
CORRESPONDENCE FUNCTORS AND LATTICES

SERGE BOUC AND JACQUES THÉVENAZ

Abstract. A correspondence functor is a functor from the category of finite
sets and correspondences to the category of k-modules, where k is a commu-
tative ring. A main tool for this study is the construction of a correspondence

functor associated to any finite lattice T . We prove for instance that this
functor is projective if and only if the lattice T is distributive. Moreover, it
has quotients which play a crucial role in the analysis of simple functors. The
special case of total orders yields some more specific and complete results.

1. Introduction

The present paper is the second in a series which develops the theory of cor-
respondence functors, namely functors from the category of finite sets and corre-
spondences to the category of k-modules, where k is a commutative ring. In the
first paper [BT2], we showed that the category of finitely generated correspondence
functors is artinian when k is a field. In representation theory, simple modules,
or simple functors, are the most basic and important objects to understand. We
showed in [BT2] how to parametrize the simple correspondence functors SE,R,V
by means of a finite set E, an order relation R on E, and a simple kAut(E,R)-
module V (up to isomorphism).

The present paper establishes a connection between finite lattices and correspon-
dence functors. Associated to any finite lattice T , we construct a correspondence
functor FT (Section 4). This is the second indication of the importance of posets
and lattices in our work and we describe the interplay between lattices and functors.
For instance, one of our first results asserts that the functor FT is projective if and
only if the lattice T is distributive (Theorem 4.12).

The second main purpose of this paper is to introduce a fundamental functor
SE,R associated to any finite poset (E,R). This is a precursor of each of the simple
correspondence functors SE,R,V and it turns out that understanding SE,R is the key
for understanding those simple functors. In particular, the fundamental functors
SE,R will play a crucial role for the determination of dim(SE,R,V (X)) for any finite
set X, which will appear in our next paper [BT3]. Actually, the formula for this
dimension involves a new invariant associated to lattices which will be introduced
in [BT3] and which will give another important motivation for studying the link
between finite lattices and correspondence functors.

The fundamental functors can be analyzed by using lattices. If (E,R) is the
subposet of irreducible elements in a finite lattice T , then the functor FT has
a fundamental functor as a quotient, which turns out to be SE,Rop where Rop

denotes the opposite order relation (Theorem 6.5). The kernel of the morphism
FT → SE,Rop can be described by a system of linear equations.
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We show that there is a duality between FT and FT op over any commutative
ring k (Theorem 8.9). Moreover, the fundamental functor SE,R also appears as
a subfunctor of FT op (Theorem 9.5). In Section 10, some endomorphisms and
idempotents of a lattice T are defined, associated with all possible quotients of T
which are total orders. In Section 11, those idempotents are used to describe
completely the functor FT in the special case where T is totally ordered and they
are also used to find all direct summands associated to total orders in a functor FT
corresponding to an arbitrary lattice T .

2. Correspondence functors

In this introductory section, we recall the basic facts we need about correspondence
functors (which also appear in [BT2]). We denote by C the category of finite sets and
correspondences. Its objects are the finite sets and the set C(Y,X) of morphisms
from X to Y is the set of all correspondences from X to Y , namely all subsets of
Y × X (using a reverse notation which is convenient for left actions). Given two
correspondences R ⊆ Z × Y and S ⊆ Y ×X, their composition RS is defined by

RS := { (z, x) ∈ Z ×X | ∃ y ∈ Y such that (z, y) ∈ R and (y, x) ∈ S } .

A correspondence from X to X is also called a relation on X.
Let ΣX be the symmetric group of all permutations of X. Associated with a

permutation σ ∈ ΣX , there is a relation on X which we write

∆σ := {(σ(x), x) ∈ X ×X | x ∈ X} .

In particular, ∆X := ∆id is the identity morphism of the object X. If σ, τ ∈ ΣX ,
then ∆στ = ∆σ∆τ . The symmetric group ΣX acts on relations by conjugation and
we write σR = ∆σR∆σ−1 .

For any commutative ring k, we let kC be the k-linearization of C. The objects
are again the finite sets and kC(Y,X) is the free k-module with basis C(Y,X). A
correspondence functor is a k-linear functor from kC to k-Mod. We let Fk be the
category of all correspondence functors (for some fixed commutative ring k). This
category has the following feature :

2.1. Lemma. Let E and F be finite sets with |E| ≤ |F |. Let M be a correspon-
dence functor. If M(F ) = 0, then M(E) = 0.

Proof : Since |E| ≤ |F |, there exists an injective map i : E ↪→ F . Let i∗ ⊆ F ×E
denote the correspondence

i∗ =
{(
i(e), e

)
| e ∈ E

}
,

and i∗ ⊆ E × F denote the correspondence

i∗ =
{(
e, i(e)

)
| e ∈ E

}
.

As i is injective, one checks easily that i∗i∗ = ∆E , that is, i∗i∗ = idE . For any
m ∈ M(E), we have m = i∗i∗ ·m. But i∗ ·m ∈ M(F ), so i∗ ·m = 0. Therefore
m = 0.
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We define a minimal set for a correspondence functor F to be a finite set X of
minimal cardinality such that F (X) ̸= 0. For a nonzero functor, such a minimal
set always exists and is unique up to bijection.

The first instances of correspondence functors are the representable functors
kC(−, E), where E is a finite set, and the functors

LE,W := kC(−, E)⊗kC(E,E) W

where W is a left kC(E,E)-module. The proof of the following result is easy and
is sketched in Lemma 2.3 of [BST] in the special case of biset functors for finite
groups, but it extends without change to representations of an arbitrary category.

2.2. Lemma. Let Fk be the category of all correspondence functors and let E be
a finite set. The functor

kC(E,E)−Mod −→ Fk , W 7→ LE,W

is left adjoint of the evaluation functor

Fk −→ kC(E,E)−Mod , F 7→ F (E) .

The functor LE,W has a subfunctor JE,W defined on any finite set X by

JE,W (X) :=
{∑

i

ϕi ⊗ wi ∈ LE,W (X) | ∀ψ ∈ kC(E,X),
∑
i

(ψϕi) · wi = 0
}
.

2.3. Lemma. Let E be a finite set and let W be a kC(E,E)-module.

(a) JE,W is the unique subfunctor of LE,W which is maximal with respect to the
condition that it vanishes at E.

(b) If W is a simple kC(E,E)-module, then JE,W is the unique maximal sub-
functor of LE,W and LE,W /JE,W is a simple functor.

Proof : The result is a slight extension of the first lemma of [Bo1]. The proof is
also sketched in Lemma 2.3 of [BST] in the special case of biset functors for finite
groups, but it extends without change to the representation theory of an arbitrary
category.

Now we want to consider the functor LE,W /JE,W for some specific choices of
kC(E,E)-modules. The algebra kC(E,E) of all relations on E was studied in [BT1]
and we need a few facts from this approach. A relation R on E is called essential
if it does not factor through a set of cardinality strictly smaller than |E|. The
k-submodule generated by the set of inessential relations is a two-sided ideal

IE :=
∑

|Y |<|E|

kC(E, Y )kC(Y,E)

and the quotient

EE := kC(E,E)/IE

is called the essential algebra. A large part of its structure has been elucidated
in [BT1]. There is a quotient algebra PE = EE/N , where N is a nilpotent two-
sided ideal defined in [BT1]. We call PE the algebra of permuted orders, because
it has a k-basis consisting of all relations on E of the form ∆σR, where σ runs
through the symmetric group ΣE of all permutations of E, and R is an order on E.
By an order, we always mean a partial order relation. The product of two orders
R and S in PE is the transitive closure of R∪S if this closure is an order, and zero
otherwise. This describes completely the algebra structure of PE .
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Among the kC(E,E)-modules, there is the fundamental module PEfR, associated
to any poset (E,R), where E is a finite set and R denotes the order relation on E
which defines the poset structure. Here fR is a suitable idempotent in PE , depend-
ing on R, and PEfR is the left ideal generated by fR. Actually, the fundamental
module PEfR only depends on the isomorphism type of the poset (E,R), or in other
words, for a fixed set E, on the ΣE-conjugacy class of R. More explicitly, if σ ∈ ΣE ,
then conjugation by σ induces an isomorphism of posets (E,R) ∼= (E, σR) and we
also have an isomorphism of PE-modules PEfR ∼= PEf σR, because f σR = σfR (see
Lemma 7.1 in [BT1] for details).

The only thing we really need to know about the fundamental module PEfR is
its structure as a kC(E,E)-module. This is described in the next result, which com-
bines Corollary 7.3 and Proposition 8.5 of [BT1] (see also Proposition 4.5 of [BT2]
and its use).

2.4. Proposition. Let E be a finite set and R an order on E.

(a) The fundamental module PEfR is a left module for the algebra PE, hence
also a left module for the essential algebra EE and for the algebra of rela-
tions kC(E,E).

(b) PEfR is a free k-module with a k-basis consisting of the elements ∆σfR,
where σ runs through the group ΣE of all permutations of E.

(c) PEfR is a (PE , kAut(E,R))-bimodule and the right action of kAut(E,R)
is free.

(d) The action of the algebra of relations kC(E,E) on the module PEfR is given
as follows. For any relation Q ∈ C(E,E),

Q ·∆σfR =

{
∆τσfR if ∃τ ∈ ΣE such that ∆E ⊆ ∆τ−1Q ⊆ σR,
0 otherwise ,

where σR =
{(
σ(e), σ(f)

)
| (e, f) ∈ R

}
(or equivalently σR = ∆σR∆σ−1).

(Moreover, τ is unique in the first case.)

Using the (PE , kAut(E,R))-bimodule structure on PEfR, we define

TR,V := PEfR ⊗kAut(E,R) V ,

where V is any kAut(E,R)-module. Then TR,V is a left PE-module, hence also a
kC(E,E)-module since PE is a quotient of kC(E,E). The left action of kC(E,E)
on TR,V is induced from the action on PEfR described in Proposition 2.4 above.
Again, the module TR,V is invariant under ΣE-conjugacy, that is, for a fixed set E
and for σ ∈ ΣE , we have an isomorphism of PE-modules T σR, σV ∼= TR,V , where
σV denotes the conjugate module, namely a module for the group Aut(E, σR) =
σAut(E,R)σ−1 (see Theorem 8.1 in [BT1] for details).

The main thing we need to know about TR,V is the following result, which is
part of Theorem 8.1 in [BT1].

2.5. Proposition. Assume that k is a field. Let E be a finite set, R an order
on E, and V a simple kAut(E,R)-module. Then TR,V is a simple PE-module
(hence also a simple EE-module).

Actually, Theorem 8.1 in [BT1] asserts that every simple EE-module is isomor-
phic to some module TR,V and that, consequently, the set of isomorphism classes of
simple EE-modules is parametrized by the set of conjugacy classes of pairs (R, V )
where R is an order on E and V is a simple kAut(E,R)-module.

Associated with the above kC(E,E)-modules, we can now define some specific
correspondence functors. Using the fundamental module PEfR, we define

SE,R := LE,PEfR/JE,PEfR
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and we call it the fundamental functor associated with the poset (E,R). Using the
module TR,V , we define

SE,R,V := LE,TR,V /JE,TR,V .

Note that SE, σR ∼= SE,R and SE, σR, σV ∼= SE,R,V , for any permutation σ ∈ ΣE .

2.6. Proposition.

(a) The set E is a minimal set for SE,R and SE,R(E) ∼= PEfR as left kC(E,E)-
modules.

(b) The set E is a minimal set for SE,R,V and SE,R,V (E) ∼= TR,V as left
kC(E,E)-modules.

(c) If k is a field and V is a simple kAut(E,R)-module, then SE,R,V is a simple
correspondence functor.

Proof : Let W be any PE-module and set S = LE,W /JE,W . Suppose that Y is
a finite set such that S(Y ) ̸= {0}. Then LE,W (Y ) ̸= JE,W (Y ), so there exists a
correspondence ϕ ∈ C(Y,E) and v ∈ W such that ϕ ⊗ v ∈ LE,W (Y ) − JE,W (Y ).
By definition of JE,W , this means that there exists a correspondence ψ ∈ C(E, Y )
such that ψϕ · v ̸= 0. Since PE is a quotient of the essential algebra EE , it follows
that W is a module for EE = kC(E,E)/IE , so that the ideal IE acts by zero on W .
Therefore ψϕ /∈ IE . But ψϕ factorizes through Y , so we must have |Y | ≥ |E|. Thus
E is a minimal set for S. In particular, this holds for S = SE,R (takingW = PEfR)
and also for S = SE,R,V (taking W = TR,V ).

Since JE,W vanishes at E by Lemma 2.3, evaluation at E yields

S(E) = LE,W (E)/JE,W (E) = LE,W (E) = kC(E,E)⊗kC(E,E) W ∼=W ,

and therefore SE,R(E) ∼= PEfR and SE,R,V (E) ∼= TR,V .
For the proof of (c), notice that TR,V is a simple kC(E,E)-module by Proposi-

tion 2.5 and therefore

SE,R,V = LE,TR,V /JE,TR,V

is a simple correspondence functor by Lemma 2.3.

Although we do not need it here, let us mention that more is known about
simple correspondence functors, when k is a field. It is proved in [BT2] that any
simple functor has the form SE,R,V for some triple (E,R, V ) and that the set of
isomorphism classes of simple correspondence functors is parametrized by the set
of isomorphism classes of triples (E,R, V ) where E is a finite set, R is an order
on E, and V is a simple kAut(E,R)-module.

We note that the fundamental functor SE,R is a precursor of SE,R,V , in the sense
of the following lemma.

2.7. Lemma. Suppose that V is a kAut(E,R)-module generated by a single ele-
ment v (e.g. a simple module). Consider the surjective morphism of correspondence
functors

Φ : LE,PEfR −→ LE,TR,V

induced by the surjective homomorphism of PE-modules

ΦE : PEfR −→ PEfR ⊗kAut(E,R) V = TR,V , a 7→ a⊗ v .

Then Φ induces a surjective morphism of correspondence functors

SE,R −→ SE,R,V .
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Proof : Let φ ⊗ fR ∈ kC(X,E) ⊗kC(E,E) PEfR = LE,PEfR(X). If φ ⊗ fR ∈
JE,PEfR(X), then for every ψ ∈ C(E,X), we have ψφ ·fR = 0. Then ΦX(φ⊗fR) =
φ⊗ fR ⊗ v and we have

ψφ · (fR ⊗ v) = (ψφ · fR)⊗ v = 0 .

This shows that ΦX(φ⊗fR) ∈ JE,TR,V (X), so that ΦX(JE,PEfR(X)) ⊆ JE,TR,V (X).
Therefore Φ induces a morphism of correspondence functors SE,R −→ SE,R,V which
remains surjective.

By means of a very detailed analysis of SE,R which will be carried out in [BT3],
we shall show that it is possible to recover SE,R,V from SE,R by simply tensoring
with V . Consequently, mastering SE,R will be the key for obtaining information
about the simple functors SE,R,V and this explains why the fundamental functors
play a crucial role throughout our work.

3. Posets and lattices

In this section, we give some definitions, fix some notation, and prove some basic
lemmas, which will be used throughout.

By an order R on a finite set E, we mean a partial order relation on E. In other
words, (E,R) is a finite poset.

3.1. Notation and definitions. Let (E,R) be a finite poset.

(a) We write ≤R for the order relation, so that (a, b) ∈ R if and only if a ≤R b.
Moreover a <R b means that a ≤R b and a ̸= b.

(b) If a, b ∈ E with a ≤R b, we define intervals

[a, b]E := {x ∈ E | a ≤R x ≤R b} , ]a, b[E := {x ∈ E | a <R x <R b} ,
[a, b[E := {x ∈ E | a ≤R x <R b} , ]a, b]E := {x ∈ E | A <R x ≤R b} ,
[a, ·[E := {x ∈ E | a ≤R x} , ]·, b]E := {x ∈ E | x ≤R b} .

When the context is clear, we write [a, b] instead of [a, b]E.
(c) A subset A of E is a lower R-ideal, or simply a lower ideal, if, whenever

a ∈ A and x ≤R a, we have x ∈ A. Similarly, a subset A of E is an upper
R-ideal, or simply an upper ideal, if, whenever a ∈ A and a ≤R x, we have
x ∈ A.

(d) A principal lower ideal, or simply principal ideal, is a subset of the form
]·, a]E, where a ∈ E. A principal upper ideal is defined similarly.

(e) The opposite order relation Rop is defined by the property that a ≤Rop b if
and only if b ≤R a.

3.2. Notation and definitions. Let T be a finite lattice.

(a) We write ≤T , or sometimes simply ≤, for the order relation, ∨ for the join

(least upper bound), ∧ for the meet (greatest lower bound), 0̂ for the least

element and 1̂ for the greatest element.
(b) An element e ∈ T is called join-irreducible, or simply irreducible, if, when-

ever e =
∨
a∈A

a for some subset A of T , then e ∈ A. In case A = ∅, the join

is 0̂ and it follows that 0̂ is not irreducible. An element e ̸= 0̂ is irreducible
if and only if the equality e = s ∨ t, for s, t ∈ T , implies e = s or e = t. In
other words, if e ̸= 0̂, then e is irreducible if and only if [0̂, e[ has a unique
maximal element.
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(c) Let (E,R) be a subposet of T . We say that it is a full subposet of T if for
all e, f ∈ E we have :

e ≤R f ⇐⇒ e ≤T f .

Note that if (E,R) is the poset of irreducible elements in a finite lattice T , then
T is generated by E in the sense that any element x ∈ T is a join of elements of E.
To see this, define the height of t ∈ T to be the maximal length of a chain in [0̂, t]T .

If x is not irreducible and x ̸= 0̂, then x = t1 ∨ t2 with t1 and t2 of smaller height
than x. By induction on the height, both t1 and t2 are joins of elements of E.
Therefore x = t1 ∨ t2 is also a join of elements of E.

3.3. Notation. Let (E,R) be a finite poset.

(a) Let I↓(E,R) denote the set of lower R-ideals of E. Then I↓(E,R), ordered
by inclusion of subsets, is a lattice : the join operation is union of subsets,
and the meet operation is intersection.

(b) Similarly, I↑(E,R) denotes the set of upper R-ideals of E, which is also
a lattice. If Rop is the relation opposite to R, then clearly I↑(E,R) =
I↓(E,R

op).

3.4. Remark. Let R be a preorder on a finite set E, that is, a relation which
is reflexive and transitive. There is an equivalence relation ∼ associated with R,
defined by

x ∼ y ⇐⇒ (x, y) ∈ R and (y, x) ∈ R .

Then R induces an order relation R on the quotient set E = E/∼ such that

(x, y) ∈ R ⇐⇒ (x, y) ∈ R ,

where x denotes the equivalence class of x under ∼. It is easy to see that the
quotient map E → E induces an isomorphism of lattices I↓(E,R) ∼= I↓(E,R).

