
CORRESPONDENCE FUNCTORS AND DUALITY

SERGE BOUC AND JACQUES THÉVENAZ

Abstract. A correspondence functor is a functor from the category of finite

sets and correspondences to the category of k-modules, where k is a commuta-
tive ring. By means of a suitably defined duality, new correspondence functors

are constructed, having remarkable properties. In particular, their evaluation

at any finite set is always a free k-module and an explicit formula is obtained
for its rank. The results use some subtle new ingredients from the theory of

finite lattices.

1. Introduction

Over the last few decades, the representation theory of small categories has played
an increasingly important role in algebra, see for instance [Bo, FT, NSS, SS, We1,
We2]. In the special case of the category with finite sets as objects and correspon-
dences as morphisms, this theory turns out to be very rich and has been developed
in [BT2, BT3, BT4, BT5, BT6]. A correspondence functor is a functor from the
category of finite sets and correspondences to the category of k-modules, where k
is a commutative ring. In particular, simple functors have been classified and a
k-basis has been obtained for their evaluation at any finite set, with an explicit
formula for the rank. The key for such results is the construction of some special
functors SE,R, which we called fundamental functors, depending on a finite set E
and a partial order relation R on E. The purpose of the present paper is to obtain
a vast generalisation of this construction.

For any finite lattice T , we studied in [BT3] a correspondence functor FT whose
evaluation FT (X) at a finite set X is equal to the free k-module on the set TX

of all maps from X to T . Associated with any join-morphism α : T → T ′
op

of finite lattices, we introduce here a suitable pairing of functors FT × FT ′ → k
and, by passing to the quotient by the left kernel Kα of this pairing, we obtain a
correspondence functor Sα = FT /Kα which only depends on the given morphism α.
The opposite of T ′ appears for reasons explained in the construction. One of our
main results produces a k-basis for the evaluation Sα(X) at a finite set X, with an
explicit formula for the rank. The fundamental functors SE,R mentioned above are
just a very special case.

After a preliminary section on correspondence functors, we carry out in Section 3
the construction of Sα. For any given join-morphism α : T → T ′

op
of finite lattices,

this construction uses a certain subset Φα of the set Irr(T ) of all join-irreducible
elements of the lattice T .

Finite lattices played a central role throughout our work in [BT3, BT4] and this is
again the case here. Actually, several new structural results on the lattice T can be
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brought out from the mere presence of the join-morphism α. This lattice-theoretic
part is developed in Section 4 and is a cornerstone for what comes next.

In Section 5, we produce a set of generators for Sα(X), where X is any finite set,
and we then prove in Section 6 that this generating set is a k-basis of Sα(X). The
key ingredient is a subset Gα of T containing Φα, defined using the lattice-theoretic
developments of Section 4. The main result takes the following form :

1.1. Theorem. Let α : T → T ′op be a join-morphism of finite lattices. Then for
any finite set X, the set {ϕ ∈ TX | Φα ⊆ ϕ(X) ⊆ Gα} maps bijectively to a k-basis
of Sα(X) = FT (X)/Kα(X).

As mentioned above, this result generalises the theorem obtained in [BT4] for
fundamental functors and the methods are inspired by those used there, but the
actual proofs are new and more involved. The mere fact that the theorem proved
in [BT4] is a special case is not obvious and needs to be established. We do so in
Section 7.

In Section 8, we mention the more specific case when α is injective and in Sec-
tion 9 we give an explicit description of the minimal nonzero evaluation Sα(Φα).
Finally, in Sections 10 and 11, two rather intricate results are proved, which will
be used in a future paper but are also of independent interest.

2. Preliminaries

Finite lattices are essential tools in [BT3, BT4, BT5, BT6] and they continue to
play a crucial role in the present work. If T is a finite lattice, we write ≤ for its
(partial) order relation, ∨ for its join, ∧ for its meet, 0̂T , or simply 0̂, for its minimal

element and 1̂T , or simply 1̂, for its maximal element. For any s, t ∈ T with s ≤ t,
intervals are defined by

[s, t] = {a ∈ T | s ≤ a ≤ t} , ]s, t] = {a ∈ T | s < a ≤ t} , [s, t[= {a ∈ T | s ≤ a < t} .
We occasionally write [s, t]T = [s, t] when we need to emphasize that we work inside
the ambient lattice T . An element of T is called irreducible (or join-irreducible) if
it cannot be written as the join of some subset of strictly smaller elements of T .
In particular, 0̂ is not irreducible because it is an empty join. We write Irr(T ) for
the set of irreducible elements of T , viewed as a full subposet of T . The opposite
lattice T op of a finite lattice T is obtained by reversing the partial order, swapping
∨ and ∧ and also swapping 0̂ and 1̂.

We work with the category L having all finite lattices as objects and join-
morphisms as morphisms. Recall that a map α : T → T ′ between two finite
lattices is a join-morphism if, for any (finite) subset S of T , we have

α
( ∨
s∈S

s
)

=
∨
s∈S

α(s)

and in particular α(0̂) = 0̂ by using an empty join. Equivalently, α is a join-

morphism if and only if α(s∨ t) = α(s)∨α(t) for all s, t ∈ T and α(0̂) = 0̂. It would
be natural to view L as the category of finite join-semilattices, but we do not do
so, because a finite join-semilattice is in fact a lattice. Indeed, recall that the meet
s ∧ t is uniquely determined by the (finite) join

s ∧ t =
∨
a∈T
a≤s
a≤t

a .

We use only join-morphisms as morphisms between finite lattices. We emphasize
that, in general, a join-morphism does not preserve meets. Consequently, the image
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Im(α) of a join-morphism α : T → T ′ may not be a sublattice of T ′. More precisely,
Im(α) is only join-closed in T ′ and the meet of Im(α) inherited by its join is in
general different from the meet of T ′.

Whenever k is a commutative ring, we also need the k-linearization kL of the cat-
egory L. Its objects are again the finite lattices, the set of morphisms HomkL(T, T ′)
is the free k-module with basis HomL(T, T ′), and the composition of morphisms is
the k-bilinear extension of the composition in L.

If α : T → T ′ is a join-morphism, then αop : T ′op −→ T op is the map defined by

αop(t′) =
∨
t∈T

α(t)≤t′

t .

In other words, αop(t′) is the greatest element of α−1([ 0̂, t′]). This definition goes
back to E.H. Spanier and J.H.C. Whitehead [SW, Wh], who introduced this func-
torial duality in the category of join-homomorphisms of finite lattices but used it
only for their main interest, namely CW-complexes and CW-lattices. It is proved
in Section 4 of [SW], or in Lemma 8.1 of [BT3], that αop is a join-morphism from
T ′op to T op and that (αop)op = α.

Now we move to representation theory, as developed in [BT2, BT3, BT4]. We
recall that a correspondence R from a finite set X to a finite set Y is just a subset
of Y ×X and that Rop ⊆ X ×Y is defined by (x, y) ∈ Rop if and only if (y, x) ∈ R.
Moreover, correspondences can be composed in the usual way : if S ⊆ Z × Y and
R ⊆ Y ×X, then

SR = {(z, x) ∈ Z ×X | ∃ y ∈ Y such that (z, y) ∈ S and (y, x) ∈ R} .
If k is a commutative ring, a correspondence functor (over k) is a functor from the

category of finite sets and correspondences to the category of k-modules. We let Fk
be the category of all correspondence functors over k, with natural transformations
as morphisms. This is an abelian category. If F is a correspondence functor and
R ⊆ Y × X is a correspondence, we use a left action of R for the k-linear map
F (R) : F (X)→ F (Y ), namely we set, for any v ∈ F (X),

R · v = F (R)(v) ∈ F (Y ) ,

and we often omit the dot and write simply Rv.
A main example is the correspondence functor FT associated with a finite lat-

tice T , introduced in [BT3]. Its evaluation at a finite set X is the free k-module
with basis TX , where TX denotes the set of all maps X → T . For any ϕ ∈ TX ,
the left action Rϕ of a correspondence R ⊆ Y ×X is the map Y → T defined by

(Rϕ)(y) =
∨
x∈X

(y,x)∈R

ϕ(x) .

It is very easy to check that FT is a correspondence functor. Any join-morphism
α : T → T ′ induces a k-linear map Fα : FT → FT ′ defined on the k-basis by
Fα(ϕ) = α◦ϕ, for any ϕ ∈ TX . The following main result is Theorem 4.8 in [BT3].

2.1. Theorem. The assignment sending a finite lattice T to FT , and a join-
morphism α : T → T ′ to the k-linear map Fα : FT → FT ′ , yields a k-linear functor

F? : kL −→ Fk
which is fully faithful.

We end this section with a discussion of duality, which is a main tool in this paper.
Let F be a correspondence functor over k. The dual F \ of F is the correspondence
functor defined by F \(X) = Homk(F (X), k) for any finite set X and

(R · g)(v) = g(Rop · v)
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for any R ⊆ Y ×X, g ∈ F \(X) and v ∈ F (Y ). Whenever F and G are correspon-
dence functors, a functorial pairing F ×G→ k is a family of k-bilinear forms

(−,−)X : F (X)×G(X) −→ k ,

where X runs through finite sets, satisfying

(Ru, v)Y = (u,Ropv)X

for all u ∈ F (X), v ∈ G(Y ), and R ⊆ Y × X. It is elementary to check that a
functorial pairing F ×G→ k induces a morphism of correspondence functors

λ : G −→ F \

and that conversely any such λ determines a functorial pairing F ×G→ k.
An important example is provided by the following construction. Whenever T

is a finite lattice, consider the family of k-bilinear forms

(− | −)X : FT (X)× FT op(X) −→ k

defined on the k-bases elements ϕ ∈ TX and ψ ∈ (T op)X by

(ϕ | ψ)X =

{
1 if ϕ ≤ ψ, i.e. ϕ(x) ≤ ψ(x), ∀x ∈ X,
0 otherwise.

This defines a functorial pairing FT ×FT op → k, by Lemma 8.6 in [BT3]. Our next
result is Theorem 8.9 in [BT3].

2.2. Proposition.

(a) The basis TX of FT (X) has a dual basis, namely a basis {ψ∗ | ψ ∈ TX} of
FT op given by

ψ∗ =
∑
ρ∈TX
ρ≤ψ

µ(ρ, ψ)ρo ,

where ρo is the map ρ, viewed as a map from X to T op, and where µ denotes
the Möbius function of the poset TX .

(b) The morphism λ : FT op → F \T induced by the functorial pairing above is an
isomorphism (i.e. nondegeneracy in the strong sense).

3. The main constructions

Let T and T ′ be finite lattices. The main purpose of this section is to construct, by
means of a suitably defined functorial pairing FT×FT ′ → k, a quotient functor of FT
obtained by passing to the quotient by the left kernel of this pairing. This provides
a way of constructing many new correspondence functors, which turn out to have
remarkable properties. We will see later in Section 7 that the fundamental functors
introduced in [BT3] are very special cases of the present general construction.

The main context for our constructions is the following. Let α : T → T ′ and
β : T ′ → T be maps such that

(3.1) ∀(t, t′) ∈ T × T ′, t′ ≤ α(t) ⇐⇒ t ≤ β(t′) .
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3.2. Lemma. Let T and T ′ be finite lattices.

(a) If the maps α : T → T ′ and β : T ′ → T satisfy Condition 3.1, then α is a
join-morphism from T to T ′op and β is a join-morphism from T ′ to T op.
In particular, the maps α : T → T ′ and β : T ′ → T are order-reversing.

(b) β is equal to αop : (T ′op)op = T ′ → T op. In particular, β is uniquely
determined by α.

(c) Conversely, if α : T → T ′op is a join-morphism and if we set β = αop, then
α and β fulfill Condition 3.1.

Proof : (a) For any t1, t2 ∈ T and for any t′ ∈ T ′, we have

t′ ≤ α(t1 ∨ t2) ⇐⇒ t1 ∨ t2 ≤ β(t′)

⇐⇒ t1 ≤ β(t′) and t2 ≤ β(t′)

⇐⇒ t′ ≤ α(t1) and t′ ≤ α(t2)

⇐⇒ t′ ≤ α(t1) ∧ α(t2) .

It follows that α(t1 ∨ t2) = α(t1) ∧ α(t2). Similarly β(t′1 ∨ t′2) = β(t′1) ∧ β(t′2) for
any t′1, t

′
2 ∈ T ′.

(b) It follows from Condition 3.1 that

∀t′ ∈ T ′, β(t′) =
∨
t∈T

t≤β(t′)

t =
∨
t∈T

t′≤α(t)

t .

In other words β = αop.
(c) The definition of β = αop yields the above formula for β(t′). If t′ ≤ α(t), then

t is one of the terms in the join and therefore t ≤ β(t′). For the reverse implication,
use the fact that βop = α and apply the same argument.

3.3. Convention. Lemma 3.2 shows that we only need a given join-morphism
α : T → T ′op to obtain an associated map β satisfying Condition 3.1. For this
reason, we shall always work with a fixed join-morphism α and use a notation
which includes α if necessary. Moreover, for the sake of simplicity, we shall usually
define β = αop.

3.4. Lemma. Let T and T ′ be finite lattices, let α : T → T ′
op

be a join-morphism,
and let β = αop.

(a) t ≤ βα(t), for any t ∈ T , and t′ ≤ αβ(t′), for any t′ ∈ T ′.
(b) αβα = α and βαβ = β.

Proof : Both assertions follow from the fact that β and α are adjoint contravariant
functors between T and T ′, viewed as categories. In more elementary terms, for
t ∈ T , Condition 3.1 applied to t′ = α(t) implies that t ≤ βα(t). Similarly t′ ≤
αβ(t′), for any t′ ∈ T ′. Taking t′ = α(t) gives α(t) ≤ αβα(t). On the other hand
α(t) ≥ αβα(t) because t ≤ βα(t) and α is order-reversing. Therefore αβα = α,
and similarly βαβ = β.

It follows from Lemmas 3.2 and 3.4 that α and β are inverse Galois connections
of posets (see Chapter 3 of [Ro] for this standard notion). We can also view α and
β as adjoint contravariant functors if we consider the posets T and T ′ as categories
in the usual way.

We now introduce the main ingredient for our constructions.



6 SERGE BOUC AND JACQUES THÉVENAZ

3.5. Notation. Given a join-morphism α : T → T ′op and β = αop, we set

Φα := {f ∈ Irr(T ) | α(f) ∈ Irr(T ′), βα(f) = f} ,
Φ′α := {f ′ ∈ Irr(T ′) | β(f ′) ∈ Irr(T ), αβ(f ′) = f ′} .

We view Φα and Φ′α as full subposets of T and T ′, respectively. Whenever there is
no possible confusion, we will also write Φ = Φα and Φ′ = Φ′α. We observe that, if
we switch the roles of T , T ′ and α, β, we obtain Φβ = Φ′α and Φ′β = Φα.

We emphasize that the definition of Φ′α involves the irreducible elements of T ′

and not those of T ′op, despite the fact that the target of α is T ′op. Our next lemma
also uses implicitly this remark.

3.6. Lemma. The restriction of α to Φα is a poset isomorphism Φα → Φ′α
op.

The inverse isomorphism Φ′α → Φopα is the restriction of β to Φ′α.

Proof : Since α and β are both order-reversing maps, it suffices to prove that
the restrictions of α to Φ = Φα and the restriction of β to Φ′ = Φ′α are bijections,
and inverse to one another. If f ∈ Φ, then f ′ = α(f) ∈ Irr(T ′) by the definition
of Φ, and f = β(f ′). Hence β(f ′) ∈ Irr(T ), and αβ(f ′) = αβα(f) = α(f) = f ′,
by Lemma 3.4. It follows that f ′ ∈ Φ′, so α(Φ) ⊆ Φ′. The reverse inclusion also
holds because αβ(f ′) = f ′ for any f ′ ∈ Φ′. Therefore α(Φ) = Φ′, and similarly
β(Φ′) = Φ.

Our next lemma introduces the technical conditions which will be used for the
definition of the functorial pairing we are aiming for. Recall that the notation
ϕ1 ≤ ϕ2 for ϕ1, ϕ2 ∈ TX means that ϕ1(x) ≤ ϕ2(x) for all x ∈ X.

