TWOSIDED TILTING COMPLEXES FOR GREEN ORDERS AND BRAUER
TREE ALGEBRAS

ALEXANDER ZIMMERMANN

ABSTRACT. We give an explicit twosided tilting complex between two Green orders having
the same structural data as they were defined by K. W. Roggenkamp in [13, 14]. This yields
an explicit twosided tilting complex between two Brauer tree algebras over the same field
associated to trees with the same number of edges and the same exceptional multiplicity.
The present work also gives a certain generalization of a result of Gabriel and Riedtmann [3].

1. INTRODUCTION

Let A be a ring. The (bounded) derived module category D’(A), or for short the derived
category, of A is the category with objects being complexes of finitely generated projective
modules which are bounded to the right and which have non zero homology only in finitely
many degrees. Morphisms are complex morphisms up to homotopy. For details we refer to [5].

By the fundamental theorem [9] of Jeremy Rickard for any two rings A and I' the derived
module categories of A and of I' are equivalent if and only if there is a complex T of finitely
generated projective A modules which is bounded to the left and to the right and which has
certain properties to be made more precise in Section 2. A complex satisfying these properties
is called a onesided tilting complex, or for short, a tilting complez.

A more precise description can be given in case of R-projective algebras. Let R be an
integral domain. An R-algebra is called an R-order if A is finitely generated projective as
R-module and frac(R) @ A is semisimple, frac(R) being the field of fractions of R. Jeremy
Rickard proved in [10] that if R is a Dedekind domain and if T is a tilting complex over the
R-order A with endomorphism ring being the R—order I', then there is a bounded complex X
of A — I'-bimodules such that

X @k —: DY) — Db(A)

is an equivalence of triangulated categories. This complex of bimodules is called a twosided
tilting complex between A and I'. A more detailed description will be given in Section 2.

Given a twosided tilting complex between two Gorenstein R—orders A and I', then one can
construct a A—I'-bimodule M, projective if restricted to either side, and M ®r — induces a
stable equivalence between A and I'.

This paper. The aim of the present paper is to construct a twosided tilting complex explicitly
in purely ring theoretical terms for derived equivalences between two Green orders as they were
introduced by Roggenkamp [13]. Roughly speaking, Green orders are an analogue of Brauer
tree algebras replacing a field by a complete discrete valuation domain. Given a Brauer tree
algebra A over a perfect field k then there is a complete discrete valuation domain R with
residue field k£ and a Green order A such that £k ® g A ~ A. Moreover, the ring theoretical
structure of a Green order is determined by some combinatorial data and some ring theoretical
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structural data. Blocks of group rings RG of finite groups G with cyclic defect group are Green
orders.

We shall construct explicitly a twosided tilting complex for any two Green orders having the
same structure data. In [16] an iterative process is given to prove that two such Green orders
are derived equivalent no matter what the combinatorial data is. The method was purely
combinatorial. The construction and the proof was simplified by Steffen Konig and the author
in [6].

The main difficulty one has to overcome is that there is mo canonical way to produce a
bimodule which induces a stable equivalence between the two Green orders. As mentioned above,
a twosided tilting complex would provide us with such a bimodule.

A main source for the construction is a careful examination of the construction of Raphaél
Rouquier [15] in case of ZgSg, the group ring of the symmetric group of degree 3 over the
3-adic integers. Here it becomes clear how a twosided two term tilting complex works. We
shall construct the complex out of its homology. To first construct the homology and then the
complex having this homology is used in [16] in a very special case and in this more general
situation it seems to be new.

For two Brauer tree algebras over a field corresponding to Brauer trees with the same number
of edges and the same multiplicity of the exceptional vertex, Gabriel and Riedtmann gave a
stable equivalence in [3]. They did not give a bimodule inducing the stable equivalence; our
construction gives one.

We mention that our method is entirely combinatorial.

What happened before. One may become interested in derived equivalences with a con-
jecture of Michel Broué [1] saying that the derived categories of a block of a group ring of a
finite group with abelian defect group D and its Brauer correspondent in the group ring of the
normalizer in the group of the defect group are equivalent as triangulated categories.

In [2, Remark after 4.7] Michel Broué asked for an explicit construction of a twosided tilting
complex between a block of a finite group and its Brauer correspondent and stated that in
December 1992 no explicit construction of a twosided tilting complex, even in case of a cyclic
defect group, was known. Progress has been fast since then.

In [15] Raphaél Rouquier constructed under some conditions a twosided tilting complex for
symmetric orders out of a stable equivalence given by a bimodule. The twosided tilting complex
is as explicit as is the bimodule inducing the stable equivalence. For blocks with cyclic defect,
the well known stable equivalence comming from Green correspondence is in fact induced by
tensoring with a bimodule. The hypotheses for the construction in [15] are fulfilled. Other
examples are given by Jeremy Rickard in [11] for the situation of algebraic groups.

