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Abstract. Let G be a finite group and let S be a G-set. The Burnside ring
of G has a natural structure of a λ-ring, {λn}n∈N. However, a priori λn(S),
where S is a G-set, can only be computed recursively, by first computing
λ1(S), . . . , λn−1(S). In this paper we establish an explicit formula, expressing
λn(S) as a linear combination of classes of G-sets.

1. Introduction

We use B(G) to denote the Burnside ring of the finite group G. Recall that, as
an abelian group, B(G) is free on {[S]}S∈R, where R is a set of representatives of
the isomorphism classes of transitive G-sets, and that its rank equals the number
of conjugacy classes of subgroups of G. When f is a function on B(G) and S is a
G-set, we write f(S) for f([S]).

There is a λ-structure on B(G), {λn}n∈N, defined as the opposite structure1 of
{σn}n∈N, where σn(S) is the class of the nth symmetric power of S. It should be
considered the natural λ-structure on B(G), one reason for this being that there is
a canonical homomorphism to the ring of rational representations of G, h : B(G) →
RQ(G), defined by h(S) =

[
Q[S]

]
, and the given λ-structure on B(G) makes h into

a λ-homomorphism. (Note however that this λ-structure is non-special.)
The implicit nature of the definition of the λ-structure on B(G) makes it hard to

compute with. The main result of this paper is a closed formula for λn(S), where
S is any G-set. To state it, we use the following notation: let µ = (µ1, . . . , µl) ` n,
i.e., µ is a partition of n. We use `(µ) := l to denote the length of µ, and if
µ = (1α1 , 2α2 , . . . ), we define the tuple α(µ) := (α1, . . . , αl′), and write

(
`(µ)
α(µ)

)
for

l!
α1!···αl′ !

. Using this notation we can express λn(S), for any G-set S, as a linear
combination of classes of G-sets:

Theorem 1.1. Let n be a positive integer and let µ = (µ1, . . . , µl) ` n. For S a
G-set, let Pµ(S) be the G-set consisting of `(µ)-tuples of pairwise disjoint subsets
of S, where the first one has cardinality µ1, and so on. Then

(1.2) λn(S) = (−1)n
∑

µ`n

(−1)`(µ)
(

`(µ)
α(µ)

)
[Pµ(S)] ∈ B(G).

In particular, λn(S) = 0 when n > |S|.
This result was first stated and proved by the second author in an earlier version

of this paper (preprint [Rök07b]), showing that λn(S) lies in a subring of B(G)
on which h is injective, and then that the image of (1.2) in RQ(G) is satisfied.
The proof given in the present version is more intrinsic, using only the structure of
Burnside rings. It relies on the construction of a ring of formal power series with
coefficients in Burnside rings, and an exponential map on this ring, developed in
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1Let {σn}n∈N be a λ-structure on the ring R and define σt(x) :=

P
i≥0 σi(x)ti ∈ R[[t]]. The

λ-structure opposite to {σn} is defined by σt(x)·λ−t(x) = 1 ∈ R[[t]], where λt(x) :=
P

i≥0 λi(x)ti.
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[Bou92]. Using this framework, the proof reduces to some explicit combinatorial
computations. In Section 2 we give a survey of the relevant constructions and
results from [Bou92]. Then in Section 3 we use these results to obtain a formula
for λn(S), which we then show to be the requested one using some combinatorial
arguments.

Theorem 1.1 originates in the paper [Rök07a], in which the second author com-
putes the classes of certain tori in the Grothendieck ring of varieties, in terms of the
λ-structure on that ring. This formula is suggested by the corresponding class of the
cohomology of the torus, and its proof uses a map from the Burnside ring of the ab-
solute Galois group of the base field, where formula (1.2) can be applied. Actually,
it was these computations that led the second author conjecture Theorem 1.1.

Acknowledgment. The second author is grateful to Professor Torsten Ekedahl for
valuable discussions and suggestions concerning his investigation of the Burnside
ring.

2. Background Material

An introduction to λ-rings, representation rings and the Burnside ring is given
in [Knu73]. The standard reference for λ-rings is [AT69]. We now give a quick
review of some definitions and results:

2.1. Posets. A G-poset P is a G-set with a partial ordering compatible with the
G-action, in the sense that if s ≤ t ∈ P then gs ≤ gt for all g ∈ G. A G-map
of G-posets is a map f : P → Q of posets such that gf(s) = f(gs) for s ∈ P and
g ∈ G. If also f ′ : P → Q, then f ≤ f ′ if this holds pointwise. In connection with
this, when S is a G-set and we use it as a G-poset this means that we view S as a
G-poset using its discrete ordering.