Note that it is proved in Lemma 3.9 of [BT2] that the representable functors
kC(−, E)R and kC(−, E)R are isomorphic, but actually we will view them in a new
way in Proposition 4.5. These remarks show that, for our purposes, it is enough to
consider orders rather than preorders, and we shall do so in the rest of this paper,
without loss of generality.

3.5. Lemma. Let (E,R) be a finite poset.

(a) The irreducible elements in the lattice I↓(E,R) are the principal ideals
]·, e]E, where e ∈ E. Thus the poset E is isomorphic to the poset of all
irreducible elements in I↓(E,R) by mapping e ∈ E to the principal ideal
]·, e]E.

(b) I↓(E,R) is a distributive lattice.
(c) If T is a distributive lattice and (E,R) is its subposet of irreducible elements,

then T is isomorphic to I↓(E,R).
(d) For any finite lattice T having (E,R) as poset of irreducible elements, there

is a join-preserving surjective map f : I↓(E,R) −→ T which sends any
lower ideal A ∈ I↓(E,R) to the join

∨
e∈A e in T .

Proof : This is not difficult and well-known. For details, see Theorem 3.4.1 and
Proposition 3.4.2 in [St].
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3.6. Convention. In the situation of Lemma 3.5, we shall identify E with its
image via the map

E −→ I↓(E,R) , e 7→ ]·, e]E .

Thus we view E as a full subposet of I↓(E,R). This abusive convention is a con-
ceptual simplification and has many advantages for the rest of this paper.

Given a poset (E,R), the map

E −→ I↑(E,R) , e 7→ [e, ·[E
is order-reversing, so it is in fact (E,Rop) which is identified with the poset of
irreducible elements in I↑(E,R). Since I↑(E,R) = I↓(E,R

op), this is actually just
Convention 3.6 applied to Rop.

We now introduce a notation which will play an important role in our work (and
which was already used in the proof of Theorem 9.2 in [BT2]).

3.7. Notation. Let T be a finite lattice and let (E,R) be the full subposet of its
irreducible elements. For any finite set X and any map φ : X → T , we associate
the correspondence

Γφ := {(x, e) ∈ X × E | e ≤T φ(x)} ⊆ X × E .

In the special case where T = I↓(E,R) and in view of Convention 3.6, we obtain

Γφ = {(x, e) ∈ X × E | e ∈ φ(x)} .

3.8. Lemma. Let T be a finite lattice and let (E,R) be the full subposet of its
irreducible elements.

(a) For any map φ : X → T , we have ΓφR
op = Γφ.

(b) If T = I↓(E,R), then a correspondence S ⊆ X × E has the form S = Γφ
for some map φ : X → I↓(E,R) if and only if SRop = S.

(c) If T = I↑(E,R), then a correspondence S ⊆ X × E has the form S = Γφ
for some map φ : X → I↑(E,R) if and only if SR = S.

Proof : (a) Since ∆E ⊆ Rop, we always have Γφ = Γφ∆E ⊆ ΓφR
op. Conversely, if

(x, f) ∈ ΓφR
op, then there exists e ∈ E such that (x, e) ∈ Γφ and (e, f) ∈ Rop, that

is, e ≤T φ(x) and f ≤R e. But f ≤R e if and only if f ≤T e, because (E,R) is a full
subposet of T . It follows that f ≤T φ(x), that is, (x, f) ∈ Γφ. Thus ΓφR

op ⊆ Γφ
and equality follows.

(b) One direction follows from (a). For the other direction, let S ∈ C(X,E) be
such that SRop = S, or equivalently S ∈ C(X,E)Rop (because Rop is idempotent
by reflexivity and transitivity). Then the set

ϕ(x) =
{
e ∈ E | (x, e) ∈ S

}
is a lower R-ideal in E, thus ϕ is a function X → I↓(E,R). Clearly Γϕ = S.

(c) This follows from (b) applied to Rop, because I↑(E,R) = I↓(E,R
op) and

(E,Rop) is its poset of irreducible elements.

4. Functors associated to lattices

A fundamental construction associates a correspondence functor FT to any finite
lattice T . This is one of our main tools for the analysis of correspondence functors.
Throughout this section, k is an arbitrary commutative ring.
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4.1. Definition. Let T be a finite lattice. For a finite set X, we define FT (X) to
be the free k-module with basis the set TX of all functions from X to T :

FT (X) := k(TX) .

For two finite sets X and Y and a correspondence R ⊆ Y × X, we define a map
FT (R) : FT (X) → FT (Y ) as follows : to a function φ : X → T , we associate the
function FT (R)(φ) : Y → T , also simply denoted by Rφ, defined by

(Rφ)(y) :=
∨
x∈X

(y,x)∈R

φ(x) ,

with the usual rule that a join over the empty set is equal to 0̂. The map

FT (R) : FT (X) → FT (Y )

is the unique k-linear extension of this construction. More generally, for every
element α =

∑
R∈C(Y,X)

αRR ∈ kC(Y,X), where αR ∈ k, we set

FT (α) =
∑

R∈C(Y,X)

αRFT (R) .

4.2. Proposition. The assignment sending a finite set X to the k-module FT (X)
and a morphism α ∈ kC(Y,X) to the k-linear map FT (α) : FT (X) → FT (Y ) is a
correspondence functor.

Proof : First it is clear that if X is a finite set and ∆X ∈ C(X,X) is the identity
correspondence, then for any φ : X → T and any y ∈ X

(∆Xφ)(y) =
∨

(y,x)∈∆X

φ(x) = φ(y) ,

hence ∆Xφ = φ and FT (∆X) is the identity map of FT (X).
Now if X, Y , and Z are finite sets, if R ∈ C(Y,X) and S ∈ C(Z, Y ), then for any

φ : X → T and any z ∈ Z, we have(
S(Rφ)

)
(z) =

∨
(z,y)∈S

(Rφ)(y)

=
∨

(z,y)∈S

∨
(y,x)∈R

φ(x)

=
∨

(z,x)∈SR

φ(x)

= (SRφ)(z) .

By linearity, it follows that FT (β) ◦ FT (α) = FT (β α), for any β ∈ kC(Z, Y ) and
any α ∈ kC(Y,X).

4.3. Remark. The definition of FT only uses the join operation in the lattice T .
It follows that the definition would work for a join semi-lattice, but it is actually
well-known that a finite join semi-lattice has automatically a structure of lattice
(the meet operation being uniquely determined from the sole join). This explains
our choice of working with lattices. Such a choice will also be useful in Section 8
when we shall work with opposite lattices.

We now establish the link between the action of correspondences on functions
φ : X → T (as in Definition 4.1 above) and the correspondences Γφ defined in
Notation 3.7.
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4.4. Lemma. Let T be a finite lattice and let (E,R) be the full subposet of its
irreducible elements. Assume that T is distributive, so that T ∼= I↓(E,R). Then, for
any finite sets X, Y , any correspondence S ∈ C(Y,X), and any function φ : X → T ,
we have

ΓSφ = SΓφ ,

where Γφ is defined in Notation 3.7.

Proof : Let y ∈ Y and e ∈ E. Then

(y, e) ∈ ΓSφ ⇐⇒ e ≤T (Sφ)(y) ⇐⇒ e ≤T
∨

(y,x)∈S
φ(x)

⇐⇒ e = e ∧
( ∨
(y,x)∈S

φ(x)
)
.

But, since T is distributive, the latter equality is equivalent to e =
∨

(y,x)∈S

(
e∧φ(x)

)
.

Now, since e is irreducible, this is in turn equivalent to

∃x ∈ X , (y, x) ∈ S and e ∧ φ(x) = e ⇐⇒ ∃x ∈ X , (y, x) ∈ S and e ≤T φ(x)
⇐⇒ ∃x ∈ X , (y, x) ∈ S and (x, e) ∈ Γφ ⇐⇒ (y, e) ∈ SΓφ .

This completes the proof.

Now we can give another description of the correspondence functor associated
to a distributive lattice.

4.5. Proposition. Let (E,R) be a finite poset.

(a) For any finite set X{
Γφ | φ : X → I↑(E,R)

}
=

{
S ∈ C(X,E) | SR = S

}
= C(X,E)R .

(b) The correspondence functor FI↑(E,R) is isomorphic to kC(−, E)R. In par-
ticular FI↑(E,R) is a projective object of Fk.

(c) The correspondence functor FI↓(E,R) is isomorphic to kC(−, E)Rop. In par-
ticular FI↓(E,R) is a projective object of Fk.

Proof : (a) This is a restatement of Lemma 3.8.

(b) The map

FI↑(E,R)(X) −→ kC(X,E)R , φ 7→ Γφ

is an isomorphism of correspondence functors, by (a) and Lemma 4.4. Moreover
kC(−, E) is a projective functor by Yoneda’s lemma and kC(−, E)R is a direct
summand of kC(−, E) because R is idempotent. Therefore kC(−, E)R is projective.

(c) follows from (b) and the obvious equality I↓(E,R) = I↑(E,Rop).

We now introduce a suitable category L of lattices, as well as its k-linearization kL.
Our aim is to show that the assignment T 7→ FT becomes a k-linear functor from
kL to Fk, which will have the remarkable property of being full and faithful.
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4.6. Definition. Let L and kL denote the following categories :

• The objects of L and kL are the finite lattices.
• For any two lattices T and T ′, the set HomL(T, T

′) is the set of all maps
f : T → T ′ which commute with joins, i.e. such that

f(
∨
a∈A

a) =
∨
a∈A

f(a) ,

for any subset A of T .
• For any two lattices T and T ′, the set HomkL(T, T

′) is the free k-module
kHomL(T, T

′) with basis HomL(T, T
′).

• The composition of morphisms in L is the composition of maps.
• The composition of morphisms in kL is the k-bilinear extension of the com-
position in L.

It is easy to see that a morphism in L is order-preserving, by considering the
join t1 ∨ t2 in the case where t1 ≤T t2 in the lattice T .

4.7. Remark. The case A = ∅ in Definition 4.6 shows that a morphism f : T → T ′

in L always maps 0̂ ∈ T to 0̂ ∈ T ′. Conversely, if f : T → T ′ satisfies f(0̂) = 0̂ and
f(a ∨ b) = f(a) ∨ f(b) for all a, b ∈ T , then f is a morphism in L.

Morphisms in L are morphisms of join semi-lattices (see Remark 4.3), but they
are generally not morphisms of lattices in the sense that they need not commute
with the meet operation. The choice of not using the meet operation turns out to
be important for the next main theorem.

For our next theorem, we need some notation. Let f : T → T ′ be a morphism
in the category L. For a finite set X, let Ff,X : FT (X) → FT ′(X) be the k-linear
map sending the function φ : X → T to the function f ◦ φ : X → T ′.

4.8. Theorem.

(a) Let f : T → T ′ be a morphism in the category L. Then the collection
of maps Ff,X : FT (X) → FT ′(X), for all finite sets X, yields a natural
transformation Ff : FT → FT ′ of correspondence functors.

(b) The assignment sending a lattice T to FT , and a morphism f : T → T ′ in L
to Ff : FT → FT ′ , yields a functor L → Fk. This functor extends uniquely
to a k-linear functor

F? : kL −→ Fk .
(c) The functor F? is fully faithful.

Proof : (a) Let X and Y be finite sets, let φ : X → T be a function, and let U ∈
C(Y,X) be a correspondence. Then FT ′(U)

(
Ff,X(φ)

)
= FT ′(U)(f ◦ φ) = U(f ◦ φ)

and Ff,Y
(
FT (U)(φ)

)
= Ff,Y (Uφ) = f ◦ Uφ. We show that they are equal by

evaluating at any y ∈ Y :

U(f ◦ φ)(y) =
∨

(y,x)∈U

(f ◦ φ)(x)

=
∨

(y,x)∈U

f
(
φ(x)

)
= f

( ∨
(y,x)∈U

φ(x)
)

= (f ◦ Uφ)(y) ,
hence U(f ◦ φ) = f ◦ Uφ, which proves (a).
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(b) It follows that the assignment T 7→ FT is a functor L → Fk. Since kL is the k-
linearization of L, this functor extends uniquely to a k-linear functor F? : kL → Fk.

(c) Let S and T be finite lattices, and Φ : FS → FT be a morphism of functors.
Thus, for any finite set X, we have a morphism of k-modules ΦX : FS(X) → FT (X)
such that for any finite set Y and any correspondence R ⊆ (Y ×X), the diagram

FS(X)
ΦX //

FS(R)

��

FT (X)

FT (R)

��
FS(Y )

ΦY // FT (Y )

is commutative. In other words, for any function α : X → S

(4.9) RΦX(α) = ΦY (Rα) .

Taking X = S and α = idS in this relation, and setting

φ = ΦS(idS) =
∑

λ:S→T

uλλ ,

where uλ ∈ k, this gives
Rφ = ΦY (R idS) ,

for any Y and any R ⊆ (Y × S).
Given a function β : Y → S and taking R = Ωβ := {

(
y, β(y)

)
| y ∈ Y }, one can

check easily that Ωβ idS = β. It follows that

(4.10) ΦY (β) = Ωβ φ .

Hence Φ is entirely determined by φ. Now Condition (4.9) is fulfilled if and only
if, for any finite sets X and Y , any correspondence R ⊆ (Y ×X), and any function
α : X → S, we have

RΩα(φ) = ΩRα(φ) .

In other words ∑
λ

uλRΩα(λ) =
∑
λ

uλΩRα(λ) .

Hence Condition (4.9) is satisfied if and only if, for any finite sets X and Y , any
correspondence R ⊆ (Y ×X), any function α : X → S, and any function ψ : Y → T ,
we have

(4.11)
∑

RΩα(λ)=ψ

uλ =
∑

ΩRα(λ)=ψ

uλ .

But for y ∈ Y

RΩα(λ)(y) =
∨

(y,s)∈RΩα

λ(s)

=
∨

(y,x)∈R

λα(x) .

On the other hand

ΩRα(λ)(y) =
∨

(y,s)∈ΩRα

λ(s)

= λ
(
Rα(y)

)
= λ

( ∨
(y,x)∈R

α(x)
)
.

Now take X = S and α = idS in (4.11). Then let Y = B(S) be the set of subsets
of S and let R ⊆ (Y × S) be the set of pairs (A, s), where A ⊆ S and s ∈ A.
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Then for a given map λ : S → T , let us define ψ : Y → T by ψ = ΩR idS (λ), in
other words

∀A ⊆ S, ψ(A) = λ(
∨
s∈A

s) .

Suppose that there exists λ′ : S → T such that ΩR idS (λ
′) = ψ. Then for A ⊆ S

ψ(A) = λ′(
∨
s∈A

s) .

Taking A = {s}, it follows that λ′ = λ. Hence in (4.11) with our specific choices,
the right hand side is simply equal to uλ.

On the other hand the left hand side is equal to the sum of uλ′ , for all λ′ such
that Rλ′ = ψ, that is, satisfying

∀A ⊆ S, ψ(A) =
∨
s∈A

λ′(s) .

Again, taking A = {s}, it follows that λ′ = λ. With our specific choices, the left
hand side of (4.11) is then equal to uλ if and only if Rλ = ΩR idS (λ), that is, for
any A ⊆ S, ∨

s∈A

λ(s) = λ(
∨
s∈A

s) .

If this condition is not satisfied, then the left hand side of (4.11) is zero (empty
sum). In other words uλ = 0 if λ is not a morphism in the category L (and this is
where we see the relevance of the definition of morphisms in L).

It follows that φ =
∑
λ

uλλ is a morphism in kL, from S to T . We claim that the

image of this morphism via the functor F? is equal to Φ and this will prove that
the functor F? : kL → Fk is full. To prove the claim, notice that, for any function
β : Y → S, we have

Fφ,Y (β) =
∑
λ

uλFλ,Y (β) =
∑
λ

uλ(λ ◦ β) =
∑
λ

uλΩβ λ = Ωβ φ = ΦY (β) ,

using the equation (4.10). This proves the claim and completes the proof that F?

is full.
It remains to show that the functor F? is faithful. So let φ and ψ be two

linear combinations of morphisms S → T in L, which induce the same morphism
θ = Fφ = Fψ : FS → FT . Evaluating this morphism at the set S gives a map
θS : FS(S) → FT (S), and moreover

θS(idS) = Fφ,S(idS) = φ ◦ idS = φ ∈ FT (S) = k(TS) .

For the same reason, θS(idS) = Fψ,S(idS) = ψ, hence φ = ψ. This completes the
proof of Theorem 4.8.

The connection between finite lattices and correspondence functors also has the
following rather remarkable feature.

4.12. Theorem. Let T be a finite lattice. The functor FT is projective in Fk if
and only if T is distributive.

Proof : Let B(T ) be the lattice of subsets of T . Let υ : B(T ) → T be the morphism
in the category L defined by

∀A ⊆ T, υ(A) =
∨
t∈A

t .
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This morphism induces a morphism of functors Fυ : FB(T ) → FT , and Fυ is sur-
jective : indeed, if X is a finite set and α : X → T is a function, and if we define
α̂ : X → B(T ) by

∀x ∈ X, α̂(x) = {α(x)} ,
then, for any x ∈ X

Fυ(α̂)(x) = (υ ◦ α̂)(x) =
∨

t∈α̂(x)

t = α(x) ,

thus Fυ(α̂) = α, so Fυ is surjective.
Now if FT is projective, then the morphism Fυ splits and there exists a morphism

Φ : FT → FB(T ) such that Fυ ◦ Φ is the identity morphism of FT . It follows from
Theorem 4.8 that Φ is of the form

∑
σ∈M

uσFσ, where M is a finite set of morphisms

σ : T → B(T ) in L, and uσ ∈ k. Moreover Fυ ◦ Φ is then equal to
∑
σ∈M

uσFυ◦σ,

hence there exists at least one such σ ∈ M such that υ ◦ σ is equal to the identity
of T . This means that

∀t ∈ T, t =
∨

x∈σ(t)

x .

In particular σ(t) ⊆ [0̂, t]T for any t ∈ T . Then for r, s ∈ T

[0̂, r ∧ s]T = [0̂, r]T ∩ [0̂, s]T ⊇ σ(r) ∩ σ(s) ⊇ σ(r ∧ s) ,
because σ is order-preserving. It follows that

r ∧ s ≥
∨

x∈σ(r)∩σ(s)

x ≥
∨

x∈σ(r∧s)

x = r ∧ s ,

hence
r ∧ s =

∨
x∈σ(r)∩σ(s)

x .

