of Ducellier, we consider a category with less morphisms: Let
Fppy be a category where the objects are finite groups and the morphisms between
groups G and H are given by the Grothendieck group F®zT2(H, G) of p-permutation
(kH, kG)-bimodules whose indecomposable direct summands have twisted diagonal
vertices. An F-linear functor from Fpp2 to F-Mod is called a diagonal p-permutation
functor.

By [2], the simple diagonal p-permutation functors are parametrized by the
pairs (G,V) of a finite group G and a simple module V' of the essential algebra
EAG) = Endg,,a(G)/I at G, where I is the ideal generated by the morphisms
that factor through groups of smaller order. We show that the essential algebra
EA(G) is isomorphic to the essential algebra studied in [5]. As a result this im-
plies that the essential algebra £2(G) is non-zero if and only if the group G is of
the form P x (s) where P is a p-group and s is a generator of a p’-cyclic group
acting faithfully on P. Moreover in that case there is an algebra isomorphism
EX(G) = (F[X]/®,[X]) x Out(G) where n is the order of s. See Theorem 3.3.

We also study the functor FT* that sends a finite group G to the Grothendieck
group FT(G) of p-permutation kG-modules. We describe the subfunctor lattice
(Theorem 5.11) and simple quotients (Proposition 5.15) of FT®. We also give a
description for the F-dimension of the evaluations of simple quotients of FT? at
a finite group G' (Theorem 5.18). Moreover we prove that the simple functor S ;
that corresponds to the pair (1,1) is isomorphic to the functor that sends a finite
group G to the F-linear extension FK(kG) of the Grothendieck group of projective
kG-modules (Theorem 5.20).

2. Preliminaries

Let G and H be finite groups. We denote by p; : GXxH — Gandpy: GX H - H
the canonical projections. Let X < G x H be a subgroup. We define the sub-
groups k1(X) = p1(X N ker(ps)) and k2(X) := po(X N ker(py)) of pi(X) and
p2(X), respectively. Note that k;(X) X ko(X) is a normal subgroup of X. More-



over, k;(X) is a normal subgroup of p;(X) and one has a canonical isomorphism
X/(k1(X) X ko(X)) = pi(X)/k;(X) induced by the projection map p; for i = 1, 2.

Let ¢ : P — @ be an isomorphism between subgroups P < G and Q < H. Then
{(¢(z),z) : x € P} is a subgroup of H x G and a subgroup of that form is called a
twisted diagonal subgroup of H x G. Note that a subgroup X < H x G is a twisted
diagonal subgroup if and only if k1 (X) = 1 and ko(X) = 1.

Let P be a subgroup of G and M be a kG-module. We denote by M ¥ the k-vector
space of P-fixed points of M. If Q < P is a subgroup, then the map Try, : M9 — M”
defined by Tr(m) = >_ cp/g @ - m is called the relative trace map. The quotient

z€|

MI[P]:= M"/ " TeH(M?)
Q<P

is called the Brauer quotient of M at P. Note that M[P] is a kN ¢(P)-module, where
Ng(P) := Ng(P)/P. We have M[P] =0 if P is not a p-group.

A (kG, kH)-bimodule M can be viewed as a k(G x H)-module via (g, h) - m :=
gmh™! for (g,h) € G x H and m € M. Similarly a k(G x H)-module can be viewed
as a (kG, kH)-bimodule. We will usually switch between these two points of views.

Definition 2.1. Let G be a finite group. A kG-module M is called a permutation
module, if M has a G-stable k-basis. A p-permutation kG-module is a kG-module
M such that Reng s a permutation kS-module for a Sylow p-subgroup S of G.

For a finite group G we denote by T'(G) the Grothendieck group of p-permutation
kG-modules with respect to direct sum decompositions. If M is a p-permutation kG-
module, then the class of M in T(G) will be abusively denoted by M. The group
T(G) has a ring structure induced by the tensor product of modules over k, and
T(G) will be called the ring of p-permutation modules of G, for short. If H is another
finite group, we set T(G, H) := T(G x H). We denote by T*(G, H) the subgroup of
T(G, H) spanned by p-permutation k(G x H)-modules whose indecomposable direct
summands have twisted diagonal vertices.

Let Pg, denote the set of pairs (P, E) where P is a p-subgroup of G and FE is
a projective indecomposable kNg(P)-module. The group G acts on the set Pg,
via conjugation and we denote by [Pg | a set of representatives of G-orbits of P .
For (P, E) € Pg,p, let Mpp denote the unique (up to isomorphism) indecomposable
p-permutation kG-module with the property that Mpg[P] = E. Note that Mpg
has the group P as a vertex [4, Theorem 3.2]. We denote by Pg, ., the set of pairs
(P, E) € Pgxm,p where P is a twisted diagonal p-subgroup of G x H.

Remark 2.2. The isomorphism classes of the modules Mp g where (P, E) € Pévap
form a Z-basis for T*(G, H).



Definition 2.3. [5, Definition 2.3.1] Let (P, s) be a pair where P is a p-group and
s is a generator of a p'-cyclic group acting on P. We denote the semidirect product
P x (s) by (Ps). Let (Q,t) be another such pair. We say that the pairs (P, s) and
(Q,t) are isomorphic if there are group isomorphisms ¢ : P — Q and 1) : (s) — (t)
such that ¥(s) = q -t for some ¢ € Q and ¢(s-u) = ¥(s) - p(u) for allu € P. In
that case we write (P, s) ~ (Q,t).

Lemma 2.4. [5, Proposition 2.3.3] Let (P, s) and (Q,t) be two pairs. Then (P,s) ~
(Q,t) if and only if there is a group isomorphism [ : (Ps) — (Qt) such that f(s) is
conjugate to t.