Let P be a G-poset. We recall the definition of the Lefschetz invariant of P :
for every i ∈ N, Sdi P is the G-set of chains x0 < · · · < xi in P of length
i + 1. The Lefschetz invariant of the G-poset P , ΛP , is the alternating sum∑

i≥0(−1)i[Sdi P ] ∈ B(G). The reduced Lefschetz invariant of P is Λ̃P := ΛP −1.
We also need the notion of homotopic posets. We say that the G-posets P and

Q are simplicially homotopic, or just homotopic2, if there are G-maps f : P → Q
and g : Q → P such that gf ≤ IdP or gf ≥ IdP , and similarly for fg. if P and Q

are homotopic as G-posets then Λ̃P = Λ̃Q (see e.g. Proposition 4.2.5 in [Bou00]).
In particular, if P has a largest or smallest element then Λ̃P = 0.

2.2. Results from [Bou92]. In this subsection we give a review of the definitions
and results from [Bou92] that we use to prove Theorem 1.1. We use Gn to denote
the wreath product of G with Σn, Gn := G oΣn (by definition, G0 = 1). One defines
the ring B(G) in the folling way: as a group it is the direct product of the Burnside
rings B(G o Σn), indexed over all n ∈ N. We represent the elements of this group
as a power series,

∑
i≥0 xit

i where xi ∈ B(G o Σi). This is a ring in a natural way,
see [Bou92] for the construction of the multiplication.

Let g̃ = ((g1, . . . , gn), σ), where σ ∈ Σn and gi ∈ G, be an element of Gn. When
S is a G-set we view Sn as a Gn-set by g̃(s1, . . . , sn) = (g1sσ−11, . . . , gnsσ−1n).
Moreover, let S be the poset defined by adding a smallest element 0 to S, and
define the Gn-poset S∗n as the set of maps {1, . . . , n} → S which are not constant
equal to zero, where the partial ordering is defined pointwise, and with the Gn-
action defined in the same way as on Sn, with G acting trivially on the minimal
element 0.

2Note however that two non-homotopic posets may admit homotopic realizations.
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Next one defines maps ui : B(G) → B(Gi) by x 7→ ΛP i , where P is a G-poset
such that ΛP = x. Let I(G) be the ideal of B(G) consisting of those series with
zero as constant coefficient. The ui are then used to define an exponential map
Exp: I(G) → B(G) having the property that if f, g ∈ I(G) then Exp(f + g) =
Exp(f) Exp(g). In the case we are interested in, when f = xt for x ∈ B(G),
we have by definition Exp(xt) =

∑
i≥0 ui(x)ti. (We omit the construction in the

general case, see [Bou92].) In particular, when H is a subgroup of G we have
Exp([G/H]t) =

∑
i≥0[Gi/Hi]ti. Moreover, since, for any G-set S, S = ΛS = Λ̃S+ ,

where S+ := S
¦∪{•}, we have Exp(−[S]t) =

∑
i≥0 ui(− Λ̃S+)ti. By Lemme 4 in

[Bou92] it follows that

(2.1) Exp(−[S]t) = −
∑

i≥0

Λ̃(S+)∗i ti.

For every i ∈ N we have a map mi : B(Gi) → B(G), induced by taking the Gi-set
S to the G-set Σi\S. Together the mi give a homomorphism of rings m: B(G) →
B(G)[[t]].

3. Proof of Theorem 1.1

The property that allows us to use the above theory on our problem is the
following:

Lemma 3.1. For any x ∈ B(G) we have m
(Exp(xt)

)
= σt(x) and m

(Exp(−xt)
)

=
λ−t(x).

Proof. Let Sn denote the nth symmetric power. When x = [G/H], we have to show
that Σn\(Gn/Hn) ' Sn(G/H) as G-sets, for every positive integer n: firstly, the
map

(g1, . . . , gn, σ) 7→ (g1, . . . , gn) : Gn → (G/H)n

factors through Gn/Hn, for if (g1, . . . , gn, σ) ∈ Gn then, for any (h1, . . . , hn, τ) ∈ Hn,
the element

(g1, . . . , gn, σ)(h1, . . . , hn, τ) = (g1hσ1, . . . , gnhσn, στ) ∈ Gn

maps to (g1hσ1, . . . , gnhσn) = (g1, . . . , gn) ∈ (G/H)n, which is also the image of
(g1, . . . , gn, σ). Denote the resulting map φ : Gn/Hn → (G/H)n. If we give (G/H)n

the Gn-set structure (g1, . . . , gn, σ) · (f1, . . . , fn) = (g1fσ1, . . . , gnfσn), then φ is
Gn-equivariant. Moreover it is surjective. Since both Gn/Hn and (G/H)n have
|G|n/|H|n elements, it follows that φ is an isomorphism of Gn-sets. Consequently
it induces an isomorphism of G-sets Σn\(Gn/Hn) → Sn(G/H).

