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Abstract

Let k be an algebraically closed field of positive characteristic p, and F be an algebraically closed
field of characteristic 0. We consider the F-linear category Fpp∆k of finite groups, in which the set of
morphisms from G to H is the F-linear extension FT∆(H,G) of the Grothendieck group T∆(H,G)
of p-permutation (kH, kG)-bimodules with (twisted) diagonal vertices. The F-linear functors from
Fpp∆k to F-Mod are called diagonal p-permutation functors. They form an abelian category F∆

ppk
.

We study in particular the functor FT∆ sending a finite group G to the Grothendieck group
FT (G) of p-permutation kG-modules, and show that FT∆ is a semisimple object of F∆

ppk
, equal to

the direct sum of specific simple functors parametrized by isomorphism classes of pairs (P, s) of a
finite p-group P and a generator s of a p′-subgroup acting faithfully on P . This leads to a precise
description of the evaluations of these simple functors. In particular, we show that the simple
functor indexed by the trivial pair (1, 1) is isomorphic to the functor sending a finite group G to
FK0(kG), where K0(kG) is the group of projective kG-modules.
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1. Introduction

Let p be a prime number. Throughout we denote by F an algebraically closed
field of characteristic zero, and by k an algebraically closed field of characteristic p.
The p-permutation modules play a crucial role in the study of modular representation
theory of finite groups. A splendid Rickard equivalence, introduced by Rickard [8],
between blocks of finite group algebras is given by a chain complex consisting of
p-permutation bimodules. Also a p-permutation equivalence, introduced by Boltje
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and Xu [1], and studied extensively later by Boltje and Perepelitsky [7], is an element
in the Grothendieck group of p-permutation bimodules.

In [5], Ducellier studied p-permutation functors: Consider the category Fppk
where the objects are finite groups and the morphisms between groups G and H are
given by the Grothendieck group F⊗ZT (H,G) of p-permutation (kH, kG)-bimodules.
A p-permutation functor is an F-linear functor from Fppk to F-Mod. The indecompos-
able direct summands of the bimodules that appears in a p-permutation equivalence
between blocks of finite group algebras have twisted diagonal vertices. Therefore,
inspired by the work of Ducellier, we consider a category with less morphisms: Let
Fpp∆k be a category where the objects are finite groups and the morphisms between
groupsG andH are given by the Grothendieck group F⊗ZT

∆(H,G) of p-permutation
(kH, kG)-bimodules whose indecomposable direct summands have twisted diagonal
vertices. An F-linear functor from Fpp∆k to F-Mod is called a diagonal p-permutation
functor.

By [2], the simple diagonal p-permutation functors are parametrized by the
pairs (G, V ) of a finite group G and a simple module V of the essential algebra
E∆(G) = EndFpp∆k

(G)/I at G, where I is the ideal generated by the morphisms
that factor through groups of smaller order. We show that the essential algebra
E∆(G) is isomorphic to the essential algebra studied in [5]. As a result this im-
plies that the essential algebra E∆(G) is non-zero if and only if the group G is of
the form P ⋊ ⟨s⟩ where P is a p-group and s is a generator of a p′-cyclic group
acting faithfully on P . Moreover in that case there is an algebra isomorphism
E∆(G) ∼=

(
F[X]/Φn[X]

)
⋊Out(G) where n is the order of s. See Theorem 3.3.

We also study the functor FT∆ that sends a finite group G to the Grothendieck
group FT (G) of p-permutation kG-modules. We describe the subfunctor lattice
(Theorem 5.11) and simple quotients (Proposition 5.15) of FT∆. We also give a
description for the F-dimension of the evaluations of simple quotients of FT∆ at
a finite group G (Theorem 5.18). Moreover we prove that the simple functor S1,1

that corresponds to the pair (1, 1) is isomorphic to the functor that sends a finite
group G to the F-linear extension FK0(kG) of the Grothendieck group of projective
kG-modules (Theorem 5.20).

2. Preliminaries

Let G and H be finite groups. We denote by p1 : G×H → G and p2 : G× H → H
the canonical projections. Let X ⩽ G × H be a subgroup. We define the sub-
groups k1(X) := p1(X ∩ ker(p2)) and k2(X) := p2(X ∩ ker(p1)) of p1(X) and
p2(X), respectively. Note that k1(X) × k2(X) is a normal subgroup of X. More-
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over, ki(X) is a normal subgroup of pi(X) and one has a canonical isomorphism
X/(k1(X)× k2(X)) → pi(X)/ki(X) induced by the projection map pi for i = 1, 2.

Let ϕ : P → Q be an isomorphism between subgroups P ⩽ G and Q ⩽ H. Then
{(ϕ(x), x) : x ∈ P} is a subgroup of H × G and a subgroup of that form is called a
twisted diagonal subgroup of H ×G. Note that a subgroup X ⩽ H ×G is a twisted
diagonal subgroup if and only if k1(X) = 1 and k2(X) = 1.

Let P be a subgroup of G andM be a kG-module. We denote byMP the k-vector
space of P -fixed points ofM . If Q ⩽ P is a subgroup, then the map TrPQ :MQ →MP

defined by Tr(m) =
∑

x∈[P/Q] x ·m is called the relative trace map. The quotient

M [P ] :=MP/
∑
Q<P

TrPQ(M
Q)

is called the Brauer quotient ofM at P . Note thatM [P ] is a kNG(P )-module, where
NG(P ) := NG(P )/P . We have M [P ] = 0 if P is not a p-group.

A (kG, kH)-bimodule M can be viewed as a k(G ×H)-module via (g, h) ·m :=
gmh−1, for (g, h) ∈ G×H and m ∈M . Similarly a k(G×H)-module can be viewed
as a (kG, kH)-bimodule. We will usually switch between these two points of views.

Definition 2.1. Let G be a finite group. A kG-module M is called a permutation
module, if M has a G-stable k-basis. A p-permutation kG-module is a kG-module
M such that ResGSM is a permutation kS-module for a Sylow p-subgroup S of G.

For a finite group G we denote by T (G) the Grothendieck group of p-permutation
kG-modules with respect to direct sum decompositions. IfM is a p-permutation kG-
module, then the class of M in T (G) will be abusively denoted by M . The group
T (G) has a ring structure induced by the tensor product of modules over k, and
T (G) will be called the ring of p-permutation modules of G, for short. If H is another
finite group, we set T (G,H) := T (G×H). We denote by T∆(G,H) the subgroup of
T (G,H) spanned by p-permutation k(G×H)-modules whose indecomposable direct
summands have twisted diagonal vertices.

Let PG,p denote the set of pairs (P,E) where P is a p-subgroup of G and E is
a projective indecomposable kNG(P )-module. The group G acts on the set PG,p
via conjugation and we denote by [PG,p] a set of representatives of G-orbits of PG,p.
For (P,E) ∈ PG,p, let MP,E denote the unique (up to isomorphism) indecomposable
p-permutation kG-module with the property that MP,E[P ] ∼= E. Note that MP,E

has the group P as a vertex [4, Theorem 3.2]. We denote by P∆
G×H,p the set of pairs

(P,E) ∈ PG×H,p where P is a twisted diagonal p-subgroup of G×H.

