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Abstract. We give an explicit twosided tilting complex between two Green orders having
the same structural data as they were defined by K. W. Roggenkamp in [13, 14]. This yields
an explicit twosided tilting complex between two Brauer tree algebras over the same field
associated to trees with the same number of edges and the same exceptional multiplicity.
The present work also gives a certain generalization of a result of Gabriel and Riedtmann [3].

1. Introduction

Let Λ be a ring. The (bounded) derived module category Db(Λ), or for short the derived
category, of Λ is the category with objects being complexes of finitely generated projective
modules which are bounded to the right and which have non zero homology only in finitely
many degrees. Morphisms are complex morphisms up to homotopy. For details we refer to [5].

By the fundamental theorem [9] of Jeremy Rickard for any two rings Λ and Γ the derived
module categories of Λ and of Γ are equivalent if and only if there is a complex T of finitely
generated projective Λ modules which is bounded to the left and to the right and which has
certain properties to be made more precise in Section 2. A complex satisfying these properties
is called a onesided tilting complex, or for short, a tilting complex.

A more precise description can be given in case of R-projective algebras. Let R be an
integral domain. An R–algebra is called an R–order if Λ is finitely generated projective as
R–module and frac(R)⊗R Λ is semisimple, frac(R) being the field of fractions of R. Jeremy
Rickard proved in [10] that if R is a Dedekind domain and if T is a tilting complex over the
R–order Λ with endomorphism ring being the R–order Γ, then there is a bounded complex X
of Λ− Γ–bimodules such that

X ⊗LΓ − : Db(Γ) −→ Db(Λ)

is an equivalence of triangulated categories. This complex of bimodules is called a twosided
tilting complex between Λ and Γ. A more detailed description will be given in Section 2.

Given a twosided tilting complex between two Gorenstein R–orders Λ and Γ, then one can
construct a Λ–Γ–bimodule M , projective if restricted to either side, and M ⊗Γ − induces a
stable equivalence between Λ and Γ.

This paper. The aim of the present paper is to construct a twosided tilting complex explicitly
in purely ring theoretical terms for derived equivalences between two Green orders as they were
introduced by Roggenkamp [13]. Roughly speaking, Green orders are an analogue of Brauer
tree algebras replacing a field by a complete discrete valuation domain. Given a Brauer tree
algebra A over a perfect field k then there is a complete discrete valuation domain R with
residue field k and a Green order Λ such that k ⊗R Λ ' A. Moreover, the ring theoretical
structure of a Green order is determined by some combinatorial data and some ring theoretical
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structural data. Blocks of group rings RG of finite groups G with cyclic defect group are Green
orders.

We shall construct explicitly a twosided tilting complex for any two Green orders having the
same structure data. In [16] an iterative process is given to prove that two such Green orders
are derived equivalent no matter what the combinatorial data is. The method was purely
combinatorial. The construction and the proof was simplified by Steffen König and the author
in [6].

The main difficulty one has to overcome is that there is no canonical way to produce a
bimodule which induces a stable equivalence between the two Green orders. As mentioned above,
a twosided tilting complex would provide us with such a bimodule.

A main source for the construction is a careful examination of the construction of Raphaël
Rouquier [15] in case of Ẑ3S3, the group ring of the symmetric group of degree 3 over the
3-adic integers. Here it becomes clear how a twosided two term tilting complex works. We
shall construct the complex out of its homology. To first construct the homology and then the
complex having this homology is used in [16] in a very special case and in this more general
situation it seems to be new.

For two Brauer tree algebras over a field corresponding to Brauer trees with the same number
of edges and the same multiplicity of the exceptional vertex, Gabriel and Riedtmann gave a
stable equivalence in [3]. They did not give a bimodule inducing the stable equivalence; our
construction gives one.

We mention that our method is entirely combinatorial.

What happened before. One may become interested in derived equivalences with a con-
jecture of Michel Broué [1] saying that the derived categories of a block of a group ring of a
finite group with abelian defect group D and its Brauer correspondent in the group ring of the
normalizer in the group of the defect group are equivalent as triangulated categories.

In [2, Remark after 4.7] Michel Broué asked for an explicit construction of a twosided tilting
complex between a block of a finite group and its Brauer correspondent and stated that in
December 1992 no explicit construction of a twosided tilting complex, even in case of a cyclic
defect group, was known. Progress has been fast since then.

In [15] Raphaël Rouquier constructed under some conditions a twosided tilting complex for
symmetric orders out of a stable equivalence given by a bimodule. The twosided tilting complex
is as explicit as is the bimodule inducing the stable equivalence. For blocks with cyclic defect,
the well known stable equivalence comming from Green correspondence is in fact induced by
tensoring with a bimodule. The hypotheses for the construction in [15] are fulfilled. Other
examples are given by Jeremy Rickard in [11] for the situation of algebraic groups.

In [13, 14] Klaus W. Roggenkamp introduced a certain class of orders, Green orders, and
clarified their structure completely. Moreover, he proved that blocks of cyclic defect groups of
group rings of finite groups over any finite extension of the p–adic integers are Morita equivalent
to Green orders of a special shape. Furthermore, reducing modulo the radical of the coefficient
domain, every Brauer tree algebra over a perfect field of finite characteristic is an image of a
suitably chosen Green order. In [13, 14] the only missing part in the complete description of the
blocks of cyclic defect by Green orders is the structure of the ’exceptional vertex’. For the field
of fractions of the coefficient domain being a splitting field for the block, Markus Linckelmann’s
result [7] published in his thesis answers the remaining question of the structure of the centre of
the block. For more general coefficient domains, Plesken [8] gives information for the structure
of the exceptional vertex.