In [13, 14] Klaus W. Roggenkamp introduced a certain class of orders, Green orders, and
clarified their structure completely. Moreover, he proved that blocks of cyclic defect groups of
group rings of finite groups over any finite extension of the p—adic integers are Morita equivalent
to Green orders of a special shape. Furthermore, reducing modulo the radical of the coefficient
domain, every Brauer tree algebra over a perfect field of finite characteristic is an image of a
suitably chosen Green order. In [13, 14] the only missing part in the complete description of the
blocks of cyclic defect by Green orders is the structure of the ’exceptional vertex’. For the field
of fractions of the coefficient domain being a splitting field for the block, Markus Linckelmann’s
result [7] published in his thesis answers the remaining question of the structure of the centre of
the block. For more general coefficient domains, Plesken [8] gives information for the structure
of the exceptional vertex.

In Section 2 we state the Theorems of J.Rickard. The onesided tilting complexes are de-
scribed in Section 3, making a summary of the relevant parts of [16] and of [13]. The complex
is then constructed in Section 4.

Acknowledgement: I want to thank Jeremy Rickard for his kind permission to include his
result stated in this paper as Lemma 1.
Je remercie I’Equipe des Groupes Finis de I’Université Paris 7 pour leur aide et pour I’hospitalité
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qu’ils m’ont accordée tout au long de ce travail. Tout particulierement, j’aimerais remercier
Raphaél Rouquier pour de nombreuses discussions et remarques.

2. RICKARD’S THEOREMS

We state, for the reader’s convenience, Rickard’s two main theorems. The first of which
deals with onesided tilting complexes, the second deals with twosided tilting complexes.

Objects of the category D®(A) are right bounded complexes of finitely generated projective
A-modules and with homology concentrated in only finitely many degrees. Morphisms are
complex morphisms modulo homotopy.

The category K°(Py) is the full subcategory of D’(A) generated by bounded complexes.

Theorem 1. (Rickard [9]) Let A and T be two rings. Then, the following conditions are
equivalent:
(1) D*(A) ~ DY) as triangulated categories
(2) There is a T € K"(Py) such that the ring Endvp,)(T) is isomorphic to T' as rings
and Hom gy py (T, T[i]) = 0 for all i # 0 and the rank one free module is contained in
the triangulated category gemerated by direct summands of finite direct sums of T'.

Remark 1. A complex T as in Theorem 1 is called a tilting complex from A to T'. If such a T
exists then A and I' are called derived equivalent.

The second theorem deals with a different type of complexes making the equivalence of the
derived categories more explicit.

Theorem 2. (Rickard [10]) Let R be a commutative ring and let A and B be two R-projective
R-algebras. If A and B are derived equivalent by a functor F', then the functor F' induces also
a derived equivalence between D(A®p A°P) and D*(A®p B°P) and the image of A as A®@p AP
module under this functor is a compler X in D*(A ®@g B°P). Furthermore,

X @k —: D"(B) — Db(A)
is an equivalence of triangulated categories.

Remark 2. The complex X as in Theorem 2 is called a twosided tilting complex. Note that
X is defined in the derived category and not in the homotopy category.

We finish with a yet unpublished lemma of Jeremy Rickard.

Lemma 1. (J. Rickard [12]) Let R be a complete discrete valuation ring and let A and T' be
two R—-orders in semisimple artinian frac(R)-algebras. Let X be a complex of A-T' bimodules
bounded from the left and bounded from the right. Let X be isomorphic in D®(A) to a tilting
complex with endomorphism ring T and let X be isomorphic in D*(T'°P) to a tilting complex
with endomorphism ring A, then X is a twosided tilting complex.

Proof. (J. Rickard)
Let more generally A and B be additive categories and let L; : A — B with i = 1,2 be
functors with right adjoints Ry and Rs. Now, a natural transformation

L1 — LQ
gives rise to a natural transformation
RQ — RlLlRQ — RlLQRQ i Rl

which is induced by the unit 1 — R;L;, the above natural transformation and the counit
LRy — 1. This correspondence is called the conjugate map. This is characterized by the
commutativity of the diagram

Homp(La—,—) =~ Homa(—,Ra—)

l !
Homp(Li—,—) =~ Homa(—,Ri—)
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Given a bounded complex of functors
L*:...— Lyg— L1 — Ly — ...

by the commutativity of the diagram defining the adjoint map above, this gives rise to a complex
of functors
R*:...— Ry — R — Ry — ...

by taking the conjugate maps. Now, L* and R* induce functors L* : C*(A) — C®(B) and
R* : C*(B) — C®(A) by taking the total complex of the resulting double complex. Of course,
homotopies map to homotopies this way such that our functors L* and R* carries over to
functor

L*: K°(A) — K%(B)
and

R*: K*(B) — K"(A)
We observe that (L*, R*) is an adjoint pair. In fact, for any X and Y in .4 we get an isomorphism
of the triple complexes

Hompg(L*(X),Y) ~ Hom4(X,R*(Y))

natural in X and in Y. If one takes now total complexes and observes that the zero homology
of this complex then gives just the homomorphisms in the homotopy categories, we get by the
naturality of the construction in both variables the adjointness property.

We now specialize to L; = — ®p X; for our bimodules X; which are finitely generated
projective on both sides. Then, R; = Homp(X;,—). By the fact that X; is finitely generated
projective as '-module,

Homp(X;,—) ~ —®r Homp(X;,T).
We get a unit
L) — — ®a X ®p Homp(X,T)
and a counit
— &®r Homp(X, F) Qp X — 1?(p)
for ? being C', the complex category or equally well K, the homotopy category. Therefore we
get natural maps of complexes of right modules

A— X@F HO’I?’LF(X,F)

and
Homp(X,T)®, X — T

which are actually maps of complexes of bimodules by letting the rings act via endomorphisms
of the free rank one right modules, using the functoriality of the construction.