3.7. Lemma. Let X be a finite set. For any maps ϕ ∈ TX and ψ ∈ (T ′)X , the
following conditions are equivalent:

(a) ψ ≤ α ◦ ϕ and, for any f ∈ Φα, there exists x ∈ X such that ϕ(x) = f and
ψ(x) = α(f).

(b) ϕ ≤ β ◦ψ and, for any f ′ ∈ Φ′α, there exists x ∈ X such that ψ(x) = f ′ and
ϕ(x) = β(f ′).

(c) ψϕ−1(t) ⊆ [ 0̂, α(t)] for any t ∈ T , and α(f) ∈ ψϕ−1(f) for any f ∈ Φα.

(d) ϕψ−1(t′) ⊆ [ 0̂, β(t′)] for any t′ ∈ T ′, and β(f ′) ∈ ϕψ−1(f ′) for any f ′ ∈ Φ′α.

Proof : Clearly ψ ≤ α ◦ϕ if and only if ϕ ≤ β ◦ψ, by Condition 3.1. Assume that
for any f ∈ Φα, there exists x ∈ X are such that ϕ(x) = f and ψ(x) = α(f). By
Lemma 3.6, for any f ′ ∈ Φ′α, the element f = β(f ′) belongs to Φα, and f ′ = α(f).
Hence there exists x ∈ X such that ϕ(x) = f = β(f ′), and ψ(x) = α(f) = f ′. So
(a) implies (b). Switching T, T ′ and α, β, we get that (b) implies (a).

Now if (a) holds, then for t ∈ T and x ∈ ϕ−1(t), we have ψ(x) ≤ α(t). Hence

ψϕ−1(t) ⊆ [ 0̂, α(t)]. Moreover, if f ∈ Φα, there exists x ∈ ϕ−1(f) such that
ψ(x) = α(f), hence α(f) ∈ ψϕ−1(f). So (a) implies (c).

Conversely, if (c) holds, then for any x ∈ X, setting t = ϕ(x), we have x ∈ ϕ−1(t),

hence ψ(x) ∈ [ 0̂, α(t)]. Thus ψ(x) ≤ αϕ(x) and so ψ ≤ α ◦ ϕ. Moreover, for any
f ∈ Φα, we have α(f) ∈ ψϕ−1(f), so there exists x ∈ ϕ−1(f) such that α(f) = ψ(x).
Thus ϕ(x) = f and ψ(x) = α(f). Hence (c) implies (a).

Switching T, T ′ and α, β, we see that (b) is equivalent to (d) and this completes
the proof.
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3.8. Notation. Let ϕ ∈ TX and ψ ∈ (T ′)X . If the equivalent conditions of
Lemma 3.7 hold, we will write ϕ

ὰ
ψ, or simply ϕ`ψ when there is no possible

confusion.
For each finite set X, we define a k-bilinear form

〈−,−〉α,X : FT (X)× FT ′(X) −→ k

by setting, for all maps ϕ ∈ TX and ψ ∈ (T ′)X ,

〈ϕ,ψ〉α,X =

{
1 if ϕ

ὰ
ψ ,

0 otherwise.

We also write 〈−,−〉X = 〈−,−〉α,X when there is no possible confusion. We observe
that ϕ

ὰ
ψ if and only if ψ

β̀
ϕ, by Lemma 3.7. Therefore 〈ϕ,ψ〉α,X = 〈ψ,ϕ〉β,X .

3.9. Proposition. Let α : T → T ′
op

be a join-morphism. The family of bilinear
forms 〈−,−〉α,X defines a functorial pairing

〈−,−〉α : FT × FT ′ −→ k .

Proof : We have to prove that 〈Sϕ,ψ〉α,Y = 〈ϕ, Sopψ〉α,X , where X and Y are
finite sets, ϕ ∈ TX , ψ ∈ (T ′)Y , and S ⊆ Y ×X is a correspondence. First we claim
that

ψ ≤ α ◦ (Sϕ) ⇐⇒ Sopψ ≤ α ◦ ϕ .
Recall that (Sϕ)(y) =

∨
(y,x)∈S

ϕ(x) for any y ∈ Y , by the definition of Sϕ. Therefore,

the condition ψ ≤ α ◦ (Sϕ) is equivalent to

∀y ∈ Y, ψ(y) ≤ α
( ∨

(y,x)∈S

ϕ(x)
)

=
∧

(y,x)∈S

αϕ(x) ,

that is,
∀(y, x) ∈ S, ψ(y) ≤ αϕ(x) .

This in turn is equivalent to the condition∨
(x,y)∈Sop

ψ(y) ≤ αϕ(x) ,

that is,
∀x ∈ X, (Sopψ)(x) ≤ αϕ(x) .

Thus we have obtained Sopψ ≤ α ◦ ϕ, proving the claim.
Assume now that 〈Sϕ,ψ〉α,Y = 1, that is, Sϕ

ὰ
ψ. In particular ψ ≤ α ◦ (Sϕ),

which is equivalent to Sopψ ≤ α◦ϕ, by the claim above. Moreover, for any f ∈ Φα,
there exists an element y ∈ Y such that (Sϕ)(y) = f and ψ(y) = α(f). Then

f = (Sϕ)(y) =
∨

(y,x)∈S

ϕ(x)

and since f is irreducible, there exists x ∈ X with (y, x) ∈ S such that f = ϕ(x).
Therefore

α(f) = ψ(y) ≤
∨

(y′,x)∈S

ψ(y′) =
∨

(x,y′)∈Sop
ψ(y′) = (Sopψ)(x) ≤ (α ◦ ϕ)(x) = α(f) ,

and so we get an equality (Sopψ)(x) = α(f). Thus for any f ∈ Φα, there exists
an element x ∈ X such that ϕ(x) = f and (Sopψ)(x) = α(f). Hence ϕ

ὰ
Sopψ and

〈ϕ, Sopψ〉α,X = 1.
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Conversely, assume that 〈ϕ, Sopψ〉α,X = 1, that is, ϕ
ὰ
Sopψ. Then in particular

Sopψ ≤ α ◦ ϕ, which is equivalent to ψ ≤ α ◦ (Sϕ) by the claim above, hence also
to Sϕ ≤ β ◦ψ by Condition 3.1. Moreover, for any f ∈ Φα, there exists x ∈ X such
that ϕ(x) = f and (Sopψ)(x) = α(f). Then

α(f) = (Sopψ)(x) =
∨

(x,y)∈Sop
ψ(y) =

∨
(y,x)∈S

ψ(y) ,

and moreover α(f) ∈ Irr(T ′) by the definition of Φα. So there exists y ∈ Y such
that (y, x) ∈ S and ψ(y) = α(f). Therefore

f = ϕ(x) ≤
∨

(y,x′)∈S

ϕ(x′) = (Sϕ)(y) ≤ (β ◦ ψ)(y) = βα(f) = f ,

where the latter equality comes from the definition of Φα. Thus we obtain an
equality (Sϕ)(y) = f . So for any f ∈ Φα, there exists y ∈ Y such that (Sϕ)(y) = f
and ψ(y) = α(f). This shows that Sϕ

ὰ
ψ, hence 〈Sϕ,ψ〉α,Y = 1.

We have now shown that 〈Sϕ,ψ〉α,Y = 〈ϕ, Sopψ〉α,X , completing the proof.

3.10. Corollary. Let Kα the left kernel of the pairing 〈−,−〉α : FT × FT ′ → k of
Proposition 3.9, and let K ′α be its right kernel. In other words, for any finite set X,

Kα(X) = {u ∈ FT (X) | ∀ψ ∈ (T ′)X , 〈u, ψ〉α,X = 0} ,
K ′α(X) = {u′ ∈ FT ′(X) | ∀ϕ ∈ TX , 〈ϕ, u′〉α,X = 0} .

Then Kα is a subfunctor of FT , and K ′α is a subfunctor of FT ′ .

Proof : Let u ∈ Kα(X) and consider a correspondence S ⊆ Y ×X. Then, for all
ψ ∈ (T ′)X , we have

〈Su, ψ〉α,Y = 〈u, Sopψ〉α,X = 0

and this shows that Su ∈ Kα(Y ), as required. The proof for K ′α is similar.

In view of Corollary 3.10, we can now introduce the correspondence functors
which are our main object of study.

3.11. Definition. For any given join-morphism α : T → T ′op, we define

Sα = FT /Kα and S′α = FT ′/K
′
α .

For completeness, observe that Kβ = K ′α and hence Sβ = S′α, where β = αop as
usual.

3.12. Remark. The pairing 〈−,−〉α : FT × FT ′ → k induces a pairing

Sα × S′α −→ k

which is nondegenerate in the weak sense, that is, it induces an injective morphism
of functors

i : Sα −→ (S′α)\ ,

where (S′α)\ denotes the k-dual of S′α. We will prove later in Proposition 6.9 that
the pairing is actually nondegenerate in the strong sense, that is, the morphism i is
an isomorphism. When k is a field, an argument about dimensions shows that there
is no distinction to be made about nondegeneracy, so i is obviously an isomorphism
in that case.

There is another way of obtaining the correspondence functor Sα, by dealing in
a different way with the pairing 〈−,−〉α : FT × FT ′ → k. We know that it induces
a morphism

jα : FT −→ F \T ′
∼= FT ′op ,
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where the latter isomorphism comes from Proposition 2.2. Clearly Kα is the kernel
of jα and so Sα is isomorphic to the image of the morphism jα. Since the functor

F? : kL −→ Fk
is fully faithful by Theorem 2.1, jα must be the image of a morphism

α̂ ∈ HomkL(T, T ′op)

in the category kL, that is, jα = Fα̂ : FT −→ FT ′op . We are going to show that the
morphism α̂ can be described explicitly.

3.13. Definition. If T is a finite lattice, we let r : T → T be the map defined by

r(t) =
∨
s∈T
s<t

s .

If t /∈ Irr(T ), then clearly r(t) = t, while if t ∈ Irr(T ), then r(t) is the unique
maximal element strictly smaller than t.

3.14. Proposition. Let α : T → T ′op be a join-morphism. For any subset A
of Φα, define αA : T → T ′ by

αA(t) =

{
α(t) if t ∈ T −A
rα(t) if t ∈ A ,

and define αoA to be the map αA, viewed as a map from T to T ′op.

(a) For any subset A of Φα, the map αoA is a join-morphism T → T ′op (hence
αoA belongs to L).

(b) The morphism α̂ ∈ HomkL(T, T ′op) defined above is equal to

α̂ =
∑
A⊆Φα

(−1)|A|αoA .

Proof : (a) follows from (b), because the expression for α̂ obtained in (b) forces
the terms to be join-morphisms. Alternatively, this can also be proved directly from
the definition of αoA.

(b) By Proposition 2.2, the basis (T ′)X has a dual basis {ψ∗ | ψ ∈ (T ′)X} of
FT ′op given by

ψ∗ =
∑

ρ∈(T ′)X

ρ≤ψ

µ(ρ, ψ)ρo ,

where ρo is the map ρ, viewed as a map from X to T ′op. By the definition of the
morphism jα,X : FT (X)→ FT ′op(X), it maps ϕ ∈ TX to the linear combination

jα,X(ϕ) =
∑

ψ∈(T ′)X

〈ϕ,ψ〉X · ψ∗ =
∑

ψ∈(T ′)X

ϕ
ὰ
ψ

ψ∗ .

The way to recover the morphism α̂ ∈ HomkL(T, T ′op) from its fully faithful image
jα is provided by the proof of part (c) of Theorem 4.8 in [BT3]. It consists of
choosing X = T and ϕ = idT , and define α̂ to be the image of idT under jα,T . We
obtain

α̂ =
∑

ψ∈(T ′)T

idT ὰ ψ

ψ∗ =
∑

ψ∈(T ′)T

idT ὰ ψ

∑
ρ∈(T ′)X

ρ≤ψ

µ(ρ, ψ)ρo .

Now the condition idT ὰ
ψ tells us that ψ ≤ α ◦ idT , i.e. ψ ≤ α, and moreover

(Cψ) : ψ(f) = α(f), ∀f ∈ Φα .
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Therefore we get

α̂ =
∑

ψ∈(T ′)T

ψ≤α
(Cψ)

∑
ρ∈(T ′)X

ρ≤ψ

µ(ρ, ψ)ρo =
∑

ρ∈(T ′)X

ρ≤α

( ∑
ψ∈(T ′)T

ρ≤ψ≤α
(Cψ)

µ(ρ, ψ)
)
ρo

We now fix ρ and consider the coefficient of ρo. For every ψ ∈ (T ′)T , we define

Aψ = {f ∈ Φα | ψ(f) < α(f)} = {f ∈ Φα | ψ(f) ≤ rα(f)} ,

the second equality coming from the fact that α(f) is irreducible. Note that, for
any given ψ ≤ α, the requirement that Aψ = ∅ corresponds exactly to the condi-
tion (Cψ). Now for any subset A ⊆ Φα, we have

A ⊆ Aψ ⇐⇒ ψ ≤ αA ,

where αA is defined in the statement. Using the fact that
∑
∅⊆A⊆Aψ (−1)|A| = 0

except if Aψ = ∅, we see that the coefficient of ρo is equal to∑
ψ∈(T ′)T

ρ≤ψ≤α
(Cψ)

µ(ρ, ψ) =
∑

ψ∈(T ′)T

ρ≤ψ≤α
Aψ=∅

µ(ρ, ψ)

=
∑

ψ∈(T ′)T

ρ≤ψ≤α

µ(ρ, ψ)
∑

∅⊆A⊆Aψ

(−1)|A|

=
∑

∅⊆A⊆Aψ

(−1)|A|
∑

ψ∈(T ′)T

ρ≤ψ≤αA

µ(ρ, ψ)

=
∑

∅⊆A⊆Aψ

(−1)|A| δρ,αA

and this gives (−1)|A| if ρ = αA for some A and zero if ρ 6= αA for all A. Thus the
only functions ρ ≤ α which remain are the functions ρ = αA for A ⊆ Φα and we
obtain

α̂ =
∑

∅⊆A⊆Φα

(−1)|A| αoA ,

as required.

3.15. Corollary. The correspondence functor Sα is isomorphic to the image of
the morphism

jα = Fα̂ : FT −→ FT ′op ,

where α̂ =
∑

∅⊆A⊆Φα

(−1)|A| αoA.

Proof : We have already noticed that Sα is isomorphic to the image of the mor-
phism jα and that jα = Fα̂.



CORRESPONDENCE FUNCTORS AND DUALITY 11

3.16. Remark. For any given join-morphism α : T → T ′
op

, there is a more
elementary way of defining bilinear forms without using Φα and Φ′α, but it turns
out that it does not yield any new result. More precisely, if the definition of ϕ

ὰ
ψ

given by Lemma 3.7 is modified by requiring the single condition ψ ≤ α ◦ ϕ (or
equivalently ϕ ≤ β ◦ ψ where β = αop), then the associated bilinear forms 〈−,−〉X
induce again a functorial pairing

〈−,−〉 : FT × FT ′ −→ k

and one can define S̃α = FT /K̃α and S̃′α = FT ′/K̃
′
α, where K̃α and K̃ ′α are the left

and right kernels of the pairing. Now recall from Section 2 that there is another
pairing

(− | −)X : FT (X)× FT op(X) −→ k

which is nondegenerate (in the strong sense, see Proposition 2.2). It follows from
the definitions that the bilinear form above can be expressed in terms of the nonde-
generate pairing via 〈ϕ,ψ〉X = (ϕ | β ◦ ψ)X . Therefore, for any given v ∈ FT ′(X),
we obtain equivalences

v ∈ K̃ ′α(X) ⇐⇒ 〈ϕ, v〉X = 0, ∀ϕ ∈ TX ⇐⇒ (ϕ | β ◦ v)X = 0, ∀ϕ ∈ TX

and this is equivalent to β ◦ v = 0 by nondegeneracy. In other words,

v ∈ Ker
(
Fβ,X : FT ′(X)→ FT op(X)

)
and this shows that K̃ ′α = Ker(Fβ). It follows that

S̃′α = FT ′/K̃
′
α = FT ′/Ker(Fβ) ∼= FIm(β) .