In Section 2 we state the Theorems of J.Rickard. The onesided tilting complexes are de-
scribed in Section 3, making a summary of the relevant parts of [16] and of [13]. The complex
is then constructed in Section 4.

Acknowledgement: I want to thank Jeremy Rickard for his kind permission to include his
result stated in this paper as Lemma 1.
Je remercie l’Équipe des Groupes Finis de l’Université Paris 7 pour leur aide et pour l’hospitalité
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qu’ils m’ont accordée tout au long de ce travail. Tout particulièrement, j’aimerais remercier
Raphaël Rouquier pour de nombreuses discussions et remarques.

2. Rickard’s theorems

We state, for the reader’s convenience, Rickard’s two main theorems. The first of which
deals with onesided tilting complexes, the second deals with twosided tilting complexes.

Objects of the category Db(Λ) are right bounded complexes of finitely generated projective
Λ-modules and with homology concentrated in only finitely many degrees. Morphisms are
complex morphisms modulo homotopy.

The category Kb(PΛ) is the full subcategory of Db(Λ) generated by bounded complexes.

Theorem 1. (Rickard [9]) Let Λ and Γ be two rings. Then, the following conditions are
equivalent:

(1) Db(Λ) ' Db(Γ) as triangulated categories
(2) There is a T ∈ Kb(PΛ) such that the ring EndKb(PΛ)(T ) is isomorphic to Γ as rings

and HomKb(PΛ)(T, T [i]) = 0 for all i 6= 0 and the rank one free module is contained in
the triangulated category generated by direct summands of finite direct sums of T .

Remark 1. A complex T as in Theorem 1 is called a tilting complex from Λ to Γ. If such a T
exists then Λ and Γ are called derived equivalent.

The second theorem deals with a different type of complexes making the equivalence of the
derived categories more explicit.

Theorem 2. (Rickard [10]) Let R be a commutative ring and let A and B be two R-projective
R–algebras. If A and B are derived equivalent by a functor F , then the functor F induces also
a derived equivalence between Db(A⊗RA

op) and Db(A⊗RB
op) and the image of A as A⊗RA

op

module under this functor is a complex X in Db(A⊗R B
op). Furthermore,

X ⊗LB − : Db(B) −→ Db(A)

is an equivalence of triangulated categories.

Remark 2. The complex X as in Theorem 2 is called a twosided tilting complex. Note that
X is defined in the derived category and not in the homotopy category.

We finish with a yet unpublished lemma of Jeremy Rickard.

Lemma 1. (J. Rickard [12]) Let R be a complete discrete valuation ring and let Λ and Γ be
two R–orders in semisimple artinian frac(R)–algebras. Let X be a complex of Λ–Γ bimodules
bounded from the left and bounded from the right. Let X be isomorphic in Db(Λ) to a tilting
complex with endomorphism ring Γ and let X be isomorphic in Db(Γop) to a tilting complex
with endomorphism ring Λ, then X is a twosided tilting complex.

Proof. (J. Rickard)
Let more generally A and B be additive categories and let Li : A −→ B with i = 1, 2 be

functors with right adjoints R1 and R2. Now, a natural transformation

L1 −→ L2

gives rise to a natural transformation

R2 −→ R1L1R2 −→ R1L2R2 −→ R1

which is induced by the unit 1 −→ R1L1, the above natural transformation and the counit
L2R2 −→ 1. This correspondence is called the conjugate map. This is characterized by the
commutativity of the diagram

HomB(L2−,−) ' HomA(−, R2−)
↓ ↓

HomB(L1−,−) ' HomA(−, R1−)
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Given a bounded complex of functors

L∗ : . . . −→ L0 −→ L1 −→ L2 −→ . . .

by the commutativity of the diagram defining the adjoint map above, this gives rise to a complex
of functors

R∗ : . . . −→ R2 −→ R1 −→ R0 −→ . . .

by taking the conjugate maps. Now, L∗ and R∗ induce functors L∗ : Cb(A) −→ Cb(B) and
R∗ : Cb(B) −→ Cb(A) by taking the total complex of the resulting double complex. Of course,
homotopies map to homotopies this way such that our functors L∗ and R∗ carries over to
functor

L∗ : Kb(A) −→ Kb(B)

and

R∗ : Kb(B) −→ Kb(A)

We observe that (L∗, R∗) is an adjoint pair. In fact, for anyX and Y inA we get an isomorphism
of the triple complexes

HomB(L∗(X), Y ) ' HomA(X,R∗(Y ))

natural in X and in Y . If one takes now total complexes and observes that the zero homology
of this complex then gives just the homomorphisms in the homotopy categories, we get by the
naturality of the construction in both variables the adjointness property.

We now specialize to Li = − ⊗Γ Xi for our bimodules Xi which are finitely generated
projective on both sides. Then, Ri = HomΓ(Xi,−). By the fact that Xi is finitely generated
projective as Γ–module,

HomΓ(Xi,−) ' −⊗Γ HomΓ(Xi,Γ).

We get a unit

1?(Λ) −→ −⊗Λ X ⊗Γ HomΓ(X,Γ)

and a counit

−⊗Γ HomΓ(X,Γ)⊗Λ X −→ 1?(Γ)

for ? being C, the complex category or equally well K, the homotopy category. Therefore we
get natural maps of complexes of right modules

Λ −→ X ⊗Γ HomΓ(X,Γ)

and

HomΓ(X,Γ)⊗Λ X −→ Γ

which are actually maps of complexes of bimodules by letting the rings act via endomorphisms
of the free rank one right modules, using the functoriality of the construction.