Take Dr(X) = Homp(X,T') as complex of I' — A—bimodules. Now, — @, X is left adjoint
to — ®a DrX as functors C?(A) — C*(T"). We get natural maps of complexes of bimodules

A% X ®p DrX and Dp(X) @) X -5 T

We now show, that « is an isomorphism in the derived category of bounded complexes of
projective modules.

Set k = R/rad R.

We may assume, using Lemma 2, that X consists of bimodules whose restrictions to the left
and to the right are projective.

Obviously, M := k ®g (X ®r Dr(X)) is isomorphic to a module in D*(A ® A°P).

We denote the kernel of the mapping induced by « on the degree zero homology by K. We
observe that

k®r X @r Dr(X) “®5  k@r X @ Dr(X) @ X @r Dr(X)

[ I 1x ®r B &r 1py(x)
k®r X @r Dr(X) = k®r X @r Dr(X)
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is a commutative diagram.

Since now @ ® 1 xgpp(x) is a split monomorphism, K @) X ®r Dr(X) =0.

Since the complex Dr(X) is a complex of projective '-modules, | Dr(X) is a tilting complex.
In fact, Homp(—,T') is faithfully flat on projective I'-modules and it is now easy to derive the
defining conditions of a tilting complex from the property of X being a tilting complex as
complex of '-modules.

Since r|Dr(X) is a tilting complex, K ®4 X = 0. Since X|, is a tilting complex, K = 0.

Hence, we know that « induces an injective mapping on the degree O—homology. As R-
modules we have

Ho(X ®@r Dr(X)) ~ Endgs(pr) (X]r).-

Since every monomorphism between finite dimensional vector spaces of equal dimension is an
isomorphism, « induces an isomorphism

R/rad RQr A~ R/rad R ®r Ho(X ® Dr(X))

as A — A-bimodules. Since we assumed A and I' to be finitely generated over the noetherian
complete discrete valuation ring R, we know that a induces an isomorphism between A and
the degree zero homology of X ® Dp(X)..

We have to finish with proving that also g is an isomorphism.

The composition

X *¥4X X @ Dp(X) @a X 87 X

equals the identity and « is an isomorphism, so idx ® 3 is an isomorphism. Forming the triangle
in the homotopy category of complexes of finitely generated projective modules

Dr(X)®r X 25T — C ..,

we get X ®@p C' is acyclic, and since X as complex of right modules is isomorphic to a tilting
complex, C' is acyclic.
This completes the proof of Lemma 1.

In order to prove that a complex of A—-I'-bimodules is a twosided tilting complex, for A and
T" being as in the lemma, we only have to compute a complex X of bimodules which restricts
on either sides to a tilting complex with correct endomorphism rings.

3. RECAPITULATION OF THE ONESIDED SITUATION

3.1. Green orders. K.W. Roggenkamp defined Green orders to explain the structure of blocks
of group rings over a complete discrete valuation ring of characteristic 0 with cyclic defect group
[13].

We use a suggestion of L. Puig to define Green orders in a different, equivalent, way.

Let R be an integral domain with field of fractions K and let A be an indecomposable
R-order in the semisimple K-algebra A = K ®g A.

Let I be a complete set of primitive idempotents of A (i.e. Enda(®ierA - i) is Morita
equivalent to A and the modules A -4 for all ¢ € I are projective indecomposable left—A—modules
for all i € I).

Definition 1. The indecomposable R—order A in the semisimple algebra A is called a Green
order if

o there is a set E of central idempotents of A with 3 e =1 such that

eeE
T :={(i,e) € I X Eli-e # 0}

is a tree (i.e. defines a connected relation on I x E, |E| = |I|+ 1 and for all i € I we
get [”TN({i} x E)| =2).
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e noting by m : T — I and 0 : T — FE the natural projections, there are a transitive
permutation w of T and for all t € T a A—module homomorphism

ge: A-m(t) — A-m(w(t)) with gi(A-7(t)) = ker(gu)) ZA-T(t)-0(t) .
where for all X € An(t) we have orgi(N) = X - 0(¢t).
Remark 3. We should provide a link to the definition in [13].

(1) It is immediate to see that a finite, connected, unoriented graph T with one edge less
than it has vertices does not have cycles (use an induction). Hence, the three conditions
on the cardinalities of I and E in relation with 7" defines in fact a tree.

(2) The transitive permutation w of T is the 'walk around the Brauer tree’ which was
invented in Green’s paper [4]. Green gives reference to this permutation in the intro-
duction, however, without mentioning the permutation explicitly.

(3) The walk around the Brauer tree manifests in a projective resolution

00— A-7m(t)-0(t) — An(t) — Am(w(t)) « Am(w?(t)) « --- — Am(t) « ...

(4) A tree may be realized by a graph in the plane, meaning a complex of 1-simplices in
IR%. One associates to the plane an orientation, and the permutation w is the ’walk
around the tree’ as described in [4].

We abbreviate A -t = An(t)0(t) and t- A = w(¢)0(t)A. The main theorem of Roggenkamp in
[13] may be reformulated as follows.