Now, since σ preserves joins, we obtain, for all r, s, t ∈ T ,

t ∧ (r ∨ s) =
∨

x∈σ(t)∩σ(r∨s)

x

=
∨

x∈σ(t)∩
(
σ(r)∪σ(s)

)x
=

∨
x∈
(
σ(t)∩σ(r)

)
∪
(
σ(t)∩σ(s)

)x
=

( ∨
x∈σ(t)∩σ(r)

x
)
∨
( ∨
x∈σ(t)∩σ(s)

x
)

= (t ∧ r) ∨ (t ∧ s) .
In other words the lattice T is distributive.

Conversely, by Lemma 3.5, any finite distributive lattice T is isomorphic to the
lattice I↓(E,R) of lower ideals of a finite poset (E,R). By Proposition 4.5, the as-
sociated functor FT is projective in Fk. This completes the proof of Theorem 4.12.

5. Quotients of functors associated to lattices

We now introduce, for any finite lattice T , a subfunctor of FT naturally associated
with the set of irreducible elements of T .
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5.1. Notation. Let T be a finite lattice and let (E,R) be the full subposet of
its irreducible elements. For a finite set X, let HT (X) denote the k-submodule of
FT (X) = k(TX) generated by all functions φ : X → T such that E ⊈ φ(X).

5.2. Proposition. Let T be a finite lattice and let (E,R) be the full subposet of
its irreducible elements.

(a) The assignment sending a finite set X to HT (X) ⊆ FT (X) is a subfunctor
HT of FT .

(b) The evaluation (FT /HT )(X) has a k-basis consisting of (the classes of) all
functions φ : X → T such that E ⊆ φ(X).

(c) The set E is a minimal set for the functor FT /HT .

Proof : (a) Let X and Y be finite sets, let Q ∈ C(Y,X) be a correspondence, and
let φ : X → T be a function. Then

(5.3) (Qφ)(Y ) ∩ E ⊆ φ(X) ∩ E .

Indeed, if e ∈ E and e = (Qφ)(y), for y ∈ Y , then

e =
∨

(y,x)∈Q

φ(x) .

As e is irreducible in T , there exists x ∈ X such that (y, x) ∈ Q and e = φ(x),
and (5.3) follows.

In particular, if φ(X)∩E is a proper subset of E, then (Qφ)(Y )∩E is a proper
subset of E. Hence HT is a subfunctor of FT .

(b) This follows from the definitions of FT and HT .

(c) If |X| < |E|, then |φ(X)| < |E| and therefore there is no map φ : X → T
such that E ⊆ φ(X). Consequently, the k-basis of (b) is empty in that case, so that
(FT /HT )(X) = {0}. Now if X = E, then the k-basis of (b) consists of all bijections
E → E (followed by the inclusion map E → T ), so that (FT /HT )(E) ∼= kΣE . This
shows that E is a minimal set for FT /HT .

The quotient functor FT /HT plays a important role in our work, in particular
in Theorem 6.5 and for the description of the fundamental functors and the simple
functors in [BT3]. We now give another characterization of HT (X).

5.4. Proposition. Let T = I↑(E,R) for a finite poset (E,R) and let X be a
finite set.

(a) Under the isomorphism FT → kC(−, E)R of Proposition 4.5, HT (X) is iso-
morphic to the k-submodule of kC(X,E)R generated by the correspondences
S which have no retraction, that is, for which there is no U ∈ C(E,X) such
that US = R.

(b) Under the isomorphism FT → kC(−, E)R of Proposition 4.5, the image of
FT (X)/HT (X) is a free k-module with basis consisting of all the correspon-
dences S ∈ C(X,E)R which have a retraction U ∈ C(E,X).

Proof : By Proposition 4.5, the functor FT is isomorphic to the functor kC(−, E)R
by sending, for a finite set X, a function φ : X → I↑(E,R) to the correspondence
Γφ = {(x, e) ∈ X × E | e ∈ φ(x)}.

(a) The set E↑ of irreducible elements of the lattice I↑(E,R) is the set of principal
upper ideals

[e, ·[R=
{
f ∈ E | (e, f) ∈ R

}
,



16 SERGE BOUC AND JACQUES THÉVENAZ

for e ∈ E. Let φ : X → I↑(E,R) be such that φ /∈ HT (X), that is, φ(X) ⊇ E↑.
Then, for each e ∈ E, there exists xe ∈ X such that φ(xe) = [e, ·[R. Let U ∈
C(E,X) be defined by

U =
{
(e, xe) | e ∈ E

}
⊆ E ×X .

Then for any e ∈ E

(Uφ)(e) =
∪

(e,x)∈U

φ(x) = φ(xe) = [e, ·[R .

By Lemma 4.4, it follows that

UΓφ = ΓUφ =
{
(e, f) ∈ E × E | f ∈ [e, ·[R

}
= R ,

so Γφ has a retraction.
Conversely, let S ∈ C(X,E)R be a correspondence such that there exists a

correspondence U ∈ C(X,E) with US = R. Then S = Γφ, where φ : X → I↑(E,R)
is the function defined by φ(x) =

{
e ∈ E | (x, e) ∈ S

}
, for any x ∈ X. It follows

that US = ΓUφ = R, or in other words

∀e, f ∈ E, (e, f) ∈ R ⇐⇒ ∃x ∈ X, (e, x) ∈ U, (x, e) ∈ S .

As ∆E ⊆ R, for any e ∈ E, there exists xe ∈ X such that (e, xe) ∈ U and
(xe, e) ∈ S. Moreover if (xe, f) ∈ S, then (e, f) ∈ R, and conversely, if (e, f) ∈ R,
then (xe, f) ∈ SR = S. In other words, f ∈ φ(xe) if and only if (e, f) ∈ R. It
follows that φ(xe) = [e, ·[R, hence φ(X) ⊇ E↑. This proves that φ /∈ HT (X).

(b) This follows from (a).

5.5. Remark. In the special case when R = ∆E is the equality relation, then
C(X,E)R = C(X,E) and a retraction of S ∈ C(X,E) is a correspondence U ∈
C(E,X) such that US = idE (a retraction in the usual sense). Moreover, if S ∈
C(X,E) has a retraction, then S is a monomorphism in the category C. It can be
shown conversely that any monomorphism in the category C has a retraction. Thus
in this case, the evaluation FT (X)/HT (X) of the quotient functor FT /HT has a
k-basis consisting of all the monomorphisms in C(X,E).

In order to deal with quotients of the functor FT , we need information on mor-
phisms starting from FT . We first need a lemma.

5.6. Lemma. Let T be a finite lattice, let (E,R) be the full subposet of its
irreducible elements, and let ι : E → T denote the inclusion map.

(a) If φ : X → T is a function, then Γφ ι = φ and ΓφR
op = Γφ, where Γφ is

defined in Notation 3.7.
(b) Γι = Rop.
(c) The correspondence functor FT is generated by ι ∈ FT (E).

Proof : (a) By definition, the map Γφ ι : X → T satisfies

∀x ∈ X, (Γφ ι)(x) =
∨

(x,e)∈Γφ

ι(e) =
∨

e≤Tφ(x)

e = φ(x) ,

as any element t of T is equal to the join of the irreducible elements of T smaller
than t. Thus we have Γφ ι = φ. The equality ΓφR

op = Γφ was proved in Lemma 3.8.

(b) Γι = {(x, e) ∈ E × E | e ≤T ι(x)} = {(x, e) ∈ E × E | e ≤R x} = Rop.

(c) For every function φ : X → T , we have φ = Γφι by (a). Therefore FT is
generated by ι ∈ FT (E).
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5.7. Proposition. Let T be a finite lattice, let (E,R) be the full subposet of its
irreducible elements, and let ι : E → T denote the inclusion map. Let M be a
correspondence functor.

(a) The k-linear map

HomFk(FT ,M) −→M(E) , Φ 7→ ΦE(ι)

is injective. Its image is contained in the k-submodule

RopM(E) = {m ∈M(E) | Ropm = m} .
(b) If T is distributive, so that T ∼= I↓(E,R), then the image of the above map

is equal to RopM(E), so that HomFk(FT ,M) ∼= RopM(E) as k-modules.

Proof : (a) By Lemma 5.6, for any Φ ∈ HomFk(FT ,M) and any map φ : X → T ,
we have

ΦX(φ) = ΦX(Γφ ι) = Γφ ΦE(ι) .

This shows that Φ is entirely determined by ΦE(ι), proving the injectivity of the
map Φ 7→ ΦE(ι).

Moreover, ΦE(ι) = ΓιΦE(ι) = RopΦE(ι), because Γι = Rop by Lemma 5.6.
Therefore ΦE(ι) is contained in RopM(E).

(b) Since T is distributive, we have

ΓQφ = QΓφ

by Lemma 4.4. Now given m ∈ RopM(E), we can define Φ : FT →M by setting

ΦX(φ) = Γφm , ∀φ : X → T .

This is indeed a natural transformation of functors since

ΦY (Qφ) = ΓQφm = QΓφm = QΦX(φ)

for any correspondence Q ⊆ Y ×X. Moreover,

ΦE(ι) = Γιm = Ropm = m ,

because m ∈ RopM(E) by assumption and Rop is idempotent. Thus m is indeed
in the image of the map Φ 7→ ΦE(ι).

When k is a field, we wish to give some information on simple functors SF,Q,V
appearing as quotients of FT . We prove a more general result over an arbitrary
commutative ring k, involving the not necessarily simple functors SF,Q,V introduced
in Section 2.

5.8. Theorem. Let T be a finite lattice and let (E,R) be the full subposet of
its irreducible elements. Let (F,Q) be a poset and let V be a kAut(F,Q)-module
generated by a single element (e.g. a simple module).

(a) If SF,Q,V is isomorphic to a quotient of FT , then |F | ≤ |E|.
(b) Assume that F = E. If SE,Q,V is isomorphic to a quotient of FT , then

there exists a permutation σ ∈ ΣE such that Rop ⊆ σQ.
(c) Assume that F = E and that T is distributive, so that T ∼= I↓(E,R).

Then SE,Q,V is isomorphic to a quotient of FT if and only if there exists a
permutation σ ∈ ΣE such that Rop ⊆ σQ.

Proof : (a) If SF,Q,V is isomorphic to a quotient of FT , then HomFk(FT , SF,Q,V ) ̸=
{0}, so we have SF,Q,V (E) ̸= {0} by Proposition 5.7. But F is a minimal set for
SF,Q,V by Proposition 2.6, so |F | ≤ |E|.
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(b) If SE,Q,V is isomorphic to a quotient of FT , there exists a nonzero morphism
Φ : FT → SE,Q,V . By Proposition 5.7, ΦE(ι) = m ̸= 0 ∈ RopSE,Q,V (E). By
Proposition 2.6, we know that

SE,Q,V (E) ∼= TQ,V = PEfQ ⊗kAut(E,Q) V

and PEfQ is a free k-module with basis {∆σfQ | σ ∈ ΣE}, by Proposition 2.4.
Thus we can write

m =
∑
σ∈ΣE

λσ∆σfQ ⊗ v (λσ ∈ k) .

Since m ∈ RopSE,Q,V (E), we have Ropm = m and so there exists σ ∈ ΣE such
that Rop∆σfQ ̸= 0. Hence Rop∆σfQ∆

−1
σ ̸= 0, that is, Rop ⊆ σQ, by Theorem 6.2

of [BT1].

(c) One implication follows from (b). Assume now that there exists a permu-
tation σ ∈ ΣE such that Rop ⊆ σQ. We first note that SE,Q,V is generated by
fQ ⊗ v ∈ SE,Q,V (E) ∼= PEfQ ⊗kAut(E,Q) V , where v is a generator of V . This
follows from the definition of SE,Q,V as a quotient of LE,TQ,V and the fact that any
functor LE,W is generated by LE,W (E) =W by definition.

It is easy to see that SE,Q,V ∼= SE, σQ, σV for any σ ∈ ΣE , because TQ,V ∼= T σQ, σV
by construction (see Theorem 8.1 in [BT1] for more details). Since Rop is contained
in a conjugate ofQ, we can assume that Rop ⊆ Q. This is equivalent to RopfQ = fQ,
by Theorem 6.2 of [BT1].

Thus m = fQ ⊗ v ∈ SE,Q,V (E) is invariant under left multiplication by Rop. By
Proposition 5.7 and the assumption that T is distributive, there exists a morphism
Φ : FT → SE,Q,V such that ΦE(ι) = fQ ⊗ v. Since this is nonzero and generates
SE,Q,V , this functor is isomorphic to a quotient of FT .

The similar question of finding fundamental functors appearing as quotients
of FT will be considered later in Theorem 6.9.

6. The fundamental functor associated to a poset

The fundamental functor SE,R associated to a poset (E,R) was introduced in Sec-
tion 2. One of our important goals is to give a precise description of its evaluations
and use it to deduce a precise description of the evaluations of simple functors, but
this will be fully achieved only in [BT3]. We prepare the ground by proving sev-
eral main results about SE,R. Recall from Proposition 2.6 that E is a minimal set
for SE,R and that SE,R(E) is isomorphic to the fundamental module PEfR, which
is described in Proposition 2.4.

Since SE,R = LE,PEfR/JE,PEfR by definition, it is important to know when an
element of LE,PEfR(X) belongs to JE,PEfR(X), where X is a finite set. For this
analysis, we note that an element of LE,PEfR(X) is written∑

S∈C(X,E)

λSS ⊗ fR ∈ kC(X,E)⊗kC(E,E) PEfR = LE,PEfR(X) ,

where λS ∈ k for every S, because the tensor product is over kC(E,E) and PE is
a quotient algebra of kC(E,E). But since RfR = fR (by Proposition 2.4) and the
tensor product is over kC(E,E), we can replace S by SR and obtain a sum running
only over S ∈ C(X,E)R.
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6.1. Lemma. Consider an element∑
S∈C(X,E)R

λSS ⊗ fR ∈ LE,PEfR(X) .

This element belongs to JE,PEfR(X) if and only if

∀U ∈ RC(E,X) ,
∑

S∈C(X,E)R
US=R

λS = 0 .

Proof : By the definition of JE,PEfR(X), we have∑
S∈C(X,E)R

λSS ⊗ fR ∈ JE,PEfR(X) ⇐⇒

∀U ∈ C(E,X) ,
∑

S∈C(X,E)R

λSUS · fR = 0 .

By Proposition 2.4, the action of the relation US ∈ C(E,E) on fR is given by

US · fR =

{
∆τfR if ∃τ ∈ ΣE such that ∆E ⊆ ∆τ−1US ⊆ R,
0 otherwise .

We claim that
∆E ⊆ ∆τ−1US ⊆ R ⇐⇒ US = ∆τR .

If the left hand side holds, then multiply on the right by R and use the fact that
SR = S and R2 = R (by transitivity and reflexivity of R) to obtain ∆τ−1US = R,
hence US = ∆τR. Conversely, if the right hand side holds, then ∆τ−1US = R,
hence

R∆τ−1US = R2 = R

by transitivity and reflexivity of R. In particular, by reflexivity again,

∆E ⊆ R∆τ−1US

so that, for any (a, a) ∈ ∆E , there exists b ∈ E with (a, b) ∈ R and (b, a) ∈
∆τ−1US = R. By antisymmetry of R, it follows that b = a and therefore (a, a) ∈
∆τ−1US, so that ∆E ⊆ ∆τ−1US. This shows that the left hand side holds, proving
the claim.

It follows that our given element belongs to JE,PEfR(X) if and only if

(6.2) ∀U ∈ C(E,X) ,
∑

S∈C(X,E)R
τ∈ΣE

US=∆τR

λS∆τfR = 0 .

But by Proposition 2.4, PEfR is a free k-module with basis {∆τfR | τ ∈ ΣE}.
Therefore (6.2) is equivalent to

∀U ∈ C(E,X) , ∀ τ ∈ ΣE ,
∑

S∈C(X,E)R
US=∆τR

λS = 0 .

Replacing U by ∆τ−1U , this is equivalent to

(6.3) ∀U ∈ C(E,X) ,
∑

S∈C(X,E)R
US=R

λS = 0 .

Now we claim that
US = R⇐⇒ RUS = R .

If the left hand side holds, then multiply on the left by R and use the fact that
R2 = R. Conversely, if the right hand side holds, then US = ∆EUS ⊆ RUS = R.
Moreover, ∆E ⊆ R = RUS, so that, for any (a, a) ∈ ∆E , there exists b ∈ E with
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(a, b) ∈ R and (b, a) ∈ US ⊆ R. By antisymmetry of R, it follows that b = a and
therefore (a, a) ∈ US, so that ∆E ⊆ US. Multiplying on the right by R and using
the fact that SR = S, we obtain R ⊆ US. This shows that R = US, as required,
proving the claim.

It now follows that in the family of equations (6.3), the equation for U is the
same as the equation for RU . Therefore we can assume that U ∈ RC(E,X) and
(6.3) is equivalent to

∀U ∈ RC(E,X) ,
∑

S∈C(X,E)R
US=R

λS = 0 ,

proving the lemma.

Before stating the main theorem, we need another lemma.

6.4. Lemma. Let T be a finite lattice, let (E,R) be the full subposet of its
irreducible elements, and let ι : E → T denote the inclusion map. For any corre-
spondence W ∈ C(E,X) and any map φ : X → T , the following two statements are
equivalent :

WΓφ = Rop ⇐⇒ Wφ = idE ,

where Γφ ∈ C(X,E) is defined in Notation 3.7.

Proof : Let e, f ∈ E. Since (E,R) is a full subposet of T , the relation (f, e) ∈ Rop

is equivalent to e ≤ f , where we write ≤ instead of ≤T for simplicity. Suppose that
WΓφ = Rop. Then e ≤ f if and only if

∃x ∈ X with (f, x) ∈W , (x, e) ∈ Γφ ⇐⇒ ∃x ∈ X with (f, x) ∈W , e ≤ φ(x) .

Now we can write

φ(x) =
∨
e∈E

e≤φ(x)

e

because any element of T is a join of irreducible elements. It follows that

(Wφ)(f) =
∨
x∈X

(f,x)∈W

φ(x) =
∨
x∈X

(f,x)∈W

∨
e∈E

e≤φ(x)

e =
∨
e≤f

e ,

by the equivalence above. Thus (Wφ)(f) = f , so that Wφ = idE .
Conversely, suppose that Wφ = idE . Since φ = Γφι by Lemma 5.6, we have

WΓφι = idE and we obtain, for every e ∈ E,

e = (WΓφι)(e) =
∨
f∈E

(e,f)∈WΓφ

ι(f) =
∨
f∈E

(e,f)∈WΓφ

f .

Since e is irreducible, it follows that e = f for some f ∈ E such that (e, f) ∈WΓφ,
and so (e, e) ∈WΓφ, showing that ∆E ⊆WΓφ. On the other hand, we also obtain
f ≤ e for every f ∈ E such that (e, f) ∈WΓφ, showing thatWΓφ ⊆ Rop. Therefore
∆E ⊆ WΓφ ⊆ Rop. Multiplying on the right by Rop, we deduce that WΓφ = Rop,
thanks to the fact that ΓφR

op = Γφ by Lemma 3.8.