Take DΓ(X) = HomΓ(X,Γ) as complex of Γ − Λ–bimodules. Now, − ⊗Λ X is left adjoint
to −⊗Λ DΓX as functors Cb(Λ) −→ Cb(Γ). We get natural maps of complexes of bimodules

Λ
α
−→ X ⊗Γ DΓX and DΓ(X)⊗Λ X

β
−→ Γ

We now show, that α is an isomorphism in the derived category of bounded complexes of
projective modules.

Set k = R/rad R.
We may assume, using Lemma 2, that X consists of bimodules whose restrictions to the left

and to the right are projective.
Obviously, M := k ⊗R (X ⊗Γ DΓ(X)) is isomorphic to a module in Db(Λ⊗ Λop).
We denote the kernel of the mapping induced by α on the degree zero homology by K. We

observe that

k ⊗R X ⊗Γ DΓ(X)
α⊗Λ1M−→ k ⊗R X ⊗Γ DΓ(X)⊗Λ X ⊗Γ DΓ(X)

‖ ↓ 1X ⊗Γ β ⊗Γ 1DΓ(X)

k ⊗R X ⊗Γ DΓ(X) = k ⊗R X ⊗Γ DΓ(X)
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is a commutative diagram.
Since now α⊗ 1X⊗DΓ(X) is a split monomorphism, K ⊗Λ X ⊗Γ DΓ(X) = 0.
Since the complexDΓ(X) is a complex of projective Γ–modules, Γ|DΓ(X) is a tilting complex.

In fact, HomΓ(−,Γ) is faithfully flat on projective Γ–modules and it is now easy to derive the
defining conditions of a tilting complex from the property of X being a tilting complex as
complex of Γ–modules.

Since Γ|DΓ(X) is a tilting complex, K ⊗Λ X = 0. Since X |Λ is a tilting complex, K = 0.
Hence, we know that α induces an injective mapping on the degree 0–homology. As R–

modules we have

H0(X ⊗Γ DΓ(X)) ' EndKb(PΓ)(X |Γ).

Since every monomorphism between finite dimensional vector spaces of equal dimension is an
isomorphism, α induces an isomorphism

R/rad R⊗R Λ ' R/rad R⊗R H0(X ⊗DΓ(X))

as Λ − Λ–bimodules. Since we assumed Λ and Γ to be finitely generated over the noetherian
complete discrete valuation ring R, we know that α induces an isomorphism between Λ and
the degree zero homology of X ⊗DΓ(X)..

We have to finish with proving that also β is an isomorphism.
The composition

X
α⊗idX−→ X ⊗Γ DΓ(X)⊗Λ X

idX⊗β
−→ X

equals the identity and α is an isomorphism, so idX⊗β is an isomorphism. Forming the triangle
in the homotopy category of complexes of finitely generated projective modules

DΓ(X)⊗Γ X
β
−→ Γ −→ C  . . . ,

we get X ⊗Γ C is acyclic, and since X as complex of right modules is isomorphic to a tilting
complex, C is acyclic.

This completes the proof of Lemma 1.

In order to prove that a complex of Λ–Γ–bimodules is a twosided tilting complex, for Λ and
Γ being as in the lemma, we only have to compute a complex X of bimodules which restricts
on either sides to a tilting complex with correct endomorphism rings.

3. Recapitulation of the onesided situation

3.1. Green orders. K.W. Roggenkamp defined Green orders to explain the structure of blocks
of group rings over a complete discrete valuation ring of characteristic 0 with cyclic defect group
[13].

We use a suggestion of L. Puig to define Green orders in a different, equivalent, way.
Let R be an integral domain with field of fractions K and let Λ be an indecomposable

R–order in the semisimple K–algebra A = K ⊗R Λ.
Let I be a complete set of primitive idempotents of Λ (i.e. EndΛ(⊕i∈IΛ · i) is Morita

equivalent to Λ and the modules Λ ·i for all i ∈ I are projective indecomposable left–Λ–modules
for all i ∈ I).

Definition 1. The indecomposable R–order Λ in the semisimple algebra A is called a Green
order if

• there is a set E of central idempotents of A with
∑

e∈E e = 1 such that

T := {(i, e) ∈ I ×E|i · e 6= 0}

is a tree (i.e. defines a connected relation on I ×E, |E| = |I |+ 1 and for all i ∈ I we
get |T ∩ ({i} ×E)| = 2).
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• noting by π : T −→ I and θ : T −→ E the natural projections, there are a transitive
permutation ω of T and for all t ∈ T a Λ–module homomorphism

gt : Λ · π(t) −→ Λ · π(ω(t)) with gt(Λ · π(t)) = ker(gω(t))
σt

' Λ · π(t) · θ(t) .

where for all λ ∈ Λπ(t) we have σtgt(λ) = λ · θ(t).

Remark 3. We should provide a link to the definition in [13].

(1) It is immediate to see that a finite, connected, unoriented graph T with one edge less
than it has vertices does not have cycles (use an induction). Hence, the three conditions
on the cardinalities of I and E in relation with T defines in fact a tree.

(2) The transitive permutation ω of T is the ’walk around the Brauer tree’ which was
invented in Green’s paper [4]. Green gives reference to this permutation in the intro-
duction, however, without mentioning the permutation explicitly.

(3) The walk around the Brauer tree manifests in a projective resolution

0← Λ · π(t) · θ(t)← Λπ(t)← Λπ(ω(t))← Λπ(ω2(t))← · · · ← Λπ(t)← . . .

(4) A tree may be realized by a graph in the plane, meaning a complex of 1-simplices in
IR2. One associates to the plane an orientation, and the permutation ω is the ’walk
around the tree’ as described in [4].