Theorem 3. (Roggenkamp [13]) We assume that A is basic.

There is an R-torsion R-algebra Q and a family (f; : tAt — Q) of R-algebra homomor-
phisms with kernel being a principal ideal a;tAt.

T is totally ordered by w and a first element. There is a (equivalent) set of primitive idem-
potents I such that one can choose the first element of T such that the Pierce decomposition

11 Ay ... i Adg

ioNi1  igAis ... iQAik
A=

igNiy  igNig ... Nk

has the following properties
(1) For allt <t and 0(t) = 6(t') with t,t' € T we have tAt = w(t)An(t') = t'At’.
(2) fi depends only on O(t) and we denote foy) := fi and agy) = as.
(3) Forallt>1t" and 0(t) = O(t') with t,t' € T we have agy - ©(t")An(t) = 7(t)An(t").
(4) Ift,t' € T with w(t) = w(t') then w(t)An(t) is a pullback

r(t)Ar(t) —  tAt
! L e
vAr 14 @

Moreover, if for an R—order A in K @ g A with I being also a complete set of primitive idempo-
tents of A’ the tree T and the transitive permutation w of T from above have the property that
there is an element t1 € T defining together with w a linear ordering on T such that the Pierce
decomposition has the properties (1), (2), (3) and (4) then A’ is a Greenorder.

Remark 4. (1) One should observe that since the e in E are central and pairwise orthog-
onal, most of the entries in the above matrix are zero. The rest of the entries falls
naturally into matrix rings. Furthermore, by the first and the third points of the the-
orem, the matrix rings in question are upper triangular over {2y, := tAt which does
only depend on 0(t) und the lower diagonal entries is in a principal ideal a;tAt, again
depending only on 6(t). These matrix rings are linked among each other by the pull-
backs with the main diagonal entries mentioned in point 4 of the theorem. This is the
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interpretation given by Roggenkamp in [13]. We may hence label the vertices of the tree
by the pairs (Qq(:), ag()). Mostly we only write down the labels §24(;), understanding

that the ideal ag(;){2q(s) is fixed once for all, if this does not cause confusion.

With I = {iq, o, ..
g¢ 18 just multiplication by

where
7 _ e
felerar = { 0

Moreover,

t and o is the identity.

Ai g At
| g | fe
At T @)k,

it ¢
it ¢

=t . o fo it
2 And ft"t”“’_{ 0 if

Z:’Lj

i # 1

- Q if
Qj‘{ 0 if

As a consequence, we get that

3.2. Tilting Green orders. We recall the following facts from [16] and from the refinement

ker(f;) ~ ker(oygy) ~ ker(gy)

[6]. We are given a Green order A with Brauer tree

and data (£2;, f;), where we denote

951 Q3

Qo

., ix } being the above set of primitive idempotents, one obtains that

By the last of the 4 properties one can see that the the projective indecomposable
modules Az for ¢ € I are pullbacks, where ¢ -i # 0 # t' - 4 for two different ¢,¢' in T,

t” — t/
t” # t/

£ := { vertices v| the shortest path in the tree from v to Q2 passes ;}

i := { vertices v| the shortest path in the tree from v to 1 passes Qa} \ {Q5}

The orientation in the plane is meant to be counterclockwise.

The indecomposable projective corresponding to the edge linking €21 and - is denoted by
P = Aiy 9, for an idempotent i1 2 of A and the indecomposable projective corresponding to the
edge linking Q9 and Qg3 is denoted by ) = Ais 3 for an idempotent i 3 of A. We identify edges
with indecomposable projectives and denote the indecomposable projective corresponding to

the edge e by P.. Set

L=

D

(edges e involving)
only vertices in £

P, and U :=

D

edges f involving
(only vertices in u)

Py
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The complex

(0,0,0,941 ge5)
T:=0—LoUsP®P 5°7Q-—0)

is a tilting complex. Its endomorphism ring is a Green order I' associated to the following tree
with obvious notations.

Qo 951 Q3

The argument applied to right I'~modules implies that, denoting by P’* the indecomposable
projective corresponding to the edge linking ©; and €25 and by Q'* the projective indecompos-
able corresponding to the edge linking ; and 3, defining L'* and U’" analogously as above,
the complex

0,0,0,9;; oe .
T = (0— L o U™ o P o P U0 o )

is a tilting complex with endomorphism ring A.

We denote by iy the idempotent corresponding to U, by iy the idempotent corresponding
to L, by i1,2 the idempotent corresponding to P and by 42 3 the idempotent corresponding to
Q.

Analogously, we denote by jir the idempotent corresponding to U’”, by jr, the idempotent

corresponding to L'", by j1 2 the idempotent corresponding to P'* and by j; 3 the idempotent
corresponding to Q'*.

By abuse of language we denote both for A and for I" the central idempotents corresponding
to Q1 by ej, those corresponding to 2y by ez, those corresponding to U by ey and those
corresponding to L by er.