The following theorem establishes the link between the functor FT associated
with a lattice T and the fundamental correspondence functors.
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6.5. Theorem. Let T be a finite lattice, let (E,R) be the full subposet of its
irreducible elements, and let ι : E → T denote the inclusion map.

(a) There exists a unique morphism of correspondence functors

ΘT : FT −→ SE,Rop

mapping ι ∈ FT (E) to fRop ∈ SE,Rop(E) ∼= PEfRop . Moreover, ΘT is
surjective.

(b) The subfunctor HT of FT is contained in the kernel of ΘT . In particular,
ΘT induces a surjective morphism ΘT : FT /HT −→ SE,Rop .

Proof : (a) For any finite set X and any function φ : X → T , we let

Θ̃T,X(φ) = Γφ ⊗ fRop ∈ kC(X,E)⊗kC(E,E) fRop = LE,PEfRop (X) ,

where Γφ ∈ C(X,E) is defined in Notation 3.7. This extends to a k-linear map

Θ̃T,X : FT (X) −→ LE,PEfRop (X)

which we compose with the canonical surjection

πX : LE,PEfRop (X) −→ LE,PEfRop (X)/JE,PEfRop (X) = SE,Rop(X)

to obtain a k-linear map

ΘT,X : FT (X) −→ SE,Rop(X) .

The family of maps Θ̃T,X is not a morphism of functors, but we are going to prove
that it becomes so after composition with π : LE,PEfRop → SE,Rop . We have to
show that, for any correspondence V ∈ C(Y,X) and any map φ : X → T , we have

ΘT,Y (V φ) = VΘT,X(φ) , that is, Θ̃T,Y (V φ)− V Θ̃T,X(φ) ∈ JE,PEfRop (Y ) .

In other words, we need to prove that

(ΓV φ − V Γφ)⊗ fRop ∈ JE,PEfRop (Y ) .

Since ΓV φR
op = ΓV φ and ΓφR

op = Γφ by Lemma 3.8, we can apply Lemma 6.1 to
the element (ΓV φ−V Γφ)⊗fRop (with Rop instead of R). Since we have a difference
of two terms, we only have to show that the additional conditions in the equations
occur simultaneously, that is,

(6.6) ∀U ∈ RopC(E, Y ) , UΓV φ = Rop ⇐⇒ UV Γφ = Rop .

We emphasize that the equation V Γφ = ΓV φ does not hold in general (it holds
if the lattice T is distributive by Lemma 6.6), but it will become correct after left
multiplication by U ∈ RopC(E, Y ). Using Lemma 6.4, we have to show that, for all
U ∈ RopC(E, Y ),

U(V φ) = idE ⇐⇒ (UV )φ = idE .

But this is obvious in view of the action of correspondences on φ ∈ FT (X). There-
fore ΘT is a morphism of correspondence functors, as was to be shown.

By Lemma 5.6, the image of ι ∈ FT (E) is

ΘT,E(ι) = Γι ⊗ fRop = Rop ⊗ fRop = ∆E ⊗RopfRop = ∆E ⊗ fRop ,

because the tensor product is over kC(E,E) and because RopfRop = fRop by the
action of relations on fRop (see Proposition 2.4). Now ∆E ⊗ fRop corresponds to
fRop under the isomorphism SE,Rop(E) ∼= PEfRop . Therefore ΘT maps ι to fRop .

Since RopfRop = fRop , any generator S ⊗ fRop of LE,PefRop (X), where S ∈
C(X,E), can be written

S ⊗ fRop = S ⊗RopfRop = SRop ⊗ fRop = Γφ ⊗ fRop

for some φ : X → T , in view of Lemma 3.8. This shows that ΘT is surjective.
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(b) A generator of HT (X) is a map φ : X → T such that E ̸⊆ φ(X). We need
to prove that φ ∈ KerΘT , or in other words Γφ⊗ fRop ∈ JE,PefRop (X). In order to
prove this, we apply Lemma 6.1 and we note that we have here a sum with a single
term, so we have to check that the additional condition UΓφ = Rop never holds,
where U ∈ RopC(E,X). By Lemma 6.4, UΓφ ̸= Rop is equivalent to Uφ ̸= idE .
But Uφ ∈ HT (E) because HT is a subfunctor and obviously idE /∈ HT (E), so
Uφ ̸= idE , as required.

6.7. Remark. By Lemma 3.5, any lattice T having (E,R) as its full subposet of
irreducible elements is isomorphic to a quotient of the distributive lattice I↓(E,R)
via the map

π : I↓(E,R) −→ T , A 7→
∨
e∈A

e

where the join is taken in the lattice T . Since I↓(E,R) also has (E,R) as its full
subposet of irreducible elements, there is a surjective morphism

ΘI↓(E,R) : FI↓(E,R) −→ SE,Rop

which is easily seen to correspond, via the isomorphism FI↓(E,R)
∼= kC(−, E)Rop of

Proposition 4.5, to the morphism

ω : kC(−, E)Rop −→ SE,Rop , Rop 7→ fRop .

Moreover, it is also elementary to check that the composite

kC(−, E)Rop ∼= FI↓(E,R)
Fπ // FT

ΘT // SE,Rop

is equal to ω.

For our next result, we need a well-known result of algebraic K-theory.

6.8. Lemma. Let L and L′ be finitely generated free k-modules of the same rank,
where k is a commutative ring. Then any surjective homomorphism of k-modules
f : L→ L′ is an isomorphism.

Proof : The homomorphism f splits, because L′ is free. Hence there exists a
homomorphism g : L′ → L such that f ◦ g = idL′ . Let n be the common rank of
the free k-modules L and L′. We can view f and g as square matrices of size n
with coefficients in k, such that fg = idn. Taking determinants (which makes sense
as k is commutative), we get that det(f) det(g) = det(idn) = 1. Hence det(f) is
invertible in k, and f is invertible as well.

We now show that the relationship between FT and SE,Rop is very strong, in
the sense that SE,Rop is the only fundamental functor appearing as a quotient
of FT /HT , where HT is defined in Notation 5.1. Recall that E is a minimal set for
the functor FT /HT , by Proposition 5.2.

6.9. Theorem. Let T be a finite lattice and let (E,R) be the full subposet of its
irreducible elements. Let (D,Q) be a finite poset such that there exists a surjective
morphism Φ : FT /HT → SD,Q.

(a) |D| = |E| (so we can assume that D = E).
(b) Assuming that D = E, there exists σ ∈ ΣE such that σQ = Rop. In other

words, the posets (E,Q) and (E,Rop) are isomorphic.
(c) The kernel of ΘT : FT /HT → SE,Rop vanishes at E and

ΘT,E : FT (E)/HT (E) −→ SE,Rop(E) ∼= PEfRop
is an isomorphism.
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Proof : (a) By Proposition 5.7, any morphism FT /HT → SD,Q is determined by
an element of SD,Q(E). Since our given morphism Φ is surjective, it is nonzero, and
therefore SD,Q(E) ̸= {0}. Since D is a minimal set for SD,Q, we have |D| ≤ |E|.
Now there is a surjective morphism

ΦD : FT (D)/HT (D) → SD,Q(D) ̸= {0} ,
so FT /HT does not vanish at D. Since E is a minimal set for FT /HT by Proposi-
tion 5.2, we have |E| ≤ |D|.

(b) We prove that ΦE : FT (E)/HT (E) → SE,Q(E) is an isomorphism. By
Proposition 5.1, FT (E)/HT (E) is a free k-module with basis the set of all bijections
E → E (followed by the inclusion map E → T ). By Proposition 2.4, SE,Q(E) ∼=
PEfQ is a free k-module with a basis consisting of the elements ∆σfQ, where σ
runs through the group ΣE of all permutations of E. Thus the two modules under
consideration are finitely generated free k-modules with the same rank and we know
that the map ΦE is surjective. Therefore ΦE is an isomorphism by Lemma 6.8.

The same argument applies to the surjective morphism ΘT,E : FT (E)/HT (E) →
SE,Rop(E), which is therefore also an isomorphism. It follows that there are iso-
morphisms of kC(E,E)-modules

PEfQ ∼= SE,Q(E) ∼= FT (E)/HT (E) ∼= SE,Rop(E) ∼= PEfRop .
This isomorphism maps fQ to afRop for some a ∈ PE . Therefore it maps fQ = QfQ
to afRop = QafRop and in particular QafRop ̸= 0. By Proposition 2.4, this is
possible only if there exists σ, τ ∈ ΣE such that

∆E ⊆ ∆τ−1Q ⊆ σ(Rop) .

In particular, ∆τ ⊆ Q, forcing τ = id because Q is an order relation. Thus
Q ⊆ σ(Rop). Swapping the role of Q and Rop, the same argument shows that Rop

is contained in a conjugate of Q. Therefore Q and Rop are conjugate, as was to be
shown.

(c) We have just seen that ΘT,E : FT (E)/HT (E) −→ SE,Rop(E) is an isomor-
phism. Therefore KerΘT,E = {0}. In other words, the subfunctor KerΘT vanishes
at E.

7. The kernel of ΘT

Theorem 6.5 shows that SE,Rop(X) is isomorphic to a quotient of FT and we want
to understand the kernel. We do this in the following result in terms of a system
of equations. The solution of this system of equations is quite hard and will only
be obtained in [BT3], when we will compute the dimension of the evaluations of
fundamental functors and simple functors.

7.1. Theorem. Let T be a finite lattice, let (E,R) be the full subposet of its
irreducible elements, and let X be a finite set. The kernel of the map

ΘT,X : FT (X) → SE,Rop(X)

is equal to the set of linear combinations
∑

φ:X→T

λφφ, where λφ ∈ k, such that for

any map ψ : X → I↑(E,R) ∑
φ:X→T

Γopψ Γφ=R
op

λφ = 0 .
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Recall from Notation 3.7 that Γφ = {(x, e) ∈ X × E | e ∈ φ(x)} ⊆ C(X,E) and
Γψ = {(x, e) ∈ X × E | e ∈ ψ(x)} ⊆ C(X,E).

Proof : The image of φ : X → T under the map ΘT,X is equal to the class of
Γφ ⊗ fRop ∈ LE,PEfRop (X) in the quotient

SE,Rop(X) = LE,PEfRop (X)/JE,PEfRop (X) .

Therefore a linear combination u =
∑

φ:X→T

λφφ lies in KerΘT,X if and only if∑
φ:X→T

λφΓφ⊗ fRop belongs to JE,PEfRop (X). We apply Lemma 6.1, using the fact

that ΓφR
op = Γφ. It follows that u ∈ KerΘT,X if and only if

∀U ∈ RopC(E,X) ,
∑

φ:X→T
UΓφ=R

op

λφ = 0 .

Now U ∈ RopC(E,X) if and only if Uop ∈ C(X,E)R if and only if U = Γψ for some
map ψ : X → I↑(E,R) (by Lemma 3.8). Thus the condition becomes

∀ψ : X → I↑(E,R) ,
∑

φ:X→T
Γopψ Γφ=R

op

λφ = 0 ,

as was to be shown.

The condition Γopψ Γφ = Rop which appears in the system of equations in The-
orem 7.1 is the key for the description of the fundamental functor SE,Rop , and
consequently for understanding the simple functors SE,R,V . We need to character-
ize this condition in various useful ways.

We first introduce the following notation.

7.2. Notation. Let T be a finite lattice, let (E,R) be the full subposet of its
irreducible elements, let ψ : X → I↑(E,R) be any map, and let φ : X → T be any
map. We define the function ∧ψ : X → T by

∀x ∈ X, ∧ψ(x) =
∧

e∈ψ(x)

e ,

where
∧

is the meet in the lattice T .
Moreover, the notation φ ≤ ∧ψ means that φ(x) ≤T ∧ψ(x) for all x ∈ X.

We can now state the various characterizations of the condition which we need.

7.3. Theorem. Let T be a finite lattice, let (E,R) be the full subposet of its
irreducible elements, and let X be a finite set. Let φ : X → T be a map and let

Γφ = {(x, e) ∈ X × E | e ≤T φ(x)}

be the associated correspondence. Let ψ : X → I↑(E,R) be a map and let

Γopψ =
{
(e, x) ∈ E ×X | e ∈ ψ(x)

}
be the associated correspondence. The following conditions are equivalent.

(a) Γopψ φ = ι.

(b) Γopψ Γφι = ι.

(c) ∆E ⊆ Γopψ Γφ ⊆ Rop.

(d) Γopψ Γφ = Rop.

(e) φ ≤ ∧ψ and ∀e ∈ E, ∃x ∈ X such that φ(x) = e and ψ(x) = [e, ·[E.
(f) ∀t ∈ T, ψ

(
φ−1(t)

)
⊆ [t, ·[T∩E and ∀e ∈ E, ψ

(
φ−1(e)

)
= [e, ·[E.
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Proof : (a) ⇔ (b). By Lemma 5.6, we have φ = Γφι.

(b) ⇔ (c). We prove more generally that Qι = ι if and only if ∆E ⊆ Q ⊆ Rop,
for any relation Q ∈ C(E,E). Suppose first that ∆E ⊆ Q ⊆ Rop. Then for any
e ∈ E,

(Qι)(e) =
∨

(e,f)∈Q

ι(f) =
∨

(e,f)∈Q

f .

Since (e, e) ∈ Q, it follows that (Qι)(e) ≥T e. On the other hand since Q ⊆ Rop,
if (e, f) ∈ Q, then f ≤R e, hence f ≤T e. Thus (Qι)(e) ≤T e. It follows that
(Qι)(e) = e for any e ∈ E, i.e. Qι = ι.

Conversely, if Qι = ι, then

∀e ∈ E,
∨

(e,f)∈Q

f = e .

As e is irreducible, it follows that (e, e) ∈ Q for any e ∈ E, i.e. ∆E ⊆ Q. Moreover
if (e, f) ∈ Q, then f ≤T e, hence f ≤R e and so Q ⊆ Rop. This proves the claim
and completes the proof of (b).

(c) ⇔ (d). If (c) holds, multiply on the right by Rop and use the equality
ΓφR

op = Γφ of Lemma 3.8 to obtain (d). On the other hand, it is clear that (d)
implies (c).

(d) ⇒ (e). Suppose that Γopψ Γφ = Rop and let x ∈ X. Then for all f ≤T φ(x)

and for all e ∈ ψ(x), we have (e, x) ∈ Γopψ and (x, f) ∈ Γφ, hence (e, f) ∈ Rop, that

is, f ≤R e, hence f ≤T e. Therefore φ(x) =
∨

f≤Tφ(x)
f ≤T e, whenever e ∈ ψ(x).

Thus

∀x ∈ X, φ(x) ≤T
∧

e∈ψ(x)

e = ∧ψ(x) ,

that is, φ ≤ ∧ψ. This shows that the first property in (e) holds.
Since (e, e) ∈ Rop, there exists xe ∈ X such that e ≤T φ(xe) and e ∈ ψ(xe).

Then for all f ≤T φ(xe), we have (e, xe) ∈ Γopψ and (xe, f) ∈ Γφ, hence (e, f) ∈ Rop,

that is, f ≤R e, or in other words f ≤T e. Thus again φ(xe) =
∨

f≤Tφ(xe)
f ≤T e,

hence φ(xe) = e. Moreover, if g ∈ E with g ∈ ψ(xe), then (g, xe) ∈ Γopψ and

(xe, e) ∈ Γφ, hence (g, e) ∈ Rop, that is, e ≤T g. Therefore ψ(xe) ⊆ [e, ·[E . But
we also have [e, ·[E⊆ ψ(xe), as e ∈ ψ(xe) and ψ(xe) is an upper ideal of E. Thus
ψ(xe) = [e, ·[E . This shows that the second property in (e) holds.

(e) ⇒ (d). For any e ∈ E, there exists xe ∈ X such that φ(xe) = e and
ψ(xe) = [e, ·[E . If now (f, e) ∈ Rop, then e ≤R f , hence f ∈ ψ(xe). Since we also
have e ≤R φ(xe), we obtain (f, xe) ∈ Γopψ and (xe, e) ∈ Γφ. Thus R

op ⊆ Γopψ Γφ.

Moreover if (f, e) ∈ Γopψ Γφ, then there exists x ∈ X such that f ∈ ψ(x) and

e ≤T φ(x). Since φ ≤ ∧ψ, we have φ(x) ≤T
∧

f∈ψ(x)
f . It follows that e ≤T f ,

hence e ≤R f , that is, (f, e) ∈ Rop. Thus Γopψ Γφ ⊆ Rop. Therefore we obtain

Γopψ Γφ = Rop.

(e) ⇔ (f). We are going to slightly abuse notation by setting, for any subset Y
of X, ψ(Y ) =

∪
x∈Y

ψ(x). Taking t = φ(x), the first condition in (e) is equivalent to

∀t ∈ T, e ∈ ψ
(
φ−1(t)

)
=⇒ t ≤T e ,

which in turn is equivalent to

∀t ∈ T, ψ
(
φ−1(t)

)
⊆ [t, ·[T∩E .
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In particular ψ
(
φ−1(e)

)
⊆ [e, ·[E for all e ∈ E because [e, ·[T∩E = [e, ·[E . But the

second condition in (e) says that emust belong to ψ
(
φ−1(e)

)
, so we get ψ

(
φ−1(e)

)
=

[e, ·[E . This shows that the second condition in (e) is equivalent to

∀e ∈ E, ψ
(
φ−1(e)

)
= [e, ·[E .

This completes the proof of Theorem 7.3.

Condition (d) will play an important role in the proof of Theorem 9.5 below,
while conditions (e) and (f) will be main tools used in [BT3].

8. Duality and opposite lattices

In this section, we prove a perfect duality between the functor associated to a
lattice T and the functor associated to the opposite lattice T op. We work with an
arbitrary commutative base ring k.

Let F be a correspondence functor over k. The dual F ♮ of F is the correspondence
functor defined on a finite set X by

F ♮(X) := Homk

(
F (X), k

)
.

If Y is a finite set and R ⊆ Y ×X, then the map F ♮(R) : F ♮(X) → F ♮(Y ) is defined
by

∀α ∈ F ♮(X), F ♮(R)(α) := α ◦ F (Rop) .

Recall that L denotes the category of finite lattices and kL its k-linearization
(Definition 4.6). For any finite lattice T = (T,∨,∧), denote by T op = (T,∧,∨)
the opposite lattice, i.e. the set T ordered with the opposite partial order. For
simplicity throughout this section, we write ≤ for ≤T and ≤op for ≤T op .