Let Q¢ denote the set of pairs (P, s) where P is a p-subgroup of G and s € Ng(P)
is a p’-element. In that case (Ps) denotes the semidirect product P x (s) where the
action of (s) on P is induced by conjugation. The group G acts on the set Q¢ ,, and
we denote by [Qa,] a set of representatives of G-orbits. We denote by Q3. 1, the
set of pairs (P, s) € Qagxp,, Where P is a twisted diagonal p-subgroup of G x H.

For any pair (P, s) € Qg let 75, denote the additive map T(G) — F that sends
a p—permutation kG-module M to the value of the Brauer character of M[P] at s.
The map TPS is a ring homomorphism and it extends to an F-algebra homomorphism
75, F®z T(G) — F. The set {75, : (P,s) € [Qap)} is the set of all species from
FT(G) :=F ®z T(G) to F [3, Proposition 2.18].

The algebra FT'(G) is split semisimple and its primitive idempotents F gs are
indexed by pairs (P,s) € [Qg,| [3, Corollary 2.19]. If ¢ : (s) — k* is a group
homomorphism, we denote by k4 the k(s)-module k on which the element s acts as
multiplication by ¢(s). Let </s\> = Hom((s), k™) denote the set of group homomor-
phisms. By [3, Theorem 4.12] we have the idempotent formula

1

Fg§, = (s ILIu(L, (Ps))ndf k.,
P PlIslCx gy (5)] % e
Li(Ps)
PL=(Ps)

where kgi? = Reséps> Inf égs) k,, and ¢ is the Brauer character of k..
By [5, Proposition 2.7.8] we have another formula

FG )| CL( L P Indé 1409
e |CNG<P IZSD IC M( >) (Ls)™(Ls),p
L<P
LS:L

Here u((—, —)s) is the Mobius function of the poset of s-stable subgroups of P.
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Lemma 2.5. For finite groups G and H, the set {FESXH L (Prs) € [QG.u,lt of
primitive idempotents form an F-basis for the split semisimple algebra FT (G, H).

Proof. First we will show that we have Fg XH ¢ FTA(G, H) whenever (P,s) €
[QG i, Let ¢ € (s) and L < (Ps). It suffices to show that Indgkf;) e FT2(G, H).
Since P acts trivially on Inf gs%@, the subgroup P is contained in a vertex of £, con-
sidered as a k(Ps)-module. But since P is the Sylow p-subgroup of (Ps), it follows

that P is the vertex of k,. Therefore the module k;f:) = Reséps)lnfég@k(p has a

vertex contained in L N*P < P for some x € (Ps). Since a subgroup of twisted

diagonal subgroup is again twisted diagonal, this means that kg? has twisted di-

agonal vertices. This shows that Indglff(;> € FT2(G, H) as desired. Now since the
F-dimension of FT*(G, H) is equal to the cardinality of [Pg, ], which is equal to
the cardinality of [Qg, ], it follows that the set {FESXH : (P,s) € [Qgumpl} of
primitive idempotents form an F-basis for FT*(G, H). O

Let G, H and L be finite groups. If X isa (kG, kH)-bimodule and Y is a (kH, kL)-
bimodule, then X oY := X ®,y Y is a (kG, kL)-bimodule. Extending this product
by F-bilinearity, we get a map

FT'(G,H)oFT(H,L) — FT'(G, L).
Note that this induces a map
FT2(G,H) o FT*(H, L) — FT*(G, L)
which is used to define the composition of morphisms in the following category.
Definition 2.6. Let Fpp% be the category with
e objects: finite groups
e Morg,,a(G,H) =F ®z TA(H,G) =FT>(H,QG).

An F-linear functor from Fpp% to F-Mod is called a diagonal p-permutation func-

tor. Diagonal p-permutation functors form an abelian category Flﬁi’k'



3. The Essential Algebra
For a finite group G, the quotient algebra
EMQ) = FTA (G, G) /( S FTA(G, H) o FTA(H, G))
[HI<I|G]

is called the essential algebra of G.
By [5, Proposition 4.1.2 and Theorem 4.1.12] the algebra

£(Q) = IFT(G,G)/( 3 IFT(G,H)o]FT(H,G))
|H|<|G|

is non-zero if and only if there exists a pair (P, s) in G such that G = (Ps) and
Ci(P) = 1. In that case, we also have an algebra isomorphism

E(G) = (FIX]/®,[X]) x Out(G)

where n is the order of s [5, Theorem 4.1.12].
Note that the inclusion map FT2(G, G) = FT(G, G) induces a map

0 : E4(G) — £(G).

We will show that this map is an algebra isomorphism.

Let ¢ € Aut(G) be an automorphism and A : G/O,(G) — k* be a character,
where O,(G) denotes the largest normal p-subgroup of G. We define a (kG, kG)-
bimodule structure on kG, denoted by kG, », via

a-g-b:=Ablagp(b)

for a,b,g € G.

Let (Rt) be a twisted diagonal subgroup of G x G with p;((Rt)) = G and
pa((Rt)) = G. Let also n : pi((Rt)) — pa((Rt)) be the canonical isomorphism.
Then by [5, Section 4.1.2] we have an isomorphism

GxG(Rt) ~
Ind<R>;> k<Rt>,g& — anfl#Pfl

of (kG, kG)-bimodules. Again by [5, Section 4.1.2] the algebra £(G) is generated by
the images of kG, ).