We abbreviate Λ · t = Λπ(t)θ(t) and t ·Λ = π(t)θ(t)Λ. The main theorem of Roggenkamp in
[13] may be reformulated as follows.

Theorem 3. (Roggenkamp [13]) We assume that Λ is basic.
There is an R–torsion R–algebra Ω and a family (ft : tΛt −→ Ω) of R–algebra homomor-

phisms with kernel being a principal ideal attΛt.
T is totally ordered by ω and a first element. There is a (equivalent) set of primitive idem-

potents I such that one can choose the first element of T such that the Pierce decomposition

Λ =











i1Λi1 i1Λi2 . . . i1Λik
i2Λi1 i2Λi2 . . . i2Λik

...
...

...
ikΛi1 ikΛi2 . . . ikΛik











has the following properties

(1) For all t < t′ and θ(t) = θ(t′) with t, t′ ∈ T we have tΛt = π(t)Λπ(t′) = t′Λt′.
(2) ft depends only on θ(t) and we denote fθ(t) := ft and aθ(t) := at.
(3) For all t > t′ and θ(t) = θ(t′) with t, t′ ∈ T we have aθ(t) · π(t′)Λπ(t) = π(t)Λπ(t′).
(4) If t, t′ ∈ T with π(t) = π(t′) then π(t)Λπ(t) is a pullback

π(t)Λπ(t) −→ tΛt
↓ ↓ ft

t′Λt′
ft′−→ Ω

Moreover, if for an R–order Λ′ in K⊗RΛ with I being also a complete set of primitive idempo-
tents of Λ′ the tree T and the transitive permutation ω of T from above have the property that
there is an element t1 ∈ T defining together with ω a linear ordering on T such that the Pierce
decomposition has the properties (1), (2), (3) and (4) then Λ′ is a Greenorder.

Remark 4. (1) One should observe that since the e in E are central and pairwise orthog-
onal, most of the entries in the above matrix are zero. The rest of the entries falls
naturally into matrix rings. Furthermore, by the first and the third points of the the-
orem, the matrix rings in question are upper triangular over Ωθ(t) := tΛt which does
only depend on θ(t) und the lower diagonal entries is in a principal ideal attΛt, again
depending only on θ(t). These matrix rings are linked among each other by the pull-
backs with the main diagonal entries mentioned in point 4 of the theorem. This is the
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interpretation given by Roggenkamp in [13]. We may hence label the vertices of the tree
by the pairs (Ωθ(t), aθ(t)). Mostly we only write down the labels Ωθ(t), understanding
that the ideal aθ(t)Ωθ(t) is fixed once for all, if this does not cause confusion.

(2) With I = {i1, i2, . . . , ik} being the above set of primitive idempotents, one obtains that
gt is just multiplication by t and σt is the identity.

(3) By the last of the 4 properties one can see that the the projective indecomposable
modules Λi for i ∈ I are pullbacks, where t · i 6= 0 6= t′ · i for two different t, t′ in T ,

Λi
gt
→ Λt

↓ gt′ ↓ f̃t

Λt′
f̃t′→ (Ωj)

k
j=1

where

f̃t|t′′Λt =

{

ft if t′′ = t
0 if t′′ 6= t

and f̃t′ |t′′Λt′ =

{

ft′ if t′′ = t′

0 if t′′ 6= t′

Moreover,

Ωj =

{

Ω if i = ij
0 if i 6= ij

As a consequence, we get that

ker(f̃t) ' ker(σt′gt′) ' ker(gt′)

3.2. Tilting Green orders. We recall the following facts from [16] and from the refinement
[6]. We are given a Green order Λ with Brauer tree

�
�

�

@
@

@ A
A

A
A

A
A

�
�
�
�
�
�

r r r

r

r

r

r

...
...

. . .

�

. . .

.

..�

. . .

Ω1 Ω3

Ω2

and data (Ωi, fi), where we denote

L := { vertices v| the shortest path in the tree from v to Ω2 passes Ω1}

U := { vertices v| the shortest path in the tree from v to Ω1 passes Ω2} \ {Ω3}

The orientation in the plane is meant to be counterclockwise.
The indecomposable projective corresponding to the edge linking Ω1 and Ω2 is denoted by

P = Λi1,2, for an idempotent i1,2 of Λ and the indecomposable projective corresponding to the
edge linking Ω2 and Ω3 is denoted by Q = Λi2,3 for an idempotent i2,3 of Λ. We identify edges
with indecomposable projectives and denote the indecomposable projective corresponding to
the edge e by Pe. Set

L :=
⊕

( edges e involving
only vertices in L)

Pe and U :=
⊕

(edges f involving
only vertices in U)

Pf
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The complex

T := (0 −→ L⊕ U ⊕ P ⊕ P
(0,0,0,gi1,2e2 )
−→ Q −→ 0)

is a tilting complex. Its endomorphism ring is a Green order Γ associated to the following tree
with obvious notations.

�
�

�

@
@

@
�

�
�

�
�

�

A
A
A
A
A
A

r r r

r

r

r

r

..

.
..
.

. . .
�

. . .

...�

. . .

Ω2 Ω3Ω1

The argument applied to right Γ–modules implies that, denoting by P ′∗ the indecomposable
projective corresponding to the edge linking Ω1 and Ω2 and by Q′∗ the projective indecompos-
able corresponding to the edge linking Ω1 and Ω3, defining L′∗ and U ′∗ analogously as above,
the complex

T ′ := (0 −→ L′∗ ⊕ U ′∗ ⊕ P ′∗ ⊕ P ′∗
(0,0,0,gj1,2e1 )
−→ Q′∗ −→ 0)

is a tilting complex with endomorphism ring Λ.