8.1. Lemma. The assignment T 7→ T op extends to an isomorphism L → Lop,
and to a k-linear isomorphism kL → kLop.

Proof : Let f : T1 → T2 be a morphism in the category L. For any t ∈ T2, let
fop(t) denote the join in T1 of all the elements x such that f(x) ≤ t, i.e.

(8.2) fop(t) =
∨

f(x)≤t

x .

Then f
(
fop(t)

)
=

∨
f(x)≤t

f(x) ≤ t, so fop(t) is actually the greatest element of

f−1
(
[0̂, t]T2

)
, i.e. f−1

(
[0̂, t]T2

)
= [0̂, fop(t)]T1 . In other words,

(8.3) ∀t1 ∈ T1, ∀t2 ∈ T2, f(t1) ≤ t2 ⇐⇒ t1 ≤ fop(t2) ,

that is, the pair (f, fop) is an adjoint pair of functors between the posets T1 and T2,
viewed as categories. In those terms, saying that f is a morphism in L is equivalent
to saying that f commutes with colimits in T1 and T2. Hence fop commutes with
limits, that is, fop commutes with the meet operation, i.e. it is a morphism of
lattices T op2 → T op1 .
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In more elementary terms, for any subset A ⊆ T2,

[0̂, fop
( ∧
t∈A

t
)
]T1 = f−1

(
[0̂,

∧
t∈A

t]T2

)
= f−1

( ∩
t∈A

[0̂, t]T2

)
=

∩
t∈A

f−1
(
[0̂, t]T2

)
=

∩
t∈A

[0̂, fop(t)]T1

= [0̂,
∧
t∈A

fop(t)]T1 .

It follows that fop
( ∧
t∈A

t
)
=

∧
t∈A

fop(t), i.e. fop is a morphism T op2 → T op1 in L.

Now denoting by ≤op the opposite order relations on both T1 and T2, Equa-
tion 8.3 reads

∀t2 ∈ T2, ∀t1 ∈ T1, fop(t2) ≤op t1 ⇐⇒ t2 ≤op f(t1) ,

which shows that the same construction applied to the morphism fop : T op2 →
T op1 yields (fop)op = f . This proves that the map f 7→ fop is a bijection from
HomL(T1, T2) to HomL(T

op
2 , T op1 ).

Now if f : T1 → T2 and g : T2 → T3 are morphisms in L, the adjunction (8.3)
easily implies that (gf)op = fopgop. It is clear moreover that (idT )

op = idT op for
any finite lattice T . Hence the assignment T 7→ T op and f 7→ fop is an isomorphism
L → Lop, which extends linearly to an isomorphism kL → kLop.

8.4. Definition. Let T be a finite lattice and let X be a finite set. For two
functions φ : X → T and ψ : X → T op, set

(φ,ψ)X :=

{
1 if φ ≤ ψ, i.e. if φ(x) ≤T ψ(x), ∀x ∈ X,
0 otherwise.

This definition extends uniquely to a k-bilinear form

(−,−)X : FT (X)× FT op(X) −→ k .

This bilinear form induces a k-linear map ΨT,X : FT op(X) → (FT )
♮(X) defined by

ΨT,X(ψ)(φ) = (φ,ψ)X .

We need some notation.

8.5. Notation. Let T be a finite lattice, X and Y finite sets, Q ⊆ Y × X a
correspondence, and ψ : X → T op a map. We denote by Q ⋆ ψ the action of the
correspondence Q on ψ. In other words, Q ⋆ ψ is the map FT op(Q)(ψ) : Y → T op.
Recall that it is defined by

∀y ∈ Y, (Q ⋆ ψ)(y) =
∧

(y,x)∈Q

ψ(x) ,

because the join in T op is the meet in T .
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8.6. Lemma.

(a) With the notation 8.5, the family of bilinear forms in Definition 8.4 satisfy

(φ,Q ⋆ ψ)Y = (Qopφ,ψ)X .

(b) The family of maps ΨT,X : FT op(X) → (FT )
♮(X) form a morphism of

correspondence functors ΨT : FT op → (FT )
♮.

Proof : (a) We have

φ ≤ Q ⋆ ψ ⇐⇒ ∀y ∈ Y, φ(y) ≤T Q ⋆ ψ(y)

⇐⇒ ∀y ∈ Y, φ(y) ≤T
∧

(y,x)∈Q

ψ(x)

⇐⇒ ∀(y, x) ∈ Q, φ(y) ≤T ψ(x)
⇐⇒ ∀x ∈ X,

∨
(x,y)∈Qop

φ(y) ≤T ψ(x)

⇐⇒ Qopφ ≤ ψ .

(b) The equation in part (a) also reads

ΨT,X(ψ)(Qopφ) = ΨT,Y (Q ⋆ ψ)(φ) ,

that is QΨT,X(ψ) = ΨT,Y (Q ⋆ ψ).

8.7. Remark. Let T = I↓(E,R
op) be the distributive lattice corresponding to a

poset (E,Rop). Then T op = I↓(E,R
op)op is isomorphic, via complementation, to

the lattice I↓(E,R). Using the isomorphisms of Proposition 4.5

FT = FI↓(E,Rop)
∼= kC(−, E)R , FT op = FI↓(E,R)

∼= kC(−, E)Rop ,

we can transport the bilinear forms (−,−)X defined in (8.4) and obtain a pairing

kC(−, E)R× kC(−, E)Rop −→ k .

It is easy to check, using complementation, that this pairing coincides with the one
obtained in Remark 10.5 of [BT2].

8.8. Notation. Let T be a finite lattice, X a finite set, and φ : X → T a map.
We denote by φ⋆ the element of FT op(X) defined by

φ⋆ :=
∑

ρ:X→T
ρ≤φ

µ(ρ, φ)ρ◦ ,

where ρ◦ is the function ρ, viewed as a map X → T op, and where µ(ρ, φ) is the
Möbius function of the poset of maps from X to T , for which ρ ≤ φ if and only if
ρ(x) ≤ φ(x) in T for any x ∈ X. Recall that µ(ρ, φ) can be computed as follows :

µ(ρ, φ) =
∏
x∈X

µT
(
ρ(x), φ(x)

)
,

where µT is the Möbius function of the poset T .

Now we can prove that we have a perfect duality.
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8.9. Theorem. Let T be a finite lattice.

(a) Let X be a finite set. The bilinear form (8.4) is nondegenerate, in the strong
sense, namely it induces an isomorphism

ΨT,X : FT op(X) −→ (FT )
♮(X) .

More precisely, {φ⋆ | φ : X → T} is the dual basis, in FT op(X), of the
k-basis of functions X → T , in FT (X).

(b) ΨT : FT op → (FT )
♮ is an isomorphism of correspondence functors.

(c) The functor T 7→ FT op and the functor T 7→ (FT )
♮ are naturally isomorphic

functors from kL to Fop
k . More precisely, the family of isomorphisms ΨT ,

for finite lattices T , form a natural transformation Ψ between the functor
T 7→ FT op and the functor T 7→ (FT )

♮.

Proof : (a) The set {ρ◦ | ρ◦ : X → T op} is a k-basis of the free k-module
FT op(X). It follows that {φ⋆ | φ : X → T} is also a k-basis of FT op(X), because
the integral matrix of Möbius coefficients µ(ρ, ϕ) is unitriangular, hence invertible
over Z. Actually its inverse is the adjacency matrix of the order relation ρ ≤ φ on
the set of maps X → T .

Now, for any two functions φ, λ : X → T ,

(8.10) (λ, φ⋆)X =
∑

ρ:X→T
ρ≤φ

µ(ρ, φ)(λ, ρ◦)X =
∑

ρ:X→T
λ≤ρ≤φ

µ(ρ, φ) = δλ,φ ,

where δλ,φ is the Kronecker symbol (the last equality coming from the definition
of the Möbius function). This shows that {φ⋆ | φ : X → T} is the dual basis, in
FT op(X), of the k-basis of functions X → T , in FT (X).

(b) This follows immediately from (a). Another way of seeing this is to build
an explicit inverse ΦT of ΨT . For each finite set X, we define a linear map ΦT,X :
(FT )

♮(X) → FT op(X) by setting

∀α ∈ (FT )
♮(X), ΦT,X(α) =

∑
φ:X→T

α(φ)φ⋆ .

Then, for any function λ : X → T ,(
ΨT,XΦT,X(α)

)
(λ) =

(
λ,ΦT,X(α)

)
X

=
∑

φ:X→T

α(φ)(λ, φ⋆)X = α(λ) ,

so ΨT,XΦT,X is the identity map of (FT )
♮(X). In particular, ΨT,X is surjective.

On the other hand, ΨT,X is injective, because if ΨT,X(β) = 0, then we write
β =

∑
φ:X→T

aφφ
⋆, where aφ ∈ k, and then for all λ : X → T , we get

0 = ΨT,X
( ∑
φ:X→T

aφφ
⋆
)
(λ) = (λ,

∑
φ:X→T

aφφ
⋆)X =

∑
φ:X→T

aφ(λ, φ
⋆)X = aλ ,

so that β = 0. Therefore ΨT,X is an isomorphism and ΦT,X is its inverse.

(c) Let T ′ be another finite lattice, and let ΨT ′ : FT ′op → (FT ′)♮ be the corre-
sponding morphism. Let moreover f : T → T ′ be a morphism in L. We claim that
for any finite set X, the square

FT op(X)
ΨT,X // (FT )♮(X)

FT ′op(X)
ΨT ′,X

//

Ffop

OO

(FT ′)♮(X)

(Ff )
♮

OO
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is commutative: indeed, for any functions ψ : X → T ′op and φ : X → T ,(
(Ff )

♮ΨT ′,X(ψ)
)
(φ) = ΨT ′,X(ψ)(f ◦ φ) = (f ◦ φ,ψ)X ,

whereas (
ΨT,XFfop(ψ)

)
(φ) =

(
φ, Ffop(ψ)

)
X

= (φ, fop ◦ ψ)X .

Now by 8.3, we have that

f ◦ φ ≤ ψ ⇐⇒ ∀x ∈ X, f
(
φ(x)

)
≤ ψ(x)

⇐⇒ ∀x ∈ X, φ(x) ≤ fop
(
ψ(x)

)
⇐⇒ φ ≤ fop ◦ ψ ,

which proves our claim. This shows that the isomorphisms ΨT , for finite lattices T ,
form a natural transformation Ψ of the functor T 7→ FT op to the functor T 7→ (FT )

♮

from kL to Fop
k . This completes the proof of Theorem 8.9.

8.11. Corollary. Let k be a self-injective ring. Then for any distributive lattice T ,
the functor FT is projective and injective in Fk.

Proof : Since T is distributive, the functor FT is projective by Theorem 4.12,
without further assumption on k.

If k is self-injective, the functor sending a k-module A to its k-dual Homk(A, k)
is exact. It follows that the functor M 7→M ♮ is an exact contravariant endofunctor
of the category Fk, where M ♮ denotes the dual correspondence functor.

Let α : M → N be an injective morphism in Fk, and let λ : M → FT be any
morphism. Then α♮ : N ♮ → M ♮ is surjective, and we have the following diagram
with exact row in Fk

(FT )
♮

λ♮

��
N ♮ α♮ // M ♮ // 0

Now (FT )
♮ ∼= FT op by Theorem 8.9, and T op is distributive. Hence FT op is projective

in Fk, and there exists a morphism β : (FT )
♮ → N ♮ such that α♮◦β = λ♮. Dualizing

once again the previous diagram yields the commutative diagram

(FT )
♮♮ FT

ηFToo

N ♮♮

β♮
;;wwwwwwww
M ♮♮

λ♮♮

OO

α♮♮
oo

N

ηN

OO

M

ηM

OO

α
oo

λ

II

where for any functorM , we denote by ηM the canonical morphism fromM toM ♮♮.
Now ηFT is an isomorphism, because for any finite set X, the module FT (X) is a
finitely generated free k-module. Let ε : N → FT be defined by ε = η−1

FT
◦ β♮ ◦ ηN .

Then

ε ◦ α = η−1
FT

◦ β♮ ◦ ηN ◦ α = η−1
FT

◦ λ♮♮ ◦ ηM = η−1
FT

◦ ηFT ◦ λ = λ .

Thus for any injective morphism α : M → N and any morphism λ : M → FT ,
there exists a morphism ε : N → FT such that ε ◦ α = λ. Hence FT is injective
in Fk.
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9. Duality for fundamental functors and simple functors

By Theorem 6.5, any fundamental functor SE,R is isomorphic to a quotient of some
functor associated to a lattice. One of the main purposes of this section is to use
duality to realize SE,R as a subfunctor of some functor associated to another lattice.
We also determine what is the dual of a simple functor.

We will study the subfunctor generated by a specific element of FT op(E) which
will be defined below. We need some more notation.

9.1. Notation. Let T be a finite lattice. If t ∈ T , let r(t) denote the join of all
the elements of T strictly smaller than t, i.e.

r(t) :=
∨
s<t

s

Thus r(t) = t if and only if t is not irreducible. If t is irreducible, then r(t) is

the unique maximal element of [0̂, t[.

9.2. Notation. Let T be a finite lattice and let (E,R) be the full subposet of its
irreducible elements. If A ⊆ E, let ηA : E → T be the map defined by

∀e ∈ E, ηA(e) :=

{
r(e) if e ∈ A
e if e /∈ A

.

Moreover, let γT denote the element of FT op(E) defined by

γT :=
∑
A⊆E

(−1)|A|η◦A ,

where η◦A denotes the function ηA, viewed as a map E → T op.

We now show that this element γT has another characterization. Recall that we
use a star ⋆, as in Notation 8.5, for the action of a correspondence on evaluations
of FT op .

9.3. Lemma. Let T be a finite lattice, let (E,R) be the full subposet of its
irreducible elements, and let ι : E → T be the inclusion map.

(a) The element γT is equal to ι∗ (using Notation 8.8).
(b) R ⋆ γT = γT .

Proof : (a) By definition, ι⋆ =
∑
ρ≤ι

µ(ρ, ι)ρ◦, where ρ◦ denotes the function ρ,

viewed as a map E → T op, and where µ is the Möbius function of the poset of
functions from E to T (see Notation 8.8). Furthermore

µ(ρ, ι) =
∏
e∈E

µT
(
ρ(e), ι(e)

)
,

where µT is the Möbius function of the poset T . Now µT
(
ρ(e), ι(e)

)
= µT

(
ρ(e), e

)
is equal to 0 if ρ(e) < r(e), because in that case the interval ]ρ(e), e[T has a greatest
element r(e). Moreover µT

(
ρ(e), e

)
is equal to -1 if ρ(e) = r(e), and to +1 if

ρ(e) = e. It follows that the only maps ρ appearing in the sum above are of the
form ρ = ηA for some subset A ⊆ E and µ(ηA, ι) = (−1)|A|. Therefore

ι⋆ =
∑
A⊆E

(−1)|A|η◦A = γT .

(b) For any A ⊆ E and any e ∈ E,

(R ∗ ηA)(e) =
∧

(e,e′)∈R

ηA(e
′) =

∧
e≤e′

ηA(e
′) = ηA(e) ,
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since e < e′ implies ηA(e) ≤ e ≤ r(e′) ≤ ηA(e
′). Therefore R ⋆ γT = γT .

Our aim is to show that the subfunctor ⟨γT ⟩ of FT op generated by γT is isomor-
phic to the fundamental correspondence functor SE,R. We first show that ⟨γT ⟩ is
independent of the choice of T .

9.4. Lemma. Let f : T → T ′ be a morphism in L and let (E,R), respectively
(E′, R′), be the full subposet of irreducible elements in T , respectively T ′. Suppose

that the restriction of f to E is an isomorphism of posets f| : (E,R)
∼=−→ (E′, R′).

(a) The map f is surjective and fr(e) = rf(e) for any e ∈ E.

(b) The map fop : T ′op → T op restricts to a bijection fop| : E′ ∼=−→ E, which is

inverse to f|. Moreover fopr(e′) = rfop(e′) for any e′ ∈ E′.

(c) fop : T ′op → T op induces an injective morphism Ffop : FT ′op → FT op and
an isomorphism ⟨γT ′⟩ ∼= ⟨γT ⟩.

Proof : (a) Since any element of T ′ is a join of irreducible elements, which are in
the image of f , and since f commutes with joins, the map f is surjective.

Let e ∈ E. By assumption f(e) ∈ E′. The condition r(e) < e implies f
(
r(e)

)
≤

f(e). Moreover r(e) =
∨

e1∈E
e1<e

e1, hence fr(e) =
∨

e1∈E
e1<e

f(e1). Thus if fr(e) = f(e),

then there exists e1 < e such that f(e1) = f(e), contradicting the assumption on f .
It follows that fr(e) ≤ rf(e).

Now rf(e) =
∨

e′∈E′

e′<f(e)

e′, and each e′ ∈ E′ with e′ < f(e) can be written e′ =

f(e1), for e1 ∈ E with e1 < e. It follows that rf(e) ≤
∨

e1∈E
e1<e

f(e1) = fr(e). Thus

rf(e) = fr(e), as was to be shown.

(b) Recall from Equation 8.2 that fop is defined by fop(t′) =
∨

f(t)≤t′
t. Let e′ ∈ E′.

Then there exists e ∈ E such that f(e) = e′. Let t ∈ T be such that f(t) ≤ e′ and
write t =

∨
e1∈E
e1≤t

e1. For each e1 ∈ E with e1 ≤ t, we have f(e1) ≤ f(t) ≤ e′ = f(e),

hence e1 ≤ e, and t ≤ e. It follows that fop(e′) =
∨

f(t)≤e′
t = e, so fop| is a bijection

E′ → E, inverse to f|. This proves the first statement in (b).
Now let e ∈ E, and set e′ = f(e) ∈ E′. First we have r(e′) ≤ e′, thus fopr(e′) ≤

fop(e′) = e. If fopr(e′) = e, then
∨

f(t)≤r(e′)
t = e, hence

f(e) ≤ r(e′) < e′ = f(e) ,

a contradiction. Thus fopr(e′) ≤ r(e) = rfop(e′). But we also have

rfop(e′) = r(e) =
∨
e1∈E
e1<e

e1 =
∨
e1∈E

f(e1)<f(e)

e1 ≤
∨
t∈T

f(t)≤rf(e)

t = foprf(e) = fopr(e′) ,

so fopr(e′) = rfop(e′), which proves the second statement in (b).

(c) Since f is surjective by (a), so is the morphism Ff : FT → FT ′ . By duality
and Theorem 8.9, the morphism Ffop : FT ′op → FT op can be identified with the
dual of Ff and is therefore injective. This proves the first statement in (c).
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Now for any B ⊆ E′, consider the map η◦B : E′ → T ′op. Then for any e′ ∈ E′

fopη◦B(e
′) =

{
fop(e′) if e′ /∈ B,
fopr(e′) = rfop(e′) if e′ ∈ B.