Similarly, S̃α ∼= FIm(α). Therefore S̃α, respectively S̃′α, is simply (up to isomor-
phism) the correspondence functor associated with the lattice Im(α), respectively
Im(β). This shows why the more elementary way of defining a bilinear form does
not yield any new correspondence functor. It does not yield any new pairing either,
because α and β actually induce isomorphisms between Im(β) and Im(α)op and the
nondegenerate pairing

FIm(α)(X)× FIm(α)op(X) −→ k

induced by the given pairing 〈−,−〉 actually coincides with the general pairing of
Proposition 2.2.

4. Lattice-theoretic constructions

For any given join-morphism α : T → T ′op, we introduce several lattice-theoretic
constructions which will play an essential role. Using the map r : T → T defined
in (3.13), we define inductively rk(t) = r(rk−1(t)) and r∞(t) = rn(t) if n is such
that rn(t) = rn+1(t).

4.1. Lemma. Let T be a finite lattice, let t ∈ T , and let n ≥ 0 be the smallest
integer such that rn(t) = r∞(t).

(a) n ≥ 0 is the smallest integer such that rn(t) /∈ Irr(T ).
(b) r∞(t) is the unique greatest element of T−Irr(T ) smaller than or equal to t.
(c) If v ∈ T is such that v ≤ t, then either v = ri(t) for some 0 ≤ i ≤ n− 1 or

v ≤ r∞(t).
(d) [r∞(t), t] is totally ordered and consists of the elements ri(t), for 0 ≤ i ≤ n.
(e) All the elements of ]r∞(t), t] belong to Irr(T ).
(f) The map r : T → T is order-preserving.
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Proof : The proof is an easy consequence of the definitions. The result is com-
pletely trivial if t /∈ Irr(T ), while if t is irreducible, then r(t) is the unique maximal

element of [ 0̂, t[ and ri+1(t) is the unique maximal element of [ 0̂, ri(t)[ whenever
0 ≤ i ≤ n− 1. Details can be found in Lemma 2.5 of [BT4].

Instead of Irr(T ), we need to work with the subset Φα of Irr(T ) defined in
Notation 3.5. For simplicity, we write Φ = Φα and Φ′ = Φ′α throughout this
section.

4.2. Lemma. Let T be a finite lattice, let t ∈ T , let m ≥ 0 be the smallest integer
such that rm(t) /∈ Φ, and set ρ(t) = rm(t).

(a) ρ(t) is the unique greatest element of T − Φ smaller than or equal to t. In

other words, ρ(t) =
∨

u∈T−Φ
u≤t

u.

(b) If v ∈ T is such that v ≤ t, then either v = ri(t) for some 0 ≤ i ≤ m− 1 or
v ≤ ρ(t).

(c) [ρ(t), t)] is totally ordered and consists of the elements ri(t), for 0 ≤ i ≤ m.
(d) All the elements of ]ρ(t), t] belong to Φ.
(e) The map ρ : T → T is order-preserving.

Proof : We apply Lemma 4.1. Since rn(t) /∈ Irr(T ), we have rn(t) /∈ Φ. Thus
m ≤ n and r∞(t) ≤ rm(t) ≤ t.

Let v ∈ T − Φ with v ≤ t. Then v cannot be equal to ri(t) for 0 ≤ i ≤ m − 1
by the definition of m, so v ≤ rm(t) = ρ(t), by part (c) of Lemma 4.1. The results
follow easily.

4.3. Notation. We define

β] = ρβ and α] = ρ′α ,

where ρ(t) =
∨

u∈T−Φ
u≤t

u and ρ′(t′) =
∨

u′∈T ′−Φ′

u′≤t′

u′.

4.4. Corollary.

(a) α](t) = rlα(t), where l is the smallest non-negative integer such that rlα(t) /∈
Φ′.

(b) α](t) is the greatest element of T ′ − Φ′ smaller than or equal to α(t).
(c) If t′ ∈ T ′ is such that t′ ≤ α(t), then either t′ = riα(t) for some 0 ≤ i ≤ l−1

or t′ ≤ α](t).
(d) The interval [α](t), α(t)] is totally ordered and consists of the elements

riα(t), for 0 ≤ i ≤ l.
(e) All the elements of ]α](t), α(t)] belong to Φ′.
(f) The map α] : T → T ′ is order-reversing.

Proof : Everything follows from Lemma 4.2.
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4.5. Remark. We can view the situation slightly differently. Since Φ ⊆ Irr(T ),

the subset T − Φ is closed under join and contains 0̂. In other words T − Φ is a
lattice (its join being the join of T , but its meet being in general different from
the meet of T ). The inclusion i : T − Φ ↪→ T is a join-morphism and its opposite
iop : T op → (T − Φ)op is defined by

iop(t) =
∨

u∈T−Φ
u≤t

u .

It follows that ρ is equal to iop (provided we view iop as a map from T to T − Φ).
Consequently, β] = ρβ = iopαop = (αi)op and similarly α] = (βi′)op using the
inclusion i′ : T ′ − Φ′ ↪→ T ′. In particular, by Lemma 3.4, β]αβ] = β](αi)β] = β]

and similarly α]βα] = α].

Applying β and β] to the totally ordered interval [α](t), α(t)] yields canonically
defined elements of T associated to t and we want to investigate some structural
information about these elements. To this end we introduce some notation.

4.6. Notation. We set

ω = βα] : T → T and ω′ = αβ] : T ′ → T ′ ,

θ = β]α] : T → T and θ′ = α]β] : T ′ → T ′ .

Let us first discuss a few properties of ω.

4.7. Lemma.

(a) The map ω : T → T is order-preserving and idempotent.
(b) Let t ∈ T and let l ≥ 0 be the smallest integer such that rlα(t) /∈ Φ′, so that

α](t) = rlα(t) and ω(t) = βrlα(t). For 0 ≤ i ≤ l − 1, write vi := βriα(t).
Then

t ≤ v0 < v1 < . . . < vl−1 ≤ ω(t) ,

and vi ∈ Φ, for 0 ≤ i ≤ l − 1. In particular, t ≤ ω(t).
(c) [t, ω(t)]∩Φ = {v0, v1, . . . , vl−1}. In particular, ω(t) ∈ Φ if and only if l ≥ 1

and vl−1 = ω(t).
(d) [t, ω(t)] ∩ Im(β) = {v0, v1, . . . , vl−1}.

Proof : (a) Since ω = βα] is the composition of two order-reversing maps, it is an
order-preserving map. Moreover, by Remark 4.5, we get ω2 = βα]βα] = βα] = ω.

(b) If l = 0, then α(t) /∈ Φ′, hence α(t) = α](t) and t ≤ βα(t) = βα](t) = ω(t).
If l > 0, Corollary 4.4 implies that there is a decreasing sequence

α(t) > rα(t) > . . . > rl−1α(t) > rlα(t) = α](t) ,

and all the elements of this sequence, except α](t), are in Φ′. It follows from
Lemma 3.6 that the sequence

βα(t) < βrα(t) < . . . < βrl−1α(t)

is strictly increasing and consists of elements of Φ. Moreover t ≤ βα(t) = v0 and
vl−1 = βrl−1α(t) ≤ βrlα(t) = ω(t).

(c) Let f ∈ [t, ω(t)] ∩ Φ. Then α(t) ≥ α(f) ≥ αω(t) = αβα](t) ≥ α](t) and
therefore, by Corollary 4.4,

α(f) ∈ [α](t), α(t)] ∩ Φ′ = {α(t), rα(t), . . . , rl−1α(t)} .



14 SERGE BOUC AND JACQUES THÉVENAZ

It follows that f = βα(f) ∈ {βα(t), βrα(t), . . . , βrl−1α(t)}. The other inclusion
and the additional statement follow from (b).

(d) Let t′ ∈ T ′ such that t ≤ β(t′), so that t′ ≤ α(t) by (3.1). By Corollary 4.4,
either t′ ≤ α](t), and then β(t′) ≥ βα](t) = ω(t), or there exists an integer j with
0 ≤ j < l such that t′ = rjα(t). In that case β(t′) = βrjα(t) = vj , as required.

We consider next some basic properties of θ.

4.8. Lemma.

(a) The map θ : T → T is order-preserving and idempotent.
(b) If t ∈ T − Φ, then t ≤ θ(t) and α]β]α](t) = α](t).
(c) θ(t) is the greatest element of T − Φ smaller than or equal to ω(t).
(d) ]θ(t), ω(t)] is totally ordered and consists of elements of Φ.

Proof : Since θ = β]α] is the composition of two order-reversing maps, it is an
order-preserving map. By Lemma 4.7, we have t ≤ ω(t) = βα](t), for any t ∈ T .
If t ∈ T − Φ, then t ≤ β]α](t) ≤ βα](t) by the definition of β], hence t ≤ θ(t).
Moreover,

α(t) ≥ αβ]α](t) ≥ αβα](t) ≥ α](t) .
Since α](t) is the greatest element of T ′ − Φ′ smaller than or equal to α(t), it
is also the greatest element of T ′ − Φ′ smaller than or equal to αβ]α](t). Hence
α]β]α](t) = α](t).

Swapping the roles of T and T ′, the same argument applies to any t′ ∈ T ′ − Φ′

and therefore β]α]β](t′) = β](t′). Taking in particular t′ = α](t) for any t ∈ T , we
see that θ = β]α] is idempotent.

Finally, (c) is an immediate consequence of the definition of β], while (d) follows
from Corollary 4.4 (applied to β and β] instead of α and α]).

Some examples show that both conclusions in part (b) of Lemma 4.8 may fail if
t ∈ Φ (see also Proposition 4.9).

We now examine in more detail the interval [t, ω(t)] and the position of θ(t).
The elements θ(t) as well as the elements of Φ belonging to the interval [t, ω(t)]
play a crucial role in the description of a k-basis of Sα(X), which is carried out in
Sections 5 and 6.

As before, we let l ≥ 0 be minimal such that rlα(t) /∈ Φ′, so that α](t) = rlα(t).
If l ≥ 1, we let 0 ≤ h ≤ l be minimal such that θ(t) ≤ βrhα(t). Such an h exists
because θ(t) ≤ ω(t) = βrlα(t).

4.9. Proposition. Let t ∈ T and let l and h be as above. For l ≥ 1 and
0 ≤ i ≤ l − 1, write vi := βriα(t) and recall that vi ∈ Φ (by Lemma 4.7).

(a) If l = 0, then t /∈ Φ, α(t) /∈ Φ′, θ(t) = ω(t) = βα(t) /∈ Φ, and [t, ω(t)]∩Φ is
empty. Moreover, αθ(t) = α(t).

(b) If l ≥ 1 and 1 ≤ h ≤ l − 1, then vh−1 < θ(t) < vh. Hence

t ≤ v0 < . . . < vh−1 < θ(t) < vh < . . . < vl−1 = ω(t) .

Moreover, αθ(t) = rhα(t).
(c) If l ≥ 1 and h = l, then θ(t) = ω(t). Hence

t ≤ v0 < . . . < vl−1 < θ(t) = ω(t) .

Moreover, αθ(t) = rlα(t).
(d) If l ≥ 1 and h = 0 and if moreover t /∈ Φ, then t ≤ θ(t) < v0. Hence

t ≤ θ(t) < v0 < . . . < vl−1 = ω(t) .

Moreover, αθ(t) = α(t).
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(e) If l ≥ 1 and h = 0 and if moreover t ∈ Φ, then θ(t) < t. Hence

θ(t) < t = v0 < . . . < vl−1 = ω(t) .

Moreover, αθ(t) ≥ α(t).
(f) If either h ≥ 1 or t /∈ Φ, then αθ(t) = rhα(t).

Proof : (a) If l = 0, then α(t) /∈ Φ′ by the definition of l. Then necessarily t /∈ Φ
by Lemma 3.6. By the definition of ω, we have ω(t) = βα(t) and this cannot be
in Φ, otherwise α(t) = αβα(t) would be in Φ′. Finally θ(t) = ω(t) because ω(t) /∈ Φ
and αθ(t) = αβα(t) = α(t).

(b) By Lemma 4.7, the minimality of h implies that vh is the least element
of [θ(t), ω(t)] belonging to Φ. Moreover, since h ≤ l − 1, and since θ(t) /∈ Φ by
the definition of θ, we must have θ(t) < vl−1 ≤ ω(t), forcing ω(t) ∈ Φ, hence
vl−1 = ω(t) by Lemma 4.7(c). By Lemma 4.8, the interval [θ(t), ω(t)] is totally
ordered and consists of the elements riω(t) for i ≥ 0, so we must have θ(t) = r(vh).
Consequently, vh−1 ≤ θ(t) < vh. The first inequality is strict because vh−1 ∈ Φ
while θ(t) /∈ Φ.

Applying α to the inequality vh−1 = βrh−1α(t) < θ(t) < vh = βrhα(t) and using
the fact that vh, vh−1 ∈ Φ, we obtain

rh−1α(t) ≥ αθ(t) ≥ rhα(t) .

If the first inequality was an equality, applying β would imply βrh−1α(t) = βαθ(t),
contrary to the relation vh−1 < θ(t) ≤ βαθ(t). Therefore rh−1α(t) > αθ(t) and the
definition of the operator r yields αθ(t) = rhα(t).

(c) If h = l, then vl−1 = βrl−1α(t) cannot be equal to ω(t) = βrlα(t) by
minimality of h, so that vl−1 < ω(t). By Lemma 4.7(c), it follows that ω(t) /∈ Φ
and so θ(t) = ω(t).

Applying α to the inequality vl−1 = βrl−1α(t) < ω(t) = βrlα(t) and using the
fact that rl−1α(t) ∈ Φ, we obtain

rl−1α(t) ≥ αω(t) = αβrlα(t) ≥ rlα(t) .

If the first inequality was an equality, applying β would imply

βrl−1α(t) = βαβrlα(t) = βrlα(t) = ω(t) ,

contrary to the relation vl−1 < ω(t). Therefore rl−1α(t) > αω(t) ≥ rlα(t) and the
definition of the operator r yields αω(t) = rlα(t), that is, αθ(t) = rlα(t).

(d) We have t ≤ θ(t) by Lemma 4.8(b) and the assumption t /∈ Φ. Moreover,
θ(t) ≤ v0 = βα(t) because h = 0, and the inequality is strict because v0 ∈ Φ while
θ(t) /∈ Φ.

Now since t ≤ θ(t) < v0 = βα(t), we have α(t) ≥ αθ(t) ≥ αβα(t) = α(t), hence
αθ(t) = α(t).

(e) Since h = 0, we have θ(t) ≤ βα(t). But βα(t) = t because t ∈ Φ, hence
θ(t) ≤ t. Moreover equality does not hold since θ(t) /∈ Φ. Since α is order-reversing,
we also get αθ(t) ≥ α(t).

(f) If either h ≥ 1 or t /∈ Φ, then we are in one of the cases (a)-(d) and we have
found that αθ(t) = rhα(t).
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4.10. Remark. The property in (f) does not extend to the case (e). More
precisely, in case (e), we may have an inequality αθ(t) > α(t). This occurs precisely
when there is an element f ∈ Φ such that θ(t) < f < t = v0, for we then have
αθ(t) ≥ α(f) > α(t) because f < t are both in Φ. In other words, since ]θ(t), ω(t)]
is totally ordered and consists of elements of Φ by Lemma 4.8, we see that if
u ∈ ]θ(t), ω(t)] is not the minimal element of ]θ(t), ω(t)], then θ(u) = θ(t) and
αθ(u) = αθ(t) > α(u).

The property θ(u) < u only occurs in case (e) of Proposition 4.9 and this case
is important in the sequel. It appears in particular when u ∈ ]t, ω(t)] for t ∈ Im(θ)
and we now analyse this situation.

4.11. Lemma. Let α : T → T ′op be a join-morphism and let β = αop.

(a) The restriction of α] is an anti-isomorphism of posets from Im(θ) to Im(θ′),
with inverse anti-isomorphism β].

(b) If t ∈ Im(θ) and t′ = α](t), then α restricts to an order-reversing bijec-
tion from the totally ordered interval ]t, ω(t)] to the totally ordered interval
]t′, ω′(t′)]. The inverse bijection is induced by β.

(c) Let t ∈ Im(θ) and u ∈ [t, ω(t)]. Then ρ(u) = t, ω(u) = ω(t), and θ(u) =
θ(t) = t.