Remark 2.2. The isomorphism classes of the modules MP,E where (P,E) ∈ P∆
G×H,p

form a Z-basis for T∆(G,H).
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Definition 2.3. [5, Definition 2.3.1] Let (P, s) be a pair where P is a p-group and
s is a generator of a p′-cyclic group acting on P . We denote the semidirect product
P ⋊ ⟨s⟩ by ⟨Ps⟩. Let (Q, t) be another such pair. We say that the pairs (P, s) and
(Q, t) are isomorphic if there are group isomorphisms ϕ : P → Q and ψ : ⟨s⟩ → ⟨t⟩
such that ψ(s) = q · t for some q ∈ Q and ϕ(s · u) = ψ(s) · ϕ(u) for all u ∈ P . In
that case we write (P, s) ≃ (Q, t).

Lemma 2.4. [5, Proposition 2.3.3] Let (P, s) and (Q, t) be two pairs. Then (P, s) ≃
(Q, t) if and only if there is a group isomorphism f : ⟨Ps⟩ → ⟨Qt⟩ such that f(s) is
conjugate to t.

LetQG,p denote the set of pairs (P, s) where P is a p-subgroup ofG and s ∈ NG(P )
is a p′-element. In that case ⟨Ps⟩ denotes the semidirect product P ⋊ ⟨s⟩ where the
action of ⟨s⟩ on P is induced by conjugation. The group G acts on the set QG,p and
we denote by [QG,p] a set of representatives of G-orbits. We denote by Q∆

G×H,p the
set of pairs (P, s) ∈ QG×H,p where P is a twisted diagonal p-subgroup of G×H.

For any pair (P, s) ∈ QG,p let τ
G
P,s denote the additive map T (G) → F that sends

a p-permutation kG-module M to the value of the Brauer character of M [P ] at s.
The map τGP,s is a ring homomorphism and it extends to an F-algebra homomorphism
τGP,s : F ⊗Z T (G) → F. The set {τGP,s : (P, s) ∈ [QG,p]} is the set of all species from
FT (G) := F⊗Z T (G) to F [3, Proposition 2.18].

The algebra FT (G) is split semisimple and its primitive idempotents FG
P,s are

indexed by pairs (P, s) ∈ [QG,p] [3, Corollary 2.19]. If ϕ : ⟨s⟩ → k× is a group
homomorphism, we denote by kϕ the k⟨s⟩-module k on which the element s acts as

multiplication by ϕ(s). Let ⟨̂s⟩ = Hom(⟨s⟩, k×) denote the set of group homomor-
phisms. By [3, Theorem 4.12] we have the idempotent formula

FG
P,s =

1

|P ||s||CNG(P )(s)|
∑
φ∈⟨̂s⟩
L⩽⟨Ps⟩
PL=⟨Ps⟩

φ̃(s−1)|L|µ(L, ⟨Ps⟩)IndGLk
⟨Ps⟩
L,φ ,

where k
⟨Ps⟩
L,φ = Res

⟨Ps⟩
L Inf

⟨Ps⟩
⟨s⟩ kφ, and φ̃ is the Brauer character of kφ.

By [5, Proposition 2.7.8] we have another formula

FG
P,s =

1

|CNG(P )(s)|
∑
φ∈⟨̂s⟩
L⩽P
Ls=L

φ̃(s−1)|CL(s)|µ
(
(L, P )s

)
IndG⟨Ls⟩k

⟨Ps⟩
⟨Ls⟩,φ.

Here µ
(
(−,−)s

)
is the Möbius function of the poset of s-stable subgroups of P .
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Lemma 2.5. For finite groups G and H, the set {FG×H
P,s : (P, s) ∈ [Q∆

G×H,p]} of

primitive idempotents form an F-basis for the split semisimple algebra FT∆(G,H).

Proof. First we will show that we have FG×H
P,s ∈ FT∆(G,H) whenever (P, s) ∈

[Q∆
G×H,p]. Let φ ∈ ⟨̂s⟩ and L ⩽ ⟨Ps⟩. It suffices to show that IndGLk

⟨Ps⟩
L,φ ∈ FT∆(G,H).

Since P acts trivially on Inf
⟨Ps⟩
⟨s⟩ kφ, the subgroup P is contained in a vertex of kφ con-

sidered as a k⟨Ps⟩-module. But since P is the Sylow p-subgroup of ⟨Ps⟩, it follows
that P is the vertex of kφ. Therefore the module k

⟨Ps⟩
L,φ = Res

⟨Ps⟩
L Inf

⟨Ps⟩
⟨s⟩ kφ has a

vertex contained in L ∩ xP ⩽ P for some x ∈ ⟨Ps⟩. Since a subgroup of twisted

diagonal subgroup is again twisted diagonal, this means that k
⟨Ps⟩
L,φ has twisted di-

agonal vertices. This shows that IndGLk
⟨Ps⟩
L,φ ∈ FT∆(G,H) as desired. Now since the

F-dimension of FT∆(G,H) is equal to the cardinality of [P∆
G×H,p], which is equal to

the cardinality of [Q∆
G×H,p], it follows that the set {FG×H

P,s : (P, s) ∈ [Q∆
G×H,p]} of

primitive idempotents form an F-basis for FT∆(G,H).

LetG,H and L be finite groups. IfX is a (kG, kH)-bimodule and Y is a (kH, kL)-
bimodule, then X ◦ Y := X ⊗kH Y is a (kG, kL)-bimodule. Extending this product
by F-bilinearity, we get a map

FT (G,H) ◦ FT (H,L) → FT (G,L).

Note that this induces a map

FT∆(G,H) ◦ FT∆(H,L) → FT∆(G,L)

which is used to define the composition of morphisms in the following category.

Definition 2.6. Let Fpp∆k be the category with

• objects: finite groups

• MorFpp∆k (G,H) = F⊗Z T
∆(H,G) = FT∆(H,G).

An F-linear functor from Fpp∆k to F-Mod is called a diagonal p-permutation func-
tor. Diagonal p-permutation functors form an abelian category F∆

ppk
.
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3. The Essential Algebra

For a finite group G, the quotient algebra

E∆(G) := FT∆(G,G)/
( ∑

|H|<|G|

FT∆(G,H) ◦ FT∆(H,G)
)

is called the essential algebra of G.
By [5, Proposition 4.1.2 and Theorem 4.1.12] the algebra

E(G) := FT (G,G)/
( ∑

|H|<|G|

FT (G,H) ◦ FT (H,G)
)

is non-zero if and only if there exists a pair (P, s) in G such that G = ⟨Ps⟩ and
C⟨s⟩(P ) = 1. In that case, we also have an algebra isomorphism

E(G) ∼=
(
F[X]/Φn[X]

)
⋊Out(G)

where n is the order of s [5, Theorem 4.1.12].
Note that the inclusion map FT∆(G,G) ↪→ FT (G,G) induces a map

Θ : E∆(G) → E(G).

We will show that this map is an algebra isomorphism.
Let φ ∈ Aut(G) be an automorphism and λ : G/Op(G) → k× be a character,

where Op(G) denotes the largest normal p-subgroup of G. We define a (kG, kG)-
bimodule structure on kG, denoted by kGφ,λ, via

a · g · b := λ(b)agφ(b)

for a, b, g ∈ G.
Let ⟨Rt⟩ be a twisted diagonal subgroup of G × G with p1(⟨Rt⟩) = G and

p2(⟨Rt⟩) = G. Let also η : p1(⟨Rt⟩) → p2(⟨Rt⟩) be the canonical isomorphism.
Then by [5, Section 4.1.2] we have an isomorphism

IndG×G
⟨Rt⟩ k

⟨Rt⟩
⟨Rt⟩,φ

∼= kGη−1,φ−1

of (kG, kG)-bimodules. Again by [5, Section 4.1.2] the algebra E(G) is generated by
the images of kGφ,λ.