We choose the ’beginning element’ of T\ and of Tt such that

Ty = {iUeg < Z‘Lgel <iper <ipe; < ’L'17262 < ’L'273€3 < Z‘213€2 < iUeU}

and

Tr = {j13e1 < Ji1,3e3 < jues < jueu < ji2e2 < ji2e1 < jrer < jrei}
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Then, the result in [16] affirms that

iUAiU = jUAjU With ;?]762 = 5]762 and il?j,EU = gj,eu’
12Ny = Ji1200,
iri, = jrljp with ff) o = fi, o, and fi) o, = fi, o,
irohip = Ji1200L,
i172A’i1,2 = jl,gl—‘jl,g with 1-1}7261 = Jrl,zel and i?,zez = jI;gega
t12Mi, = ji20'9L,
ivAire = juljiae,
irAiig = jrljio,
ir ker(g(i, o.e)) Jrlj1 3,
i12 ker(9ei, 5,e0)) = J1.20713,

i93M\iy

i9,3Mi1 2

ker(g(jlg,m)) Jju,
ker(g(j 2,e1)) J1,2 -

In section 4 we shall construct a complex X of A-I'~bimodules which is isomorphic in the

derived category of A-left modules to 7" and which is isomorphic in the derived category of
T'-right modules to T".
The combinatorics. In [6] it is proven that iterating the procedure above, or otherwise said,
taking as 'new’ A the 'old’ order I" and choosing a numeration for 1, 5 and Qg, it is possible
to end up after a certain number of steps as I' a Green order associated to a tree being a star
with the same data we started with, and any association of the vertices of the star to the data
(i, fi)-

In other words, it is possible to 'deform’ the tree to a star and to interchange any two vertices.

So, tensoring the complexes we construct, this gives a twosided tilting complex between any
two Green orders with the same data, no matter the tree looks like as long as the data and the
number of vertices are fixed.

3.3. An observation. In our onesided construction we have to deal with two terms tilting
complexes. Let

be a twosided two term tilting complex and we may and will assume that X has homology
concentrated in the degrees 0 and 1.

Using the arguments in the appendix we may furthermore assume that Xg is a projective
bimodule.

We denote by Q1 (Hy(X)) the first syzygy of Ho(X) as bimodule. We get short exact se-
quences

0— Ql(HO(X)) — Xog — HO(X) — 0
and

Moreover, K = frac(R) being the field of fractions of R,

We are given two onesided tilting complexes T" and S over A and I'°P resp. and we want to
find a twosided tilting complex X in D*(A ®z I'°P) with

X ~ T in D*(A) and X ~ S in D*(T'°?)
It is therefore necessary to find a bimodule H;(X) such that

A|H1(X) ~ Hl(T) and Hl(X)h" ~ Hl(S)
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Furthermore, the restriction of the composition
X, — Q)(Ho(X)) — Xo

to the left and to the right have to coincide with the onesided complex, in the derived category.
This small observation will allow us to construct X.

4. CONSTRUCTING THE COMPLEX

We shall give a twosided tilting complex in the situation above.

Again we have to compute the homology in degree 1 and find a bimodule which restricts to
these homologies on either side.

We remind the reader that we denote

GA 7= Giy ey : Ni1g — Aio3

and
gr = Gj sey : J12l — J1,3T
There is only one canonical way to produce a bimodule H;(X): The bimodule is isomorphic
to
iUAiU Z.UAZ‘LQ Z'Uker(g,\) iUAiL
i1,20Miy 12012 1 2ker(ga) i12Aip
iLA’iU iLAi172 iLkzer(gA) ’iLAiL
i273A’L'U i273Ai172 i273/{?€’l‘(g/\) ’L'2,3AiL

which is equal to

Julju Jjulji,2 Jjuljis Jul'jL
J1,21l9u J1,2171,2 J1,2l51,3 1,201
Jjrlju Jrlj12 NIANIE: JrljL

ker(gr)ju ker(gr)ji2 ker(gr)jis ker(gr)jr

where we used the relations mentioned in Subsection 3.2 and that we know, by the fact that
the idempotents eq, eo, ey and ey, are central and pairwise orthogonal (both for A and for T'),
that

ivker(ga) = Jjulji3 =0,
ivhip, = juljp =0,
irNiv = julju =0,

igsker(ga) = ker(gr)jis =0.

On this bimodule A acts by multiplication by
ivhiy  igAirs  ipAip  ipAiss
i1200My  d19Mi1o d12Aip d19Adas
’L'LA’L'U ’L'LA’L'LQ ’L'LA’L'L iLA’L'Q,3
io3Niy  i23Mi12 do3Aip i23Mio3
from the left and I' acts by matrix multiplication by
Juljv Jgulie vl Julje
J1,209u  j120512 J1,201,3 412000
Ju3lju Jisljie Jisljis Jislic
Jlju  Jjilje  Jeliis  Jelie
The homology in degree 0 is easy to compute, it is Aeg = e3l’ as A ® I'°P—module. The
projective cover of this module as bimodule is

Xo 1= Aig 3 Qg j1,31.



twosided tilting complexes 11

For constructing the bimodule extension of the homology with the first syzygy of
Q3 = e3ia 3Ais 3 = e3j1,3A51,3

we have to explicit this module. (Again, not to overload the notation, we write " ®” for "®r”.)