We denote by iU the idempotent corresponding to U , by iL the idempotent corresponding
to L, by i1,2 the idempotent corresponding to P and by i2,3 the idempotent corresponding to
Q.

Analogously, we denote by jU the idempotent corresponding to U ′∗, by jL the idempotent
corresponding to L′∗, by j1,2 the idempotent corresponding to P ′∗ and by j1,3 the idempotent
corresponding to Q′∗.

By abuse of language we denote both for Λ and for Γ the central idempotents corresponding
to Ω1 by e1, those corresponding to Ω2 by e2, those corresponding to U by eU and those
corresponding to L by eL.

We choose the ’beginning element’ of TΛ and of TΓ such that

TΛ = {iUe2 < i1,2e1 < iLeL < iLe1 < i1,2e2 < i2,3e3 < i2,3e2 < iUeU}

and

TΓ = {j1,3e1 < j1,3e3 < jUe2 < jUeU < j1,2e2 < j1,2e1 < jLeL < jLe1}
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Then, the result in [16] affirms that

iUΛiU = jUΛjU with fΛ
iU ,e2

= fΓ
iU ,e2

and fΛ
iU ,eU

= fΓ
iU ,eU

,

i1,2ΛiU = j1,2ΓjU ,

iLΛiL = jLΓjL with fΛ
iL,e1

= fΓ
iL,e1

and fΛ
iL,eL

= fΓ
iL,eL

,

i1,2ΛiL = j1,2ΓjL,

i1,2Λi1,2 = j1,2Γj1,2 with fΛ
i1,2e1

= fΓ
j1,2e1

and fΛ
i1,2e2

= fΓ
j1,2e2

,

i1,2ΛiL = j1,2ΓjL,

iUΛi1,2 = jUΓj1,2,

iLΛi1,2 = jLΓj1,2,

iL ker(g(i1,2,e2)) = jLΓj1,3,

i1,2 ker(g(i1,2,e2)) = j1,2Γj1,3,

i2,3ΛiU = ker(g(j1,2,e1)) jU ,

i2,3Λi1,2 = ker(g(j1,2,e1)) j1,2 .

In section 4 we shall construct a complex X of Λ–Γ–bimodules which is isomorphic in the
derived category of Λ–left modules to T and which is isomorphic in the derived category of
Γ–right modules to T ′.
The combinatorics. In [6] it is proven that iterating the procedure above, or otherwise said,
taking as ’new’ Λ the ’old’ order Γ and choosing a numeration for Ω1, Ω2 and Ω3, it is possible
to end up after a certain number of steps as Γ a Green order associated to a tree being a star
with the same data we started with, and any association of the vertices of the star to the data
(Ωi, fi).

In other words, it is possible to ’deform’ the tree to a star and to interchange any two vertices.
So, tensoring the complexes we construct, this gives a twosided tilting complex between any

two Green orders with the same data, no matter the tree looks like as long as the data and the
number of vertices are fixed.

3.3. An observation. In our onesided construction we have to deal with two terms tilting
complexes. Let

X = (0 −→ X1 −→ X0 −→ 0)

be a twosided two term tilting complex and we may and will assume that X has homology
concentrated in the degrees 0 and 1.

Using the arguments in the appendix we may furthermore assume that X0 is a projective
bimodule.

We denote by Ω1(H0(X)) the first syzygy of H0(X) as bimodule. We get short exact se-
quences

0 −→ Ω1(H0(X)) −→ X0 −→ H0(X) −→ 0

and

0 −→ H1(X) −→ X1 −→ Ω1(H0(X)) −→ 0.

Moreover, K = frac(R) being the field of fractions of R,

K ⊗R X1 ' K ⊗R H1(X)⊕K ⊗R Ω′
1(H0(X)).

We are given two onesided tilting complexes T and S over Λ and Γop resp. and we want to
find a twosided tilting complex X in Db(Λ⊗R Γop) with

X ' T in Db(Λ) and X ' S in Db(Γop)

It is therefore necessary to find a bimodule H1(X) such that

Λ|H1(X) ' H1(T ) and H1(X)|Γ ' H1(S)
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Furthermore, the restriction of the composition

X1 −→ Ω′
1(H0(X)) −→ X0

to the left and to the right have to coincide with the onesided complex, in the derived category.
This small observation will allow us to construct X .

4. Constructing the complex

We shall give a twosided tilting complex in the situation above.
Again we have to compute the homology in degree 1 and find a bimodule which restricts to

these homologies on either side.
We remind the reader that we denote

gΛ := gi1,2e2 : Λi1,2 −→ Λi2,3

and

gΓ := gj1,2e1 : j1,2Γ −→ j1,3Γ

There is only one canonical way to produce a bimodule H1(X): The bimodule is isomorphic
to









iUΛiU iUΛi1,2 iUker(gΛ) iUΛiL
i1,2ΛiU i1,2Λi1,2 i1,2ker(gΛ) i1,2ΛiL
iLΛiU iLΛi1,2 iLker(gΛ) iLΛiL
i2,3ΛiU i2,3Λi1,2 i2,3ker(gΛ) i2,3ΛiL









which is equal to








jUΓjU jUΓj1,2 jUΓj1,3 jUΓjL
j1,2ΓjU j1,2Γj1,2 j1,2Γj1,3 j1,2ΓjL
jLΓjU jLΓj1,2 jLΓj1,3 jLΓjL

ker(gΓ)jU ker(gΓ)j1,2 ker(gΓ)j1,3 ker(gΓ)jL









where we used the relations mentioned in Subsection 3.2 and that we know, by the fact that
the idempotents e1, e2, eU and eL are central and pairwise orthogonal (both for Λ and for Γ),
that

iUker(gΛ) = jUΓj1,3 = 0,

iUΛiL = jUΓjL = 0,

iLΛiU = jLΓjU = 0,

i2,3ker(gΛ) = ker(gΓ)j1,3 = 0.