Proposition 3.1. If the essential algebra E∆(G) of a finite group G is non-zero,
then there exists a pair (P, s) in G such that G = ⟨Ps⟩ and C⟨s⟩(P ) = 1.
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Proof. Let (Q, t) be a pair contained in G × G such that Q is a twisted diagonal
subgroup and recall the idempotent formula

FG×G
Q,t =

1

|CNG×G(Q)(t)|
∑
φ∈⟨̂t⟩
L⩽Q
Lt=L

φ̃(t−1)|CL(t)|µ((L,Q)t)IndG×G
⟨Lt⟩ k

⟨Qt⟩
L,φ .

By [5, Lemma 2.5.9] we have an isomorphism

IndG×G
⟨Lt⟩ k

⟨Qt⟩
L,φ

∼= IndGp1(⟨Lt⟩) ⊗p1(⟨Lt⟩) Ind
p1(⟨Lt⟩)×p2(⟨Lt⟩)
⟨Lt⟩ (k

⟨Qt⟩
L,φ )⊗p2(⟨Lt⟩) Res

G
p2(⟨Lt⟩)

∼= kG⊗p1(⟨Lt⟩) Ind
p1(⟨Lt⟩)×p2(⟨Lt⟩)
⟨Lt⟩ (k

⟨Qt⟩
L,φ )⊗p2(⟨Lt⟩) kG

of (kG, kG)-bimodules. As (kG, kG)-bimodule, we have the isomorphism kG ∼=
IndG×G

∆G k. Thus as (kG, kp1(⟨Lt⟩))-bimodule we have,

ResG×G
G×p1(⟨Lt⟩)kG

∼= ResG×G
G×p1(⟨Lt⟩)Ind

G×G
∆G k ∼= Ind

G×p1(⟨Lt⟩)
∆(p1(⟨Lt⟩))Res

∆(G)
∆(p1(⟨Lt⟩))k.

Therefore as (kG × p1(⟨Lt⟩))-module, the indecomposable direct summands of kG
have vertices contained in ∆(p1(⟨Lt⟩)). Similary, one can show that the indecom-
posable direct summands of kG as k(p2(⟨Lt⟩)×G)-module, have vertices contained

in ∆(p2(⟨Lt⟩)). We also know that the module k
⟨Qt⟩
L,φ , and hence the indecomposable

direct summands of Ind
p1(⟨Lt⟩)×p2(⟨Lt⟩)
⟨Lt⟩ (k

⟨Qt⟩
L,φ ), have twisted diagonal vertices. Now

suppose E∆(G) is non-zero. Then there is an idempotent FG×G
Q,t whose image in

E∆(G) is non-zero. Therefore the argument above shows that there is a pair (Q, t)
in G × G such that p1(⟨Qt⟩) = G and p2(⟨Qt⟩) = G. This implies that there is a
p-subgroup P of G and a p′-element s of G that normalises P such that G = ⟨Ps⟩.
Now we will show that in that case we have C⟨s⟩(P ) = 1.
Let G := G/C⟨s⟩(P ), Q := {(u, u : u ∈ P} ⩽ G × G and Q′ := {(u, u) : u ∈ P} ⩽
G×G. Then by [5, Proof of Proposition 4.1.2] we have an isomorphism between kG
and⊕
i

IndinfG×G
NG×G(Q)

(
kCG(P )/C⟨s⟩(P )⊗kkαi

)
⊗kGIndinf

G×G
NG×G(Q′)

(
kCG(P )/C⟨s⟩(P )⊗kkα′

i

)
as (kG, kG)-bimodules, where IndinfG×G

NG×G(Q)
= IndG×G

NG×G(Q) ◦ Inf
NG×G(Q)

NG×G(Q)
. Here αi

and α′
i run over the irreducible characters of ⟨s⟩. Again by [5, Proof of Proposi-

tion 4.1.2] for each i, the modules kCG(P )/C⟨s⟩(P )⊗k kαi
and kCG(P )/C⟨s⟩(P )⊗k kα′

i
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are projective indecomposable kNG×G(Q)-modules and kNG×G(Q
′)-modules respec-

tively. Now since kCG(P )/C⟨s⟩(P ) ⊗k kαi
is projective indecomposable, it has the

trivial group as vertex. So Inf
NG×G(Q)

NG×G(Q)

(
kCG(P )/C⟨s⟩(P ) ⊗k kαi

)
has the group Q as

a vertex. Note that the group Q is twisted diagonal. Therefore indecomposable

direct summands of IndinfG×G
NG×G(Q)

(
kCG(P )/C⟨s⟩(P ) ⊗k kαi

)
have twisted diagonal

vertices, i.e. IndinfG×G
NG×G(Q)

(
kCG(P )/C⟨s⟩(P ) ⊗k kαi

)
∈ FT∆(G,G). Similarly, we

have IndinfG×G
NG×G(Q′)

(
kCG(P )/C⟨s⟩(P ) ⊗k kα′

i

)
∈ FT∆(G,G). Now since E∆(G) ̸= 0,

the image of identity element kG ∈ FT∆(G,G) in E∆(G) is non-zero. Hence we have
G = G, i.e. C⟨s⟩(P ) = 1.

Suppose we have G = ⟨Ps⟩ and C⟨s⟩(P ) = 1. The essential algebra E∆(G) is
generated by the images of the primitive idempotents

FG×G
Q,t =

1

| CNG×G(Q)(t) |
∑
φ∈⟨̂t⟩
L⩽Q
Lt=L

φ̃(t−1)|CL(t)|µ((L,Q)t)IndG×G
⟨Lt⟩ k

⟨Qt⟩
L,φ

where Q is a twisted diagonal subgroup of G×G. By [5, Lemma 2.5.9], if the image

of IndG×G
⟨Lt⟩ k

⟨Qt⟩
L,φ is non-zero, then we must have that p1(⟨Lt⟩) = G = p2(⟨Lt⟩). Write

t = (u, v). Then p1(⟨Lt⟩) = ⟨p1(L)u⟩ and p2(⟨Lt⟩) = ⟨p2(L)v⟩. Therefore we have
|u| = |v| = |s|. Being a subgroup of twisted diagonal subgroup Q, the group L itself
is also twisted diagonal. Since k1(L) = k2(L) = 1 and |u| = |v| = |s|, we have
k1(⟨Lt⟩) = k2(⟨Lt⟩) = 1. This shows that the subgroup ⟨Lt⟩ is twisted diagonal

and p1(⟨Lt⟩) = G = p2(⟨Lt⟩). Since the images of IndG×G
⟨Lt⟩ k

⟨Qt⟩
L,φ in E(G) with ⟨Lt⟩

satisfying these properties, generate the non-zero algebra E(G), this shows that the
algebra E∆(G) is also non-zero and the map Θ : E∆(G) → E(G) is surjective. Thus
we have proved the following:

Proposition 3.2. The essential algebra E∆(G) is non-zero if and only if there is
a pair (P, s) in G such that G = ⟨Ps⟩ and C⟨s⟩(P ) = 1. Moreover the map Θ :
E∆(G) → E(G) is surjective.