Hence fop ◦ η◦B = η◦
fop| (B)

◦ fop| , and therefore fop ◦ γT ′ = γT ◦ fop| . It follows that

Ffop(γT ′ ◦ f|) = fop ◦ γT ′ ◦ f| = γT ◦ fop| ◦ f| = γT .

Therefore the injective morphism Ffop maps the subfunctor ⟨ γT ′ ◦ f| ⟩ isomor-
phically to the subfunctor ⟨γT ⟩. But since f| : E → E′ is a bijection, the subfunctor
⟨ γT ′◦f| ⟩ of FT ′op is equal to the subfunctor ⟨γT ′⟩. This proves the second statement
in (c).

Recall that we use a star ⋆, as in Notation 8.5, for the action of a correspondence
on evaluations of FT op . We now come to our main result.

9.5. Theorem. Let T be a finite lattice and let (E,R) be the full subposet of its
irreducible elements.

(a) The subfunctor ⟨γT ⟩ of FT op generated by γT is isomorphic to SE,R.
(b) In other words, for any finite set X, the module SE,R(X) is isomorphic to

the k-submodule of FT op(X) generated by the elements S⋆γT , for S ⊆ X × E.

Proof : We first show that it suffices to prove the result in the case when T is the
lattice I↓(E,R). For any other lattice T ′ with the same poset (E,R) of irreducible
elements, the inclusion E ⊆ T ′ extends to a unique surjective map

f : T = I↓(E,R) −→ T ′

in the category L which induces the identity on E (see Lemma 3.5). Then ⟨γT ′⟩ is
isomorphic to ⟨γT ⟩ by Lemma 9.4, so we now assume that T = I↓(E,R), which is
a distributive lattice.

We now apply Proposition 5.7 to the element γT ∈ FT op(E), using the fact
that γT ∈ R ⋆ FT op(E), because R ⋆ γT = γT by Lemma 9.3. We deduce that
γT ∈ FT op(E) determines a unique morphism

ξ : FI↓(E,Rop) → FT op

such that ξE(j) = γT , where j : E → I↓(E,R
op) is the inclusion map.

Then for any finite set X and any function ψ : X → I↓(E,R
op), we can compute

the map ξX : FI↓(E,Rop)(X) → FT op(X) as follows :

ξX(ψ) = ξX(Γψj) = Γψ ⋆ ξE(j) = Γψ ⋆ γT ,

using the equality ψ = Γψj of Lemma 5.6. In particular, the image of ξ is the
subfunctor ⟨γT ⟩ generated by γT .

By Theorem 6.5 and the fact that the lattice I↓(E,R
op) has (E,Rop) as its full

subset of irreducible elements, there is a surjective morphism

ΘI↓(E,Rop) : FI↓(E,Rop) −→ SE,R
and its kernel is described in Theorem 7.1. We want to prove that, for any finite
set X, the kernel of the surjection

ξX : FI↓(E,Rop)(X) −→ ⟨γT ⟩(X)

is equal to the kernel of the surjection

ΘI↓(E,Rop),X : FI↓(E,Rop)(X) −→ SE,R(X) ,

from which the isomorphism ⟨γT ⟩ ∼= SE,R will follow.
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The kernel of the surjection ξX is the set of all linear combinations

u =
∑

ψ:X→I↓(E,Rop)

λψψ ,

where λψ ∈ k, such that ∑
ψ:X→I↓(E,Rop)

λψΓψ ⋆ γT = 0 .

Equivalently, using the nondegeneracy of the bilinear form (−,−)X of (8.4), proved
in Theorem 8.9,

∀φ : X → T, (φ,
∑
ψ

λψΓψ ⋆ γT )X = 0 .

By Equation 8.6, this is in turn equivalent to

∀φ : X → T,
∑
ψ

λψ(Γ
op
ψ φ, γT )E = 0 .

Now γT = ι⋆ by Lemma 9.3 and we use ι⋆ instead. By Equation 8.10, we have

(Γopψ φ, γT )E = (Γopψ φ, ι
⋆)E = δΓopψ φ,ι

and therefore we obtain the condition

∀φ : X → T,
∑

ψ:X→I↓(E,R
op)

Γopψ φ=ι

λψ = 0 .

Since we have assumed that T = I↓(E,R) and since I↓(E,R
op) = I↑(E,R), we have

maps φ : X → I↓(E,R) and ψ : X → I↑(E,R) and we know from Theorem 7.3
that the property Γopψ φ = ι is equivalent to Γopψ Γφ = Rop.

It follows that u =
∑

ψ:X→I↑(E,R)

λψψ is in the kernel of ξX if and only if

∀φ : X → I↓(E,R),
∑

ψ:X→I↓(E,R
op)

Γopψ Γφ=R
op

λψ = 0 .

But the condition Γopψ Γφ = Rop is in turn is equivalent to Γopφ Γψ = R, by pass-

ing to the opposite. Moreover I↓(E,R) = I↑(E,Rop) and I↑(E,R) = I↓(E,R
op).

Therefore u =
∑

ψ:X→I↓(E,Rop)

λψψ is in the kernel of ξX if and only if

∀φ : X → I↑(E,Rop),
∑

ψ:X→I↓(E,R
op)

Γopφ Γψ=R

λψ = 0 .

By Theorem 7.1, this is equivalent to requiring that u ∈ KerΘI↓(E,Rop),X . It follows
that Ker ξX = KerΘI↓(E,Rop),X . Consequently, the images of ξX and ΘI↓(E,Rop),X
are isomorphic, that is, ⟨γT ⟩ ∼= SE,R. This completes the proof of Theorem 9.5.

Since we now know that the subfunctor ⟨γT ⟩ of FT op is isomorphic to SE,R, we
use again duality to obtain more.
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9.6. Theorem. Let T be a finite lattice and let (E,R) be the full subposet of
its irreducible elements. We consider orthogonal k-submodules with respect to the
family of k-bilinear forms (−,−)X defined in (8.4).

(a) ⟨γT ⟩⊥ = KerΘT , where ΘT : FT → SE,Rop is the morphism of Theorem 6.5.
(b) FT /⟨γT ⟩⊥ ∼= SE,Rop .
(c) ⟨γT ⟩⊥⊥ ∼= S♮E,Rop .
(d) There is a canonical injective morphism αE,R : SE,R −→ S♮E,Rop .

Proof : (a) Let
∑

φ:X→T

λφφ ∈ FT (X), where X is a finite set. Then∑
φ
λφφ ∈ ⟨γT ⟩(X)⊥ ⇐⇒

(∑
φ
λφφ,Q ⋆ γT

)
X

= 0 ∀Q ∈ C(X,E)

⇐⇒
(∑
φ
λφφ,Q ⋆ γT

)
X

= 0 ∀Q ∈ C(X,E)R (because R ⋆ γT = γT )

⇐⇒
∑
φ
λφ

(
Qopφ, γT

)
E
= 0 ∀Q ∈ C(X,E)R (by 8.6)

⇐⇒
∑
φ

Qopφ=ι

λφ = 0 ∀Q ∈ C(X,E)R (by 8.10 and Lemma 9.3)

⇐⇒
∑
φ

Γopψ φ=ι

λφ = 0 ∀ψ : X → I↑(E,R) (by Proposition 4.5)

⇐⇒
∑
φ

Γopψ Γφ=R
op

λφ = 0 ∀ψ : X → I↑(E,R) (by Theorem 7.3)

⇐⇒
∑

φ:X→T

λφφ ∈ KerΘT,X (by Theorem 7.1)

Therefore ⟨γT ⟩(X)⊥ = KerΘT,X .

(b) This follows immediately from (a) and Theorem 6.5.

(c) This follows immediately from (b) and duality.

(d) There is an obvious inclusion ⟨γT ⟩ ⊆ ⟨γT ⟩⊥⊥. Now we have ⟨γT ⟩ ∼= SE,R by
Theorem 9.5 and ⟨γT ⟩⊥⊥ ∼= S♮E,Rop by (c). Thus we obtain a canonical injective

morphism SE,R −→ S♮E,Rop .

9.7. Remark. We will prove in [BT3] that αE,R : SE,R −→ S♮E,Rop is actu-
ally an isomorphism. This is easy to prove if k is a field, because the inclusion
⟨γT ⟩ ⊆ ⟨γT ⟩⊥⊥ must be an equality since the pairing (8.4) is nondegenerate, by
Theorem 8.9.

We end this section with a description of the dual of a simple functor. We assume
that k is a field and we let SE,R,V be the simple correspondence functor (over k)
parametrized by (E,R, V ). Part (d) of Theorem 9.6 suggests that the index R must
become Rop after applying duality. We now show that this is indeed the case.

9.8. Theorem. Let k be a field. The dual S♮E,R,V of the simple functor SE,R,V
is isomorphic to SE,Rop,V ♮ , where V

♮ denotes the ordinary dual of the kAut(E,R)-
module V .

Proof : For simplicity, write RE = kC(E,E) for the algebra of all relations on E
and recall from Section 2 that PE is a quotient algebra of RE . The evaluation
SE,R,V (E) is the RE-module

TR,V = PEfR ⊗kAut(E,R) V .

(which is actually a simple RE-module by Proposition 2.5).



36 SERGE BOUC AND JACQUES THÉVENAZ

Clearly the dual S♮E,R,V is again a simple functor and its minimal set is E again.
Moreover, by evaluation at E, we find that

S♮E,R,V (E) ∼= SE,R,V (E)♮ = T ♮R,V .

Here the action of a relation Q ∈ RE on a RE-module W ♮ is defined by

(Q · α)(w) = α(Qop · w) , ∀α ∈W ♮ , ∀w ∈W .

We are going to define a nondegenerate pairing

⟨−,−⟩ : TR,V × TRop,V ♮ −→ k ,

satisfying ⟨Q ·x , y⟩ = ⟨x , Qop · y⟩ for all x ∈ TR,V , y ∈ TRop,V ♮ , and Q ∈ RE . This
will induce an isomorphism of RE-modules

T ♮R,V
∼= TRop,V ♮ .

But a simple functor with minimal set E is completely determined by its evaluation
at E, because it is generated by this minimal nonzero evaluation (by simplicity).
Since S♮E,R,V and SE,Rop,V ♮ have both an evaluation at E isomorphic to TRop,V ♮ , it
follows that

S♮E,R,V
∼= SE,Rop,V ♮ ,

as required.
Now we construct the required pairing. By Proposition 2.4, PEfR has a k-basis

{∆σfR | σ ∈ ΣE}, where ΣE is the group of all permutations of E. Moreover, it is
a free right kAut(E,R)-module and it follows that we can write

TR,V = PEfR ⊗kAut(E,R) V =
⊕

σ∈[ΣE/Aut(E,R)]

∆σfR ⊗ V ,

where [ΣE/Aut(E,R)] denotes a set of representatives of the left cosets of Aut(E,R)
in ΣE . Noticing that Aut(E,Rop) = Aut(E,R), we have a similar decomposition

TRop,V ♮ = PEfRop ⊗kAut(E,R) V
♮ =

⊕
ε∈[ΣE/Aut(E,R)]

∆εfRop ⊗ V ♮ .

We define the pairing

⟨−,−⟩ : TR,V × TRop,V ♮ −→ k , ⟨∆σfR ⊗ v , ∆εfRop ⊗ α⟩ := δσ,ε α(v) ,

where σ, ε ∈ [ΣE/Aut(E,R)], v ∈ V , α ∈ V ♮.
By choosing dual bases of V and V ♮, we easily find dual bases of TR,V and

TRop,V ♮ , and it follows that this pairing is nondegenerate. We are left with the
proof of the required property of this pairing, namely

⟨Q · x , y⟩ = ⟨x , Qop · y⟩ for all x ∈ TR,V , y ∈ TRop,V ♮ , Q ∈ C(E,E) .

By Proposition 2.4, the action of Q on PEfR is given by:

Q ·∆σfR =

{
∆τσfR if ∃τ ∈ ΣE such that ∆E ⊆ ∆τ−1Q ⊆ σR,
0 otherwise .

It follows that

⟨Q ·∆σfR ⊗ v , ∆εfRop ⊗ α⟩ =
{
α(v) if ε = τσ and ∆E ⊆ ∆τ−1Q ⊆ σR ,
0 otherwise .

On the other hand

⟨∆σfR⊗v , Qop·∆εfRop⊗α⟩ =
{
α(v) if ρε = σ and ∆E ⊆ ∆ρ−1Qop ⊆ εRop ,
0 otherwise .
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We put ρ = τ−1 and we assume that ε = τσ (that is, ρε = σ). We then obtain
equivalent conditions:

∆E ⊆ ∆τQ
op ⊆ εRop ⇐⇒ ∆E ⊆ Q∆τ−1 ⊆ εR (taking the opposite)

⇐⇒ ∆E ⊆ Q∆τ−1 ⊆ τσR (because ε = τσ)
⇐⇒ ∆E ⊆ ∆τ−1Q ⊆ σR (conjugating by ∆τ−1)

Therefore, we obtain the required equality

⟨Q ·∆σfR ⊗ v , ∆εfRop ⊗ α⟩ = ⟨∆σfR ⊗ v , Qop ·∆εfRop ⊗ α⟩ ,

from which it follows that we have an isomorphism of RE-modules T ♮R,V
∼= TRop,V ♮ .

This completes the proof.

10. Embeddings and idempotents corresponding to total orders

In this section, we construct morphisms of lattices in the category kL between a
finite lattice T and a totally ordered lattice. This will be used in Section 11 to
obtain detailed information about correspondence functors associated to a total
order.

For a (non negative) integer n ∈ N, we denote by n the set {0, 1, . . . , n}, linearly
ordered by 0 < 1 < . . . < n. Then n is a distributive lattice, with least element 0
and greatest element n. Moreover x ∨ y = sup(x, y) and x ∧ y = inf(x, y), for any
x, y ∈ n. We denote by [n] = {1, . . . , n} the set of irreducible elements of n, viewed
as a full subposet of n.

Let π : T → n be a surjective morphism of finite lattices. For every h ∈ n, let

bh = sup
(
π−1(h)

)
=

∨
π(t)=h

t =
∨

π(t)≤h

t .

In other words, bh = πop(h) with the notation of Lemma 8.1. Then we have

0̂ ≤ b0 < b1 < . . . < bn−1 < bn = 1̂. If h ∈ Irr(n) = [n] = {1, . . . , n}, the whole
interval ]bh−1, bh]T is mapped to h under π, while bh−1 is mapped to h − 1. The
morphism π determines uniquely the totally ordered n-tuple B = (b0, b1, . . . , bn−1).

Conversely, if B = (b0, b1, . . . , bn−1) is a strictly increasing n-tuple in T − {1̂}
and if bn = 1̂ (so that 0̂ ≤ b0 < b1 < . . . < bn−1 < bn = 1̂), then B determines a
unique surjective morphism πB : T → n by setting πB(t) = h if t ≤ bh and t ̸≤ bh−1

(hence in particular πB(0̂) = 0).
For every h ∈ [n], choose ah ∈ [bh−1, bh]T , and define the n-tuple

A = (a1, a2, . . . , an) .

Set also a0 = 0̂. Notice that A is totally ordered : 0̂ = a0 ≤ a1 ≤ . . . ≤ an ≤ 1̂,
with possible equalities. Define

jBA : n −→ T , h 7→ ah .

It is easy to see that jBA is a morphism of lattices (because if e < f in n, then
e ≤ f − 1, hence ae ≤ be ≤ bf−1 ≤ af ). Note that jA is a section of πB if
ah ∈]bh−1, bh]T for every h ∈ [n], but not if ah = bh−1 for some h.

Write

µ(B,A) =
∏
h∈[n]

µT (bh−1, ah) ,
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where µT (−,−) denotes the Möbius function of the lattice T . For simplicity, we
write µ = µT throughout this section and the next. Allowing the n-tuple A to vary
(i.e. ah varies in [bh−1, bh]T for each h), define

jB = (−1)n
∑
A

µ(B,A)jBA ∈ kL(n, T ) ,

or in other words

jB = (−1)n
n∏
h=1

( ∑
ah∈[bh−1,bh]T

µ(bh−1, ah)
)
jB(a1,a2,...,an) .

10.1. Proposition. Let T be a finite lattice and let B be a strictly increasing
n-tuple in T − {1̂}. Let jB : n→ T be the corresponding morphism, constructed as
above.

(a) For any finite set X and any function φ : X → n such that [n] ̸⊆ φ(X), we
have jBφ = 0.

(b) jB induces FjB : Fn → FT vanishing on Hn, hence induces in turn a
morphism

F jB : Fn/Hn −→ FT .

Proof : (a) We have

jBφ = (−1)n
∑
A

µ(B,A)jBAφ =
∑

ψ:X→T

(−1)n
( ∑

A
jBAφ=ψ

µ(B,A)
)
ψ .

Let g ∈ [n] be such that g /∈ φ(X). Then we can modify each n-tuple A by changing
freely the image jBA (g) = ag ∈ [bg−1, bg]T without changing the equality jBAφ = ψ.
This is because φ(x) ̸= g for all x ∈ X. We set A′ = (a1, . . . , âg, . . . , an) and

B′ = (b0, . . . , b̂g−1, . . . , bn−1) (where ̂ denotes omission) and we let

jB
′

A′ : n− {g} −→ T , h 7→ ah .

We obtain ∑
A

jBAφ=ψ

µ(B,A) =
∑
A′

jB
′

A′ φ=ψ

µ(B′, A′)
∑

ag∈[bg−1,bg]T

µ(bg−1, ag) .

But the inner sum on the right is zero by definition of the Möbius function (and
because bg−1 < bg). Therefore the coefficient of every ψ is zero, hence jBφ = 0.

(b) This follows from (a).

For any subset Y of [n], define

ρY : n −→ n , ρY (h) =


0 if h = 0 ,

h if h ∈ Y ,

h− 1 if h /∈ Y .
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10.2. Proposition. Let T be a finite lattice and let B be a strictly increasing
n-tuple in T − {1̂}. Let πB : T → n be the corresponding surjective morphism and
jB : n→ T , constructed as above. Let p : Fn → Fn/Hn be the canonical map.

(a) The composite of F jB : Fn/Hn → FT and pFπB : FT → Fn/Hn is the
identity morphism of Fn/Hn.

(b) F jB : Fn/Hn → FT is injective and embeds Fn/Hn as a direct summand
of FT .

(c) FjBFπB is an idempotent endomorphism of FT whose image is isomorphic
to Fn/Hn.

(d) jBπB is an idempotent endomorphism of T .

(e) πBjB = (−1)n
∑

∅⊆Y⊆[n]

(−1)|Y |ρY .