On this bimodule Λ acts by multiplication by








iUΛiU iUΛi1,2 iUΛiL iUΛi2,3
i1,2ΛiU i1,2Λi1,2 i1,2ΛiL i1,2Λi2,3
iLΛiU iLΛi1,2 iLΛiL iLΛi2,3
i2,3ΛiU i2,3Λi1,2 i2,3ΛiL i2,3Λi2,3









from the left and Γ acts by matrix multiplication by








jUΓjU jUΓj1,2 jUΓj1,3 jUΓjL
j1,2ΓjU j1,2Γj1,2 j1,2Γj1,3 i1,2ΓiL
j1,3ΓjU j1,3Γj1,2 j1,3Γj1,3 j1,3ΓjL
jLΓjU jLΓj1,2 jLΓj1,3 jLΓjL









The homology in degree 0 is easy to compute, it is Λe3 = e3Γ as Λ ⊗ Γop–module. The
projective cover of this module as bimodule is

X0 := Λi2,3 ⊗R j1,3Γ.



twosided tilting complexes 11

For constructing the bimodule extension of the homology with the first syzygy of

Ω3 = e3i2,3Λi2,3 = e3j1,3Λj1,3

we have to explicit this module. (Again, not to overload the notation, we write ”⊗” for ”⊗R”.)

Λi2,3 ⊗R j1,3Γ =

=









iUΛi2,3 ⊗ j1,3ΓjU iUΛi2,3 ⊗ j1,3Γj1,2 iUΛi2,3 ⊗ j1,3Γj1,3 iUΛi2,3 ⊗ j1,3ΓjL
i1,2Λi2,3 ⊗ j1,3ΓjU i1,2Λi2,3 ⊗ j1,3Γj1,2 i1,2Λi2,3 ⊗ j1,3Γj1,3 i1,2Λi2,3 ⊗ j1,3ΓjL
iLΛi2,3 ⊗ j1,3ΓjU iLΛi2,3 ⊗ j1,3Γj1,2 iLΛi2,3 ⊗ j1,3Γj1,3 iLΛi2,3 ⊗ j1,3ΓjL
i2,3Λi2,3 ⊗ j1,3ΓjU i2,3Λi2,3 ⊗ j1,3Γj1,2 i2,3Λi2,3 ⊗ j1,3Γj1,3 i2,3Λi2,3 ⊗ j1,3ΓjL









=





iUΛi2,3 ⊗ j1,3Γj1,2 iUΛi2,3 ⊗ j1,3Γj1,3 iUΛi2,3 ⊗ j1,3ΓjL
i1,2Λi2,3 ⊗ j1,3Γj1,2 i1,2Λi2,3 ⊗ j1,3Γj1,3 i1,2Λi2,3 ⊗ j1,3ΓjL
i2,3Λi2,3 ⊗ j1,3Γj1,2 i2,3Λi2,3 ⊗ j1,3Γj1,3 i2,3Λi2,3 ⊗ j1,3ΓjL





since j1,3ΓjU = 0 and iLΛi2,3 = 0.

This module maps by a mapping π̂ onto Ω3 by mapping i2,3Λi2,3 ⊗ j1,3Γj1,3 onto its e3–
component. We denote this last mapping by π. We hence have an exact sequence

0 −→





iUΛi2,3 ⊗ j1,3Γj1,2 iUΛi2,3 ⊗ j1,3Γj1,3 iUΛi2,3 ⊗ j1,3ΓjL
i1,2Λi2,3 ⊗ j1,3Γj1,2 i1,2Λi2,3 ⊗ j1,3Γj1,3 i1,2Λi2,3 ⊗ j1,3ΓjL
i2,3Λi2,3 ⊗ j1,3Γj1,2 ker(π) i2,3Λi2,3 ⊗ j1,3ΓjL





ι
−→

ι
−→





iUΛi2,3 ⊗ j1,3Γj1,2 iUΛi2,3 ⊗ j1,3Γj1,3 iUΛi2,3 ⊗ j1,3ΓjL
i1,2Λi2,3 ⊗ j1,3Γj1,2 i1,2Λi2,3 ⊗ j1,3Γj1,3 i1,2Λi2,3 ⊗ j1,3ΓjL
i2,3Λi2,3 ⊗ j1,3Γj1,2 i2,3Λi2,3 ⊗ j1,3Γj1,3 i2,3Λi2,3 ⊗ j1,3ΓjL





π̂
−→ Ω3 −→ 0

Now, we have to find the common extension of the kernel of this sequence and the homology.

We modify the homology-bimodule to do so. The special structure of the Green order Λ
(namely the first three properties in Roggenkamp’s theorem) and this choice of the first element
as done above implies that iUΛi2,3 = iUΛi1,2 and i2,3Λi1,2 = e2i1,2Λi1,2.