For arbitrary x the result now follows from the properties of m and Exp. For sup-
pose that it holds for x, y ∈ B(G). Firstly m(Exp(x+y)) = m(Exp(x))m(Exp(y)) =
σt(x)σt(y) = σt(x+y). Moreover 1 = m(Exp(x)) m(Exp(−x)) = σt(x) m(Exp(−x)),
hence m(Exp(−x)) = σt(−x). Since every element of B(G) is a linear combination
of elements [G/H] we are done.

The second assertion follows immediately, since σt(x)λ−t(x) = 1, so λ−t(x) =
σt(−x). ¤

Using this lemma together with (2.1) shows that, when S is a G-set, λ−t(S) =
−m

(∑
n≥0 Λ̃(S+)∗i tn

)
, hence that

(3.2) λn(S) = (−1)n−1 mn

(
Λ̃(S+)∗i

)
.

Thus we have in some sense achieved our goal; we have expressed λn(S) in a non-
recursive way, without using λi(S) for i < n. However, we want to be more concrete,
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and the major step is the following proposition, which allows us to express λn(S)
without using B(Gn).

Proposition 3.3. For S a G-set, let Ω≤n(S) be the G-poset of nonempty subsets
of S of cardinality ≤ n. For any n ∈ N,

mn

(
Λ̃S∗n

)
= Λ̃Ω≤n(S) .

Proof. Given the G-set S and a positive integer n we define the G-poset Sn,

Sn := {α : S → N : 1 ≤
∑

s∈S

α(s) ≤ n}

with the ordering given by α ≤ α′ if α(s) ≤ α′(s) for every s ∈ S, and the G-action
(gα)(s) := α(g−1s). Note that Sn is G-homotopic to Ω≤n(S), for we have maps
θ : Sn → Ω≤n(S), given by α 7→ α−1(Nr{0}), and θ′ : Ω≤n(S) → Sn sending A ⊆ S
to its characteristic function. The composition θθ′ is the identity and θ′θ ≤ IdSn

.
Hence Λ̃Sn

= Λ̃Ω≤n(S), so it suffices to show that mn

(
Λ̃S∗n

)
= Λ̃Sn

. We will do this
by proving that, for every i,

Σn\Sdi(S∗n) ' Sdi(Sn)

as G-sets.
We proceed to constructing this isomorphism: first, we have a map φ : S∗n → Sn,

defined by φ(f)(s) = |f−1(s)| for s ∈ S. One checks that this is a well-defined
map of G-posets (where we view S∗n as a G-poset via restriction). The map φ is
surjective, for given α ∈ Sn one may construct an element f in its preimage in the
following way: for s ∈ S, choose Es ⊆ {1, . . . , n} such that |Es| = α(s) (possibly,
Es = ∅). Since

∑
s∈S α(s) ≤ n we may do this such that the Es are mutually

disjoint. We now define f ∈ S∗n by f(i) = 0 if i /∈ ∪s∈SEs and f(i) = s if i ∈ Es.
It then follows that φ(f)(s) = |f−1(s)| = |Es| = α(s) for all s ∈ S, i.e., φ(f) = α.

Next one shows that φ induces, for every i, a map of G-sets Φ: Sdi(S∗n) →
Sdi(Sn) defined by

Φ(f0 < · · · < fi) :=
(
φ(f0) < · · · < φ(fi)

)
.

Since we already know that φ is a map of G-posets it suffices to show that Φ
does not map chains to shorter chains, i.e., that if f < f ′ then ϕ(f) < ϕ(f ′).
This follows since there exists an i0 ∈ {1, . . . , n} such that f(i0) < f ′(i0), i.e.,
f(i0) /∈ S whereas f ′(i0) = s0 ∈ S, hence f−1(s0) is strictly contained in f ′−1(s0),
i.e., φ(f)(s0) < φ(f ′)(s0).