Nig 3 ®p j1,31 =

iulia 3 ® j13lJu  dulias ® j1,30071,2
1120123 @ j13lju 11,2423 ® j1,3071,2
irNia 3 ® j13lju  ipAis 3 ® j1,3012
i2,3Ni2 3 ® j13lJu  d2,3MAi23 ® j1,3071,2

trAias ® j13051,3  duliss ® j1,30JL
11,0023 ® j13171,3  91,20A023 ® J1,31'jL
irAia3 ® j1,3071,3  irAia3z ® j13l'L
io3MNiz3 ® j1301,3 23023 ® j130L
tulia g ® j13lJ12  dulhias ® j1,30713
11,2023 ® j131712  1,2A%03 ® j1,30'j1,3
i2,3Ni23 ® 13012 i2,3MAi23 ® j1,3071,3

tyAiaz ® j1 3L
i1,20Ni23 ® j1,30JL
i2,3Mi2 3 ® j1 3171
since jlygij =0 and iLAZ‘213 =0.

This module maps by a mapping 7 onto {23 by mapping 42 3Ais 3 ® j1,.31'j1,3 onto its ez~
component. We denote this last mapping by w. We hence have an exact sequence

igAios ® j1,30J1,2  dulizsz®j1,30713
0— | d12Mi23®j130J12 i1,20i23® j13013
i2,3Mi2,3 @ j1,31j1,2 ker(r)

tyAiaz ® j1 301 .
i1,20M2 3 ® j135L | —
i2,3MNi2 3 ® j1.317L

. ivlios ® j130lj12  duAias ® 7130713
— | d120i23® 5130012 i12Mi03 ® j1,3001,3
29,3002 3 ® j131'51,2  92,3Ai23 ® j131'51,3

ipAiz 3 ® j1305L .

t1,0M2 3 ® j13l5, | — Q3 — 0
19 3123 ® j130JL

Now, we have to find the common extension of the kernel of this sequence and the homology.
We modify the homology-bimodule to do so. The special structure of the Green order A

(namely the first three properties in Roggenkamp’s theorem) and this choice of the first element
as done above implies that Z'UAZ‘213 = ’L'UAZ‘LQ and ’L'273A7:112 = €2i172Ai172.
We shall use

iUAiU ’L'UA’L'273 61’L'UA’L'172 iUAiL
i120iy  e1i120Mi1 0 i1 2Mia3  eri1oMii e i1 2AiL
iLAiU Z.LAZ‘LQ eliLAiLQ iLAiL
i2,3Miy egi2 3Aig 3 erig3Ai1  dg3Aif

as A—left—-module which is equal to

Julju Jjulji2 Juljis JuljL

J1200u  eijioljio @eajiol'jie ji2l71,3 Ji12l'9L
Jjrlju Jrlje Jljs JliL
ea2j1,2150 eaj1,2'j1,2 eaj1,2l'j1,3  eaj12l'JL

as I'-right-module, using the ordering and the special choice of a first element in Tt.
We need one more observation concerning the construction of the differential.

0
The theorem of Roggenkamp gives us a canonical A-module structure on %2 by the

Q
following fact. Since in the chosen ordering of T we have i3 3e2 > i1 2e2 > iyes, there are
inclusions

Jives (A’LU) < €2A’L'1,2 and Giy ges (Ail,g) < €2A’L'2,3 .
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Hence we get an exact sequence

0
fes
0 0
0 E— BQAiU giuﬂiﬁ),zez 62Ai273 & %2 E— 0 .
Q
9
Likewise one finds a A-module structure by transport of structure of Ai; 2e; via -fil,261 on Sg
0
This gives
0 0 0 O
0 Q Q 0
00 00
0 0 0

the structure of a A-left—-module. The structure from the right as I'-right-module is given by

the fact that

A _ ¢ A _ ¢
62762and er ~ Jep

The second line in the matrix gets its right-I'-module structure by transport of structure of
e1j120 via (0, —fL ', 0) and the fourth line gets its I-right-module structure by transport

ey Jep /
of structure of ezji oI" via fj; ,e,-
As a whole, by the analogous arguments as in the case of the A-structure, we get a right

I'-structure using the same mapping

0 0 0 0
0 (7fel5f62) 7f€1 0
0 0 0 0
0 e, 0 0

for the left and for the right.

With these preparations we can define our X; and the differential as pullback
diagram

Jjulju Julji,2 JjuTljis JuljL
Ji2lju eigi2lgi2 @ eagi2lge 126013 Ji1,2lL
R i R R — X1
Jjulju Jrlji,2 Jjrliis Jlir
e2j1,2l'jv e2j1,21'71,2 e2j1,21'j1,3  e2j1,2lJL
I Il
iy Niy Z'UAiQ’g eliUAil’Q igAig,
i12Miy  e1i12Ai1,2 Di12MAi23  eri12Mi1 2 d12Adg
O R . A — X1
irAiy inAi 2 eripAi12 i Aip
i2,3\iy eaiz 3Ni23 e1i2,3Ai12  i2,3Aif
L x Lo
0 0 0 0 0 dgAi23®j1,3091,2  duAiz3z®j1,3071,3  duAiz3 ®j1,3071
0 Q Q 0 2 0 d1,2Ai23®j1,3171,2  d1,2A123 ® j1,30751,3  41,2Ai2,3 ® j1,3051
0O 0 0 O 0 0 0 0
0 Q 0 0 0 i2,3Mi23® j1,3T71,2 ker(m) i2,3Ni2.3 ® j1,3T5L
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where
0 A0 r AO r 0
0 . . 0
’l/J: 0 ez Jep e2 Jey 0
0 f2.fL 0 0
and
0 0 0 0
I R O I
0 0 0 0
0 f 0 0

We define the complex

X=0—X; ﬂ» Niz 3 @R j1,3I' — 0)

Proposition 1. The compler X in D°(A) is isomorphic to a tilting complex with endomor-
phism ring T' and X in D®(T'°P) is isomorphic to a tilting compler with endomorphism ring A.