Suppose we have G = ⟨Ps⟩ for some pair and C⟨s⟩(P ) = 1. We will show that
the map Θ : E∆(G) → E(G) is also injective.
Suppose an element

∑
rφ,αkGφ,α ∈ E∆(G) is mapped to zero by Θ. Then the element∑

rφ,αkGφ,α of E(G) is zero. Write∑
rφ,αkGφ,α =

∑
|H|<|G|

tH,UH ,VHUH ⊗kH VH
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for some (kG, kH)-bimodule UH and (kH, kG)-bimodule VH and some constants
tH,UH ,VH ∈ F. Suppose the coefficient tH,UH ,VH is non-zero for some group H. Then
as in [5] we can assume that H = ⟨Rt⟩ for some pair (R, t) and that the modules UH
and VH are indecomposable. By [5, Section 4.1] one has

UH ⊗kH VH ∼= IndinfG×G
NG×G(∆(P ))

⊕
i

(
kZ(P )⊗ kλi

)ni

where λi is a character of ⟨s⟩ and ni ∈ N. Again by [5, Section 4.1] each summand
kZ(P )⊗ kλi is a projective indecomposable kNG×G(∆(P ))-module. This shows that
if the the coefficient tH,UH ,VH is non-zero, then the indecomposable direct summands
of the bimodule UH ⊗kH VH have twisted diagonal vertices. Therefore the element∑
rφ,αkGφ,α is zero in E∆(G). This proves that the map Θ : E∆(G) → E(G) is

injective. We summarise our results as a theorem below.

Theorem 3.3. The essential algebra E∆(G) is non-zero if and only if there is a pair
(P, s) in G such that G = ⟨Ps⟩ and C⟨s⟩(P ) = 1. In that case, the algebra E∆(G) is
isomorphic to the algebra

(
F[X]/Φn[X]

)
⋊Out(G) where n is the order of s.

4. D∆-pairs

Let H ⩽ G be a subgroup. The (kG, kH)-bimodule kG is denoted by IndGH
and (kH, kG)-bimodule kG is denoted by ResGH . Similarly, if N ⊴ G is a normal
subgroup, the (kG/N, kG)-bimodule kG/N is denoted by DefGG/N and (kG, kG/N)-

bimodule kG/N is denoted by InfGG/N . This notation is consistent with our previous
use of induction, restriction, inflation and deflation symbols, in the sense that for
example, if M is a kH-module, then the induced module IndGHM is isomorphic to
IndGH ⊗kH M .

We have the following lemma due to [3] and [5].

Lemma 4.1. (i) Let (P, s) ∈ QG,p be a pair and H ⩽ G be a subgroup. Then we
have

ResGHF
G
P,s =

∑
Q,t

FH
Q,t

where (Q, t) runs over a set of representatives of H-conjugacy classes of G-
conjugates of (P, s) contained in H.
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(ii) Let (Q, t) ∈ QH,p be a pair and H ⩽ G be a subgroup. Then we have

IndGHF
H
Q,t = |NG(Q, t) : NH(Q, t)|FG

Q,t.

(iii) Let N ⊴G and (P, s) ∈ QG/N,p. Then

InfGG/NF
G/N
P,s =

∑
Q,t

FG
Q,t

where (Q, t) runs over a set of representatives of G-conjugacy classes of pairs
in QG,p such that QN/N = gP and t = gs for some g ∈ G/N .

(iv) Let N ⊴G and (P, s) ∈ QG,p. Then

DefGG/NF
G
P,s = mP,s,N · FG/N

Q,t

for some pair (Q, t) ∈ QG/N,p and a constant mP,s,N ∈ F.
If G = ⟨Ps⟩ then

DefGG/NF
G
P,s = mP,s,N · FG/N

PN/N,s.

Proof. See [3, Proposition 3.1. and Proposition 3.2.] for (i) and (ii), [5, Proposition
3.1.3] for (iii) and [5, Lemma 3.1.4 and Proposition 3.1.5] for (iv).

Lemma 4.2. Let N ⊴G be a normal subgroup of G.

(i) We have DefGG/N ∈ FT∆(G/N,G) if and only if N is a p′-group.

(ii) We have InfGG/N ∈ FT∆(G,G/N) if and only if N is a p′-group.

Proof. (i) Let Q ⩽ (G/N)×G be a maximal vertex of an indecomposable direct sum-
mand of the (kG/N, kG)-bimodule kG/N . Equivalently Q is a maximal p-subgroup
having a fixed point on the set G/N . Suppose (aN, b) ∈ Q stabilises a basis element
gN of kG/N . Then we have (aN)gNb−1 = gN which implies that ag · b−1 ∈ N .
Since the vertices of an indecomposable module are conjugate, we may assume that
g = 1. Thus, up to conjugacy, Q is a Sylow p-subgroup of

H = {(aN, b) : ab−1 ∈ N} ⩽ (G/N)×G.

Note that k1(Q) = k1(H) = 1 and k2(Q) is a Sylow p-subgroup of N . Hence Q is
twisted diagonal if and only if N is a p′-group. The result follows.
(ii) Similar.
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Let (P, s) be a pair and suppose G = ⟨Ps⟩. Then by [5, Corollary 3.1.9] for any
normal subgroup N of G, we have the following formula for the constant mP,s,N :

mP,s,N =
|s|

|N ∩ ⟨s⟩||CG(s)|
∑
Q⩽P
Qs=Q

⟨Qs⟩N=G

|CQ(s)|µ
(
(Q,P )s

)
.

Lemma 4.3. Let (P, s) be a pair and suppose G = ⟨Ps⟩. Then for any normal
p′-subgroup N of G we have

mP,s,N =
1

|N |
·

Proof. First observe that since N is a p′-group, we have N ⩽ C⟨s⟩(P ). For any
subgroup Q of P the condition ⟨Qs⟩N = ⟨Ps⟩ implies that |Q| = |P | and hence
Q = P . Therefore the formula above becomes

mP,s,N =
|s||CP (s)|
|N ||CG(s)|

=
1

|N |
·

Definition 4.4. A pair (P, s) is called D∆-pair if Def
⟨Ps⟩
⟨Ps⟩/NF

⟨Ps⟩
P,s = 0 for any non-

trivial normal p′-subgroup N of ⟨Ps⟩.

Lemma 4.5. Let (P, s) be a pair. Then (P, s) is a D∆-pair if and only if the
group ⟨Ps⟩ does not have any nontrivial normal p′-subgroup, that is, if and only
if C⟨s⟩(P ) = 1.

Proof. By Lemma 4.3, for any normal p′-subgroup N⊴⟨Ps⟩ we have mP,s,N = 1/|N |.
Therefore (P, s) is aD∆-pair if and only if the group ⟨Ps⟩ does not have any nontrivial
normal p′-subgroup. The result follows.

5. The functor FT∆

By [2], the simple diagonal p-permutation functors are parametrized by the pairs
(G, V ) where G is a finite group and V is a simple E∆(G)-module. Note that this
implies E∆(G) ̸= 0.

For a simple E∆(G)-module V , we define two functors in Fpp∆k by:

LG,V (H) := FT∆(H,G)⊗E∆(G) V
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and

JG,V (H) :=

{∑
i

ϕi ⊗ vi ∈ LG,V : ∀ψ ∈ FT∆(G,H),
∑
i

(ψ ◦ ϕi) · vi = 0

}
,

for any finite group H. The action of morphisms in Fpp∆k on these evaluations is
given by left composition. The functor JG,V is the unique maximal subfunctor of
LG,V , so the quotient

SG,V := LG,V /JG,V

is a simple functor [2].
Let FT∆ : Fpp∆k → F-Mod be the functor given by

• FT∆(G) := F⊗Z T (G) = FT (G),

• FT∆(X) : FT (G) → FT (H),M 7→ X ⊗kH M for any X ∈ FT∆(H,G).