Proof : (a) It is clear that

πBjBA (h) =


0 if h = 0 ,

h if jBA (h) ∈ ]bh−1, bh]T ,

h− 1 if jBA (h) = bh−1 .

Therefore

πBjB = (−1)n
∑

∅⊆Y⊆[n]

( ∑
A

πBjBA=ρY

µ(B,A)
)
ρY .

If h ∈ Y , then jBA (h) runs freely over ]bh−1, bh]T . If h /∈ Y , then jBA (h) = bh−1 is
fixed. It follows that∑

A
πBjBA=ρY

µ(B,A) =
∏
h∈Y

( ∑
ah∈ ]bh−1,bh]T

µ(bh−1, ah)
)
=

∏
h∈Y

(−1) = (−1)|Y | ,

using the fact that

0 =
∑

ah∈ [bh−1,bh]T

µ(bh−1, ah) = 1 +
∑

ah∈ ]bh−1,bh]T

µ(bh−1, ah) .

This shows that

πBjB = (−1)n
∑

∅⊆Y⊆[n]

(−1)|Y |ρY .

Suppose now that Y is a proper subset of [n] and let g ∈ [n] be maximal such
that g /∈ Y . If h > g, then ρY (h) = h > g, while if h ≤ g, then ρY (h) ≤ g − 1.
Therefore g /∈ ρY (n). This shows that [n] ̸⊆ ρY (n), for any proper subset Y of [n].

Now for any function φ : X → n,

FπBFjB (φ) = πBjBφ = (−1)n
∑

∅⊆Y⊆[n]

(−1)|Y |ρY φ = φ+
∑
Y ̸=[n]

(−1)n+|Y |ρY φ .

But [n] ̸⊆ ρY (n) if Y ̸= [n], hence [n] ̸⊆ ρY φ(X). In other words, ρY φ ∈
Hn(X), so that FπBFjB (φ) = φ (mod Hn(X)). Composing with the canonical
map p : Fn(X) → Fn(X)/Hn(X) and writing p(φ) = φ, we obtain

pFπBF jB (φ) = φ ,

as was to be shown.

(b) This follows immediately from (a).

(c) This follows immediately from (a) and the obvious equality F jBpFπB =
FjBFπB .
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(d) Since the functor F? : kL → Fk is fully faithful by Theorem 4.8, jBπB must
be an idempotent because its image FjBFπB is an idempotent. Alternatively, it is
not difficult to compute directly

jBπBjB = jB(−1)n
∑

∅⊆Y⊆[n]

(−1)|Y |ρY = jB idn+(−1)n
∑
Y ̸=[n]

(−1)|Y |jBρY = jB ,

because [n] ̸⊆ ρY (n) if Y ̸= [n], hence jBρY = 0 by Proposition 10.1.

(e) The required equality has already been proved above.

Our aim is to show that the idempotents jBπB are orthogonal. In order to
understand the product of two idempotents jCπC and jBπB we need to have more
information about πCjB. This is the purpose of the next two propositions.

10.3. Proposition. Let T be a finite lattice and let

B = (b0, b1, . . . , bn−1) with 0̂ ≤ b0 < b1 < . . . < bn−1 < bn = 1̂ ,

C = (c0, c1, . . . , cm−1) with 0̂ ≤ c0 < c1 < . . . < cm−1 < cm = 1̂ .

If πCjB ̸= 0, then the restriction of πC to the subset {b0, b1, . . . , bn−1, bn} is injec-
tive. In particular, n ≤ m.

Proof : We have

πCjB = (−1)n
∑
A

µ(B,A)πCjBA = (−1)n
∑

ψ:n→m

( ∑
A

πCjBA=ψ

µ(B,A)
)
ψ .

Now fix some morphism ψ : n→ m and, for every h ∈ [n], define

Uh = {a ∈ [bh−1, bh]T | πC(a) = ψ(h)} ⊆ [bh−1, bh]T .

Then the condition πCjBA = ψ is equivalent to jBA (h) ∈ Uh for every h ∈ [n], that
is, ah ∈ Uh for every h ∈ [n]. In particular Uh ̸= ∅ in that case. Since all elements
of Uh have the same image under πC , so has their join and therefore Uh has a
supremum

uh = sup(Uh) ∈ Uh .

Define
Vh = {a ∈ [bh−1, bh]T | πC(a) ≤ ψ(h)− 1} .

Then we clearly have [bh−1, uh]T = Vh ⊔ Uh because any a ≤ uh satisfies either
πC(a) ≤ ψ(h)− 1 or πC(a) = ψ(h). If Vh is nonempty (i.e. if bh−1 /∈ Uh), then Vh
has a supremum vh =

∨
t∈Vh t and Vh = [bh−1, vh]T .

Now, in the expression above for πCjB, the coefficient of ψ is (−1)nzψ, where

zψ =
∑

πCjBA=ψ

µ(B,A) =
( ∑
a1∈U1

µ(b0, a1)
)( ∑

a2∈U2

µ(b1, a2)
)
. . .

( ∑
an∈Un

µ(bn−1, an)
)

and we examine one inner sum
∑
a∈Uh µ(bh−1, a). We have already observed that

Uh ̸= ∅. Now there are two cases :

(a) If Vh = ∅, then Uh = [bh−1, uh]T and
∑
a∈Uh µ(bh−1, a) = 0, unless bh−1 =

uh.
(b) If Vh ̸= ∅, then we claim that

∑
a∈Uh µ(bh−1, a) = 0, unless bh−1 = vh.

To prove the claim, suppose that bh−1 < vh (hence bh−1 < uh because vh < uh).
Then we have [bh−1, uh]T = [bh−1, vh]T ⊔ Uh and therefore∑

a∈Uh

µ(bh−1, a) =
∑

a∈[bh−1,uh]T

µ(bh−1, a)−
∑

a∈[bh−1,vh]T

µ(bh−1, a) = 0 ,

because bh−1 < uh and bh−1 < vh.
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It follows that the sum
∑
a∈Uh µ(bh−1, a) is nonzero in only two cases :

(a) Uh = {bh−1}. Then
∑
a∈Uh µ(bh−1, a) = µ(bh−1, bh−1) = 1.

(b) Vh = {bh−1}. Then Uh =]bh−1, uh]T and
∑
a∈Uh µ(bh−1, a) = −1 because

0 =
∑
a∈[bh−1,uh]T

µ(bh−1, a) = µ(bh−1, bh−1) +
∑
a∈]bh−1,uh]T

µ(bh−1, a)

= 1 +
∑
a∈Uh µ(bh−1, a) .

If the coefficient zψ is nonzero, then this sum must be nonzero for every h ∈ [n]
and we obtain zψ = (−1)p where p is the number of times the integer h satisfies
case (b) (and then the coefficient of ψ in the expression for πCjB is (−1)n+p).

Now suppose that the restriction of πC to {b0, b1, . . . , bn−1, bn} is not injective.
We want to prove that the coefficient zψ is zero (for our fixed morphism ψ : n→ m).
Since πC is order-preserving and not injective on the subset above, there exists h ∈
[n] such that πC(bh−1) = πC(bh). We know that zψ = 0 if Uh is empty. Thus we can
assume that Uh contains an element a. Since bh−1 ≤ a ≤ bh, we have πC(bh−1) ≤
πC(a) ≤ πC(bh), hence equality πC(bh−1) = πC(a) = πC(bh). This means that
both bh−1 and bh belong to Uh (because πC(a) = ψ(h) by definition of Uh). Now in
both cases (a) and (b) above, the set Uh does not contain simultaneously bh−1 and
bh (it is either {bh−1} or ]bh−1, uh]T ). This shows that the sum

∑
a∈Uh µ(bh−1, a)

cannot be nonzero. Therefore zψ = 0.
This argument holds for every morphism ψ : n → m and so every coefficient zψ

is zero. It follows that πCjB = 0, as was to be proved.

10.4. Proposition. Let T be a finite lattice and let

B = (b0, b1, . . . , bn−1) with 0̂ ≤ b0 < b1 < . . . < bn−1 < bn = 1̂ ,

C = (c0, c1, . . . , cm−1) with 0̂ ≤ c0 < c1 < . . . < cm−1 < cm = 1̂ ,

D = (d0, d1, . . . , dm−1) with 0̂ ≤ d0 < d1 < . . . < dm−1 < dm = 1̂ .

Then

jDπCjB =

{
jD if C = B ,

0 if C ̸= B .

Proof : We assume that jDπCjB ̸= 0, and in particular πCjB ̸= 0. Write first

πCjB =
∑
A

µ(B,A)πCjBA

where A = (a1, a2, . . . , an) and ah ∈ [bh−1, bh] for every h ∈ [n]. Let ψ : n→ m be a
map appearing with a nonzero coefficient in the expression of πCjB ̸= 0 as a linear
combination of morphisms in the category L. Let A be such that πCjBA = ψ. Since
jDπCjB ̸= 0, we can also assume that ψ is such that jDψ ̸= 0. Proposition 10.1
implies that the function ψ : n→ mmust satisfy [m] ⊆ ψ(n). Since ψ is a morphism
of lattices, we also have ψ(0) = 0. Therefore ψ : n → m must be surjective. In
particular n ≥ m.

By Proposition 10.3, πCjB ̸= 0 implies that n ≤ m. Therefore n = m. Since
the map πCjBA : n → n is order-preserving and surjective, it must be the identity
map. This shows that whenever A is such that jDπCjBA ̸= 0, then πCjBA = idn.
Therefore, the functions ψ which appear with a nonzero coefficient in the expression
of πCjB are idn and maps in the kernel of jD.

Now Proposition 10.3 also asserts that the restriction of πC

πC : {b0, b1, . . . , bn−1, bn} −→ m
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is injective. Since n = m, this must be a bijection, and since πC is order-preserving,
we must have πC(bh) = h for every h ∈ n. As in the proof of Proposition 10.3,
associated with the map idn : n→ n, there is a corresponding subset

Uh = {a ∈ [bh−1, bh]T | πC(a) = idn(h)} = {a ∈ [bh−1, bh]T | πC(a) = h} .

Thus we have bh ∈ Uh for every h ∈ n.
Since idn appears with a nonzero coefficient (−1)nzid in the expression of πCjB ,

the proof of Proposition 10.3 shows that
∑
a∈Uh µ(bh−1, a) is nonzero. Therefore

we must be in one of the two cases (a) or (b) of that proof. But the first case
cannot hold because bh /∈ Uh = {bh−1}. So we are in case (b) and we have bh ∈
Uh =]bh−1, uh]T ⊆]bh−1, bh]T . This forces uh = bh and Uh =]bh−1, bh]T .

The equality Uh =]bh−1, bh]T means that πC coincides with πB on this interval.
This holds for every h ∈ [n]. We now show, by descending induction, that ch = bh
for every h ∈ [n]. First cn = 1̂ = bn. Now since πC(bh) = h, we have bh ≤ ch, but
bh ̸≤ ch−1, for every h ∈ n. Assume that ch = bh for every h ≥ i and suppose for
contradiction that bi−1 < ci−1. Then bi−1 < ci−1 < ci = bi, hence ci−1 ∈ ]bi−1, bi],
which implies that πB(ci−1) = i. But πB coincides with πC on the interval, so
πC(ci−1) = i, which contradicts the definition of πC .

We have now proved that n = m and C = B whenever jDπCjB ̸= 0. Moreover,
in that case, we have seen that πBjB is the sum of a multiple of idn and morphisms

in the kernel of jD. The proof of Proposition 10.3 shows that the coefficient of idn
is equal to (−1)n+p, where p is the number of times the integer h satisfies case (b).
But we have noticed that case (a) cannot occur, so p = n and the coefficient is 1.
Thus πBjB = idn (mod Ker(jD)) and it follows that jDπBjB = jD.

Alternatively, the equality πBjB = idn (mod Ker(jD)) also follows from Propo-

sition 10.1 and Proposition 10.2, because πBjB = (−1)n
∑

∅⊆Y⊆[n](−1)|Y |ρY and

jDρY = 0 whenever Y ̸= [n] since [n] ̸⊆ ρY (n).

Given a finite lattice T , let PT,n be the set of all strictly increasing n-tuples

(d0, d1, . . . , dn−1) in T −{1̂}, that is, such that 0̂ ≤ d0 < d1 < . . . < dn−1 < dn = 1̂.
The set PT,n corresponds bijectively to the set of all surjective morphisms T → n.
If D,C ∈ PT,n, we define

fD,C = jDπC : T −→ T .

In particular, fB,B = jBπB is the idempotent of Proposition 10.1.

10.5. Corollary. Let T be a finite lattice.

(a) Let A,B ∈ PT,n and D,C ∈ PT,m, where n,m ≥ 0 are two integers. Then

fD,CfB,A =

{
fD,A if C = B (hence n = m) ,

0 if C ̸= B .

(b) When n ≥ 0 varies and B ∈ PT,n varies, the idempotents fB,B are pairwise
orthogonal.

Proof : (a) By Proposition 10.4, we have

fD,CfB,A = jDπCjBπA = jDπA

if C = B, and zero otherwise.

(b) This follows from (a).
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Let M|PT,n|(k) denote the matrix algebra of size |PT,n|, with rows and columns
indexed by the set PT,n. If D,C ∈ PT,n, we let mD,C denote the matrix with
coefficient 1 in position (D,C) and 0 elsewhere.

10.6. Theorem. Let T be a finite lattice, let PT,n denote the set of all strictly in-

creasing n-tuples in T−{1̂}, and let N be the maximal length of a strictly increasing

sequence in T − {1̂}.
(a) The map

IT :
N⊕
n=0

M|PT,n|(k) −→ EndkL(T ) , mD,C 7→ fD,C

is an algebra homomorphism (without unit elements).
(b) IT is injective.
(c) The image of IT is equal to the subalgebra ET (without unit element) of

EndkL(T ) having a k-basis consisting of all maps whose image is totally
ordered (and which are morphisms in the category L).

Proof : (a) If |C| ≠ |B|, then mD,C and mB,A are not in the same block, so
their product is 0, while the product fD,CfB,A is also zero. If |C| = |B|, then the
relations of Corollary 10.5 are the standard relations within a matrix algebra of
size |PT,n|.

(b) Since the elements mD,C form a k-basis of
⊕N

n=0M|PT,n|(k), it suffices to
prove that their images fD,C are k-linearly independent. Suppose that

N∑
n=0

∑
D,C∈PT,n

λD,CfD,C = 0 ,

where λD,C ∈ k. Multiply on the left by the idempotent fA,A and on the right by
the idempotent fB,B . By Corollary 10.5, we obtain λA,BfA,B = 0. Since fA,B is a
linear combination of distinct maps T → T , one of them appearing with coefficient
±1, we must have λA,B = 0.

(c) It is clear that ET is a subalgebra. Moreover, every map jDA π
C has an image

which is totally ordered, by construction. Therefore fD,C = jDπC ∈ ET and hence
Im(IT ) ⊆ ET .

Now ET has a k-basis consisting of all maps φU,V : T → T described as follows.
First U = (u0, u1, . . . , un−1) ∈ PT,n, while V ∈ YT,n, where YT,n denotes the set

of all strictly increasing n-tuples V = (v1, v2, . . . , vn) in T − {0̂} (that is 0̂ = v0 <

v1 < v2 < . . . < vn ≤ 1̂). Define λV : n→ T by λV (i) = vi for every i ∈ n and then
set φU,V = λV πU . Then

Bn = {φU,V | U ∈ PT,n , V ∈ YT,n}
is a k-basis of the submodule ET,n generated by all endomorphisms whose image is

isomorphic to n, while B =
∪N
n=0 Bn is a k-basis of ET =

⊕N
n=0 ET,n. We have seen

that B′ =
∪N
n=0{fD,C | D,C ∈ PT,n} is a k-basis of Im(IT ). It is an easy exercise

to show that there is a bijection between YT,n and PT,n. Therefore B and B′ have
the same cardinality. In other words Im(IT ) and ET are free k-modules of the same
rank.

Now we allow the base ring k to vary and we write an index k to emphasize the
dependence on k. Thus we have an injective algebra homomorphism

IT,k :

N⊕
n=0

M|PT,n|(k) −→ ET,k ⊆ EndkL(T )
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and we let Qk := ET,k/ Im(IT,k), so that we have a short exact sequence

0 // Im(IT,k)
jk // ET,k

pk // Qk
// 0 ,

where jk is the inclusion map and pk the canonical surjection. In the case of the
ring of integers Z, we see that QZ is a finite abelian group, because Im(IT,Z) and
ET,Z are free Z-modules of the same rank. Tensoring with the prime field Fp, where
p is a prime, we obtain

0 // Tor(Fp,QZ) // Fp ⊗ Im(IT,Z)
1⊗jZ // Fp ⊗ ET,Z

1⊗pZ // Fp ⊗QZ // 0 .

Using the canonical bases of Im(IT,k) and ET,k respectively, we see that k ⊗
Im(IT,Z) ∼= Im(IT,k), and similarly k ⊗ ET,Z ∼= ET,k. Moreover the inclusion map
1⊗jk corresponds, under these isomorphisms, to the inclusion map jk. In particular,
we obtain

0 // Tor(Fp,QZ) // Im(IFp)
jFp // EFp

1⊗pZ // Fp ⊗QZ // 0 .

By (b), we know that jFp is injective, hence Tor(Fp,QZ) = {0}. But since this holds
for every prime number p and QZ is finite, we must have QZ = {0}. It follows that
the inclusion map jZ : Im(IT,Z) → ET,Z is an isomorphism. Tensoring with k, it
follows that the inclusion map jk : Im(IT,k) → ET,k is an isomorphism as well. In
other words, Im(IT,k) = ET,k, as was to be shown.

10.7. Remark. Let B be the canonical basis of ET described in the proof. The
change of basis from B to the basis {fD,C} of Im(IT ) is not obvious. By construc-
tion, every map jDA π

C belongs to B, but beware of the fact that if C and D are
n-tuples, then jDA π

C may be a composite T → m → T for some m < n, because
the n-tuple A = (a1, a2, . . . , an) is increasing but not necessarily strictly increasing,
hence may consist of m distinct elements for some m < n.

The image under IT of the identity element of
⊕N

n=0M|PT,n|(k) is an idempo-
tent eT of EndkL(T ) and eT is an identity element of ET . We now prove that the
we actually get central idempotents.

10.8. Theorem. For every finite lattice T , let ET = Im(IT ) be the subalgebra
of EndkL(T ) appearing in Theorem 10.6, and let eT be the identity element of ET .

(a) eT =
N∑
n=0

∑
B∈PT,n

fB,B.

(b) For any finite lattice T ′ and any morphism θ ∈ HomkL(T, T
′), we have

θeT = eT ′θ. In other words, the family of idempotents eT , for T ∈ L, is a
natural transformation of the identity functor idkL.