We shall use








iUΛiU iUΛi2,3 e1iUΛi1,2 iUΛiL
i1,2ΛiU e1i1,2Λi1,2 ⊕ i1,2Λi2,3 e1i1,2Λi1,2 i1,2ΛiL
iLΛiU iLΛi1,2 e1iLΛi1,2 iLΛiL
i2,3ΛiU e2i2,3Λi2,3 e1i2,3Λi1,2 i2,3ΛiL









as Λ–left–module which is equal to









jUΓjU jUΓj1,2 jUΓj1,3 jUΓjL
j1,2ΓjU e1j1,2Γj1,2 ⊕ e2j1,2Γj1,2 j1,2Γj1,3 j1,2ΓjL
jLΓjU jLΓj1,2 jLΓj1,3 jLΓjL

e2j1,2ΓjU e2j1,2Γj1,2 e2j1,2Γj1,3 e2j1,2ΓjL









as Γ–right–module, using the ordering and the special choice of a first element in TΓ.

We need one more observation concerning the construction of the differential.

The theorem of Roggenkamp gives us a canonical Λ-module structure on









0
Ω
0
Ω









by the

following fact. Since in the chosen ordering of TΛ we have i2,3e2 > i1,2e2 > iUe2, there are
inclusions

giUe2(ΛiU ) < e2Λi1,2 and gi1,2e2(Λi1,2) < e2Λi2,3 .
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Hence we get an exact sequence

0 −→ e2ΛiU
giU e2gi1,2e2
−→ e2Λi2,3









0
fe2
0
fe2









−→









0
Ω
0
Ω









−→ 0 .

Likewise one finds a Λ–module structure by transport of structure of Λi1,2e1 via f̃i1,2e1 on









0
Ω
0
0









.

This gives








0 0 0 0
0 Ω Ω 0
0 0 0 0
0 Ω 0 0









the structure of a Λ-left–module. The structure from the right as Γ-right-module is given by
the fact that

fΛ
e2

= fΓ
e2

and fΛ
e1

= fΓ
e1

The second line in the matrix gets its right-Γ-module structure by transport of structure of
e1j1,2Γ via (0,−fΓ

e1
,−fΓ

e1
, 0) and the fourth line gets its Γ-right-module structure by transport

of structure of e2j1,2Γ via f̃j1,2e2 .
As a whole, by the analogous arguments as in the case of the Λ-structure, we get a right

Γ-structure using the same mapping








0 0 0 0
0 (−fe1 , fe2) −fe1 0
0 0 0 0
0 fe2 0 0









for the left and for the right.

With these preparations we can define our X1 and the differential as pullback
diagram







jUΓjU jUΓj1,2 jUΓj1,3 jUΓjL
j1,2ΓjU e1j1,2Γj1,2 ⊕ e2j1,2Γj1,2 j1,2Γj1,3 j1,2ΓjL
jLΓjU jLΓj1,2 jLΓj1,3 jLΓjL

e2j1,2ΓjU e2j1,2Γj1,2 e2j1,2Γj1,3 e2j1,2ΓjL







←− X1

‖ ‖







iUΛiU iUΛi2,3 e1iUΛi1,2 iUΛiL
i1,2ΛiU e1i1,2Λi1,2 ⊕ i1,2Λi2,3 e1i1,2Λi1,2 i1,2ΛiL
iLΛiU iLΛi1,2 e1iLΛi1,2 iLΛiL
i2,3ΛiU e2i2,3Λi2,3 e1i2,3Λi1,2 i2,3ΛiL







←− X1

↓ χ ↓ ϕ







0 0 0 0

0 Ω Ω 0
0 0 0 0

0 Ω 0 0







ψ
←−







0 iUΛi2,3 ⊗ j1,3Γj1,2 iUΛi2,3 ⊗ j1,3Γj1,3 iUΛi2,3 ⊗ j1,3ΓjL
0 i1,2Λi2,3 ⊗ j1,3Γj1,2 i1,2Λi2,3 ⊗ j1,3Γj1,3 i1,2Λi2,3 ⊗ j1,3ΓjL
0 0 0 0
0 i2,3Λi2,3 ⊗ j1,3Γj1,2 ker(π) i2,3Λi2,3 ⊗ j1,3ΓjL






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where

ψ =









0 0 0 0
0 fΛ

e2
· fΓ
e1

fΛ
e2
· fΓ
e1

0
0 0 0 0
0 fΛ

e2
· fΓ
e1

0 0









and

χ =









0 0 0 0
0 (−fe1 , fe2) −fe1 0
0 0 0 0
0 fe2 0 0









We define the complex

X := (0 −→ X1
ι◦φ
−→ Λi2,3 ⊗R j1,3Γ −→ 0)

Proposition 1. The complex X in Db(Λ) is isomorphic to a tilting complex with endomor-
phism ring Γ and X in Db(Γop) is isomorphic to a tilting complex with endomorphism ring Λ.

Theorem 4. Let Λ and Γ be Green orders associated to the Brauer trees
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r r

r r

r

r

r
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. . .
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. . .

. . .
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for Λ

and

@
@

@

�
�

�

@
@

@

@
@

@
�

�
�

r r

r r

r

r

r

...

. . .

. . .

Ω2

Ω3

Ω1

...

. . .

. . .

� �

for Γ

with the same data (Ωi, fi)i∈I for the same suitable index set I of vertices.

Let eΛ3 be the central idempotent of K ⊗R Λ corresponding to the leaf Ω3 of Λ and let eΓ3 be
the central idempotent of K ⊗R Γ corresponding to the leaf Ω3 of Γ.

• Then, the complex X as defined above is a twosided tilting complex.
• The term X0 of X in degree 0 is the projective cover of Ω3 as Λ–Γ–bimodule, where Λ

acts as multiplication by Λ · eΛ3 on the left and Γ acts as multiplication by Γ · eΓ3 on the
right.

• In case Λ and Γ are Gorenstein orders, the homogeneous component X1 of X in degree 1
is a Λ–Γ–bimodule which induces a stable equivalence of Morita type.