For any kG-module X, we denote by X̃ the (kG, kG)-bimodule k(G×X) where the
action of kG-kG is given by

a · (g, x) · b−1 := (agb, b−1x)

for all a, b, g ∈ G and x ∈ X. We have an isomorphism of (kG, kG)-bimodules

X̃ ∼= IndG×Gop

δ(G) Iso(δ)(X)

where δ : G→ G×Gop, g 7→ (g, g−1). See [5, Definition 2.5.17]. Note that the image
δ(G) of G in G × Gop is a twisted diagonal subgroup. If X is an indecomposable
p-permutation kG-module with a vertex Q, then any vertex of an indecomposable
direct summand of X̃ is contained in δ(Q), up to conjugation. Therefore for any

X ∈ FT (G) we have X̃ ∈ FT∆(G,G).

Lemma 5.1. Let F be a subfunctor of FT∆. Then for any finite group G, the
F-vector space F (G) is an ideal of the algebra FT∆(G) of p-permutation modules.

Proof. Let Y ∈ F (G) and assume X is a p-permutation kG-module. By [5, Propo-

sition 2.5.18] we have an isomorphism X ⊗k Y ∼= X̃ ⊗kG Y of kG-modules. Since

X̃ ∈ FT∆(G,G) and F is a functor, we have X̃ ⊗kG Y ∈ F (G). This shows that
F (G) is an ideal of FT∆(G).

Definition 5.2. For any pair (P, s) let eP,s denote the subfunctor of FT∆ generated

by the idempotent F
⟨Ps⟩
P,s ∈ FT∆

(
⟨Ps⟩

)
.
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Proposition 5.3. Let F be a subfunctor of FT∆. Then we have

F =
∑

eP,s⩽F
eP,s.

Proof. Since F is a subfunctor, we have∑
eP,s⩽F

eP,s ⩽ F.

Now let G be a finite group, and u =
∑

(P,s) λP,sF
G
P,s, where (P, s) runs in a set

of representatives of G-conjugacy classes of QG,p, and λP,s ∈ F. Then FG
P,s · u =

λP,sF
G
P,s ∈ F (G), since F (G) is an ideal of FT∆(G). Hence FG

P,s ∈ F (G) if λP,s ̸= 0.

In this case we have ResG⟨Ps⟩F
G
P,s ∈ F

(
⟨Ps⟩

)
, which implies by Lemma 4.1 that

F
⟨Ps⟩
P,s ∈ F

(
⟨Ps⟩

)
. This shows that eP,s ⩽ F . By Lemma 4.1 again, FG

P,s is a non zero

scalar multiple of IndG⟨Ps⟩F
⟨Ps⟩
P,s , so FG

P,s ∈ eP,s(G), which gives finally

u ∈
∑

eP,s⩽F
eP,s(G).

Therefore we have
F =

∑
eP,s⩽F

eP,s

as desired.

Proposition 5.4. Let (Pi, si)i∈I be a set of pairs for an indexing set I. Then for
any pair (Q, t) we have eQ,t ⩽

∑
i∈I ePi,si if and only if eQ,t ⩽ ePi,si for some i ∈ I.

Proof. If eQ,t ⩽ ePi,si for some i ∈ I, then we obviously have eQ,t ⩽
∑

i∈I ePi,si .
Conversely assume we have eQ,t ⩽

∑
i∈I ePi,si . Then eQ,t

(
⟨Qt⟩

)
⩽

∑
i∈I ePi,si

(
⟨Qt⟩

)
and so F

⟨Qt⟩
Q,t ∈

∑
i∈I ePi,si

(
⟨Qt⟩

)
. Since F

⟨Qt⟩
Q,t is a primitive idempotent and since

ePi,si

(
⟨Qt⟩

)
is an ideal of FT∆

(
⟨Qt⟩

)
it follows that we have F

⟨Qt⟩
Q,t ∈ ePi,si

(
⟨Qt⟩

)
for

some i ∈ I and hence eQ,t ⩽ ePi,si .

Let G be a finite group and (P, s) ∈ QG,p be a pair such that G = ⟨Ps⟩. Let
also (Q, t) ∈ Q∆

H×G,p for a finite group H. Suppose that η : p1(Q) → p2(Q) is the
canonical isomorphism. Up to conjugation in H ×G, we can assume t = (u, sj). By
[5, Section 3.2] if p2(⟨Qt⟩) ̸= G, then the product FH×G

Q,t ⊗kG F
G
P,s is zero. So assume

that we have p2(⟨Qt⟩) = G. This implies that we have p2(Q) = P and |sj| = |s|.
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Then since k1(Q) = k2(Q) = 1, this implies that we have p1(Q) ∼= P . Since the
group Q is t-stable, the isomorphism η : p1(Q) → P commutes with conjugations
by u and sj. Now [5, Equation (3.3), Section 3.2] implies that as kH-module the
product FH×G

Q,t ⊗kG F
G
P,s is equal to

1

|CNH×G
(Q)(t)||CG(s)|

∑
φ∈⟨t⟩
ψ∈⟨s⟩

φ|u|ψj|u|=1

φ̃(t)−1ψ̃(s)−1|CQ(t)|
∑

J⩽p1(Q)
Ju=J

σ(J)IndH⟨Ju⟩(k
⟨p1(Q)u⟩
⟨Ju⟩,ϕ )

where σ(J) :=
∑

L⩽P
Ls=L
η(J)=L

|CL(s)|µ
(
(L, P )s

)
and ϕ(u) := φ(u, sj)ψ(s)j.

Suppose we have H = ⟨P ′s′⟩ for a pair (P ′, s′). Then by [5, Lemma 2.7.6] if
τHP ′,s′(F

H×G
Q,t ⊗kG F

G
P,s) ̸= 0, then we must have p1(Q) = P ′ and |u| = |s′|. This

implies in particular that we must have P ′ ∼= P . Moreover again by [5, Lemma 2.7.6]

we have τHP ′,s′

(
IndH⟨Ju⟩(k

⟨p1(Q)u⟩
⟨Ju⟩,ϕ )

)
= 0 if J ̸= P ′. Therefore if we have P ′ ∼= P then

τHP ′,s′(F
H×G
Q,t ⊗kG F

G
P,s) is equal to

1

|CNH×G
(Q)(t)||CG(s)|

∑
φ∈⟨t⟩
ψ∈⟨s⟩

φ|u|ψj|u|=1

φ̃(t)−1ψ̃(s)−1|CQ(t)||CP (s)|ϕ̃(s′).

This shows that if we have FT∆
(
⟨P ′s′⟩, ⟨Ps⟩

)
⊗k⟨Ps⟩ F

⟨Ps⟩
P,s ̸= 0, then there is

an isomorphism η : P ′ → P and a p′-element (u, sj) ∈ ⟨P ′s′⟩ × ⟨Ps⟩ such that
η◦cu = csj ◦η and |u| = |s′|, |sj| = |s|. In that case, assume further that C⟨s⟩(P ) = 1.
Then we have |cs| = |s| and |csj | = |sj|. Since we have η ◦ cu = csj ◦ η it follows
that |cu| = |csj |. Therefore we have |s| | |s′|. But then [5, Proposition 2.3.6] implies
that there is a surjective group homomorphism η : ⟨P ′s′⟩ → ⟨Ps⟩ that induces an
isomorphism of pairs

(
P ′ ker(η)/ ker(η), s′ ker(η)

)
≃ (P, s). Note that since |P ′| = |P |

the order of ker(η) is coprime to p. We have the following:

Lemma 5.5. Let (P, s) be a pair with C⟨s⟩(P ) = 1 and set G := ⟨Ps⟩. Let H be a
finite group. The following statements are equivalent:

(i) FT∆(H,G)⊗kG F
G
P,s ̸= 0.