Proposition 3.1. If the essential algebra E2(G) of a finite group G is non-zero,
then there exists a pair (P, s) in G such that G = (Ps) and C5(P) = 1.
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Proof. Let (Q,t) be a pair contained in G X G such that @ is a twisted diagonal
subgroup and recall the idempotent formula

Fgxo = |CN |§jgo )|CL(®)l((L. Q) Ind (kL
GxG(Q
L<Q
L=L

By [5, Lemma 2.5.9] we have an isomorphism

GxG Q) ~ G Lt)) /1.(Qt
Ind<L>;> ké,(p> = Ind ((Lt)) ®p1 Lt)) Indpl £)xp2(( >)<k2750>) ®p2(<Lt>) Resg«[/t»
~ (Lt Lt Qt
= |G @y (i) Ind?} S W”“ D(kSLD) @iy kG

of (kG,kG)-bimodules. As (kG, kG)-bimodule, we have the isomorphism kG =
Ind{%“k. Thus as (kG, kp;((Lt)))-bimodule we have,

deGk ~Ip dGXp1(<Lt>)R A(G) L

GxG GxG
Resdi o (winkG = Res pln Alpr (L)) VS A(pr (1)) -

Gxp1({Lt
Therefore as (kG x p;((Lt)))-module, the indecomposable direct summands of kG
have vertices contained in A(p;((Lt))). Similary, one can show that the indecom-
posable direct summands of kG as k(pa((Lt)) x G) module, have vertices contained
in A(p2((Lt))). We also know that the module k%

B)xp2((L ))(kﬁi ), have twisted diagonal vertices. Now

7 eo , and hence the indecomposable

direct summands of Indfit>
suppose £2(G) is non-zero. Then there is an idempotent Fg th whose image in
E2(G) is non-zero. Therefore the argument above shows that there is a pair (Q, )
in G x G such that p;((Qt)) = G and p2({(Qt)) = G. This implies that there is a
p-subgroup P of G and a p’-element s of G that normalises P such that G = (Ps).
Now we will show that in that case we have C,)(P) = 1.

Let G := G/Cy(P), Q := {(u,u:u € P} < G x G and Q := {(w,u) : u € P} <
G x G. Then by [5, Proof of Proposition 4.1.2] we have an isomorphism between kG
and

(@) (FCa(P)/Cl (P)@iha;)

GxG . (GxG
@Indmf ZXG(Q (kCg(P)/C'<5>(P)®kkai)®kalnd1nfﬁgxc

. GxG _ GxG Ngyxa(@)
s (kG, kG)-bimodules, where Indinfy N (@ = Indy"™ ) oIn fﬁGxG(Q)

and o/ run over the irreducible characters of (s). Agam by [5, Proof of Proposi-

tion 4.1.2] for each 7, the modules kC(P)/C) (P) ® kq, and kCq(P)/Cq (P) @y Ky

Here «;



are projective indecomposable kN ., 5(Q)-modules and kN, (Q')-modules respec-
tively. Now since kCq(P)/Cs ( ) @ kaq, is projective indecomposable, it has the

trivial group as vertex. So Inf Noxa Q (kCG( )/Cis)(P) @y, ka,) has the group Q as
G><

a vertex. Note that the group @ 1s tw1sted diagonal. Therefore indecomposable
direct summands of IndinngGi (kCG(P) /Cis)(P) ®y ka,) have twisted diagonal

vertices, i.e. IndmfGXG (kCg( )/Cis)(P) ®k ko,) € FTA(G,G). Similarly, we
G><
have Indinf$*¢ (k;CG( )/Cis)(P) @ kyor) € FTA(G,G). Now since E2(G) # 0,
axa(@') v

the image of identity element kG € FT2(G, G) in E2(G) is non-zero. Hence we have
G= G, i.e. C<s>(P) =1. 0

Suppose we have G = (Ps) and Cfs(P) = 1. The essential algebra E2(G) is
generated by the images of the primitive idempotents

¢
F3i® = |CNGxG<Q) | Z HCLO|(L, Q)N Ind (5 ki)
L<Q
L'=L
where @ is a twisted diagonal subgroup of G x G. By [5, Lemma 2.5.9], if the image
of Ind<GXt>G k;(L?Q is non-zero, then we must have that p;((Lt)) = G = po((Lt)). Write
t = (u,v). Then pi((Lt)) = (p1(L)u) and ps({(Lt)) = (po(L)v). Therefore we have
|u| = |v| = |s|. Being a subgroup of twisted diagonal subgroup @, the group L itself
is also twisted diagonal. Since ki(L) = ko(L) = 1 and |u| = |v| = |s|, we have
ki1((Lt)) = ko((Lt)) = 1. This shows that the subgroup (Lt) is twisted diagonal
and pi((Lt)) = G = po((Lt)). Since the images of IndGXGk Qt in £(G) with (Lt)
satisfying these properties, generate the non-zero algebra 8 (G) this shows that the
algebra £2(G) is also non-zero and the map © : £2(G) — £(G) is surjective. Thus
we have proved the following:

Proposition 3.2. The essential algebra £2(G) is non-zero if and only if there is
a pair (P,s) in G such that G = (Ps) and Ciy(P) = 1. Moreover the map © :
EA(G) — E(Q) is surjective.

Suppose we have G = (Ps) for some pair and C,)(P) = 1. We will show that
the map © : £2(G) — £(G) is also injective.
Suppose an element Y 7, ,kG,.o € E2(G) is mapped to zero by ©. Then the element
> TpakGy o of £(G) is zero. Write

ZW,akG%a = Z tauy, v U @k Vi
|H|<|G|
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for some (kG,kH)-bimodule Uy and (kH, kG)-bimodule Vi and some constants
tauy vy € F. Suppose the coefficient ¢ 1, v, is non-zero for some group H. Then
as in [5] we can assume that H = (Rt) for some pair (R, t) and that the modules Uy
and Vj are indecomposable. By [5, Section 4.1] one has

GxG
Ui @p Vi = Indinf P))@ (kZ(P) ® k)"

where )\; is a character of (s) and n; € N. Again by [5, Section 4.1] each summand
kZ(P)®ky, is a projective indecomposable kN gy q(A(P))-module. This shows that
if the the coefficient ¢y 7, v, is non-zero, then the indecomposable direct summands
of the bimodule Uy ®igy Vg have twisted diagonal vertices. Therefore the element
> TpakGya is zero in EA(G). This proves that the map © : E2(G) — £(G) is

injective. We summarise our results as a theorem below.