Proof : (a) Let t ∈ Im(θ), i.e. t = θ(t) by Lemma 4.8. Setting t′ = α](t), we get
t = θ(t) = β]α](t) = β](t′). Moreover, θ′(t′) = α]β](t′) = α]β]α](t) = α](t) = t′,
the third equality coming from Lemma 4.8 and the fact that t /∈ Φ, because t = θ(t).
Therefore t′ ∈ Im(θ′). Since α] and β] are order-reversing, the result follows.

(b) We set again t′ = α](t) and we also have t = β](t′) as above. Moreover,

(4.12) ω(t) = βα](t) = β(t′) and ω′(t′) = αβ](t′) = α(t) .

If ]t, ω(t)] is empty, i.e. t = ω(t), then Proposition 4.9 shows that we must have
l = 0, hence α](t) = α(t). Therefore t′ = α(t) = ω′(t′) and the interval ]t′, ω′(t′)] is
also empty. Similarly, if ]t′, ω′(t′)] is empty, then so is ]t, ω(t)]. Thus we can assume
that both intervals are nonempty.

By Lemma 4.8, the interval [t, ω(t)] is totally ordered and ]t, ω(t)] ⊆ Φ. In
particular, ω(t) ∈ Φ, hence β(t′) ∈ Φ by (4.12). Similarly ω′(t′) = α(t) ∈ Φ′. In
particular, we have βα(t) ∈ Φ, hence t < v := βα(t) because t /∈ Φ. Note that
α(t) = α(v) because αβα = α. If s ∈ ]t, ω(t)], then s ∈ Φ, hence

t < v = βα(t) ≤ βα(s) = s ≤ ω(t) .

Therefore v is the least element of ]t, ω(t)] and ]t, ω(t)] = [v, ω(t)] = [t, ω(t)] ∩ Φ.
Similarly t′ < v′ := αβ(t′) ∈ Φ′, β(t′) = β(v′) and v′ is the least element of
]t′, ω′(t′)].

Since α(v) = α(t) = ω′(t′) and β(v′) = β(t′) = ω(t) by (4.12), and since α is
order-reversing, we get

α
(
[v, ω(t)]

)
= [αω(t), α(v)] = [αβ(t′), α(v)] = [v′, ω′(t′)] ,

that is, α
(
]t, ω(t)]

)
= ]t′, ω′(t′)]. Similarly β

(
]t′, ω′(t′)]

)
= ]t, ω(t)]. Therefore the

maps α and β restrict to anti-isomorphisms of posets between ]t, ω(t)] and ]t′, ω′(t′)].

(c) If u ∈ [t, ω(t)], then t = ρ(t) ≤ ρ(u) ≤ ρω(t) = β]α](t) = t, so ρ(u) = t.
Similarly ω(t) ≤ ω(u) ≤ ω2(t) = ω(t) by Lemma 4.7, so ω(u) = ω(t). Finally,
θ(u) = ρω(u) = ρω(t) = θ(t) and θ(t) = t since t ∈ Im(θ).

To end this section we show that the image of β can be described in terms of ω
and θ, and similarly for α.
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4.13. Proposition. Let α : T → T ′
op

be a join-morphism and let β = αop.

(a) β(T ′) = Φ t {t ∈ T | t = ω(t) = θ(t)}.
(b) α(T ) = Φ′ t {t′ ∈ T ′ | t′ = ω′(t′) = θ′(t′)}.

Proof : Since (b) is the dual statement, it suffices to prove (a). The union is disjoint
because θ(t) /∈ Φ, so t = θ(t) implies that t /∈ Φ. If t ∈ Φ, then t = βα(t) ∈ β(T ′),
while if t satisfies t = ω(t), then also t ∈ β(T ′). So we are left with the proof of the
inclusion β(T ′) ⊆ Φ t {t ∈ T | t = ω(t) = θ(t)}.

Let t′ ∈ T ′ and set t = β(t′). If t ∈ Φ, we are done, so we assume that t /∈ Φ.
Recall that t = β(t′) = βαβ(t′) = βα(t), by Lemma 3.4. Thus α(t) /∈ Φ′, otherwise
t = βα(t) would be in Φ. Therefore α](t) = α(t), hence ω(t) = βα](t) = βα(t) = t.
Now t /∈ Φ and the property t = ω(t) /∈ Φ implies that θ(t) = ρω(t) = ω(t), by the
definition of θ. This shows that t = ω(t) = θ(t), as required.

5. Generating set for the evaluation

Our main goal in this section is to describe a set of generators of the evaluation
Sα(X) at a finite set X. To this end, we need the lattice-theoretic constructions of
Section 4 and in particular the following notation :

5.1. Notation. Let α : T → T ′
op

be a join-morphism of finite lattices. Using our
previous Notation 3.5 and 4.6, we set

Gα = Φα t Im(θ) and G′α = Φ′α t Im(θ′) .

We also write G = Gα and G′ = G′α whenever there is no possible confusion.
Note that Im(θ) can also be described as the set of fixed points of θ because θ is
idempotent. The union is disjoint because θ(t) /∈ Φα by definition.

5.2. Lemma. β(T ′) ⊆ Gα and α(T ) ⊆ G′α.

Proof : We have β(T ′) = Φαt{t ∈ T | t = ω(t) = θ(t)} by Proposition 4.13, while
Gα = Φα t {t ∈ T | t = θ(t)} by Notation 5.1. Thus the inclusion is clear.

The key for our main result is to describe sufficiently many elements of the kernel
Kα(X) of the surjection FT (X)→ Sα(X). They will later be used to modify arbi-
trary chosen elements of the basis TX via consecutive reductions. This motivates
the following terminology :

5.3. Definition. Let α : T → T ′op be a join-morphism. Let a ∈ T − Gα and
b = θ(a). Using the notation of Proposition 4.9, we let l ≥ 0 be minimal such that
rlα(a) /∈ Φ′α, so that α](a) = rlα(a), and if l ≥ 1 we let 0 ≤ h ≤ l be minimal such
that b ≤ βrhα(a). By Proposition 4.9, the elements of Φα lying in the interval [a, b]
form a totally ordered set

v0 < . . . < vh−1 ,

where vi = βriα(a) for 0 ≤ i ≤ h− 1. If h = 0, then this set is empty. The totally
ordered set

{a, b} t
(
[a, b] ∩ Φα

)
= {a < v0 < . . . < vh−1 < b}

will be called the reduction sequence associated to a.
In this sequence, it will be convenient to set also v−1 = a, and vh = b (but note

that a, b /∈ Φα). If h = 0, the reduction sequence only consists of a < b.

Now we come to our main technical lemma.
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5.4. Lemma. Let a ∈ T − Gα and b = θ(a). Let a < v0 < . . . < vh−1 < b be
the associated reduction sequence (with h fixed as in Definition 5.3) and set also
vh = b. For any 0 ≤ k ≤ h, let [a, v0, . . . , vk] : T → T be the map defined by

∀t ∈ T, [a, v0, . . . , vk](t) =

 v0 if t = a,
vi+1 if t = vi with 0 ≤ i ≤ k − 1,
t otherwise.

For any function ϕ ∈ TX (where X is a finite set), we set

ϕk = [a, v0, . . . , vk] ◦ ϕ .

Then the linear combination

w = ϕ+

h∑
k=0

(−1)k+1ϕk

belongs to Kα(X).

Proof : We have to show that 〈w,ψ〉X = 0 for any ψ : X → T ′. To see this, we
must know when ϕ

ὰ
ψ and when ϕk

ὰ
ψ, for 0 ≤ k ≤ h. For simplicity, we write

ϕ`ψ instead of ϕ
ὰ
ψ and Φ = Φα. Recall from Lemma 3.7 that

ϕ`ψ ⇐⇒ ψϕ−1(t) ⊆ [ 0̂, α(t)] , ∀t ∈ T , and α(f) ∈ ψϕ−1(f) , ∀f ∈ Φ .

We first observe the following, for any 0 ≤ k ≤ h (including k = h in which case
vh = b) :

ϕ−1
k (t) = ϕ−1(t) , ∀ t 6= a, v0, . . . , vh−1

ϕ−1
k (a) = ∅

ϕ−1
k (vi) = ϕ−1(vi−1) , ∀i with 0 ≤ i ≤ k − 1

ϕ−1
k (vk) = ϕ−1(vk−1) t ϕ−1(vk)

ϕ−1
k (vi) = ϕ−1(vi) , ∀i with k + 1 ≤ i ≤ h− 1

The proof is straightforward. For the 4th equality, note that ϕk(x) = vk if and only
if ϕ(x) = vk−1 or ϕ(x) = vk, because vk−1 and vk are the only elements mapped to
vk by the map [a, v0, . . . , vk].

Now we introduce a list of conditions which we need for the description of the
property ϕk `ψ. The first conditions treat the case k = −1, where for convenience
we set ϕ−1 = ϕ :

(A) :

{
ψϕ−1(t) ⊆ [ 0̂, α(t)] , ∀ t ∈ T − {v0, . . . , vh−1} and
α(f) ∈ ψϕ−1(f) , ∀ f ∈ Φ− {v0, . . . , vh−1}

(D−1) : α(vi) ∈ ψϕ−1(vi) ⊆ [ 0̂, α(vi)] , ∀i with 0 ≤ i ≤ h− 1

Since ϕ−1 = ϕ, it is obvious that

ϕ−1 `ψ ⇐⇒ (A) and (D−1) hold.

Next we consider conditions for 0 ≤ k ≤ h− 1 :

(Bk) : α(vi) ∈ ψϕ−1(vi−1) ⊆ [ 0̂, α(vi)] , ∀i with 0 ≤ i ≤ k − 1

(Ck) : α(vk) ∈ ψ
(
ϕ−1(vk−1) t ϕ−1(vk)

)
⊆ [ 0̂, α(vk)]

(Dk) : α(vi) ∈ ψϕ−1(vi) ⊆ [ 0̂, α(vi)] , ∀i with k + 1 ≤ i ≤ h− 1
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Here (B0) is empty because the condition 0 ≤ i ≤ k−1 is empty if k = 0. Similarly
(Dh−1) is empty because the condition k + 1 ≤ i ≤ h− 1 is empty if k = h− 1. In
view of the previous observations about ϕ−1

k , it is clear that, for 0 ≤ k ≤ h− 1,

ϕk `ψ ⇐⇒ (A), (Bk), (Ck), and (Dk) hold.

Finally we consider conditions in the case k = h :

(Bh) : α(vi) ∈ ψϕ−1(vi−1) ⊆ [ 0̂, α(vi)] , ∀i with 0 ≤ i ≤ h− 1

(C∗h) : ψϕ−1(vh−1) ⊆ [ 0̂, α(b)]

The notation (C∗h) suggests that the condition is not exactly a special case of (Ck) :

the requirement ψϕ−1(vh) ⊆ [ 0̂, α(vh)] is not included in (C∗h) because vh = b and
this requirement is contained in (A). Note that (Dh) does not appear because it
would be empty. Again it is clear that

ϕh `ψ ⇐⇒ (A), (Bh), (C∗h) hold.

5.5. Claim. Let −1 ≤ k, k′ ≤ h. If both ϕk `ψ and ϕk′ `ψ hold, then |k′−k| ≤ 1.

First let −1 ≤ k < k′ ≤ h such that k′ − k ≥ 3 and suppose that both ϕk `ψ
and ϕk′ `ψ hold. Since ϕk `ψ implies (Dk), we obtain in particular, for i = k + 1,

α(vk+1) ∈ ψϕ−1(vk+1) .

Now ϕk′ `ψ implies (Bk′) and in particular, for i = k + 2 ≤ k′ − 1, we get

ψϕ−1(vk+1) ⊆ [ 0̂, α(vk+2)] .

It follows that α(vk+1) ∈ [ 0̂, α(vk+2)], that is, α(vk+1) ≤ α(vk+2). But α(vk+2) <
α(vk+1) because vk+2 > vk+1 both belong to Φ, so their images under α remain
distinct, by Lemma 3.6. This contradiction shows that ϕk `ψ is incompatible with
ϕk′ `ψ when k′ − k ≥ 3.

A similar argument holds if k′ − k = 2. Again ϕk `ψ implies that

α(vk+1) ∈ ψϕ−1(vk+1) .

Now ϕk′ `ψ implies (Ck′) if k′ ≤ h− 1, respectively (C∗h) if k′ = h. In either case,
for i = k′ − 1 = k + 1, we get in particular

ψϕ−1(vk+1) ⊆ [ 0̂, α(vk+2)] .

Therefore α(vk+1) ≤ α(vk+2), but again this contradicts the fact that α(vk+2) <
α(vk+1), which follows from vk+2 > vk+1. A special argument is needed here if
k + 2 = h, because vh = b is not in Φ. We have vh > vh−1, hence α(vh) ≤ α(vh−1)
and we must show that the equality α(vh) = α(vh−1) cannot hold. If it did hold,
then we would obtain

βα(vh) ≥ vh > vh−1 = βα(vh−1) = βα(vh) ,

but this is impossible. Thus we also have α(vk+2) < α(vk+1) if k′ = k+ 2 = h. We
have seen that this yields a contradiction, so ϕk `ψ is incompatible with ϕk′ `ψ
when k′ = k + 2. Putting together the cases k′ − k ≥ 3 and k′ − k = 2, we see
ϕk `ψ is incompatible with ϕk′ `ψ whenever |k′−k| ≥ 2. This completes the proof
of Claim 5.5.
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5.6. Claim. Let 0 ≤ k ≤ h.

(a) Suppose 0 ≤ k ≤ h − 1. If both ϕk `ψ and α(vk) ∈ ψϕ−1(vk) hold, then
ϕk−1 `ψ holds.

(b) Suppose k = h. If ϕh `ψ holds, then ϕh−1 `ψ holds.

In order to show that ϕk−1 `ψ holds, we need to prove (Bk−1), (Ck−1) and
(Dk−1). This is clear for (Bk−1) because (Bk) implies (Bk−1) (with (B−1) empty if
k = 0).

(a) Suppose first that 1 ≤ k ≤ h − 1. Since (Bk) for i = k − 1 implies that

α(vk−1) ∈ ψϕ−1(vk−2) ⊆ [ 0̂, α(vk−1)], while (Ck) implies that ψϕ−1(vk−1) ⊆
[ 0̂, α(vk)] ⊆ [ 0̂, α(vk−1)], we obtain (Ck−1). Now (Dk) is the part of (Dk−1) corre-

sponding to i ≥ k + 1 and moreover (Ck) implies that ψϕ−1(vk) ⊆ [ 0̂, α(vk)] while
the extra condition α(vk) ∈ ψϕ−1(vk) holds by assumption, so we obtain (Dk−1)
for i = k as well.

If k = 0, then (B−1) and (C−1) are empty and the argument that (D−1) holds
is obtained in the same way as above.

(b) Assume now that k = h. Since (Bh) implies (Bh−1) and since (Dh−1) is
empty, we are left with the proof of (Ch−1). Condition (Bh) for i = h − 1 implies

that α(vh−1) ∈ ψϕ−1(vh−2) ⊆ [ 0̂, α(vh−1)], while (C∗h) asserts that ψϕ−1(vh−1) ⊆
[ 0̂, α(b)] ⊆ [ 0̂, α(vh−1)], so we obtain (Ch−1).

This completes the proof of Claim 5.6.

5.7. Claim. Let −1 ≤ k ≤ h− 1.

(a) Suppose 0 ≤ k ≤ h − 1. If ϕk `ψ holds and if both conditions α(vk) ∈
ψϕ−1(vk−1) and ψϕ−1(vk) ⊆ [ 0̂, α(vk+1)] are satisfied, then ϕk+1 `ψ holds.

(b) Suppose k = −1. If ϕ−1 `ψ holds, then ϕ0 `ψ holds.

We need to prove (Bk+1), (Ck+1), and (Dk+1). This is clear for (Dk+1) because
(Dk) implies (Dk+1) (with (Dh) empty if k = h− 1).