Theorem 4. Let A and I' be Green orders associated to the Brauer trees

PP QS coe e Q3 PP
T Q2 g and [T Q2 Cog
Ql Q1
for A for T

with the same data (Q;, fi)icr for the same suitable index set I of vertices.
Let e be the central idempotent of K @ A corresponding to the leaf Q3 of A and let ek be
the central idempotent of K @ g I' corresponding to the leaf Q3 of T.

o Then, the compler X as defined above is a twosided tilting complez.

o The term Xo of X in degree 0 is the projective cover of Q3 as A-TI'-bimodule, where A
acts as multiplication by A - eg\ on the left and T acts as multiplication by T - e on the
right.

e In case A and ' are Gorenstein orders, the homogeneous component X1 of X in degree 1
1s a A-T'-bimodule which induces a stable equivalence of Morita type.

Remark 5. We should remind the reader to Broué’s definition of a stable equivalence of Morita
type. Let R be a commutative ring and let A and B be two R—algebras. If there are a finitely
generated A ® p B°P-module M and a finitely generated B ® g A°’-module N such that

MegN~AdPyand N4 M ~ B® Pp

as A @ A°P-modules (or as B ® g B°P-modules resp.) for a projective A @ g A°P-module Py
and a projective B ®pr B°P-module Pp, then M is said to induce a stable equivalence of Morita

type.

Theorem 4 follows from Proposition 1 and Lemma 1.
The proof of Proposition 1 will cover the two following subsections.



14 Alexander Zimmermann

4.1. Restricting to the left. Certainly, the first column in X; is isomorphic to Aiy and the
last column in X7 is isomorphic to Air. On these both modules the differential is zero.
The third column gives rise to a a complex defined by the following pullback diagram.

[e3

€1A’L'1,2 — PO
L =firnen L8
0 ivAizs @ j1,30j1,3
Q 11,2023 ® 130713
0 irMNia3 ® j13T713
0 ker(m)
!

Niz 3 @R j1,3071,3
The module in degree 1 is Py, the module in degree 0 is Aiz 3 ®p j1,3[" and the differential is
given by the composition of the two right hand mappings.
We shall prove that this is isomorphic (in DY(A)) to the natural mapping

Girnyer - N1 — Adg 3.

Let
Jiz:i Ao — jisljis
Aivg — Ji3

be the constant mapping. Then, we have a homomorphism

Girnes @J1,3 : M1 —  Aiz3®pj130J13
A gi1,27€2()‘) ®j1,3

Since ez - e3 = 0 and g;, ,,¢, (Ai1,2) C Aez, we get that

iuAis s ® j1,3051,3

i1,2Mi2 3 ® j1,31771,3

ipAia 3 ® j13071,3
ker(m)

(gi1,2762 ®j1,3)(Ai2,3) C kerwt =

Now, Roggenkamp’s classification of a Green order together with our choice of a first element
in TA ensure that Z'UA’i273 = ’L'UA’L'LQ and that i172A’L'2,3 = €2i172Ai172.

The lower horizontal mapping however is (0, fe, - fe,,0,0)". Since j; 3 is the identity element
in j1,3I'j1,3, the square

e1li1 e — Ay o
l l _(gi1,2,€2 ®j1,3)
9
Sg — ker w
0

is commutative. The universal property of the pullback yields a unique mapping
P AZ‘213 i PO
such that ap(X) = Aey and Bp(\) = (Ae2) ® ji1,3 for any A € Aiy . If we define the mapping

1®j13:Nog — Aigz®71,30071,3
A= A®J13
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we get a commutative diagram

€1A’L'1,2 <i PO <L A’L'l,g

b =Fitner 1B l

0 iyNiz3 ® j1,30071,3

Q 11,2072 3 ® j1,3'71,3 ~9i1,2e2 @713 )

- L2sbve, J1,97 1, 22 €2A’L1 9
0 irANia 3 ® j13l713 ’
0 ker(m)
! 1 —Yi1 geq ®J1,3
. . . ‘1®j1,: .
Aiz 3 @R j1,3071,3 Pl Nig 3

By Remark 4 one gets that
ker(ﬂ) = ker(ﬁ'l,zel) = ker(gi1,262) .

Moreover, the cokernel of ae is Q3 by definition of &r. Clearly, by construction of our Green
order, coker(Ai12 — Aizg) = Q3 and 1 ® j 3 provides this isomorphism.

Hence, the complex, which is given by the composite of the two middle vertical mappings
is isomorphic to the complex which is given by the two right most vertical mappings. This is
what we claimed.

The second column gives a complex arising from the following pullback diagram:

iUAi273
; ) e1t1,2Ai1,20 ® i1,2Mi0 3
€1A1172 D 62A2213 = it N o — P
e2ip 3Mia 3

I x !