Theorem 3.3. The essential algebra E2(G) is non-zero if and only if there is a pair
(P,s) in G such that G = (Ps) and Cis(P) = 1. In that case, the algebra EA(G) is
isomorphic to the algebra (F[X]/®,[X]) x Out(G) where n is the order of s.

4. DA-pairs

Let H < G be a subgroup. The (kG, k:H) bimodule kG is denoted by Ind%
and (kH, kG) bimodule kG is denoted by Res%. Similarly, if N < G is a normal
subgroup, the (kG /N, kG)-bimodule kG /N is denoted by Defg/N and (kG,kG/N)-
bimodule kG//N is denoted by Inf& /n- This notation is consistent with our previous
use of induction, restriction, inflation and deflation symbols, in the sense that for
example, if M is a kH-module, then the induced module Indg]\/[ is isomorphic to
Indfl Rry M.

We have the following lemma due to [3] and [5].

Lemma 4.1. (i) Let (P,s) € Qg be a pair and H < G be a subgroup. Then we
have

G G H
RGSHFRS - Z FQ,t
Q’t

where (Q,t) runs over a set of representatives of H-conjugacy classes of G-
conjugates of (P, s) contained in H.



(i1) Let (Q,t) € Qu, be a pair and H < G be a subgroup. Then we have
Ind§ FY, = |Na(Q,t) : Nu(Q,1)|FS,.
(iii) Let N 4G and (P,s) € Qa/nyp. Then

where (Q,t) runs over a set of representatives of G-conjugacy classes of pairs
in Qg such that QN/N =9P and t =9s for some g € G/N.

() Let N QG and (P,s) € Qg,. Then

G/N
Defl v FE, = mpgy - FQ’Q

for some pair (Q,t) € Qa/np and a constant mp n € F.
If G = (Ps) then

G/N
Def, /NFPS = Mps,N - FP1<1/N5

Proof. See [3, Proposition 3.1. and Proposition 3.2.] for (i) and (ii), [5, Proposition
3.1.3] for (iii) and [5, Lemma 3.1.4 and Proposition 3.1.5] for (iv). O

Lemma 4.2. Let N <G be a normal subgroup of G.
(i) We have Def& G/N € FTA(G/N,G) if and only if N is a p'-group.

(i) We have Infg ¢/N € FTA(G,G/N) if and only if N is a p'-group.

Proof. (i) Let Q < (G/N)x G be a maximal vertex of an indecomposable direct sum-
mand of the (kG /N, kG)-bimodule kG/N. Equivalently @ is a maximal p-subgroup
having a fixed point on the set G/N. Suppose (aN,b) € @ stabilises a basis element
gN of kG/N. Then we have (aN)gNb~' = gN which implies that a9 - b~! € N.
Since the vertices of an indecomposable module are conjugate, we may assume that
g = 1. Thus, up to conjugacy, @ is a Sylow p-subgroup of

H={(aN,b): ab™' € N} < (G/N) x G.

Note that k1 (Q) = ki(H) = 1 and k2(Q) is a Sylow p-subgroup of N. Hence @ is
twisted diagonal if and only if N is a p’-group. The result follows.
(i) Similar. O
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Let (P, s) be a pair and suppose G = (Ps). Then by [5, Corollary 3.1.9] for any
normal subgroup N of G, we have the following formula for the constant mp y:

o s s
PN S FAEICE] 2, 0@ P,
(@N=G

Lemma 4.3. Let (P,s) be a pair and suppose G = (Ps). Then for any normal

p'-subgroup N of G we have
1
MpsN = 7777
[N

Proof. First observe that since N is a p’-group, we have N < C,)(P). For any
subgroup @ of P the condition (Qs)N = (Ps) implies that |Q| = |P| and hence
@@ = P. Therefore the formula above becomes

s||Cp(s 1
ey = IO 1

INlICa(s)] [N
O

Definition 4.4. A pair (P, s) is called D*-pair if Defgizi/NFliis> = 0 for any non-
trivial normal p'-subgroup N of (Ps).

Lemma 4.5. Let (P,s) be a pair. Then (P,s) is a D®-pair if and only if the
group (Ps) does not have any nontrivial normal p'-subgroup, that is, if and only

if Cy(P) =1.

Proof. By Lemma 4.3, for any normal p’-subgroup N <(Ps) we have mps y = 1/|N]|.
Therefore (P, s) is a D-pair if and only if the group (Ps) does not have any nontrivial
normal p’-subgroup. The result follows. [

5. The functor FTA

By [2], the simple diagonal p-permutation functors are parametrized by the pairs
(G, V) where G is a finite group and V is a simple £2(G)-module. Note that this
implies £2(G) # 0.

For a simple £2(G)-module V', we define two functors in Fpp% by:

Leyv(H) :=FT*(H,G) ®¢ay V

11



and

()

Joy(H) = {Z ¢ ®v; € Loy 1 Vi € FT(G,H), > (o ¢y)-v; = o} ,

for any finite group H. The action of morphisms in Fpp2 on these evaluations is
given by left composition. The functor Jgy is the unique maximal subfunctor of
L¢ v, so the quotient

Sav = Lav/Jay

is a simple functor [2].
Let FT4 : Fpps — F-Mod be the functor given by

o FT2(G) := F @5 T(G) = FT(Q),
o FTA(X):FT(G) — FT(H), M + X @4y M for any X € FT2(H,G).