(a) Suppose first that 0 ≤ k ≤ h − 2. Since (Dk) for i = k + 1 implies that

α(vk+1) ∈ ψϕ−1(vk+1) ⊆ [ 0̂, α(vk+1)], while ψϕ−1(vk) ⊆ [ 0̂, α(vk+1)] by one of the
assumptions, we obtain (Ck+1). Now (Bk) is the part of (Bk+1) corresponding to

i ≤ k − 1 and moreover (Ck) implies that ψϕ−1(vk) ⊆ [ 0̂, α(vk)] while the extra
condition α(vk) ∈ ψϕ−1(vk) holds by assumption, so we obtain (Bk+1) for i = k as
well.

If k = h − 1, then the second additional assumption yields precisely (C∗h). The
argument that (Bh) holds is obtained in the same way as above.

(b) Assume now that k = −1. Since (D1) implies (D0) and since (B0) is empty,
we are left with the proof of (C0). Condition (D−1) for i = 0 implies that α(v0) ∈
ψϕ−1(v0) ⊆ [ 0̂, α(v0)]. Moreover, the inclusion ψϕ−1(v−1) ⊆ [ 0̂, α(v0)] is no longer
an extra assumption because it is is a consequence of (A). Indeed we have v−1 = a
and α(v0) = α(a), because α(v0) = αβα(a) = α(a). This proves (C0) and completes
the proof of Claim 5.7.

Now we prove that 〈w,ψ〉X = 0, where w =

h∑
k=−1

(−1)k+1ϕk and ϕ−1 = ϕ.

Recall that

〈ϕk, ψ〉X 6= 0 ⇐⇒ 〈ϕk, ψ〉X = 1 ⇐⇒ ϕk `ψ .
There is nothing to prove if ϕk 6 `ψ for all −1 ≤ k ≤ h (where 6 ` denotes of
course the negation of `). Excluding this case, our aim is to prove that ϕk `ψ for
exactly two consecutive values of k. So let s be minimal such that ϕs `ψ (where
−1 ≤ s ≤ h). We cannot have s = h by minimality of s, because ϕh `ψ implies
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ϕh−1 `ψ, by Claim 5.6(b). We want to prove that ϕs+1 `ψ. If s = −1, then we
know that ϕ0 `ψ also holds, by Claim 5.7(b). So we can assume that 0 ≤ s ≤ h−1.

By minimality of s, we have ϕs−1 6 `ψ. Now ϕs `ψ and ϕs−1 6 `ψ imply, by
Claim 5.6(a), that

(5.8) α(vs) /∈ ψϕ−1(vs) .

By (Cs), we have α(vs) ∈ ψ
(
ϕ−1(vs−1) t ϕ−1(vs)

)
, hence

(5.9) α(vs) ∈ ψϕ−1(vs−1) .

Now (Cs) also implies that

ψϕ−1(vs) ⊆ [ 0̂, α(vs)] = [ 0̂, α(vs+1)] t {α(vs)} ,

the equality coming from the fact that

rα(vs) = rαβrsα(a) = rs+1α(a) = αβrs+1α(a) = α(vs+1) .

Using (5.8), it follows that

(5.10) ψϕ−1(vs) ⊆ [ 0̂, α(vs+1)] .

Conditions 5.9 and 5.10 are precisely the two additional requirements appearing
in Claim 5.7. Thus, together with the assumption ϕs `ψ, we get ϕs+1 `ψ by
Claim 5.7, as required.

Whenever |k − s| ≥ 2, we have ϕk 6 `ψ by Claim 5.5. Thus s and s + 1 are the
only two integers which come into play and we obtain

〈w,ψ〉X = ±
(
〈ϕs, ψ〉X − 〈ϕs+1, ψ〉X

)
= ±(1− 1) = 0 .

We have now proved that 〈w,ψ〉X = 0 for any ψ : X → T ′. In other words,
w ∈ Kα(X), completing the proof of Lemma 5.4.

5.11. Notation. For any finite set X, we let

Bα,X = {ϕ ∈ TX | Φα ⊆ ϕ(X) ⊆ Gα} ,

a subset of the basis TX of FT (X). Moreover, kBα,X denotes the k-linear span of
Bα,X inside FT (X).

We can finally prove the main result of this section.

5.12. Theorem. Let α : T → T ′op be a join-morphism of finite lattices. For
any finite set X, the image of Bα,X in Sα(X) = FT (X)/Kα(X) is a set of k-linear
generators of Sα(X). In other words, FT (X) = kBα,X +Kα(X).

Proof : We have to show that for any map ϕ : X → T , there is a linear combination
u of elements of Bα,X such that ϕ − u ∈ Kα(X). If ϕ is such that Φα * ϕ(X),
then we can take u = 0 because the mere existence of a map ψ : X → T ′ such
that ϕ`ψ implies that Φα ⊆ ϕ(X), by the definition of the relation ϕ`ψ. Thus if
Φα * ϕ(X), then ϕ is forced to lie in the kernel Kα(X).

So we now assume that ϕ : X → T is such that Φα ⊆ ϕ(X) and we proceed
by induction on the cardinality nϕ of the difference ϕ(X) − Gα. If nϕ = 0, then
ϕ(X) ⊆ Gα, so ϕ ∈ Bα,X , and we can take u = ϕ. Assuming now that nϕ > 0,
there exists an element a ∈ ϕ(X) − Gα. We set b = θ(a), and we consider the
reduction sequence

a < v0 < v1 < . . . < vh−1 < b = θ(a)

associated to a. Recall that we set v−1 = a and vh = b. Moreover, in the case
h = 0, the reduction sequence is simply a < b.
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By Lemma 5.4, the element

w = ϕ+

h∑
k=0

(−1)k+1ϕk

belongs to Kα(X). For each 0 ≤ k ≤ h, the definition of the map ϕk shows
that a /∈ ϕk(X), while we had a ∈ ϕ(X). Moreover, when k = h, we may have
added the element b to the image ϕh(X), but b ∈ Gα because b = θ(a). Thus
a /∈ Gα, b ∈ Gα − Φα, and v0, . . . vh−1 ∈ Φα ⊆ Gα, so that the cardinality nϕk
of the difference ϕk(X) − Gα is equal to nϕ − 1. By induction, ϕk lies in the

sum kBα,X + Kα(X) and it follows that ϕ = w +
h∑
k=0

(−1)kϕk also belongs to

kBα,X +Kα(X). Hence FT (X) = kBα,X +Kα(X), as required.

6. Basis for the evaluation

We continue our investigation of the evaluation Sα(X) and show that the image of
Bα,X is a k-basis of Sα(X).

6.1. Theorem. Let α : T → T ′op be a join-morphism of finite lattices. Then for
any finite set X, the set Bα,X = {ϕ ∈ TX | Φα ⊆ ϕ(X) ⊆ Gα} maps injectively to
a k-basis of Sα(X) = FT (X)/Kα(X). In other words, FT (X) = kBα,X ⊕Kα(X).

As explained in Section 7, this result is a far-reaching generalization of Theo-
rem 6.6 in [BT4], where we only consider the so-called fundamental functors. In
spirit, the proof is essentially the same as the proof in [BT4], but as it has to
be generalized and adapted to the new situation, we need to go through all the
arguments again.

Proof : Throughout this proof, we write G = Gα, Φ = Φα, and BX = Bα,X , and
we use ` instead of

ὰ
.

Since BX generates Sα(X) by Theorem 5.12, all we have to prove is that BX maps
injectively in Sα(X) and that its image remains a linearly independent subset. To
do this, for each ϕ ∈ BX , we consider the map ζϕ : X → T ′, where ζ : T → T ′ is
defined by

∀t ∈ T, ζ(t) =

{
α(t) if t ∈ Φ ,
α](t) otherwise .

Inside the matrix of the pairing 〈−,−〉X of Proposition 3.9, we consider the square
submatrix M , indexed by BX × BX , defined by

∀(ϕ,ϕ′) ∈ BX × BX , M(ϕ,ϕ′) = 〈ϕ, ζϕ′〉X .

If this matrix is nonsingular, then BX maps injectively in FT (X)/Kα(X) and its
image is a linearly independent set. We will actually prove more :

6.2. Theorem. The matrix M is invertible (over Z, hence over k).

Proof : By definition, we have

∀(ϕ,ϕ′) ∈ BX × BX , M(ϕ,ϕ′) =

{
1 if ϕ` ζϕ′ ,
0 otherwise .

Now

ϕ` ζϕ′ ⇐⇒
{
ϕ ≤ βζϕ′ ,
∀f ′ ∈ Φ′, ∃x ∈ X, ϕ(x) = β(f ′) and ζϕ′(x) = f ′ .
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We observe that the equality ζϕ′(x) = f ′ implies that ϕ′(x) ∈ Φ, otherwise we
would have ζϕ′(x) = α]ϕ′(x) /∈ Φ′, hence ζϕ′(x) 6= f ′. Moreover ϕ′(x) ∈ Φ
implies that ζϕ′(x) = αϕ′(x). It follows that ϕ′(x) = βαϕ′(x) = βζϕ′(x) = β(f ′).
Therefore, by Lemma 3.6, the condition

(6.3) ∀f ′ ∈ Φ′, ∃x ∈ X, ϕ(x) = β(f ′) and ζϕ′(x) = f ′

implies that

(6.4) ∀f ∈ Φ, ∃x ∈ X, ϕ(x) = f = ϕ′(x) .

Conversely, if (6.4) holds, then for any f ′ ∈ Φ′, there exists x ∈ X such that
ϕ(x) = β(f ′) and ϕ′(x) = β(f ′). Then ζϕ′(x) = αβ(f ′) = f ′ and so (6.3) holds.
Thus (6.3) and (6.4) are equivalent and we get

ϕ` ζϕ′ ⇐⇒
{
ϕ ≤ βζϕ′ ,
∀f ∈ Φ, ∃x ∈ X, ϕ(x) = f = ϕ′(x) .

Now for any x ∈ X, we have βζϕ′(x) = βαϕ′(x) = ϕ′(x) if ϕ′(x) ∈ Φ, while
βζϕ′(x) = βα]ϕ′(x) = ωϕ′(x) if ϕ′(x) /∈ Φ. Therefore

(6.5) ϕ ≤ βζϕ′ ⇐⇒ ∀x ∈ X,
{
ϕ(x) ≤ ϕ′(x) if ϕ′(x) ∈ Φ ,
ϕ(x) ≤ ωϕ′(x) otherwise .

Finally

ϕ` ζϕ′ ⇐⇒


∀x ∈ X,

{
ϕ(x) ≤ ϕ′(x) if ϕ′(x) ∈ Φ ,
ϕ(x) ≤ ωϕ′(x) otherwise .

∀f ∈ Φ, ∃x ∈ X, ϕ(x) = f = ϕ′(x) .

Suppose that ϕ` ζϕ′ holds. Then in particular ωϕ(x) ≤ ωϕ′(x) for any x ∈ X,
because ω is order-preserving and idempotent, by Lemma 4.7. By Lemma 4.2,
we also deduce that ρϕ(x) ≤ ρϕ′(x) if ϕ′(x) ∈ Φ. Moroever, if ϕ′(x) /∈ Φ, then
ϕ′(x) ∈ G− Φ (because ϕ′(X) ⊆ G by the definition of BX) and we get

ρϕ(x) ≤ ρωϕ′(x) = ρβα]ϕ′(x) = β]α]ϕ′(x) = θϕ′(x) = ϕ′(x) = ρϕ′(x) ,

using again that ϕ′(x) lies in G−Φ = Im(θ), hence is fixed under θ and ρ. We have
now proved that

ϕ` ζϕ′ =⇒
{
ωϕ ≤ ωϕ′ and
ρϕ ≤ ρϕ′ .

We denote by � the preorder on the set BX defined by the right hand side, that
is, for all ϕ,ϕ′ ∈ BX ,

ϕ � ϕ′ ⇐⇒ (ωϕ ≤ ωϕ′ and ρϕ ≤ ρϕ′) .
It follows that the matrix M is block triangular, with blocks indexed by the equiv-
alence classes of the preorder � on BX . We denote by �� this equivalence relation,
i.e.

ϕ��ϕ′ ⇐⇒ (ϕ � ϕ′ and ϕ′ � ϕ) ⇐⇒ (ωϕ = ωϕ′ and ρϕ = ρϕ′) .

Showing that M is invertible now amounts to showing that its diagonal blocks are
invertible. In other words, we must prove that, for each equivalence class C of BX
for the relation ��, the matrix MC = (M(ϕ,ϕ′))ϕ′,ϕ∈C is invertible. Let C be such
a fixed equivalence class.

Let t ∈ G − Φ. Then t = θ(t) and, for any u ∈ [t, ω(t)], we have ρ(u) = t and
ω(u) = ω(t) by Lemma 4.11. It follows in particular that t is uniquely determined
by any element u ∈ [t, ω(t)], so that the sets [t, ω(t)], for t ∈ G − Φ, are disjoint.
We set

G̊ = {t ∈ G− Φ | t < ω(t)} .
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Remember that, by Lemma 4.8, we have

(6.6) ∀t ∈ G− Φ, ]t, ω(t)] ⊆ Φ .

This shows that G̊ = {t ∈ G− Φ | ω(t) ∈ Φ}. Moreover, we set

∀t ∈ G̊ , Gt = [t, ω(t)] and G∗ = G−
⊔
t∈G̊

Gt ,

so that we get a partition

G =
⊔

t∈{∗}tG̊

Gt .

Notice that

G∗ − (G∗ ∩ Φ) =
{
t ∈ T | t = θ(t) = ω(t)

}
.

This set is actually equal to β(T ′)−Φ by Proposition 4.13, but that does not play
any role in the sequel.

6.7. Lemma. Let ϕ′, ϕ ∈ BX . If ϕ′��ϕ, then ϕ′−1(Gt) = ϕ−1(Gt) for all

t ∈ {∗} t G̊.

Proof : Since ϕ��ϕ′, we have ρϕ = ρϕ′ and ωϕ = ωϕ′, by the above discussion.
Let t ∈ G̊, and let x ∈ ϕ−1(Gt). Then ϕ(x) ∈ [t, ω(t)], so ρ(t) = t = ρ

(
ϕ(x)

)
=

ρ
(
ϕ′(x)

)
≤ ϕ′(x). Similarly ω(t) = ω

(
ϕ(x)

)
= ω

(
ϕ′(x)

)
≥ ϕ′(x), by Lemma 4.7.

It follows that t ≤ ϕ′(x) ≤ ω(t), so x ∈ ϕ′−1(Gt). Hence ϕ−1(Gt) ⊆ ϕ′−1(Gt).
Exchanging the roles of ϕ and ϕ′, we obtain that ϕ−1(Gt) = ϕ′−1(Gt). Now G∗ is
the complement of

⊔
t∈G̊

Gt in G and the functions ϕ′, ϕ have their values in G (by

the definition of BX). So we must have also ϕ′−1(G∗) = ϕ−1(G∗). This completes
the proof of Lemma 6.7.

We choose an arbitrary element ϕ0 of C and, for every t ∈ {∗} t G̊, we define

Xt = ϕ−1
0 (Gt) .

It follows from Lemma 6.7 that this definition does not depend on the choice of ϕ0.
Therefore, the equivalence class C yields a decomposition of X as a disjoint union

X =
⊔

t∈{∗}tG̊

Xt ,

and every function ϕ ∈ C decomposes as the disjoint union of the functions ϕt,
where ϕt : Xt → Gt is the restriction of ϕ to Xt.

For t ∈ G̊, define

Φt = ]t, ω(t)] .

By (6.6), we have Φt = Φ∩Gt. Then we define Φ∗ = Φ−
⊔
t∈G̊

Φt = Φ∩G∗, so that

we get a partition

Φ =
⊔

t∈{∗}tG̊

Φt .

For every t ∈ {∗} t G̊ and every ϕ ∈ C, the function ϕt satisfies the condition
Φt ⊆ ϕt(Xt) ⊆ Gt, by the definition of BX . Moreover, if ϕ′, ϕ ∈ C, then

M(ϕ,ϕ′) = 1⇐⇒ ∀t ∈ {∗} t G̊ ,


∀x ∈ Xt ,

{
ϕ(x) ≤ ϕ′(x) if ϕ′(x) ∈ Φt ,
ϕ(x) ≤ ωϕ′(x) otherwise,

∀f ∈ Φt , ∃x ∈ Xt , ϕ(x) = f = ϕ′(x) .
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It follows that the matrix MC is a tensor product of square matrices MC,t, for

t ∈ {∗} t G̊, where MC,t is indexed by the set At of functions ϕ : Xt → Gt such
that Φt ⊆ ϕ(Xt). Thus MC,t satisfies

MC,t(ϕ,ϕ
′) = 1⇐⇒


∀x ∈ Xt ,

{
ϕ(x) ≤ ϕ′(x) if ϕ′(x) ∈ Φt ,
ϕ(x) ≤ ωϕ′(x) otherwise,

∀f ∈ Φt , ∃x ∈ Xt , ϕ(x) = f = ϕ′(x) .