(ii) There exists a pair (P ′, s′) contained in H such that the pair (P, s) is isomorphic
to a p′-quotient of the pair (P ′, s′), that is, there exists a normal p′-subgroup K
of ⟨P ′s′⟩ such that (P, s) ≃ (P ′K/K, s′K).
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Proof. (i) ⇒ (ii) Suppose we have FT∆(H,G)⊗kG F
G
P,s ̸= 0. Then there exists a pair

(P ′, s′) in H such that
FH
P ′,s′ ∈ FT∆(H,G)⊗kG F

G
P,s.

Via the restriction map this implies that we have

F
⟨P ′s′⟩
P ′,s′ ∈ FT∆

(
⟨P ′s′⟩, G

)
⊗kG F

G
P,s.

Therefore by the argument above we have an isomorphism (P ′K/K, s′K) ≃ (P, s) of
pairs where K is a normal p′-subgroup of ⟨P ′s′⟩.
(ii) ⇒ (i) Suppose Φ : (P ′K/K, s′K) → (P, s) is an isomorphism of pairs where K
is a normal p′-subgroup of ⟨P ′s′⟩. Then we have

IndH⟨P ′s′⟩Inf
⟨P ′s′⟩
⟨P ′s′⟩/KIso(Φ)F

G
P,s ̸= 0.

This shows (i).

Proposition 5.6. Let (P, s) be a pair. The following are equivalent:

(i) (P, s) is a D∆-pair.

(ii) For any finite group H with |H| < |⟨Ps⟩|, we have eP,s(H) = {0}.

(iii) If H is a finite group with eP,s(H) ̸= {0}, then the pair (P, s) is isomorphic to
a p′-quotient of a pair (P ′, s′) contained in H.

(iv) For any nontrivial normal p′-subgroup N of ⟨Ps⟩, we have Def
⟨Ps⟩
⟨Ps⟩/NF

⟨Ps⟩
P,s = 0.

(v) The group ⟨Ps⟩ does not have any nontrivial normal p′-subgroup.

(vi) We have C⟨s⟩(P ) = 1.

Proof. (vi)⇔(v)⇔(i) : This follows from Lemma 4.5.
(iv)⇔ (i): This follows from the definition of D∆-pairs.
(i)⇒ (iii): Since (P, s) is a D∆-pair, we have C⟨s⟩(P ) = 1. So (iii) follows from
Lemma 5.5.
(iii)⇒ (ii): Assume that (iii) holds and eP,s(H) ̸= 0 where H is a finite group
with |H| < |⟨Ps⟩|. Then by the assumption, we have |H| ≥ |⟨P ′s′⟩| ≥ |⟨Ps⟩|.
Contradiction.
(ii)⇒ (iv): Clear.

Proposition 5.7. Let (P, s) and (Q, t) be two pairs.

15



(i) If the pair (Q, t) is isomorphic to a p′-quotient of the pair (P, s), then we have
eP,s = eQ,t.

(ii) If (Q, t) is a D∆-pair, and if eP,s ⩽ eQ,t, then (Q, t) is isomorphic to a p′-
quotient of (P, s).

Proof. (i) Assume we have an isomorphism ϕ : (PK/K, sK) → (Q, t) of pairs for
some normal p′-subgroup K of ⟨Ps⟩. Then we have

F
⟨Ps⟩
P,s ⊗k Inf

⟨Ps⟩
⟨Ps⟩/KIso(ϕ

−1)F
⟨Qt⟩
Q,t ̸= 0.

Therefore we have F
⟨Ps⟩
P,s ∈ eQ,t

(
⟨Ps⟩

)
which implies that eP,s ⩽ eQ,t.

Now we also have

F
⟨Qt⟩
Q,t ⊗k Iso(ϕ)Def

⟨Ps⟩
⟨Ps⟩/KF

⟨Ps⟩
P,s ̸= 0

which implies that F
⟨Qt⟩
Q,t ∈ eP,s

(
⟨Qt⟩

)
. Therefore we have eQ,t ⩽ eP,s and so eQ,t =

eP,s as desired.

(ii) Since eP,s ⩽ eQ,t, we have F
⟨Ps⟩
P,s ∈ eQ,t

(
⟨Ps⟩

)
. Since (Q, t) is a D∆-pair, by

the proof of Lemma 5.5, there exists a normal p′-subgroup K of ⟨Ps⟩ such that
(Q, t) ≃ (PK/K, sK).

Proposition 5.8. Let F be a nonzero subfunctor of FT∆. If H is a minimal group
of F , then H = ⟨Qt⟩ for some D∆-pair (Q, t). Moreover we have

F (H) ⩽
⊕

(Q′,t′),D∆−pair
⟨Q′t′⟩=H

FFH
Q′,t′

and eQ,t ⩽ F .
In particular, if F = eQ,t for some D∆-pair (Q, t), then we have

eQ,t
(
⟨Qt⟩

)
=

⊕
(Q′,t′)≃(Q,t)
⟨Q′t′⟩=⟨Qt⟩

FFH
Q′,t′ .

Proof. Let F be a nonzero subfunctor of FT∆ and assume H is a minimal group
of F . Since F (H) ̸= 0, there exists a pair (Q, t) ∈ QH,p such that FH

Q,t ∈ F (H). This

implies, via the restriction map, that we have F
⟨Qt⟩
Q,t ∈ F

(
⟨Qt⟩

)
. Since H is a minimal

group, this implies that we have H = ⟨Qt⟩. Now if N is a normal p′-subgroup of
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⟨Qt⟩, then Def
⟨Qt⟩
⟨Qt⟩/NF

⟨Qt⟩
Q,t = 1

|N |F
⟨Qt⟩/N
QN/N,tN ̸= 0. Again since H is a minimal group this

means that N is trivial and hence the pair (Q, t) is a D∆-pair. It follows moreover
that

F (H) ⩽
⊕

(Q′,t′),D∆−pair
⟨Q′t′⟩=H

FFH
Q′,t′ .

For the last part, consider the functor eQ,t for some D∆-pair (Q, t). If F
⟨Qt⟩
Q′,t′ ∈

eQ,t
(
⟨Qt⟩

)
for some D∆-pair (Q′, t′), then by the second part of Proposition 5.7, the

pair (Q, t) is isomorphic to a p′-quotient of the pair (Q′, t′). But the pair (Q′, t′) is
contained in ⟨Qt⟩. Thus we have (Q′, t′) ≃ (Q, t).
Conversely, if the pairs (Q′, t′) and (Q, t) are isomorphic via a map ϕ, then we have

F
⟨Qt⟩
Q′,t′ = Iso(ϕ)F

⟨Qt⟩
Q,t . Therefore we have

eQ,t
(
⟨Qt⟩

)
=

⊕
(Q′,t′)≃(Q,t)
⟨Q′t′⟩=⟨Qt⟩

FFH
Q′,t′ .

Let (P, s) be a pair andN a normal p′-subgroup of ⟨Ps⟩. Then the pair (PN/N, sN)
is a p′-quotient of the pair (P, s) and so by Proposition 5.7 we have eP,s = ePN/N,sN .