For any kG-module X, we denote by X the (kG, kG)-bimodule k(G x X) where the
action of kG-kG is given by

a-(g,r)-b"":= (agh,b 1)
for all a,b, g € G and z € X. We have an isomorphism of (kG, kG)-bimodules
X = Indg 55" Tso(8)(X)

where § : G — G x G, g — (g,97"). See [5, Definition 2.5.17]. Note that the image
0(G) of G in G x G? is a twisted diagonal subgroup. If X is an indecomposable
p-permutation kG-module with a vertex @, then any vertex of an indecomposable
direct summand of X is contained in §(Q), up to conjugation. Therefore for any

X € FT(G) we have X € FTA(G, G).

Lemma 5.1. Let F be a subfunctor of FT®. Then for any finite group G, the
F-vector space F(G) is an ideal of the algebra FT*(G) of p-permutation modules.

Proof. Let Y € F(G) and assume X is a p-permutation kG-module. By [5, Propo-
sition 2.5.18] we have an isomorphism X ®; Y = X ®Rre Y of kG-modules. Since
X € FTA(G,G) and F is a functor, we have X ®4¢ Y € F(G). This shows that
F(G) is an ideal of FT2(G). O

Definition 5.2. For any pair (P, s) let ep, denote the subfunctor of FT® generated
by the idempotent Flgi5> € FT2((Ps)).
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Proposition 5.3. Let F be a subfunctor of FT®. Then we have

Now let G be a finite group, and u = 37 ApsFF,, where (P,s) runs in a set
of representatives of G-conjugacy classes of Q¢ ,,, and Ap, € F. Then F 1(3;,5 cu =
ApsFF, € F(G), since F(G) is an ideal of FT*(G). Hence Ff, € F(G) if Ap, # 0.
In this case we have Res?PS>F§8 € F((Ps)), which implies by Lemma 4.1 that

Fé,is> € F({Ps)). This shows that ep, < F. By Lemma 4.1 again, F5 is a non zero

scalar multiple of Ind<GPS>F ]ﬁff), so Ff, € ep(G), which gives finally

uwe Y epG).

eP,ng
Therefore we have
F= E €ps
eP,ng
as desired. n

Proposition 5.4. Let (P, s;)ic; be a set of pairs for an indexing set I. Then for
any pair (Q,t) we have egy < Y .. ep,s, if and only if egy < ep, s, for somei € I.

Proof. If eg; < ep,,, for some i € I, then we obviously have eg, < > . ;ep, s,
Conversely assume we have egy < >, ep,s,. Then eq,((Qt) < Y, ep.s ((Q))
and so Fé;;‘it> € Y icrep,s ((Qt)). Since Féff> is a primitive idempotent and since
ep, s, ((Qt)) is an ideal of FT*((Qt)) it follows that we have Féﬁt) € ep,., ((Qt)) for
some ¢ € I and hence eg; < ep, ;. O

Let G be a finite group and (P,s) € Qg, be a pair such that G = (Ps). Let
also (Q,1) € Qf ¢, for a finite group H. Suppose that 7 : p1(Q) — p2(Q) is the
canonical isomorphism. Up to conjugation in H x G, we can assume t = (u,s’). By
[5, Section 3.2] if po((Qt)) # G, then the product F(thG ke FF, is zero. So assume
that we have po((Qt)) = G. This implies that we have py(Q) = P and |s’| = |s|.
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Then since k1(Q) = k2(Q) = 1, this implies that we have p;(Q) = P. Since the
group @ is t-stable, the isomorphism 7 : p;(Q)) — P commutes with conjugations
by v and s’. Now [5, Equation (3.3), Section 3.2] implies that as kH-module the
product Fng Rra ng is equal to

1 ~ u
Crnre @G 2 POV D ol (G
= &
lulyilul =1
where o(J) := ) L<p 1CL(s)|n((L, P)*) and ¢(u) := p(u, s7)(s)’.

n(J)=L
Suppose we have H = (P's’) for a pair (P’,s'). Then by [5, Lemma 2.7.6] if

Th g (FHXG ke FB,) # 0, then we must have py(Q) = P’ and |u| = |s/|. This
1mphes in particular that we must have P’ = P. Moreover again by [5, Lemma 2.7.6]
we have 7/, , (Ind{},,, (k<p1(Q)u))) = 0 if J # P’. Therefore if we have P’ = P then

TP/ (F HxG e FS ) is equal to

1 I .

Crm e Q) ONC(5)] Z> (6B (s) M| Co DI T ()|3(5).
PE(s)
plulyilul—1

This shows that if we have FT'*((P's'), (Ps)) Qxps) F]gis> # 0, then there is
an isomorphism 7 : P’ — P and a p’-element (u,s’) € (P's') x (Ps) such that

noc, = c¢gonand |u| = ||, |s/| = |s|. In that case, assume further that C\ (P) = 1.
Then we have |c,| = |s| and |cy| = |s7|. Since we have 7o ¢, = cg o7 it follows
that |c,| = |csi|. Therefore we have |s| | |s'|. But then [5, Proposition 2.3.6] implies

that there is a surjective group homomorphism 7 : (P’s’) — (Ps) that induces an
isomorphism of pairs (P’ ker(77)/ ker (7)), s' ker(7)) ~ (P, s). Note that since |P'| = |P|
the order of ker(7) is coprime to p. We have the following:

Lemma 5.5. Let (P,s) be a pair with Cy(P) =1 and set G := (Ps). Let H be a
finite group. The following statements are equivalent:

(i) FT*(H,G) @ FF, # 0.