(c) eT is a central idempotent of EndkL(T ).
(d) The subalgebra ET is a direct product factor of EndkL(T ), that is, there

exists a subalgebra D such that EndkL(T ) = ET ×D (where ET is identified
with ET × {0} and D with {0} × D, as usual).

Proof : (a) The identity element of
N⊕
n=0

M|PT,n|(k) is equal to
N∑
n=0

∑
B∈PT,n

mB,B .

Taking its image under IT yields the required formula.

(b) We have seen in the proof of Theorem 10.6 that every element of the canonical
basis of ET has the form λV πU , where U = (u0, u1, . . . , un−1) ∈ PT,n is a strictly

increasing n-tuple in T − {1̂}, while V = (v1, v2, . . . , vn) belongs to the set YT,n of
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all strictly increasing n-tuples in T − {0̂}. We now compute their opposite, as in
Lemma 8.1.

From the surjective morphism πU : T → n, we obtain (πU )op : nop → T op defined
as follows : for every h ∈ n,

(πU )op(h) =
∨

πU (t)≤h

t = sup
(
(πU )−1(h)

)
= uh ,

in view of the way U is associated to πU (see the beginning of Section 10). But
uh = λU

op

(h), hence (πU )op = λU
op

.
Applying this to the case U = V op, where V ∈ YT,n, we obtain (πV

op

)op =

λ(V
op)op = λV . Taking opposites yields (λV )op = (πV

op

).
It follows that the opposite of the canonical basis element λV πU of ET is the

canonical basis element λU
op

πV
op

of ET op . Therefore, the opposite of the identity
element eT of ET must belong to ET op . Moreover, it must be the identity element
of ET op , because taking opposites behaves well with respect to composition, by
Lemma 8.1. Therefore (eT )

op = eT op .
Now if θ : T → T ′ is a morphism in L, then the image of a totally ordered subset

of T is a totally ordered subset of T ′. It follows that composition with θ maps ET
to linear combination of maps with a totally ordered image, hence invariant under
the idempotent element eT ′ . In other words, we have

θ eT = eT ′ θ eT .

Applying this equation to T ′op, T op, and the morphism θop : T ′op → T op, we
obtain θop eT ′op = eT op θ

op eT ′op . Passing to opposites and using the above equality
(eT )

op = eT op , we get

eT ′ θ eT = eT ′ θ .

The two displayed equations then yield θeT = eT ′θ. This holds as well if θ is
replaced by a linear combination of morphisms, as was to be shown.

(c) This is a special case of (b).

(d) This follows immediately from (c).

11. The case of a total order

In this section, we consider the case of a totally ordered lattice n, where n ∈ N.
We determine completely the ring of endomorphisms of n in the category kL and
we deduce a direct sum decomposition of Fn. For the lattice n, the set Pn,r of
all strictly increasing r-tuples (d0, d1, . . . , dr−1) in n − {n} is just the set of all
subsets of {0, 1, . . . , n − 1} of size r, because any such subset is totally ordered.
Throughout this section, we use subsets of size r instead of strictly increasing r-
tuples. In particular |Pn,r| =

(
n
r

)
.

11.1. Theorem. Let n ∈ N.
(a) The homomorphism of k-algebras of Theorem 10.6

In :

n⊕
m=0

M|Pn,r|(k) −→ EndkL(n) , mD,C 7→ fD,C ,

is an isomorphism.
(b) In particular, if k is a field, then EndkL(n) is semi-simple.
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Proof : First note that (b) follows from (a), because any matrix algebra Mq(k)
is simple, so that the direct sum is semi-simple. Since any map φ : n → n has
an image which is totally ordered, the subalgebra ET of EndkL(n) appearing in
Theorem 10.6 is the whole of EndkL(n). By Theorem 10.6, the morphism In is
surjective and injective, hence an isomorphism.

11.2. Remark. Since ET is the whole of EndkL(n), the canonical basis B of ET is a
basis of EndkL(n), which also has another basis consisting of the morphisms fD,C .
As mentioned in Remark 10.7, the change of basis is not straightforward, but it can
be made more explicit in the case of a totally ordered lattice considered here.

Every element of the canonical basis of ET has the form λV πU , where U =
(u0, u1, . . . , un−1) ∈ PT,n is a strictly increasing n-tuple in T − {1̂}, while V =

(v1, v2, . . . , vn) ∈ YT,n is a strictly increasing n-tuple in T − {0̂}. On the other
hand, the morphisms fD,C are parametrized by pairs D,C ∈ PT,n. But we have an
obvious bijection from PT,n to YT,n, mapping an n-tuple (u0, u1, . . . , un−1) ∈ PT,n
to (u0 + 1, u1 + 1, . . . , un−1 + 1) ∈ YT,n. Thus we can parametrize both bases by
the same set PT,n ×PT,n. Then it is not hard to see that the matrix of the change
of basis is unitriangular. Actually, this provides another proof of the fact that the
map In is an isomorphism.

11.3. Remark. Theorem 11.1 is similar to the result proved in [FHH] about the
planar rook algebra. Over the field C of complex numbers, this algebra is actually
isomorphic to EndCL(n). However, the planar rook monoid is not isomorphic to the
monoid of endomorphisms of n in L, because it turns out that they do not have the
same number of idempotents, even when n = 2. Only the corresponding monoid
algebras become isomorphic (over C).

Now we consider the central idempotents of EndkL(n) corresponding to the above
decomposition into matrix algebras.

11.4. Notation. For an integer m with 0 ≤ m ≤ n, set

βn,m :=
∑

B∈Pn,m

fB,B .

In particular, for m = n and B = {0, 1, . . . , n−1}, we have πB = idn and we define

εn := βn,n = fB,B = jBπB = jB = (−1)n
∑

∅⊆Y⊆[n]

(−1)|Y |ρY ,

where, as before, ρY ∈ EndL(n) is defined by ρY (h) = h if h ∈ Y and ρY (h) = h−1
otherwise.

11.5. Proposition. The elements βn,m, for 0 ≤ m ≤ n, are orthogonal central
idempotents of EndkL(n), and their sum is equal to the identity. In particular, the
central idempotent εn satisfies

εn EndkL(n) = kεn .

Proof : For B ∈ Pn,m, the inverse image of fB,B under the algebra isomorphism I
of Theorem 11.1 is the matrix mB,B of the component M|Pn,m|(k) indexed by m.
Summing over all B ∈ Pn,m, it follows that the inverse image of βn,m under I is
the identity element of M|Pn,m|(k). The first statement follows.

In the case m = n, the set Pn,m consists of the singleton B = {0, 1, . . . , n − 1}
and the corresponding matrix algebra has size 1. We see that the inverse image
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of εn under I is the identity element mB,B of the component M1(k) = k. Clearly
εn EndkL(n) ∼=M1(k) is a free k-module of rank 1, hence εn EndkL(n) = kεn.

We want to use the functor F? : kL → Fk of Section 4 to deduce information
on the correspondence functor Fn. By Theorem 4.12, we already know that Fn is
projective, because the total order n is a distributive lattice. If n = 0 (in which
case [n] = ∅) and if n = 1 (in which case [n] = {1}), we recover the cases already
considered in Section 5 of [BT2]. Our purpose is to treat now the general case.

We apply the functor F? : kL → Fk to the map jB ∈ HomkL(m,n) defined in
Section 10, where B ∈ Pn,m. By Proposition 10.1 we obtain a morphism

FjB : Fm −→ Fn

which vanishes on Hm. By Proposition 10.2, this induces an injective morphism

F jB : Fm/Hm −→ Fn

which embeds Fm/Hm as a direct summand of Fn, corresponding to the idempotent

fB,B = jBπB . In particular, for m = n, we have fB,B = jB = εn and we obtain an
idempotent endomorphism Fεn of Fn with kernel Hn.

11.6. Theorem. Let n ∈ N and let Sn = Fn/Hn. There are isomorphisms of
correspondence functors

FεnFn
∼= Sn ,

Fβn,mFn
∼= S⊕(

n
m)

m , for each 0 ≤ m ≤ n ,

Fn ∼=
⊕

0≤m≤n
B∈Pn,m

S|B| .

Proof : By Theorem 4.8, the functor F? induces an isomorphism of k-algebras

EndkL(n) ∼= EndFk(Fn) .

Now the idempotents fB,B of EndkL(n), for B ∈ Pn,m and 0 ≤ m ≤ n, are
orthogonal and their sum is equal to the identity, by Theorem 11.1. It follows that
the endomorphisms FfB,B of Fn are orthogonal idempotents, and their sum is the
identity. Hence we obtain a decomposition of correspondence functors

Fn =
⊕

0≤m≤n
B∈Pn,m

FfB,B
(
Fn

)
.

By surjectivity of πB : n → m, the image of FfB,B = FjBFπB : Fn → Fn is

equal to the image of FjB : Fm → Fn. Therefore FfB,B
(
Fn

)
= FjB

(
Fm

)
. By

Proposition 10.2, the image FjB
(
Fm

)
is isomorphic to Sm = Fm/Hm and it follows

that

FfB,B
(
Fn

) ∼= Sm .

Taking m = n and fB,B = jB = ϵn, we obtain the first isomorphism FεnFn
∼= Sn.

Summing over all B ∈ Pn,m for a fixed m, we obtain the second isomorphism,

because |Pn,m| =
(
n
m

)
. Finally, summing over all 0 ≤ m ≤ n and all B ∈ Pn,m, we

obtain the third isomorphism.
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11.7. Corollary. Let m,n ∈ N. Then

HomFk(Sn, Sm) =

{
0 if n ̸= m ,
k · idSn if n = m .

Proof : Since Sn ∼= FεnFn, the case n = m follows from Proposition 11.5. Now for
integers l,m ∈ {0, . . . , n}, we use the central idempotents βn,l of Proposition 11.5
and we obtain

HomFk(Fβn,lFn, Fβn,mFn)
∼= HomFk(Sl, Sm)⊕(

n
l)(

n
m) .

Since Fβn,l and Fβn,m are central idempotents of EndFk(Fn), and since they are
orthogonal if l ̸= m, it follows that HomFk(Fβn,lFn, Fβn,mFn) = 0 if l ̸= m, hence
HomFk(Sl, Sm) = 0.

Now we prove that the functor Sn is actually isomorphic to a fundamental functor
and we compute the ranks of all its evaluations.

11.8. Theorem. Let Sn = Fn/Hn.

(a) Sn is isomorphic to the fundamental functor S[n],tot, where tot denotes the
total order on [n].

(b) For any finite set X, the k-module Sn(X) is free of rank

rank
(
Sn(X)

)
=

n∑
i=0

(−1)n−i
(
n

i

)
(i+ 1)|X| .

Proof : (a) We are going to use the results of Section 8 applied to the lattice
T = nop. The set of its irreducible elements is

E = {0, 1, . . . , n−1} ,

with a total order totop being the opposite of the usual order. Now we have

FT op = F(nop)op = Fn

and its evaluation at E contains an element

γT = γnop =
∑
A⊆E

(−1)|A|η◦A .

Recall from Notation 9.2 that η◦A : E → T op = n denotes the same map as η : E →
T = nop and that η is defined by

∀e ∈ E, ηA(e) =

{
r(e) if e ∈ A ,
e if e /∈ A ,

that is, ηA(e) =

{
e+ 1 if e ∈ A ,
e if e /∈ A ,

because r(e) = e+ 1 in the lattice nop.
Now we define ω : E → n by ω(e) = e+ 1. Then ω ∈ Fn(E) and when we apply

the idempotent Fεn we claim that we obtain

(11.9) Fεn(ω) = (−1)nγnop .

The definition of εn yields

Fεn(ω) = (−1)n
∑
Y⊆[n]

(−1)|C|ρY ω

and the definition of ρY gives

(ρY ω)(e) = ρY (e+ 1) =

{
e+ 1 if e+ 1 ∈ Y ,
e if e+ 1 /∈ Y .



CORRESPONDENCE FUNCTORS AND LATTICES 49

Setting Y = A+ 1 for each A ⊆ E, we see that ρY ω = η◦A and it follows that

Fεn(ω) = (−1)n
∑
Y⊆[n]

(−1)|Y |ρY ω

= (−1)n
∑
A⊆E

(−1)|A|η◦A

= (−1)nγnop .

This proves Claim 11.9 above.
Now Fn is generated by ω ∈ Fn(E), because it is generated by ι ∈ Fn([n])

(where ι : [n] → n is the inclusion), hence also by any injection from a set E of
cardinality n to n (by composing with a bijection between E and [n]). Since Fεn is
an idempotent endomorphism of the correspondence functor Fn, we see that FεnFn
is generated by Fεn(ω). In other words, in view of Claim 11.9 above, FεnFn is
generated by γnop ∈ Fn(E). Now Theorem 9.5 asserts that the subfunctor of Fn
generated by γT = γnop is isomorphic to SE,totop . But (E, totop) ∼= ([n], tot) via the
map e 7→ n− e. Therefore, using the isomorphism of Theorem 11.6, we obtain

Sn ∼= FεnFn = ⟨γnop⟩ ∼= SE,totop ∼= S[n],tot .
(b) The canonical k-basis of the k-module Sn(X) = Fn(X)/Hn(X) is the set

Zn(X) of all maps φ : X → n such that [n] ⊆ φ(X) ⊆ n. Therefore Sn(X) is free
of rank |Zn(X)|. The number of maps in Zn(X) has been computed in Lemma 9.1
of [BT2] and the formula is actually well-known. The formula shows that this rank
is equal to

|Zn(X)| =
n∑
i=0

(−1)i
(
n

i

)
(n+ 1− i)|X| =

n∑
j=0

(−1)n−j
(
n

j

)
(j + 1)|X|

as required.

11.10. Remark. We shall see in [BT3] that a similar formula holds for the rank
of the evaluation of any fundamental functor, but the proof in the general case is
much more elaborate. Also, Corollary 11.7 holds more generally for fundamental
functors and the general case will be proved in [BT3].

When k is a field, we get even more.

11.11. Corollary. Let k be a field.

(a) The functor Sn is simple, isomorphic to S[n],tot,k, where k is the trivial
module for the trivial group Aut([n], tot) = {id}.

(b) Sn is simple, projective, and injective in Fk.

Proof : (a) It is clear that Aut([n], tot) is the trivial group, with a single simple
module k. Recall from Section 2 that the fundamental functor SE,R and the simple
functor SE,R,V are given by

SE,R = LE,PEfR/JE,PEfR , SE,R,V = LE,TR,V /JE,TR,V ,

where PEfR is the fundamental module corresponding to (E,R) and TR,V =
PEfR ⊗kAut(E,R) V . Here E = [n], R = tot, kAut(E,R) = k, and V = k, hence

Ttot,k = P[n]ftot ⊗k k ∼= P[n]ftot .

Therefore S[n],tot ∼= S[n],tot,k.
(b) Since n is a distributive lattice, Fn is projective and injective by Corol-

lary 8.11. Therefore so is its direct summand Sn. It follows that Sn is simple,
projective, and injective.
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Our last purpose in this section is to find, for any finite lattice T , all the direct
summands of FT isomorphic to a functor Sn corresponding to a total order. Recall
that eT denotes the central idempotent of EndkL(T ) which is an identity element
for the subalgebra ET (see Theorem 10.8).

11.12. Theorem. Let T be a finite lattice and let N be the maximal length of
a strictly increasing sequence in T . For every finite set X, let F tot

T (X) be the k-
submodule of FT (X) generated by all the maps φ : X → T such that φ(X) is a
totally ordered subset of T .

(a) F tot
T is a subfunctor of FT , equal to FeT (FT ).

(b) F tot
T is a direct summand of FT , isomorphic to

F tot
T

∼=
⊕

0≤m≤N
B∈PT,m

S|B| .

(c) The image of any morphism Fn → FT is contained in F tot
T . In particular,

any subfunctor of FT isomorphic to a functor Sn is contained in F tot
T .

(d) HomFk
(
F tot
T , Fid−eT (FT )

)
= {0} and HomFk

(
Fid−eT (FT ), F

tot
T

)
= {0}.

(e) The splitting of the surjection FT → F tot
T is natural in T .

Proof : (a) Let φ ∈ F tot
T (X). Writing Im(φ) = {t1, t2, . . . , tn} in increasing

order, we can write φ = jψ, where ψ : X → n is the map defined by ψ(x) = i if
φ(x) = ti, and where j : n → T is the map defined by j(i) = ti for 1 ≤ i ≤ n and

j(0) = 0̂. Clearly j is a morphism in the category L. By Theorem 10.8, we have
eT j = jen = j, because en is the identity element of EndkL(n) by Theorem 11.1.
Therefore

φ = jψ = eT jψ = eTφ = FeT (φ) ,

proving that φ ∈ FeT (FT (X)).
Conversely, if φ ∈ FeT (FT (X)), then we can write φ = FeT (ψ) = eTψ for some

map ψ : X → T . Since eT is, by construction, a linear combination of maps with a
totally ordered image, so is eTψ, proving that φ ∈ F tot

T (X).
This shows that F tot

T = FeT (FT ) and the latter is a subfunctor of FT .

(b) As in the proof of Theorem 11.6, we apply the fully faithful functor kL → Fk
defined by T 7→ FT . There is direct sum decomposition of functors

FT = FeT (FT )⊕ Fid−eT (FT ) = F tot
T ⊕ Fid−eT (FT ) .

The idempotent eT is the sum of the orthogonal idempotents fB,B of EndkL(T ),
for B ∈ PT,m and 0 ≤ m ≤ N . It follows that the endomorphisms FfB,B of FT are
orthogonal idempotents with sum FeT . Hence we obtain a direct sum decomposition
of correspondence functors

F tot
T = FeT (FT ) =

⊕
0≤m≤n
B∈PT,m

FfB,B
(
FT

)
.

By Proposition 10.2, the image of FfB,B is isomorphic to Fm/Hm = Sm, where
m = |B|, proving the result.

(c) Let α : Fn → FT be a morphism of correspondence functors. Since the
functor T 7→ FT is full, α is the image of a morphism n → T in kL, which is in
turn a linear combination of order-preserving maps f : n → T . For such a map f
and for any function φ : X → n, the image of fφ is a totally ordered subset of T .
It follows that the image of the map Ff : Fn(X) → FT (X) is contained in F tot

T (X).
The special case follows from the fact that Sn is a quotient of Fn, by Theo-

rem 11.6.
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(d) The first statement is a consequence of (b) and (c), while the second one
follows from a dual argument. Details are left to the reader.

(e) By Theorem 10.8, the family of idempotents eT , for T ∈ L, is a natural trans-
formation of the identity functor idkL. Therefore the family of idempotents FeT ,
for T ∈ L, is a natural transformation of the identity functor idFk .
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