Proposition 5.9. Let (P, s) be a pair. Then the group ⟨Ps⟩/C⟨s⟩(P ) is the unique,
up to isomorphism, minimal group of the functor eP,s. Moreover there is a unique
isomorphism class of D∆-pairs (P ′, s′) such that ⟨P ′s′⟩ ∼= ⟨Ps⟩/C⟨s⟩(P ) and we have
eP ′,s′ = eP,s. Furthermore we have (P ′, s′) ≃

(
PC⟨s⟩(P )/C⟨s⟩(P ), sC⟨s⟩(P )

)
.

Proof. Let (P ′, s′) be a D∆-pair such that ⟨P ′s′⟩ is a minimal group of the functor
eP,s. By Proposition 5.8, we have eP ′,s′ ⩽ eP,s. Let N := C⟨s⟩(P ). Then the pair
(PN/N, sN) is a D∆-pair, and we have eP,s = ePN/N,sN . Since (PN/N, sN) is a
D∆-pair, by Proposition 5.7 there exists a normal p′-subgroup K of ⟨P ′s′⟩ such that

(P ′K/K, s′K) ≃ (PN/N, sN). This means that the idempotent F
⟨P ′s′⟩/K
P ′K/K,s′K is in

the evaluation at ⟨P ′s′⟩/K of the functor ePN/N,sN = eP,s. Since the group ⟨P ′s′⟩
is a minimal group of eP,s it follows that we must have K = 1. Thus we have
(P ′, s′) ≃ (PN/N, sN). Therefore we have eP ′,s′ = ePN/N,sN = eP,s.

Now we will show the uniqueness of the isomorphism class of the minimal groups
of eP,s. Let H be a minimal group of eP,s. It suffices to show that H is isomorphic
to ⟨P ′s′⟩. By Proposition 5.8 the group H is of the form H = ⟨Qt⟩ for some D∆-pair
(Q, t). By the first part of the proof we have eQ,t = eP,s = eP ′,s′ . Since both (Q, t)

17



and (P, s) are D∆-pairs, the equality eQ,t = eP ′,s′ implies that (Q, t) is isomorphic
to a p′-quotient of (P, s), and vice versa. Therefore we have (Q, t) ≃ (P ′, s′) which
implies that H = ⟨Qt⟩ ∼= ⟨P ′s′⟩ as desired.

For any pair (P, s) we denote by (P̃ , s̃) a representative of the isomorphism class
of the pair (PC⟨s⟩(P )/C⟨s⟩(P ), sC⟨s⟩(P )).

Theorem 5.10. Let (P, s) be a pair.

(i) If (Q, t) is isomorphic to a p′-quotient of (P, s) and if (Q, t) is a D∆-pair,
then (Q, t) is isomorphic to the pair (P̃ , s̃). In particular, for any normal p′-
subgroup N ⊴ ⟨Ps⟩, we have (PN/N, sN) ≃ (P̃ , s̃) if and only if (PN/N, sN)
is a D∆-pair.

(ii) Let N ⊴ ⟨Ps⟩ be a normal p′-subgroup. Then the pair (P̃ , s̃) is isomorphic to a

p′-quotient of (PN/N, sN) and we have (P̃ , s̃) ≃ (P̃N/N, s̃N).

Proof. (i) Since the pair (Q, t) is isomorphic to a p′-quotient of the pair (P, s), by
Proposition 5.7, we have eP̃ ,s̃ = eP,s ⩽ eQ,t. Since (Q, t) is a D∆-pair, again by

Proposition 5.7, the pair (Q, t) is isomorphic to a p′-quotient of (P̃ , s̃). But since
the pair (P̃ , s̃) is a D∆-pair, it follows that the pair (Q, t) is isomorphic to the pair
(P̃ , s̃).

(ii) Since the constant mP,s,N is non-zero, we have F
⟨Ps⟩/N
PN/N,sN ∈ eP,s

(
⟨Ps⟩/N

)
=

eP̃ ,s̃
(
⟨Ps⟩/N

)
. Therefore we have ePN/N,sN ⩽ eP̃ ,s̃ and since (P̃ , s̃) is a D∆-pair, by

Proposition 5.7, (P̃ , s̃) is isomorphic to a p′-quotient of (PN/N, sN). Again since

the pair (P̃ , s̃) is a D∆-pair, by part (i), it is isomorphic to the pair (P̃N/N, s̃N).

Let [D∆-pair] denote a set of isomorphism classes of D∆-pairs. Then the sub-
functor lattice of the functor FT∆ is isomorphic to the lattice of subsets of the set
[D∆-pair] ordered by inclusion.

Theorem 5.11. Let S be the lattice of subfunctors of FT∆ ordered by inclusion
of subfunctors. Let T be the lattice of subsets of [D∆-pair] ordered by inclusion of
subsets. Then the map

Θ : S → T

that sends a subfunctor F to the set {(P, s) ∈ [D∆-pair] : eP,s ⩽ F}, is an isomor-
phism of lattices with inverse

Ψ : T → S

that sends a subset A to the functor
∑

(P,s)∈A eP,s.
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Proof. We need to show that the maps Θ and Ψ are inverse of each other. Let F ∈ S
be a subfunctor. By Proposition 5.3 we have

F =
∑

(P,s)∈Γ
eP,s⩽F

eP,s

where Γ is a set of representatives of the isomorphism classes of pairs. But for any
pair (P, s) we have eP,s = eP̃ ,s̃ and (P̃ , s̃) is a D∆-pair. Therefore we have

F =
∑

(P,s)∈[D∆-pair]
eP,s⩽F

eP,s.

This shows that Ψ(Θ(F )) = F .
Now let A ∈ T be a subset and let (Q, t) ∈ Θ(Ψ(A)) be a D∆-pair. Then

we have eQ,t ⩽
∑

(P,s)∈A eP,s and so by Proposition 5.4 this implies that we have

eQ,t ⩽ eP,s for some (P, s) ∈ A. Since both (P, s) and (Q, t) are D∆-pairs, it follows
that (P, s) ≃ (Q, t) and hence (Q, t) ∈ A. This shows that Θ(Ψ(A)) ⊆ A. The
inclusion A ⊆ Θ(Ψ(A)) is trivial. Therefore we have Θ(Ψ(A)) = A.

The following corollary follows immediately from Theorem 5.11.

Corollary 5.12. We have FT∆ =
⊕

(P,s)∈[D∆-pair] eP,s.

The first statement of Proposition 5.8 can also be made stronger.

Corollary 5.13. Let F be a nonzero subfunctor of FT∆. If H is a minimal group
of F , then H = ⟨Qt⟩ for some D∆-pair (Q, t) and we have

F (H) =
⊕

(Q′,t′)≃(Q,t)
⟨Q′t′⟩=⟨Qt⟩

FFH
Q′,t′ .

Proof. Since H is a minimal group of F , by Proposition 5.8 it follows that H = ⟨Qt⟩
for some D∆-pair with the property that eQ,t ⩽ F . By Theorem 5.11 we have

F =
∑

(Q,t)∈[D∆-pair]
eQ,t⩽F

eQ,t.

Therefore by Proposition 5.8 again we have

F (H) = eQ,t(H) =
⊕

(Q′,t′)≃(Q,t)
⟨Q′t′⟩=⟨Qt⟩

FFH
Q′,t′

as desired.
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Corollary 5.14. Let (P, s) be a D∆-pair. Then the subfunctor eP,s of FT∆ is iso-

morphic to the simple functor S⟨Ps⟩,WP,s
where WP,s = ⊕(Q,t)≃(P,s)

⟨Qt⟩=⟨Ps⟩
FF ⟨Ps⟩

P,s .