(ii) There exists a pair (P, s") contained in H such that the pair (P, s) is isomorphic
to a p'-quotient of the pair (P',s'), that is, there exists a normal p'-subgroup K
of (P's') such that (P,s) ~ (P'K/K,sK).
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Proof. (i) = (ii) Suppose we have FT*(H, G) ®4¢ F§, # 0. Then there exists a pair
(P',s") in H such that
Ff o € FT?(H,G) @ FF,.

Via the restriction map this implies that we have
Fis) e FTA((P'S), Q) @ FS,.

Therefore by the argument above we have an isomorphism (P'K/K,s'K) ~ (P, s) of
pairs where K is a normal p’-subgroup of (P’s’).
(ii) = (i) Suppose ® : (P'K/K,s'K) — (P, s) is an isomorphism of pairs where K
is a normal p’-subgroup of (P’s’). Then we have

Ind{p oy Inf (%) Ts0(®) FE # 0.
This shows (i). O
Proposition 5.6. Let (P, s) be a pair. The following are equivalent:
(i) (P,s) is a D*-pair.
(11) For any finite group H with |H| < |(Ps)|, we have eps(H) = {0}.

(i1i) If H is a finite group with eps(H) # {0}, then the pair (P, s) is isomorphic to
a p'-quotient of a pair (P',s") contained in H.

(iv) For any nontrivial normal p'-subgroup N of (Ps), we have Defggzi/NFlgi5> =0.

(v) The group (Ps) does not have any nontrivial normal p'-subgroup.
(vi) We have Cq)(P) = 1.

Proof. (vi)<(v)<(i) : This follows from Lemma 4.5.

(iv)< (i): This follows from the definition of D*-pairs.

()= (iii): Since (P,s) is a D®-pair, we have C;(P) = 1. So (iii) follows from
Lemma 5.5.

(iii)= (ii): Assume that (ili) holds and eps(H) # 0 where H is a finite group
with |H| < |(Ps)|. Then by the assumption, we have |H| > [(P's")| > [(Ps)|.
Contradiction.

(ii)= (iv): Clear. O

Proposition 5.7. Let (P, s) and (Q,t) be two pairs.
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(i) If the pair (Q,t) is isomorphic to a p'-quotient of the pair (P,s), then we have
ep7s = eQ7t.

(i) If (Q,t) is a D*-pair, and if eps < eqy, then (Q,t) is isomorphic to a p'-
quotient of (P, s).

Proof. (i) Assume we have an isomorphism ¢ : (PK/K,sK) — (Q,t) of pairs for
some normal p’-subgroup K of (Ps). Then we have

FRY @ Inflp?) j Iso(¢ ) Foyt # 0.

Therefore we have F’ é,is> € eg.((Ps)) which implies that ep, < eq,.
Now we also have

FY @i Tso(¢)Def () FL #0

which implies that F Qt € ep5(<Qt>). Therefore we have eg: < ep and so eg; =
ep, as desired.

(ii) Since eps < egy, we have F,&f';s> € eqgu((Ps)). Since (Q,t) is a D*-pair, by
the proof of Lemma 5.5, there exists a normal p’-subgroup K of (Ps) such that
(Q,t) ~ (PK/K,sK). n

Proposition 5.8. Let F be a nonzero subfunctor of FT. If H is a minimal group
of F, then H = (Qt) for some D*-pair (Q,t). Moreover we have

FHYS & Fry,
(Q',t'),DA —pair
(Qt)=H

and eqg; < F.
In particular, if F = eg; for some D™-pair (Q,t), then we have

e((Q) = & FFy,.
(@) =(Qt)

Proof. Let F be a nonzero subfunctor of FT® and assume H is a minimal group
of F. Since F(H) # 0, there exists a pair (Q,t) € Qu, such that F4, € F(H). This

implies, via the restriction map, that we have Fgﬁw el ((Qt)) Since H is a minimal
group, this implies that we have H = (Qt). Now if N is a normal p’-subgroup of
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(Qt), then Defégz/NFéﬁw = ﬁFé%}]/V]\iN # 0. Again since H is a minimal group this

means that N is trivial and hence the pair (Q,t) is a D®-pair. It follows moreover
that
FH)< @ FF,.
Q' ,t"),D? —pair
(@v)=H

For the last part, consider the functor eg, for some D®-pair (Q,t). If Fé?? €
ert((Qt» for some D*-pair (Q',t'), then by the second part of Proposition 5.7, the
pair (@, t) is isomorphic to a p’-quotient of the pair (@’,¢). But the pair (@', t') is
contained in (Qt). Thus we have (@', t') ~ (Q,1).
Conversely, if the pairs (@', t') and (Q,t) are isomorphic via a map ¢, then we have

ng?? = Iso(gb)Féﬁt>. Therefore we have

eq.((Qt) = @ FF ..
(Q't)~(Q,t)
(Q't")y=(Qt)
]

Let (P, s) be a pair and N a normal p’-subgroup of (Ps). Then the pair (PN/N, sN)
is a p’-quotient of the pair (P, s) and so by Proposition 5.7 we have ep, = epy/n sn-

Proposition 5.9. Let (P,s) be a pair. Then the group (Ps)/Cs(P) is the unique,
up to isomorphism, minimal group of the functor eps. Moreover there is a unique
isomorphism class of D*-pairs (P',s') such that (P's') = (Ps)/C s (P) and we have
ep s = eps. Furthermore we have (P', s') =~ (PCy(P)/Cis)(P), sCi5)(P)).

Proof. Let (P',s") be a D®-pair such that (P’s’) is a minimal group of the functor
ep,. By Proposition 5.8, we have ep/ v < ep,. Let N := C,)(P). Then the pair
(PN/N,sN) is a D?-pair, and we have ep, = epn/N,sn- Since (PN/N,sN) is a
DA-pair, by Proposition 5.7 there exists a normal p’-subgroup K of (P’s’) such that
(PK/K,s’K) ~ (PN/N,sN). This means that the idempotent FJS{DI,;//%I;K is in
the evaluation at (P's")/K of the functor epy/n v = eps. Since the group (P's’)
is a minimal group of epy it follows that we must have K = 1. Thus we have
(P',s") ~ (PN/N,sN). Therefore we have ep y = epn/n v = €ps.