In order to show that MC is invertible, we shall prove that each matrix MC,t is
invertible.

If x ∈ X∗ and ϕ′ ∈ A∗, then either ϕ′(x) = ωϕ′(x) or ϕ′(x) ∈ Φ∗, by the
construction of G∗. Therefore, if MC,∗(ϕ,ϕ

′) 6= 0, then ϕ(x) ≤ ϕ′(x) for any
x ∈ X∗. It follows that the matrix MC,∗ is triangular. Clearly MC,∗(ϕ,ϕ) = 1 for
any ϕ ∈ A∗, so MC,∗ is unitriangular, hence invertible, as required.

We are left with the matrices MC,t for t ∈ G̊. If t ∈ G̊, then Gt = [t, ω(t)] is
isomorphic to the totally ordered lattice n = {0 < 1 < . . . < n} for some n ≥ 1
(note that t < ω(t)). Moreover, Φt = ]t, ω(t)] is isomorphic to [n] = {1, . . . , n}.
Composing the maps ϕt : Xt → Gt with this isomorphism, we obtain maps Xt → n.
Changing notation for simplicity, we write X for Xt and we consider the set An of
all such maps ϕ : X → n satisfying the condition [n] ⊆ ϕ(X). The matrix MC,t,
which we write M for simplicity, is now indexed by An and we have

M(ϕ,ϕ′) = 1⇐⇒


∀x ∈ X,

{
ϕ(x) ≤ ϕ′(x) if ϕ′(x) ∈ [n] ,
ϕ(x) ≤ ωϕ′(x) if ϕ′(x) = 0 ,

∀f ∈ [n], ∃x ∈ X, ϕ(x) = f = ϕ′(x) .

We observe that the condition ϕ(x) ≤ ωϕ′(x) if ϕ′(x) = 0 is always fulfilled since
ω(0) = n. Hence

M(ϕ,ϕ′) = 1 ⇐⇒
{
∀x ∈ X, ϕ(x) ≤ ϕ′(x) if ϕ′(x) ∈ [n] ,
∀f ∈ [n], ∃x ∈ X, ϕ(x) = f = ϕ′(x) .

This is exactly the matrix M
n
ϕ′,ϕ considered at the end of the proof of Theorem 6.1

in [BT4]. In fact, it is a reduction to the case of a totally ordered lattice because
this matrix corresponds to the special case T = n. It is proved on page 246 of [BT4]
that this matrix is invertible. This completes the proof of Theorem 6.2, hence of
Theorem 6.1.

6.8. Corollary. Let α : T → T ′op be a join-morphism of finite lattices and let Sα
be the associated correspondence functor. Then for any finite set X the k-module
Sα(X) is free of rank

rk
(
Sα(X)

)
=

|Φα|∑
i=0

(−1)i
(
|Φα|
i

)
(|Gα| − i)|X| .

Proof : A well-known combinatorial formula (see Lemma 8.1 in [BT2]) shows that
the right hand side in the statement gives the number of maps ϕ : X → T satisfying
the condition Φα ⊆ ϕ(X) ⊆ Gα. The result follows from Theorem 6.1.

We can now give an answer to the question left open in Remark 3.12 and prove
that the pairing Sα × S′α → k is nondegenerate in the strong sense.
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6.9. Proposition. Let α : T → T ′op be a join-morphism of finite lattices and let
〈−,−〉 : FT × FT ′ → k be the associated pairing (see Proposition 3.9). Then the
natural morphism

i : Sα = FT /Kα −→ (S′α)\ = (FT ′/K
′
α)\

is an isomorphism.

Proof : For the convenience of this proof, we pass to the dual and we aim to prove
that the natural morphism j : S′α → S\α is an isomorphism. By Lemma 6.2, we
know that the matrix M indexed by Bα,X × Bα,X defined by

∀(π, ϕ) ∈ Bα,X × Bα,X , M(π, ϕ) = 〈π, ζϕ〉X
is invertible. Let N = M−1. Then

∀(π, π′) ∈ Bα,X × Bα,X ,
∑

ϕ∈Bα,X

〈π, ζϕ〉X N(ϕ, π′) = δπ,π′ ,

where δπ,π′ is the Kronecker symbol.

The natural morphism jX : FT ′(X)/K ′α(X) →
(
FT (X)/Kα(X)

)\
is injective,

by the definition of K ′α. Now
(
FT (X)/Kα(X)

)\
is isomorphic to the submodule of

FT (X)\ consisting of linear forms FT (X) → k which vanish on Kα(X). Let λ be
such a form, and set

λ̂ =
∑

ϕ,π′∈Bα,X

N(ϕ, π′)λ(π′) ζϕ ∈ FT ′(X) .

Then for any π ∈ Bα,X ,

〈π, λ̂〉X =
∑

ϕ,π′∈Bα,X

N(ϕ, π′)λ(π′)〈π, ζϕ〉X =
∑

π′∈Bα,X

δπ,π′λ(π′) = λ(π) .

Moreover 〈u, λ̂〉X = 0 for any u ∈ Kα(X), by the definition of Kα, and λ(u) = 0

also, by our assumption on λ. It follows that the linear forms λ and 〈−, λ̂〉X
coincide on kBα,X +Kα(X), which is the whole of FT (X) by Theorem 5.12. Hence

λ = 〈−, λ̂〉X , so λ lies in the image of the morphism jX . It follows that jX is
surjective, hence it is an isomorphism.

7. The main example of fundamental functors

Let T be a finite lattice and let (E,R) be the poset of irreducible elements of T ,
i.e. E = Irr(T ) and R is the restriction to E of the order relation of T . For clarity,
we use a subscript T for the interval [s, t]T in T , where s ≤ t in T . Similarly, if
a ≤ b in E, then [a, b]E = {e ∈ E | a ≤ e ≤ b}. Recall that an upper subset in E
is a subset A of E such that, whenever a ∈ A and a ≤ b with b ∈ E, then b ∈ A.
We let I↑(E,R) be the set of all upper subsets in E, which is a lattice for the usual
operations of union and intersection. We consider the map

α : T −→ I↑(E,R)op , t 7→ α(t) := [ t, 1̂ ]T ∩ E ,

which is easily seen to be a join-morphism, because [ s ∨ t, 1̂ ]T = [ s, 1̂ ]T ∩ [ t, 1̂ ]T
and α( 0̂ ) = [ 0̂, 1̂ ]T ∩ E = E = 1̂I↑(E,R) = 0̂I↑(E,R)op .

Our aim is to show that the corresponding functor Sα is isomorphic to the
fundamental functor SE,Rop studied in [BT3, BT4] and that our description of a
k-basis of Sα(X) is the same as the one obtained for SE,Rop(X) in [BT4]. In fact,
our results in Sections 5 and 6 have been inspired by this very special case, already
proved in [BT4].
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7.1. Lemma. Let α : T → I↑(E,R)op be as above and let β = αop.

(a) For any A ∈ I↑(E,R), we have β(A) =
∧
a∈A

a.

(b) Φα = E and Φ′α = {[e, ·[E | e ∈ E}, where [e, ·[E= {f ∈ E | f ≥ e}.

Proof : (a) We have

β(A) =
∨
t∈T

α(t)⊆opA

t =
∨
t∈T

A⊆α(t)

t =
∨
t∈T

A⊆[ t,1̂ ]T

t =
∨
t∈T
t≤A

t =
∧
a∈A

a .

(b) For any e ∈ E = Irr(T ), we have α(e) = [e, ·[E and this is an irreducible
element of I↑(E,R) (also called a principal upper subset). Moreover, by (a),

βα(e) =
∧

f∈[e,·]E

f =
∧
f≥e

f = e .

The definition of Φα (see Notation 3.5) yields Φα = E. Moreover Φ′α = α(Φα) =
{[e, ·[E | e ∈ E}.

7.2. Proposition. With the notation above, there is an isomorphism Sα ∼= SE,Rop ,
where SE,Rop is the fundamental functor introduced in [BT3].

Proof : We don’t go back to the definition of SE,Rop but use instead the following
description. By Theorem 6.5 in [BT3], there is a canonical surjective morphism
ΘT : FT → SE,Rop . Next, Theorem 7.1 in [BT3] asserts that, on evaluation at a
finite set X, the kernel of the map ΘT,X : FT (X)→ SE,Rop(X) consists of all linear
combinations

∑
ϕ∈TX λϕϕ satisfying a system of linear equations (Eψ) indexed by

all maps ψ : X → I↑(E,R). More explicitly,

(Eψ) :
∑
ϕ∈TX
ϕ
È,R

ψ

λϕ = 0 ,

where the relation
È,R

is defined as follows (see Theorem 7.3 in [BT3] or Theo-

rem 4.13 in [BT4]) :

ϕ
È,R

ψ ⇐⇒ ∀t ∈ T, ψ
(
ϕ−1(t)

)
⊆ [t, 1̂[T∩E and ∀e ∈ E, ψ

(
ϕ−1(e)

)
= [e, ·[E ,

with the abuse of notation which identifies ψ
(
ϕ−1(t)

)
with the union of its elements

in I↑(E,R). The first condition can be rewritten as

∀t ∈ T, ψ
(
ϕ−1(t)

)
⊆ [ 0̂, α(t) ]I↑(E,R)

while the second becomes

∀e ∈ E, α(e) ∈ ψ
(
ϕ−1(e)

)
.

Thus we find that ϕ
È,R

ψ is equivalent to ϕ`ψ (see Notation 3.8). It follows that

the equation (Eψ) can be rewritten as
∑
ϕ`ψ λϕ = 0. Since this must hold for

every ψ, we obtain that
∑
ϕ∈TX λϕϕ must belong to the left kernel of the pairing

defined in Notation 3.8. In other words, Ker(ΘT,X) = Kα(X). This implies that

Sα(X) = FT (X)/Kα(X) = FT (X)/Ker(ΘT,X) ∼= SE,Rop(X) ,

hence Sα ∼= SE,Rop , as was to be shown.
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By Theorem 6.1, we know that a k-basis of Sα(X) is obtained by taking the
image of the subset

Bα,X = {ϕ ∈ TX | E ⊆ ϕ(X) ⊆ Gα} ⊆ FT (X) ,

where Gα is defined in (5.1). Similarly, by Theorem 6.6 in [BT4], we know that a
k-basis of SE,Rop(X) is obtained by taking the image of the subset

BX = {ϕ ∈ TX | E ⊆ ϕ(X) ⊆ G} ⊆ FT (X) ,

where G is described as

(7.3) G = E tG] , G] = {a ∈ T | a = r∞σ∞(a)} ,

as in Lemma 2.9 of [BT4]. Here r : T → T is defined by (3.13) and σ : T → T is
defined by

σ(t) =
∧

e∈Irr(T )
t<e

e ,

Now we can show that both approaches coincide and that the result of [BT4] is
indeed a special case of Theorem 6.1.

7.4. Proposition. With the notation above, Gα = G, hence Bα,X = BX .

Proof : Since Φα = E by Lemma 7.1, we get Gα = E t Im(θ), so we need to show
that

t ∈ Im(θ) ⇐⇒ t ∈ G] .
We can assume that t /∈ E because both subsets intersect E trivially. Now t ∈ Im(θ)
if and only if

t = θ(t) = β]α](t) = ρω(t) = r∞ω(t)

because we have ρ = r∞ by Lemma 4.2 and the fact that Φα = E. So we are left
with the proof that ω(t) = σ∞(t) for any t ∈ T with t /∈ E.

Suppose first that α(t) /∈ Φ′α. Then α](t) = α(t) and Lemma 7.1 implies that

ω(t) = βα(t) =
∧

a∈α(t)

a =
∧
a∈E
a≥t

a =
∧
a∈E
a>t

a

because t /∈ E. Therefore ω(t) = σ(t). The same argument applies to ω(t) instead
of t, because α(ω(t)) = αβα(t) = α(t) /∈ Φ′α. Thus ω(ω(t)) = σ(ω(t)) and therefore

σ2(t) = σω(t) = ω(ω(t)) = (βα)2(t) = βα(t) = σ(t) .

It follows that σ∞(t) = σ(t) = ω(t).
Suppose now that α(t) ∈ Φ′α. Let l ≥ 1 be the smallest integer such that

α](t) = rlα(t) /∈ Φ′α. By Lemma 4.7, we have [t, ω(t)] ∩ E = {u0, . . . , ul−1}, where
ui = βriα(t) for 0 ≤ i ≤ l − 1. For any e ∈ E with e > t, we have α(e) ≤ α(t)
and Corollary 4.4 implies that either α(e) = riα(t) for some 0 ≤ i ≤ l − 1 or
α(e) ≤ α](t). Applying β and using the equality e = βα(e) (because e ∈ E = Φα),
we see that either e = ui for some 0 ≤ i ≤ l−1 or e ≥ βα](t) = ω(t). The definition
of σ and the fact that t < u0 (because t /∈ E) yield

(7.5) σ(t) = u0, σ(u0) = u1, . . . , σ(ul−2) = ul−1 .

It remains to determine σ(ul−1).

Note first that, for any f ∈ E, we have α(f) = [f, 1̂ [T∩E = [f, ·[E and moreover

(7.6) σ(f) =
∧
e∈E
e>f

e =
∧

e∈]f,·[E

e = β(]f, ·[E) ,
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by Lemma 7.1. Therefore

rl−1α(t) = αβ
(
rl−1α(t)

)
= α(ul−1) = [ul−1, ·[E

and hence
α](t) = rlα(t) = r[ul−1, ·[E = ]ul−1, ·[E ,

so that
ω(t) = βα](t) = β(]ul−1, ·[E) = σ(ul−1) = σl+1(t) ,

using (7.6) and (7.5).
There are now two cases. Suppose first that σ(ul−1) = ul−1. Then σl+1(t) =

σ(ul−1) = ul−1, hence σ∞(t) = ul−1 = σ(ul−1) = ω(t), as was to be shown.
Suppose now that σ(ul−1) > ul−1, that is, ω(t) > ul−1. Then ω(t) /∈ E by
Lemma 4.7(c). The definition of σ implies that, for any e ∈ E,

e > ul−1 ⇐⇒ e ≥ σ(ul−1) ⇐⇒ e ≥ ω(t) ⇐⇒ e > ω(t) ,

where the latter equivalence comes from the fact that ω(t) /∈ E. We deduce that
σ(ul−1) = σ(ω(t)), hence ω(t) = σ(ω(t)). But since σl+1(t) = σ(ul−1) = ω(t), we
obtain σ∞(t) = ω(t).

This shows that σ∞(t) = ω(t) in all cases, completing the proof that Im(θ) = G].
The equality Bα,X = BX follows.

8. The injective case

In this section, we study the case when our given join-morphism α : T → T ′op is
injective. We first show that this injective case could also be called the surjective
case.

8.1. Lemma. Let α : T → T ′op be a join-morphism of finite lattices and let
β = αop.

(a) If α is injective, then βα = idT and in particular β is surjective.
(b) If β is surjective, then βα = idT and in particular α is injective.

Proof : (a) Since αβα = α by Lemma 3.4, the injectivity of α implies that
βα = idT .

(b) Similarly, since βαβ = β by Lemma 3.4, the surjectivity of α implies that
βα = idT .

Next we show that some important simplifications occur.

8.2. Lemma. Let α : T → T ′op be a join-morphism of finite lattices and suppose
that α is injective.

(a) Φα = {f ∈ Irr(T ) | α(f) ∈ Irr(T ′)}.
(b) Gα = T .
(c) T = Φα t {t ∈ T | t = ω(t) = θ(t)}.

Proof : (a) Let β = αop as usual. The definition of Φα contains the condition
βα(f) = f , but this condition is automatically satisfied when α is injective, by
Lemma 8.1.