The map Φ is surjective, for φ is and from the construction it follows that we may
choose elements in the preimages such that the chain property is not destroyed.

Finally, for c = (f0 < · · · < fi) and c = (f ′0 < · · · < f ′i) in Sdi(S∗n) we have
Φ(c) = Φ(c′) if and only if there exists a σ ∈ Σn such that σ(c) = c′. For suppose
that Φ(c) = Φ(c′). Then, for every 0 ≤ j ≤ i, φ(fj) = φ(f ′j), i.e., for every s ∈ S

we have |f−1
j (s)| = |f ′−1

j (s)|. Since f−1
0 (s) ⊆ · · · ⊆ f−1

i (s) and f ′−1
0 (s) ⊆ · · · ⊆

f ′−1
i (s) this means that we may chose a bijection σs : f−1

i (s) → f ′−1
i (s) such that

σs

(
f−1

j (s)
)

= f ′−1
j (s) for every 0 ≤ j ≤ i. Since the sets f−1

j (s), for s ∈ S,
are mutually disjoint there exists a σ ∈ Σn which, viewed as an automorphism of
{1, . . . , n}, restrict to σs on f−1

i (s) for every s ∈ S. Then, for any 1 ≤ j ≤ i and
for any m ∈ {1, . . . , n} and s ∈ S we have that

fj(m) = s ⇐⇒ m ∈ f−1
j (s) ⇐⇒ σm ∈ f ′−1(s) ⇐⇒ f ′j(σm) = s,

and also that fj(m) = 0 ⇐⇒ f ′j(σm) = 0. Hence σfj = f ′j for 0 ≤ j ≤ i, i.e.,
σc = c′.

It follows that Φ induces an isomorphism of G-sets Σn\Sdi(S∗n) → Sdi(Sn). ¤
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Therefore, from (3.2),

λn(S) = (−1)n−1 Λ̃Ω≤n(S) .

Theorem 1.1 therefore follows from the following computation:

Lemma 3.4. Let S be a G-set and let S+ := S ∪ {•}. In B(G) we then have the
equality

Λ̃Ω≤n(S+) = −
∑

µ`n

(−1)`(µ)
(

`(µ)
α(µ)

)
[Pµ(S)].

Proof. The inclusion S → S+ induces an inclusion i : Ω≤n(S) → Ω≤n(S+). By
Proposition 4.2.7 of [Bou00] we have

Λ̃Ω≤n(S+) = Λ̃Ω≤n(S) +
∑

A∈[G\Ω≤n(S+)]

indG
GA

(Λ̃iA Λ̃]A,.[),

where iA = {B ∈ Ω≤n(S) : B = i(B) ⊆ A}. However, when A 6= {•} the set iA

has a largest element (namely A r {•}), hence Λ̃iA = 0. Therefore the sum after
the summation sign has only one non-zero element, namely the one with index {•},
which equals − Λ̃]•,.[ (where ]•, .[ is the set of elements of Ω≤n(S+) containing •).
Since ]•, .[ is homotopic (more precisely isomorphic) to Ω≤n−1(S), it follows that

Λ̃Ω≤n(S+) = Λ̃Ω≤n(S)− Λ̃Ω≤n−1(S) .

It is easy to see that this last expression is the desired one: let S be a G-set
and define, for any tuple of positive integers α = (α0, . . . , αi), the G-set Pα(S)
similarly as when α is a partition of an integer. Then the map sending the se-
quence (S0 ⊂ · · · ⊂ Si) 7→ (S0, S1 r S0, . . . , Si r Si−1) is an isomorphism of G-sets
Sdi(Ω≤n(S)) → ∪

α=(α0,...,αi):P
αj≤n

αj>0

Pα(S), hence

[Sdi(Ω≤n(S))] =
∑

α=(α0,...,αi):P
αj≤n

αj>0

[Pα(S)].

We therefore have

[Sdi(Ω≤n(S))]− [Sdi(Ω≤n−1(S))] =
∑

α=(α0,...,αi):P
αj=n

αj>0

[Pα(S)] =
∑

µ`n
`(µ)=i+1

(
`(µ)
α(µ)

)
[Pµ(S)],

and consequently

Λ̃Ω≤n(S)− Λ̃Ω≤n−1(S) =
∑

i≥0

(−1)i
∑

µ`n
`(µ)=i+1

(
`(µ)
α(µ)

)
[Pµ(S)]

=−
∑

µ`n

(−1)`(µ)
(

`(µ)
α(µ)

)
[Pµ(S)]. ¤
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