Now we will show the uniqueness of the isomorphism class of the minimal groups
of eps. Let H be a minimal group of ep,. It suffices to show that H is isomorphic
to (P's'). By Proposition 5.8 the group H is of the form H = (Qt) for some D*-pair
(Q,t). By the first part of the proof we have eg; = eps = ep/ ¢. Since both (Q, 1)
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and (P, s) are D*-pairs, the equality eg; = epr v implies that (Q,t) is isomorphic
to a p’-quotient of (P,s), and vice versa. Therefore we have (Q,t) ~ (P’,s’) which
implies that H = (Qt) = (P's’) as desired. O

For any pair (P, s) we denote by (f’, 5) a representative of the isomorphism class
of the pair (PC<S>(P)/C<S>(P), SC<8>(P)).
Theorem 5.10. Let (P, s) be a pair.

(i) If (Q,t) is isomorphic to a p'-quotient of (P,s) and if (Q,t) is a DA -pair,
then (Q,t) is isomorphic to the pair (P,3). In particular, for any normal p'-
subgroup N < (Ps), we have (PN/N,sN) ~ (P, 3) if and only if (PN/N,sN)
is a D™ -pair.

(ii) Let N < (Ps) be a normal p'-subgroup. Then the pair (P, 3) is isomorphic to a

p'-quotient of (PN/N,sN) and we have (P,3) ~ (PN/N, STV)
Proof. (i) Since the pair (@Q,t) is isomorphic to a p’-quotient of the pair (P, s), by
Proposition 5.7, we have ep; = ep; < eq;. Since (Q,t) is a DA-pair, again by
Proposition 5.7, the pair (@,t) is isomorphic to a p’-quotient of (15, ). But since
the pair (P, 3) is a DA-pair, it follows that the pair (Q,t) is isomorphic to the pair
(P, 3).

(ii) Since the constant mpg n is non-zero, we have F;,I;}S}]@ZV € eRS((Ps)/N) =
ep;((Ps)/N). Therefore we have epnyn,sv < €p 5 and since (P, 3) is a D®-pair, by
Proposition 5.7, (P, 3) is isomorphic to a p’-quotient of (PN/N,sN). Again since
the pair (P, §) is a D®-pair, by part (i), it is isomorphic to the pair (PN/N, QJVV) ]

Let [D?-pair] denote a set of isomorphism classes of D*-pairs. Then the sub-
functor lattice of the functor FT* is isomorphic to the lattice of subsets of the set
[DA-pair] ordered by inclusion.

Theorem 5.11. Let S be the lattice of subfunctors of FT® ordered by inclusion
of subfunctors. Let T be the lattice of subsets of [D*-pair] ordered by inclusion of
subsets. Then the map

0:S—>T

that sends a subfunctor F to the set {(P,s) € [D®-pair] : eps < F}, is an isomor-
phism of lattices with inverse

UV:T7T =S8
that sends a subset A to the functor Z(Rs)eA eps.
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Proof. We need to show that the maps © and ¥ are inverse of each other. Let FF € §
be a subfunctor. By Proposition 5.3 we have

where I' is a set of representatives of the isomorphism classes of pairs. But for any
pair (P, s) we have ep, = ep ; and (P, 3) is a D®-pair. Therefore we have

F = Z €ps-

(P,s)€[D? -pair]
€ep,s <F

This shows that W(O(F)) = F.

Now let A € T be a subset and let (Q,t) € O(¥(A)) be a D*-pair. Then
we have eg; < Z(P’S)e sep;s and so by Proposition 5.4 this implies that we have
eg: < ep, for some (P,s) € A. Since both (P, s) and (Q,t) are D?-pairs, it follows
that (P,s) ~ (@,t) and hence (Q,t) € A. This shows that ©(¥(A)) C A. The
inclusion A C ©(W(A)) is trivial. Therefore we have ©(¥(A)) = A. O

The following corollary follows immediately from Theorem 5.11.
Corollary 5.12. We have FTA = @(RS)E[DA_Z)M eps.
The first statement of Proposition 5.8 can also be made stronger.

Corollary 5.13. Let F be a nonzero subfunctor of FT®. If H is a minimal group
of F, then H = (Qt) for some D*-pair (Q,t) and we have

FH)= & Fry,.
(@,)~(Q.1)
=i

Proof. Since H is a minimal group of F', by Proposition 5.8 it follows that H = (Qt)
for some D*-pair with the property that eq; < F. By Theorem 5.11 we have

F = Z €Q.t-

(Q:t)€[D™ -pair]
eq, i<k

Therefore by Proposition 5.8 again we have

F(H) =eq.(H) = @ FES
~(Qst)

<Qt> (Qt)
as desired. 0
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Corollary 5.14. Let (P, s) be a D*-pair. Then the subfunctor ep, of FT* is iso-
morphic to the simple functor Spg wy,, where Wp, = @(Q,t):(P,S)FF,i’ZSW
(Qt)=(Ps)

Proof. By Theorem 5.11 the lattice of subfunctors of ep is isomorphic to the lattice
of subsets of the set O(ep,) = {(Q,t) € [D*-pair] : egs < eps} = {(P,s)}. There-
fore the subfunctor epy is simple. By Proposition 5.9 the group (Ps) is a minimal
group of the functor ep,. By Proposition 5.8 we have epﬁ((Ps}) = Wps. Moreover,
by [5, Theorem 4.2.5], the module Wp is a simple module for the essential algebra
E2((Ps)). Thus we have eps =~ S(pg) w,, as desired. O

Proposition 5.15. If F < F' are subfunctors of FT® such that F'/F is simple, then
there exists a unique D®-pair (P, s) € [D*-pair] such that eps < F' and eps £ F.
In particular, we have eps + F = F', ep, N F' = {0}, and F'/F ~ Sipgy wp,

Proof. The existence of a pair (P, s) with the property that eps < F’ and epy £ F
is clear. Suppose (P’,s") is another pair with these properties. Since F’/F is simple,
we have

(P',s") € ©(F)U{(P,s)}.