(b) By Lemma 5.2, we have β(T ′) ⊆ Gα, hence Gα = T by surjectivity of β.

(c) By Proposition 4.13, we have β(T ′) = Φα t {t ∈ T | t = ω(t) = θ(t)}.
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8.3. Remark. Let t ∈ T and let l be the smallest integer such that rlα(t) /∈ Φ′α,
as in Section 4. Keeping the assumption that α is injective, it is easy to see that

t ∈ Φα ⇐⇒ α(t) ∈ Φ′α ⇐⇒ l ≥ 1 .

Moreover, if t ∈ Φα and vi = βriα(t), then either

θ(t) < t = v0 < . . . < vl−1 = ω(t) ∈ Φα ,

or
t = v0 < . . . < vl−1 < θ(t) = ω(t) /∈ Φα .

Both situations occur in specific examples. Note also that if t /∈ Φα, then t =
ω(t) = θ(t) by Lemma 8.2, so there are no reduction sequences.

8.4. Example. Let α : T → T ′op be an injective join-morphism of finite lattices.
Replace every e ∈ Irr(T ′) by a lozenge

e

e′ e′′

e′′′

and let T ′ be the resulting lattice, in which every such e becomes reducible. Thus no
irreducible element of T ′ remains irreducible in T ′ under the inclusion j : T ′ → T ′

(mapping e ∈ Irr(T ′) to the top e in the corresponding lozenge) and so no irreducible
element of T is mapped to an irreducible element of T ′ under the composite α =
j ◦ α : T → T ′ op. By Lemma 8.2 and injectivity of α, we get Φα = ∅ and Gα = T .
Therefore the condition Φα ⊆ ϕ(X) ⊆ Gα is satisfied by every map ϕ : X → T .
Consequently, by using either Theorem 6.1 or Remark 3.16, we obtain

Sα = FT ,

so our main construction of functors also covers the functors FT . In this example,
T can be any finite lattice, since we can choose T ′ = T op and α = id.

9. The minimal nonzero evaluation

As usual, α : T → T ′
op

is a join-morphism of finite lattices, Φα is the subset
of Irr(T ) defined in Notation 3.5, and Sα = FT /Kα. We have seen that the set Φα
plays a crucial role throughout the paper and it appears again here as a minimal set
such that the evaluation Sα(Φα) is nonzero. Our purpose is to analyse the structure
of Sα(Φα) as a module for the algebra of the monoid of all relations on Φα. Let us
start with an easy observation.

9.1. Lemma.

(a) For any finite set X, let ϕ ∈ TX be such that Φα 6⊆ ϕ(X). Then ϕ ∈ Kα(X).
(b) For any finite set X such that |X| < |Φα|, we have Sα(X) = {0}.
(c) Sα(Φα) 6= {0}.

Proof : (a) This was already observed at the beginning of the proof of Theo-
rem 5.12.

(b) If ϕ ∈ TX satisfies Φα 6⊆ ϕ(X), the image of ϕ in Sα(X) = FT (X)/Kα(X)
is zero by (a). If |X| < |Φα|, then |ϕ(X)| ≤ |X| < |Φα|, so Φα 6⊆ ϕ(X). Since this
holds for every ϕ, we obtain Sα(X) = {0}.

(c) If X = Φα, the inclusion j : Φα → T does not lie in Kα(Φα) because j′ = α◦j
satisfies j

ὰ
j′, hence 〈j, j′〉α,Φα 6= 0. Thus the image of j in Sα(Φα) is nonzero.
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Alternatively, the k-basis Bα,X of Sα(X) is empty if |X| < |Φα| and nonempty
if X = Φα. However, this argument is much less elementary since it requires
Theorem 6.1.

Given a finite set E, the set of relations on E (i.e. all subsets of E × E) forms
a monoid which is a k-basis for a k-algebra AE , the algebra of the monoid. For
any partial order relation R on E, there is a very special AE-module ME,R, called
the fundamental module associated to the pair (E,R) and described explicitly in
the following way. First ME,R is a free k-module with a basis {mσ | σ ∈ ΣE},
where ΣE is the group of all permutations of the set E. Then the left AE-module
structure is described by specifying the action of every relation Q on the k-basis :

(9.2) Q ·mσ =

{
mτσ if ∃ τ ∈ ΣE such that ∆ ⊆ ∆τ−1Q ⊆ σR ,

0 otherwise.

Here, ∆τ = {(τ(e), e) | e ∈ E} ⊆ E × E and σR = ∆σR∆σ−1 , while ∆ = ∆id is
the diagonal subset of E × E.

The module ME,R was introduced in Section 7 of [BT1] as a left ideal PfR,
where P is some quotient algebra of AE and fR is a suitable idempotent in P.
The action (9.2) appears in Proposition 8.5 of [BT1]. The fundamental module
ME,R was used in [BT3, BT4] for the definition of the fundamental functor SE,R,
already mentioned in Section 7 as a very special case of Sα. This module can also
be recovered as the evaluation SE,R(E) ∼= ME,R.

We now show that the latter isomorphism is again a very special case of a prop-
erty of Sα. To make our notation precise, we note that Φα is a (full) subposet of T
and we let Rα be the partial order relation on Φα obtained by restriction from T .

9.3. Theorem. With the notation above, Sα(Φα) is isomorphic to MΦα,R
op
α

as a
module over the algebra AΦα .

Proof : Write Φ = Φα and R = Rα. Let ϕ ∈ TΦ be such that its image in Sα(Φ) is
nonzero. By Lemma 9.1(a), we must have Φ ⊆ ϕ(Φ), hence Φ = ϕ(Φ). Therefore,
there exists a permutation τ ∈ ΣΦ such that ϕ ◦ τ = j, where j : Φ → T denotes
the inclusion map. Then, by the definition of the action of correspondences, we get,
for any f ∈ Φ,

(∆τ j)(f) =
∨
x∈Φ

(f,x)∈∆τ

j(x) = j(τ−1(f)) = ϕ(f) ,

hence ϕ = j ◦ τ−1 = ∆τ j. Thus all functions ϕ ∈ TΦ map to zero in Sα(Φ) except
the functions j ◦ τ−1 = ∆τ j.

Suppose that σ ∈ ΣΦ is such that the relation ∆σj
ὰ
j′ holds, where j′ = α ◦ j.

Then Lemma 3.7(a) implies that α ◦ j = j′ ≤ α ◦ ∆σj, hence j ≥ ∆σj because
α|Φ : Φ → Φ′

op
is a poset isomorphism (Lemma 3.6). By increasing induction in

the poset Φ, we deduce that j = ∆σj, hence f = σ−1(f) for all f ∈ Φ, in other
words σ = id. Thus if 〈∆σj , j

′〉α,Φ 6= 0, then σ = id.
Now we can prove that the functions {∆σj | σ ∈ ΣΦ} remain k-linearly indepen-

dent in Sα(Φ) = FT (Φ)/Kα(Φ). Suppose that∑
σ∈ΣΦ

λσ∆σj ∈ Kα(Φ) ,

where λσ ∈ k. Then, for all τ ∈ ΣΦ,

0 =
〈 ∑
σ∈ΣΦ

λσ∆σj , ∆τ j
′〉
α,Φ

=
∑
σ∈ΣΦ

λσ
〈
∆op
τ ∆σj , j

′〉
α,Φ

,
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because this is a functorial pairing by Proposition 3.9. But since we have ∆op
τ ∆σ =

∆τ−1∆σ = ∆τ−1σ, we get a nonzero term only if τ−1σ = id. So we are left with
0 = λσ〈j , j′

〉
α,Φ

= λσ, proving the required linear independence. Moreover, the

image in Sα(Φ) of the set {∆σj | σ ∈ ΣΦ} is a basis of Sα(Φ) because all the other
functions ϕ ∈ TΦ map to zero.

Now we consider the action of a relation Q ⊆ Φ × Φ and we assume first that
Qj = j. Then, for all f ∈ Φ, we have

f = j(f) = (Qj)(f) =
∨
x∈Φ

(f,x)∈Q

j(x) .

Since f is irreducible in T , one of the terms must be f and j(x) ≤ j(f) for all x such
that (f, x) ∈ Q. In other words, (f, f) ∈ Q and moreover the property (f, x) ∈ Q
implies x ≤ f inside Φ, that is, (f, x) ∈ Rop. Thus if Qj = j, then ∆ ⊆ Q ⊆ Rop.
Conversely, if ∆ ⊆ Q ⊆ Rop, then

(Qj)(f) =
∨
x∈Φ

(f,x)∈Q

j(x) .

Since one of the terms is j(f) (because ∆ ⊆ Q) and since (f, x) ∈ Q implies
j(x) ≤ j(f) (because Q ⊆ Rop), we are left with (Qj)(f) = j(f), hence Qj = j.
We have proved that

(9.4) Qj = j ⇐⇒ ∆ ⊆ Q ⊆ Rop .

Finally we can compute the action of Q on each element ∆σj (mapping to a
basis element of Sα(Φ), as proved above). If Q∆σj is not of the form ∆πj for
some π ∈ ΣΦ, then its image is zero in Sα(Φ) by the first paragraph of the proof.
Otherwise, by (9.4) followed by conjugation by ∆σ, we obtain

Q∆σj = ∆πj ⇐⇒ ∆π−1Q∆σj = j

⇐⇒ ∆ ⊆ ∆π−1Q∆σ ⊆ Rop

⇐⇒ ∆ ⊆ ∆σ∆π−1Q ⊆ ∆σR
op∆σ−1

⇐⇒ ∆ ⊆ ∆τ−1Q ⊆ σRop

where τ = πσ−1. Thus we recover exactly the action of the monoid of relations on
the fundamental module MΦ,Rop , as described in (9.2). In other words, we have an
isomorphism of AΦα -modules Sα(Φ) ∼= MΦ,Rop .

Given a finite poset (Φ, R), the fundamental functor SΦ,Rop is a special case of
a functor Sα, by Proposition 7.2. By Theorem 9.3 and Lemma 9.1, its evaluation
at Φ is isomorphic to MΦ,Rop and SΦ,Rop(X) = {0} whenever |X| < |Φ|. Moreover,
this property is shared by all correspondence functors Sα whose associated poset
(Φα, Rα) is isomorphic to (Φ, R). We now show that the relationship between Sα
and SΦ,Rop can be made more explicit by establishing that the fundamental functor
SΦ,Rop is minimal among all correspondence functors Sα whose associated poset
(Φα, Rα) is isomorphic to (Φ, R).

9.5. Proposition. With the notation above, the fundamental functor SΦα,R
op
α

is
isomorphic to a subquotient of Sα.

Proof : Write Φ = Φα and R = Rα. In this proof, we need to go back to the
definition of SΦ,Rop given in Section 2 of [BT3]. First recall that evaluation at Φ
has a left adjoint

AΦ−Mod −→ Fk , W 7→ LΦ,W
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defined by LΦ,W = kC(−,Φ) ⊗AΦ
W , where C(X,Φ) denotes the set of all corre-

spondences between X and Φ and kC(X,Φ) is the free k-module with basis C(X,Φ).
Moreover, LΦ,W has a unique subfunctor JΦ,W which is maximal with respect to
the condition that it vanishes at Φ. The fundamental functor SΦ,Rop is defined by

SΦ,Rop := LΦ,M/JΦ,M ,

where M := MΦ,Rop is the fundamental AΦ-module defined by (9.2). We refer to
Section 2 of [BT3] for more details.

By Theorem 9.3, there is an isomorphism Sα(Φ) ∼= M and the adjunction prop-
erty implies that there is a corresponding morphism

π : LΦ,M −→ Sα
which is an isomorphism on evaluation at Φ. Therefore Ker(π) vanishes at Φ, so
that Ker(π) ⊆ JΦ,M by the property of JΦ,M . It follows that there is a surjective
morphism

Im(π) ∼= LΦ,M/Ker(π) −→ LΦ,M/JΦ,M = SΦ,Rop .

Since Im(π) ⊆ Sα, we see that SΦ,Rop is isomorphic to a subquotient of Sα.

In the proof above, the morphism π is not necessarily surjective, so that SΦ,Rop

may not be a quotient of Sα, but only a subquotient. This can be seen by taking
the special case Sα = FT and Φ = ∅, as in Example 8.4. In that case, LΦ,M is
the constant functor with values k and π(LΦ,M ) is the unique constant subfunctor
of FT , which is not the whole of FT as soon as |T | ≥ 2. However, this example is
slightly misleading, because the constant functor does appear as a quotient of FT ,
but in a different way.

10. A comparison theorem

Every functor Sα is a quotient of FT which is in turn of the form Sα for a suitable α,
by Example 8.4. It is a natural question to ask more generally if one can compare
functors by means of a surjective morphism. We prove here that this is indeed the
case under very simple assumptions. The result will be used in an essential way in
a future paper, but it is also of independent interest.

10.1. Theorem. Let α1 : T → T ′1
op and α2 : T → T ′2

op be two join-morphisms
of finite lattices. Suppose that Φα1

= Φα2
and Gα1

⊆ Gα2
. Then Kα2

⊆ Kα1
, and

this induces a surjective morphism Sα2 −→ Sα1 .

Proof : Let X be a finite set. We set Φ = Φα1
= Φα2

and we introduce, as in
Section 6,

Bα1,X = {ϕ ∈ TX | Φ ⊆ ϕ(X) ⊆ Gα1
} ,

Bα2,X = {ϕ ∈ TX | Φ ⊆ ϕ(X) ⊆ Gα2
} .

We will show that FT (X) = kBα2,X +
(
Kα1

(X)∩Kα2
(X)

)
by a method similar to

the proof of Theorem 6.1. For simplicity, we write

V := kBα2,X +
(
Kα1(X) ∩Kα2(X)

)
and we aim to prove that V = FT (X). We choose ϕ : X → T , and we will prove
that ϕ ∈ V by induction on nϕ = |ϕ(X)−Gα2

|.
If Φ * ϕ(X), then ϕ ∈ Kα1

(X) by Lemma 9.1, and similarly ϕ ∈ Kα2
(X),

hence ϕ ∈ V . So we can assume that Φ ⊆ ϕ(X). If nϕ = 0, then ϕ(X) ⊆ Gα2 , so
ϕ ∈ Bα2,X and ϕ ∈ V . Thus we assume that nϕ ≥ 1.
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For i = 1, 2, let θi = β]iα
]
i , as in Notation 4.6. It follows from the assumption

that Gα1
−Φ ⊆ Gα2

−Φ, in other words Im(θ1) ⊆ Im(θ2) (see Notation 5.1). Then
θ2◦θ1 = θ1, as θ2 acts as the identity on Im(θ2). For any a ∈ T−Gα2 ⊆ T−Gα1 , we
have a < θ1(a) by Lemma 4.8 and the fact that Im(θ1) ⊆ Gα1 . Similarly a < θ2(a).
Since θ2 is order preserving, we obtain a < θ2(a) ≤ θ2θ1(a) = θ1(a). Applying θ1,
it follows that θ1(a) ≤ θ1θ2(a) ≤ θ1(a), hence θ1θ2(a) = θ1(a).

Since nϕ ≥ 1, we can choose an element a ∈ ϕ(X)−Gα2
. We set b = θ2(a) and

c = θ1(a), so that a < b ≤ c and θ1(b) = c. We consider the reduction sequence

a < u0 < u1 < . . . < uh−1 < b

associated to a for the morphism α2 : T → T ′2
op (see Definition 5.3). Recall that

{a < u0 < u1 < . . . < uh−1 < b} = {a, b} t
(
[a, b] ∩ Φ

)
,

by Proposition 4.9. Similarly, we have a /∈ Gα1
and we can consider the reduction

sequence

{a < v0 < v1 < . . . < vl−1 < c} = {a, c} t
(
[a, c] ∩ Φ

)
associated to a for the morphism α1 : T → T ′1

op. If b = c, then both reduction
sequences coincide. If b < c, then the obvious equality

(
[a, c]∩Φ

)
∩ [a, b] = [a, b]∩Φ

implies that the set {a < u0 < u1 < . . . < uh−1} is equal to the intersection with
[a, b] of the second reduction sequence. Thus h ≤ l, and ui = vi for 0 ≤ i ≤ h− 1.