Proof. By Theorem 5.11 the lattice of subfunctors of eP,s is isomorphic to the lattice
of subsets of the set Θ(eP,s) = {(Q, t) ∈ [D∆-pair] : eQ,t ⩽ eP,s} = {(P, s)}. There-
fore the subfunctor eP,s is simple. By Proposition 5.9 the group ⟨Ps⟩ is a minimal
group of the functor eP,s. By Proposition 5.8 we have eP,s

(
⟨Ps⟩

)
=WP,s. Moreover,

by [5, Theorem 4.2.5], the module WP,s is a simple module for the essential algebra
E∆

(
⟨Ps⟩

)
. Thus we have eP,s ≃ S⟨Ps⟩,WP,s

as desired.

Proposition 5.15. If F ⩽ F ′ are subfunctors of FT∆ such that F ′/F is simple, then
there exists a unique D∆-pair (P, s) ∈ [D∆-pair] such that eP,s ⩽ F ′ and eP,s ⩽̸ F .
In particular, we have eP,s + F = F ′, eP,s ∩ F = {0}, and F ′/F ≃ S⟨Ps⟩,WP,s

Proof. The existence of a pair (P, s) with the property that eP,s ⩽ F ′ and eP,s ⩽̸ F
is clear. Suppose (P ′, s′) is another pair with these properties. Since F ′/F is simple,
we have

(P ′, s′) ∈ Θ(F ) ∪ {(P, s)}.

Thus (P ′, s′) ≃ (P, s) as (P ′, s′) /∈ Θ(F ). Now since eP,s ⩽̸ F and F ′/F is simple,
we have eP,s + F = F ′. Thus the quotient eP,s/(eP,s ∩ F ) ≃ F ′/F is simple and so
eP,s ∩ F = {0}. Therefore we have F ′/F ≃ S⟨Ps⟩,WP,s

.

Proposition 5.16. Let F ⩽ F ′ be subfunctors of FT∆ such that F ′/F is simple. Let
H (respectively H ′) be a finite group and W (respectively W ′) be a simple E∆(H)-
mod (respectively E∆(H ′)-mod) such that SH,W ≃ SH′,W ′ ≃ F ′/F . Then H ∼= H ′.
Moreover W ∼= W ′, after identification of H and H ′ via the previous isomorphism.

Proof. By Proposition 5.15 there exists a unique D∆-pair (P, s) such that F ′/F ≃
S⟨Ps⟩,WP,s

. Therefore it suffices to prove that H ∼= ⟨Ps⟩. Since (F ′/F )(H) ̸= 0 there
exists a pair (Q, t) contained in H such that FH

Q,t ∈ F ′(H) \ F (H). Since H is a
minimal group of F ′/F , it follows that H = ⟨Qt⟩ and (Q, t) is a D∆-pair. Moreover
we have eQ,t ⩽ F ′ and eQ,t ⩽̸ F . But the pair (P, s) is the unique D∆-pair with
these properties. Therefore we have (Q, t) ≃ (P, s). Thus H ∼= ⟨Ps⟩ as desired. The
last assertion follows from the fact that SH,W (H) ∼= W .

Proposition 5.17. Let (P, s) be a pair. Then for any finite group H, the F-vector
space eP,s(H) is the subspace of FT (H) generated by the set of primitive idempotents
FH
Q,t where (Q, t) runs over a set of conjugacy classes of pairs in H with the property

that (P, s) is isomorphic to a p′-quotient of (Q, t).
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Proof. Since the pair (P̃ , s̃) is isomorphic to a p′-quotient of the pair (P, s) and since
eP,s = eP̃ ,s̃, we may assume that the pair (P, s) is a D∆-pair. Since eP,s(H) is an

ideal of FT (H), it has a F-basis consisting of a set of primitive idempotents FH
Q,t. If

FH
Q,t ∈ eP,s(H), then F

⟨Qt⟩
Q,t ∈ eP,s

(
⟨Qt⟩

)
and so eQ,t ⩽ eP,s. Since (P, s) is a D

∆-pair,
by Proposition 5.7, it is isomorphic to a p′-quotient of the pair (Q, t). Conversely, if
(P, s) is isomorphic to a p′-quotient of the pair (Q, t), then again by Proposition 5.7,

we have eQ,t ⩽ eP,s. So we have F
⟨Qt⟩
Q,t ∈ eP,s

(
⟨Qt⟩

)
and hence FH

Q,t ∈ eP,s(H). The
result follows.

Theorem 5.18. Let (P, s) be a D∆-pair. Then for any finite group H, the F-
dimension of S⟨Ps⟩,WP,s

(H) is equal to the number of conjugacy classes of pairs (Q, t)

in H such that (Q̃, t̃) ≃ (P, s).

Proof. By Proposition 5.17 eP,s(H) is generated by the idempotents FH
Q,t where (Q, t)

is a pair in H with the property that the pair (P̃ , s̃) ≃ (P, s) is isomorphic to a p′-
quotient of the pair (Q, t). Since (P, s) is a D∆-pair, Theorem 5.10 implies that
(Q̃, t̃) ≃ (P, s). The result follows.

Corollary 5.19. Let H be a finite group. The F-dimension of S1,F(H) is equal to
the number of isomorphism classes of simple kH-modules.

Proof. By Theorem 5.18, dimFS1,F(H) is equal to the number of conjugacy classes of
pairs (Q, t) inH such that (Q̃, t̃) ≃ (1, 1). Suppose (Q, t) is a pair with (Q̃, t̃) ≃ (1, 1).
Then we have Q̃ = 1 and t̃ = 1. So there exists a normal p′-subgroup N of ⟨Qt⟩
such that (QN/N, tN) ≃ (1, 1). Since |Q| and |N | are coprime, this implies that
Q = 1. We also have t ∈ N . But then N ⊴ ⟨t⟩ implies that N = ⟨t⟩. Therefore the
number of conjugacy classes of pairs (Q, t) in H such that (Q̃, t̃) ≃ (1, 1) is equal to
the number of conjugacy classes of p′-elements in H. The result follows.

Theorem 5.20. The functor S1,F is isomorphic to the functor that sends a finite
group H to the subspace FK0(kH) of FT∆(H) generated by the projective indecom-
posable kH-modules.

Proof. Let H be a finite group. We have

S1,F(H) = (FT∆(H, 1)⊗F F)/J1,F(H) ∼= FT∆(H, 1)/J1,F(H)

where J1,F(H) = {ϕ ∈ FT∆(H, 1) : ∀ψ ∈ FT∆(1, H), (ψ ◦ϕ) ·1 = 0}. Now FT∆(H, 1)
is isomorphic to the subspace FK0(kH) of FT (H) generated by the isomorphism
classes of projective indecomposable kH-modules. Similarly any W ∈ FT∆(1, H)
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can be identified with W ∗ ∈ FK0(kH). As in [6] we have the following:
For any p-permutation kH-modules V and W we have

(W ∗ ⊗kH V ) · 1 = dimk(W
∗ ⊗kH V ) = dimk(HomkH(W,V )).

Therefore J1,F(H) is the right kernel of the bilinear form

< −,− >: FK0(kH) → F

defined as < W,V >:= dimk(HomkH(W,V )). But the matrix that represents this
bilinear form is the Cartan matrix of kH. Since the Cartan matrix of a group algebra
is non-degenerate, it follows that J1,F(H) = 0. Therefore we have

S1,F(H) = FT∆(H, 1)⊗F F ∼= FT∆(H, 1) ∼= FK0(kH).

Note that both of these isomorphisms are functorial in H. The result follows.
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