Thus (P, ') ~ (P,s) as (P',s') ¢ O(F). Now since ep, £ I and F'/F is simple,
we have ep + F' = F'. Thus the quotient ep;/(eps N F) >~ F'/F is simple and so
eps N F' = {0}. Therefore we have F'/F ~ Sipg w,. O

Proposition 5.16. Let F < F' be subfunctors of FT® such that F'/F is simple. Let
H (respectively H') be a finite group and W (respectively W') be a simple £~ (H)-
mod (respectively E~(H')-mod) such that Sgw ~ Sprw ~ F'/F. Then H = H'.
Moreover W = W', after identification of H and H' via the previous isomorphism.

Proof. By Proposition 5.15 there exists a unique D?-pair (P, s) such that F'/F ~
S(psy,wp,- Therefore it suffices to prove that H = (Ps). Since (F'/F)(H) # 0 there
exists a pair (Q,t) contained in H such that FY, € F'(H)\ F(H). Since H is a
minimal group of F'/F, it follows that H = (Qt) and (Q,t) is a D*-pair. Moreover
we have eg; < F’ and eg, £ F. But the pair (P,s) is the unique D*-pair with
these properties. Therefore we have (Q,t) ~ (P, s). Thus H = (Ps) as desired. The
last assertion follows from the fact that Sy w(H) = W. O

Proposition 5.17. Let (P,s) be a pair. Then for any finite group H, the F-vector
space eps(H) is the subspace of FT'(H) generated by the set of primitive idempotents
th where (Q,t) runs over a set of conjugacy classes of pairs in H with the property
that (P, s) is isomorphic to a p'-quotient of (Q,1).
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Proof. Since the pair (P, ) is isomorphic to a p/-quotient of the pair (P, s) and since
eps = €p;, we may assume that the pair (P, s) is a DA -pair. Since ep(H) is an
ideal of FT'(H), it has a [F-basis consisting of a set of primitive idempotents th. If
Y, € eps(H), then Fé%t> € ep,((Qt)) and so eq; < ep,. Since (P, s) is a D*-pair,
by Proposition 5.7, it is isomorphic to a p’-quotient of the pair (Q,t). Conversely, if
(P, s) is isomorphic to a p’-quotient of the pair (Q,t), then again by Proposition 5.7,
we have eg: < ep,. So we have Féﬁt) € ep,((Qt)) and hence FY, € ep (H). The
result follows. 0

Theorem 5.18. Let (P, s) be a D®-pair. Then for any finite group H, the F-
dimension of Sipsy,wp,, (H) is equal to the number of conjugacy classes of pairs (Q,1)

in H such that (Q,1) ~ (P, s).

Proof. By Proposition 5.17 ep(H) is generated by the idempotents F{, where (Q,t)
is a pair in H with the property that the pair (15, 5) ~ (P, s) is isomorphic to a p'-
quotient of the pair (Q,t). Since (P, s) is a D?-pair, Theorem 5.10 implies that
(Q,1) ~ (P,s). The result follows. O

Corollary 5.19. Let H be a finite group. The F-dimension of Sig(H) is equal to
the number of isomorphism classes of simple kH-modules.

Proof. By Theorem 5.18, dimpS; p(H) is equal to the number of conjugacy classes of
pairs (Q, t) in H such that (Q,#) ~ (1,1). Suppose (Q, 1) is a pair with (Q, %) ~ (1,1).
Then we have Q = 1 and ¢ = 1. So there exists a normal p/-subgroup N of (Qt)
such that (QN/N,tN) ~ (1,1). Since |@Q| and |N| are coprime, this implies that
@ = 1. We also have ¢t € N. But then N < (t) implies that N = (t). Therefore the
number of conjugacy classes of pairs (@), t) in H such that (Q, t) ~ (1,1) is equal to
the number of conjugacy classes of p’-elements in H. The result follows. [

Theorem 5.20. The functor Sig is isomorphic to the functor that sends a finite
group H to the subspace FKo(kH) of FT2(H) generated by the projective indecom-
posable kH-modules.

Proof. Let H be a finite group. We have
Sip(H) = (FT*(H,1) @ F)/Jip(H) 2 FT*(H,1)/Jy5(H)
where Jyp(H) = {¢ € FT*(H, 1) : Vo € FT?(1, H), (o ¢)-1 =0}. Now FT>(H, 1)

is isomorphic to the subspace FKy(kH) of FT(H) generated by the isomorphism
classes of projective indecomposable kH-modules. Similarly any W € FTA(1, H)
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can be identified with W* € FKy(kH). As in [6] we have the following:
For any p-permutation kH-modules V' and W we have

Therefore J; p(H) is the right kernel of the bilinear form
<—,—>FKykH)—F

defined as < W,V >:= dimy(Homgy (W, V). But the matrix that represents this
bilinear form is the Cartan matrix of kH. Since the Cartan matrix of a group algebra
is non-degenerate, it follows that J; g(H) = 0. Therefore we have

Sip(H) =FT*(H,1) @ F = FT?(H,1) 2 FKy(kH).
Note that both of these isomorphisms are functorial in H. The result follows. O
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