0
0 2L Aia 3 ®r j1,3071,2

Q

The mapping Pi — Atz 3 ®pj1,31'j1,2 is surjective, the mapping to the artinian quotient being
so, and Aiz 3 ®p j1,31'j1,2 is a projective A-module, such that the two term complex formed
by this mapping is isomorphic in D’(A) to its homology. This homology is isomorphic to the
kernel of (the restriction of) x, using the universal property of the pullback. We claim that this
kernel is isomorphic to Ay o.

Observe that the lowest entry in the column giving the mapping x is just the structure giving
mapping
finses t 12,3002 360 — Q
in Roggenkamp’s theorem.
Moreover, the defining permutation w of T} is such that w(il,geg) = i93e2. Hence, we have
the defining map
9(irosen) - N2 — Ainz
of a Green order with image being Ai; ses.
The A—-module homomorphism

(O
. €29(iy 2,e2) . .
Ady o — e1Aii o @ ealin3
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is injective. In fact, since g(il’zyeQ)(AiLg) = egAi; 2, an element A in the kernel has to be in the
kernel of the mapping (-e1, -e2) which is impossible since

A9 € Adq peq @ Aiq 2en.

On the other hand, the composite

(o ) :
ceq el
. €29(i1 2,e2) . . X Q
Ay o — e1lii o @ eghin 3 — 0

Q

is zero. In fact, in the lowest entry of the module on the right the composition yields 0: We
have a commutative diagram

X 9(i1,2.e2) . e .
AZLQ — A’Lgyg —>2 A1213€2

| -es | fizsen

. fiz 3.e3
A1273€3 —

Do oo

Now,
X © G(ir2,e5) = Jizzea © €20 G(iy z,e5) = Jinaes © €30 G(iy z,e)

and g(;, ,.e,) has image in Aez. Since ezez = 0, we obtain the result.
The second entry is dealt by the following argument.
We have to deal with

(eaoi® .))
. . €29(i1 2,e2)’ | . . . i . . . (7fi1,2617fi2,362) =
1,001 2 — i1,2001,0e1 @ eaiq 2Miz 3 = i1,2MA%1 2e1 @ eain 3Aiss — Q

We know that fi, e, = fi, e, by the second property of a Green order in Roggenkamp’s
theorem. Hence, since we started with an element in Ai; 2, the composite is 0.

0 0
Now, since i1 2e2 < ig,3€e2 in Ty, we get that 0 is a A-submodule of 0 and hence
0 Q
we get a short exact sequence of A-modules
0 0 0
0 Q Q
Clearly,
ker x C ker vy .
Moreover,
VX|Ai1,2€1 =0 and VXlAi2,3€2 = ﬁ2,3€2 .
Now,

ker fi2,3€2 = ker Yiz 3es = im Jiines = (Ai1,262) :
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Moreover,
. €29iy gea .
AZLQ — A12,3€2
0
Je
l €2 l 02
fes
0
. firzen Q
A@1,2€2 — 0
Q

is commutative; the image of fimez being ker v. What remains now to prove is that

(81) (7.f~i1,2€11f7:1’252)
—

. e . .
0— AZLQ £> AZ112€1 D AZLQGQ — 0

o o Do

is exact. But this follows from the definition.
Collecting the pieces, we get that

k@?"(x) ~ Ai172.

4.2. Restricting to the right. The restriction to the right is treated completely analogously
as the restriction to the left. We leave the verification to the reader.

Remark 6. It might be a interesting to try to see if the functor obtained by tensoring with
our module X; differs from the functor defined by P. Gabriel and Chr. Riedtmann in [3].

5. APPENDIX

We shall repeat a lemma which is well known to the experts!, however, as far as it is known
to the author, it was never written down.

Lemma 2. o Let R be a commutative ring and let A and T' be R—-algebras which are
projective as R—-modules.
o Let X be a complex in D*(A ®r T°P) such that X in D(A) is isomorphic to a tilting
complex T and X in D*(T°P) is a isomorphic to a tilting complex S.
o Let mp be the smallest natural number, such that there is a T' ~ T in Kb(PA) with
T =0 for all k < mp
o and let ny be the smallest natural number such that there is a T" ~ T in K°(Py) with
T =0 for all k > ny.
o Similarly, mr and nr are defined.
Then, mpy = mp =: m and for n = maz(nr,ny) there is a X~ X in DP(A ®pg T°P) with
X, being a projective A @ I'P? module for k =n,n—1,...,m and X1 is a module which is
projective if restricted to A and is projective when restricted to I'°P.

Proof. Since we are dealing with projective modules, my = mp.
Without loss of generality we may, and will assume that m = 0. We take a projective
resolution as complex of bimodules of X:

PP P P 0 —
We truncate as follows:
X":=(0 — ker(d,) — P, — ... — Py — 0)

lin fact, it was mentioned to the author by J.Rickard
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and observe that, since both rings are projective as R—modules, Py, ..., P, are both projective
when restricted to either side. Clearly, X ~ X’ in D*(A®gI'°P) since the homology in the degree

n+1is 0. Since n = max{ny,nr}, the complex (0 — ker(d,,) — P,, — 0) decomposes as
L (.9 L & L' as complex of A—modules. Since P, = L & L’ we conclude that L is projective.

Likewise, ker(d,) is projective as right I'-module.
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