Now we claim that b < vh (provided h < l, hence in particular l ≥ 1). In the
case h > 0, we have vh−1 < vh and both are in Φ. Therefore

α2(vh) < α2(vh−1) = α2β2r
h−1α2(a) = rh−1α2(a) ,

hence α2(vh) ≤ rrh−1α2(a) = rhα2(a). The same inequality holds if h = 0 because
a < v0 implies α2(v0) ≤ α2(a). For any h, recall that α2(b) = rhα2(a) by Propo-
sition 4.9(f). Therefore α2(vh) ≤ α2(b), hence b ≤ β2α2(b) ≤ β2α2(vh) = vh. But
b 6= vh because b /∈ Φ and vh ∈ Φ, so we get b < vh, as claimed.

We have now obtained

a < v0 < v1 < . . . < vh−1 < b < vh < . . . < vl−1 < c .

Recall that we may have h = 0 (and the first part of the sequence is just a < b)
and we may also have h = l (and the second part of the sequence is either b < c or
b = c).

First assume that b ∈ Gα1
, or equivalently b = c (hence in particular h = l).

Then both reduction sequences coincide and we write vh = b. By Lemma 5.4, the
element

w = ϕ+

h∑
k=0

(−1)k+1[a, v0, . . . , vk]ϕ

belongs to both Kα1
(X) and Kα2

(X), hence w ∈ V . Moreover each function
ϕk = [a, v0, . . . , vk]ϕ satisfies nϕk = nϕ − 1 for 0 ≤ k ≤ h, because a ∈ Im(ϕ) but

a /∈ Im(ϕk). So ϕk ∈ V by induction, hence ϕ = w+
h∑
k=0

(−1)kϕk also belongs to V ,

as was to be shown.
From now on, we assume that b /∈ Gα1

, that is, b < c. With the notation of
Lemma 5.4, we define

ϕk = [a, v0, . . . , vk]ϕ (0 ≤ k ≤ l − 1)

ϕ′ = [a, v0, . . . , vh−1, b]ϕ

ϕl = [a, v0, . . . , vl−1, c]ϕ
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Using the reduction sequence a < v0 < . . . < vh−1 < b for the morphism α2, we see
that the element

(10.2) w := ϕ+

h−1∑
k=0

(−1)k+1ϕk + (−1)h+1ϕ′

belongs to Kα2
(X), by Lemma 5.4. Our main goal is to prove that it also belongs

to Kα1
(X).

Since c = θ1(b), the sequence b < vh < . . . < vl−1 < c is a reduction sequence for
the morphism α1 and we set vl = c for convenience. By Lemma 5.4, we see that

(10.3) for any map ψ ∈ TX , ψ +

l∑
i=h

(−1)i−h+1[b, vh, . . . , vi]ψ ∈ Kα1
(X) .

We first apply (10.3) to each function ϕk and take the alternating sum over k, for
h ≤ k ≤ l. We obtain that the expression

(10.4)

l∑
k=h

(−1)kϕk −
l∑

k=h

(−1)k[b, vh]ϕk +

l∑
k=h

l∑
i=h+1

(−1)k+i−h+1[b, vh, . . . , vi]ϕk

belongs to Kα1
(X). We separate the first two sums on purpose, because we need

to analyse the remaining double sum. This double sum runs over the rectangle

P = {(k, i) | h ≤ k ≤ l , h+ 1 ≤ i ≤ l}

of size m × (m − 1), where m = l − h + 1. We can decompose P as the disjoint
union of the two subsets

P+ = {(k, i) ∈ P | k < i} and P− = {(k, i) ∈ P | k ≥ i} .

It is elementary to check that the map (k, i) 7→ (i, k + 1) is a bijection between P+

and P− with inverse (r, s) 7→ (s − 1, r). We now show that, for any (k, i) ∈ P+,
the map [b, vh, . . . , vi]ϕk, indexed by (k, i), is equal to the map [b, vh, . . . , vk+1]ϕi,
indexed by (i, k + 1). In view of the definition of ϕk, we must prove that

[b, vh, . . . , vi][a, v0, . . . , vk] = [b, vh, . . . , vk+1][a, v0, . . . , vi] .

But this is easy since both maps have the following effect (setting v−1 = a for
convenience) :

vr 7→ vr+1 if − 1 ≤ r ≤ h− 2

vr 7→ vr+2 if h− 1 ≤ r ≤ k − 1

vr 7→ vr+1 if k ≤ r ≤ i− 1

vr 7→ vr if i ≤ r ≤ l
b 7→ vh

t 7→ t otherwise.

In the double sum appearing in (10.4), opposite signs are assigned to the two maps,
so the pair vanishes. This applies to all pairs and therefore the whole double sum
is zero. It follows that (10.4) reduces to

(10.5)

l∑
k=h

(−1)kϕk −
l∑

k=h

(−1)k[b, vh]ϕk ∈ Kα1
(X) .

We now apply (10.3) to the function ϕ′ = [a, v0, . . . , vh−1, b]ϕ and we get

(10.6) ϕ′ +

l∑
k=h

(−1)k−h+1[b, vh, . . . , vk][a, v0, . . . , vh−1, b]ϕ ∈ Kα1(X) .
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But it is elementary to check that

[b, vh, . . . , vk][a, v0, . . . , vh−1, b]ϕ = [b, vh][a, v0, . . . , vk]ϕ = [b, vh]ϕk .

So if we multiply (10.6) by (−1)h−1 and add it to (10.5), all the functions [b, vh]ϕk
cancel and we obtain

(10.7) (−1)h−1ϕ′ +

l∑
k=h

(−1)kϕk ∈ Kα1(X) .

Next we use the long reduction sequence a < v0 < . . . < vh < vh+1 < . . . < vl−1 < c
for the morphism α1 and we set vl = c for convenience. By Lemma 5.4, we have

ϕ+

l∑
k=0

(−1)k+1ϕk ∈ Kα1
(X)

and if we add this to (10.7), all the terms with indices k ≥ h cancel and we are left
with

w = ϕ+

h−1∑
k=0

(−1)k+1ϕk + (−1)h−1ϕ′ ∈ Kα1
(X) .

But this is precisely the element w defined in (10.2), which also belongs to Kα2(X).
Therefore w ∈ Kα1(X) ∩Kα2(X), hence w ∈ V .

We then proceed as we did earlier in the case b = c. We have nϕk = nϕ − 1 for
0 ≤ k ≤ h− 1, and nϕ′ = nϕ − 1 as well. So ϕk, ϕ

′ ∈ V by induction, hence

ϕ = w +

h−1∑
k=0

(−1)kϕk + (−1)hϕ′ ∈ V .

This completes the proof of the equality FT (X) = kBα2,X +
(
Kα1

(X) ∩Kα2
(X)

)
.

Finally, we can finish the proof of Theorem 10.1. We have

Kα1(X) ∩Kα2(X) ⊆ Kα2(X) ⊆ kBα2,X +
(
Kα1(X) ∩Kα2(X)

)
.

It follows that

Kα2
(X) =

(
Kα1

(X) ∩Kα2
(X)

)
+
(
kBα2,X ∩Kα2

(X)
)
,

hence Kα2
(X) = Kα1

(X)∩Kα2
(X) since kBα2,X ∩Kα2

(X) = {0} by Theorem 6.1.
Thus Kα2(X) ⊆ Kα1(X) and the proof is complete.

11. The structure of the poset Gα

Given a join-morphism α : T → T ′
op

of finite lattices, we have defined the subset
Gα ⊆ T , which is used in Section 6 for the description of a basis of each evaluation
Sα(X). Dually, G′α is a subset of T ′, used similarly for a description of a basis of each
evaluation S′α(X). Note that S′α is isomorphic to the dual S]α, by Proposition 6.9,
but this does not tell us directly how Gα and G′α are related. The purpose of this
section is to show that Gα and G′α, viewed as full subposets of T and T ′ respectively,
are actually anti-isomorphic.

We know from Lemma 4.11(a) that α] restricts to an anti-isomorphism of posets
from Im(θ) to Im(θ′). Since Gα −Φα = Im(θ), we see that we now have two poset
anti-isomorphisms

α] : Gα − Φα −→ G′α − Φ′α and α : Φα −→ Φ′α .

The disjoint union of the two maps yields a bijection Gα → G′α, but unfortunately,
this bijection is not an anti-isomorphism. Our final theorem shows that the correct
anti-isomorphism is more subtle. We start with a lemma.
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11.1. Lemma. Let α : T → T ′op be a join-morphism of finite lattices, let β = αop,

and let Zα := {u ∈ Φα | ρ(u) ∈ Gα and u ≤ ωρ(u)}. Then Zα =
⊔

t∈Im(θ)

]t, ω(t)].

Proof : If u ∈ Zα, then t = ρ(u) ∈ Gα − Φα = Im(θ), and t < u ≤ ω(t)
by the definition of Zα. Thus u ∈ ]t, ω(t)]. Conversely, if u ∈ ]t, ω(t)] for some
t ∈ Im(θ), then u ∈ Φα because ]t, ω(t)] ⊆ Φα by Lemma 4.8. Moreover t = ρ(u)
and ω(t) = ω(u) by Lemma 4.11. This shows that u ∈ Zα. Moreover, we see that t
and ω(t) are determined by u, so that the sets ]t, ω(t)] are disjoint (possibly empty)
when t runs over Im(θ).

Note that ]t, ω(t)] is empty if t = ω(t), so the disjoint union actually runs over

the subset G̊ = {t ∈ Im(θ) | t < ω(t)}, which already appeared in the proof of
Theorem 6.1.

11.2. Theorem. Let α : T → T ′op be a join-morphism of finite lattices, let
β = αop, and let Zα be as above. Let λα : Gα → T ′ be the map defined by

λα(u) =

{
α(u) if u ∈ Gα − Zα ,
rα(u) if u ∈ Zα .

Then λα(Gα) = G′α and λα : Gα −→ G′α is an anti-isomorphism of posets, with
inverse λβ : Gβ = G′α −→ G′β = Gα.

Proof : We first prove that λα(Gα) ⊆ G′α. Let u ∈ Gα. If u /∈ Zα, then
λα(u) = α(u). But we know that α(T ) ⊆ G′α by Lemma 5.2, so λα(u) ∈ G′α in
this case. If u ∈ Zα, we let t = ρ(u) ∈ Gα − Φα, and t′ = α](t). In this case
λα(u) = rα(u). Moreover t < u ≤ ω(t) and, by Lemma 4.11, we deduce that
t′ < α(u) ≤ α(t). If rα(u) ∈ Φ′α, then rα(u) ∈ G′α, that is, λα(u) ∈ G′α and we are
done. Otherwise rα(u) /∈ Φ′α, hence rα(u) = α](u) = α](t) = t′ by the definition
of α]. Then θ′

(
rα(u)

)
= α]β]α](t) = α](t) by Lemma 4.8, since t /∈ Φα. Thus

λα(u) = rα(u) = α](t) ∈ Im(θ′) ⊆ G′α.
We show next that λα is order-reversing. For this, we consider elements u < v

in Gα, and we want to show that λα(u) ≥ λα(v). The first 3 cases are easy :

• If u /∈ Zα and v /∈ Zα, then λα(u) = α(u) ≥ α(v) = λα(v).
• If u /∈ Zα and v ∈ Zα, then λα(u) = α(u) ≥ α(v) > rα(v) = λα(v).
• If u ∈ Zα and v ∈ Zα, then λα(u) = rα(u) ≥ rα(v) = λα(v).

In the fourth case, we have u ∈ Zα and v /∈ Zα, hence λα(u) = rα(u) and λα(v) =
α(v). We set t = ρ(u) and observe that we still have α(u) ≥ α(v). Assume that
α(u) = α(v). If v ∈ Φα, then u = v by Lemma 3.6, contradicting the assumption
u < v. Thus v ∈ Gα − Φα = Im(θ). Since u ∈ Zα, Lemma 11.1 implies that u ∈
]t, ω(t)] where t = ρ(u) ∈ Im(θ). By Lemma 4.11, α induces an anti-isomorphism
between ]t, ω(t)] and ]t′, ω′(t′)], where t′ = α](t) and ω′(t′) = α(t). We deduce that
α(v) = α(u) ∈ ]α](t), α(t)], hence α](v) = α](t) because α](v) = ρ′α(v) = t′ by
Lemma 4.11 again. Since v, t ∈ Im(θ), they are fixed under θ, by Lemma 4.8, and
therefore

v = θ(v) = β]α](v) = β]α](t) = θ(t) = t ,

hence v = t < u, contradicting the assumption u < v. This contradiction shows that
α(u) 6= α(v), hence α(u) > α(v), and it follows that λα(u) = rα(u) ≥ α(v) = λα(v).

Our next step is to show that λβλα = idGα . We have

Gα = (Gα − Φα) t (Φα − Zα) t Zα
and we consider successively an element in each of those 3 subsets. We start with
t ∈ Gα−Φα, that is, t = θ(t). Applying Proposition 4.9, we see that only cases (a)
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or (d) of that Proposition can occur, because either t < θ(t) or θ(t) < t holds in
the other cases. In case (a), we have t = θ(t) = βα(t) /∈ Φα and α(t) /∈ Φ′α, hence
t /∈ Zα and α(t) /∈ Z ′α, where

Z ′α := {u ∈ Φ′α | ρ′(u) ∈ G′α and u ≤ ω′ρ′(u)} .
Thus we get λβλα(t) = λβ α(t) = βα(t) = t. In case (d), we have t /∈ Φα and

t = θ(t) < v0 < . . . < vl−1 = ω(t) , where vi = βriα(t) ∈ Φα ,

and l ≥ 1. By Lemma 4.11(c), ]t, ω(t)] is anti-isomorphic to ]t′, ω′(t′)], which is
contained in Z ′α by Lemma 11.1. In particular α(t) = ω′(t′) ∈ Z ′α, while t /∈ Zα, so
we obtain

λβλα(t) = λβ α(t) = rβα(t) = r(v0) = t ,

because v0 is the least element of the totally ordered interval ]t, ω(t)], by Lemma 4.8,
and so r(v0) = t.

We consider now our second subset and take t ∈ Φα − Zα. We claim that
α(t) /∈ Z ′α. If not, then, by Lemma 11.1, we would have α(t) ∈ ]s′, ω′(s′)], where
s′ = ρ′α(t) = α](t) and s′ ∈ Im(θ′). By Lemma 4.11, β induces an anti-isomorphism
between ]s′, ω′(s′)] and ]s, ω(s)], where s = β](s′) ∈ Im(θ). Therefore we would
obtain βα(t) ∈]s, ω(s)], hence βα(t) ∈ Zα. But βα(t) = t because t ∈ Φα. Since we
have chosen t /∈ Zα, this proves the claim. Now, the definition of λβ implies that
λβλα(t) = λβ α(t) = βα(t) = t.

Finally, for our third subset, we take u ∈ Zα and we let t = ρ(u) and t′ =
α](t), so that u ∈ ]t, ω(t)]. By Lemma 4.11 again, α induces an anti-isomorphism
]t, ω(t)]→ ]t′, ω′(t′)]. We have λα(u) = rα(u) ∈ [t′, ω′(t′)], and there are two cases.
If rα(u) = t′, then rα(u) /∈ Z ′α and so λβλα(u) = βrα(u) = β(t′) = ω(t). But
since rα(u) = t′, the element α(u) is the smallest element of the totally ordered
interval ]t′, ω′(t′)], so that u is the top element of ]t, ω(t)], that is, u = ω(t). Hence
λβλα(u) = u in this case. In the other case, we have v := rα(u) > t′, hence
v ∈ ]t′, ω′(t′)]. Then v and α(u) are adjacent in this totally ordered interval. Since
the inverse anti-isomorphism ]t′, ω′(t′)] → ]t, ω(t)] is induced by β, the elements u
and β(v) are adjacent in the totally ordered interval ]t, ω(t)], that is, u = rβ(v). It
follows that

λβλα(u) = λβ rα(u) = λβ(v) = rβ(v) = u .

This completes the proof that λβλα = idGα .
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[BT1] S. Bouc, J. Thévenaz. The algebra of essential relations on a finite set, J. Reine Angew.
Math. 712 (2016), 225–250.
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