Remark 5. We should remind the reader to Broué’s definition of a stable equivalence of Morita
type. Let R be a commutative ring and let A and B be two R–algebras. If there are a finitely
generated A⊗R B

op-module M and a finitely generated B ⊗R A
op-module N such that

M ⊗B N ' A⊕ PA and N ⊗AM ' B ⊕ PB

as A ⊗R A
op-modules (or as B ⊗R B

op-modules resp.) for a projective A ⊗R A
op-module PA

and a projective B⊗RB
op-module PB , then M is said to induce a stable equivalence of Morita

type.

Theorem 4 follows from Proposition 1 and Lemma 1.

The proof of Proposition 1 will cover the two following subsections.
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4.1. Restricting to the left. Certainly, the first column in X1 is isomorphic to ΛiU and the
last column in X1 is isomorphic to ΛiL. On these both modules the differential is zero.

The third column gives rise to a a complex defined by the following pullback diagram.

e1Λi1,2
α
←− P0

↓ −f̃i1,2,e1 ↓ β









0
Ω
0
0









←−









iUΛi2,3 ⊗ j1,3Γj1,3
i1,2Λi2,3 ⊗ j1,3Γj1,3
iLΛi2,3 ⊗ j1,3Γj1,3

ker(π)









↓

Λi2,3 ⊗R j1,3Γj1,3

The module in degree 1 is P0, the module in degree 0 is Λi2,3 ⊗R j1,3Γ and the differential is
given by the composition of the two right hand mappings.

We shall prove that this is isomorphic (in Db(Λ)) to the natural mapping

gi1,2,e1 : Λi1,2 −→ Λi2,3.

Let

j1,3 : Λi1,2 −→ j1,3Γj1,3

λi1,2 −→ j1,3

be the constant mapping. Then, we have a homomorphism

gi1,2,e2 ⊗ j1,3 : Λi1,2 → Λi2,3 ⊗R j1,3Γj1,3

λ 7→ gi1,2,e2(λ)⊗ j1,3

Since e2 · e3 = 0 and gi1,2,e2(Λi1,2) ⊆ Λe2, we get that

(gi1,2,e2 ⊗ j1,3)(Λi2,3) ⊆ kerπ̂ =









iUΛi2,3 ⊗ j1,3Γj1,3
i1,2Λi2,3 ⊗ j1,3Γj1,3
iLΛi2,3 ⊗ j1,3Γj1,3

ker(π)









Now, Roggenkamp’s classification of a Green order together with our choice of a first element
in TΛ ensure that iUΛi2,3 = iUΛi1,2 and that i1,2Λi2,3 = e2i1,2Λi1,2.

The lower horizontal mapping however is (0, fe2 ·fe1 , 0, 0)tr. Since j1,3 is the identity element
in j1,3Γj1,3, the square

e1Λi1,2 ←− Λi1,2
↓ ↓ −(gi1,2,e2 ⊗ j1,3)









0
Ω
0
0









←− ker π̂

is commutative. The universal property of the pullback yields a unique mapping

ρ : Λi2,3 −→ P0

such that αρ(λ) = λe1 and βρ(λ) = (λe2)⊗ j1,3 for any λ ∈ Λi1,2. If we define the mapping

1⊗ j1,3 : Λi2,3 → Λi2,3 ⊗ j1,3Γj1,3

λ 7→ λ⊗ j1,3
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we get a commutative diagram

e1Λi1,2
α
←− P0

ρ
←− Λi1,2

↓ −fi1,2e1
↓ β ‖









0
Ω
0
0









←−









iUΛi2,3 ⊗ j1,3Γj1,3
i1,2Λi2,3 ⊗ j1,3Γj1,3
iLΛi2,3 ⊗ j1,3Γj1,3

ker(π)









−gi1,2e2⊗j1,3

←− e2Λi1,2

↓ ↓ −gi1,2e2
⊗ j1,3

Λi2,3 ⊗R j1,3Γj1,3
·1⊗j1,3
←− Λi2,3

By Remark 4 one gets that

ker(β) ' ker(f̃i1,2e1) ' ker(gi1,2e2) .

Moreover, the cokernel of αι is Ω3 by definition of π̂. Clearly, by construction of our Green
order, coker(Λi1,2 −→ Λi2,3) = Ω3 and 1⊗ j1,3 provides this isomorphism.

Hence, the complex, which is given by the composite of the two middle vertical mappings
is isomorphic to the complex which is given by the two right most vertical mappings. This is
what we claimed.

The second column gives a complex arising from the following pullback diagram:

e1Λi1,2 ⊕ e2Λi2,3 =









iUΛi2,3
e1i1,2Λi1,2 ⊕ i1,2Λi2,3

iLΛi1,2
e2i2,3Λi2,3









←− P1

↓ χ ↓









0
Ω
0
Ω









ψ
←− Λi2,3 ⊗R j1,3Γj1,2

The mapping P1 −→ Λi2,3⊗R j1,3Γj1,2 is surjective, the mapping to the artinian quotient being
so, and Λi2,3 ⊗R j1,3Γj1,2 is a projective Λ–module, such that the two term complex formed
by this mapping is isomorphic in Db(Λ) to its homology. This homology is isomorphic to the
kernel of (the restriction of) χ, using the universal property of the pullback. We claim that this
kernel is isomorphic to Λi1,2.

Observe that the lowest entry in the column giving the mapping χ is just the structure giving
mapping

fi2,3,e2 : i2,3Λi2,3e2 −→ Ω

in Roggenkamp’s theorem.
Moreover, the defining permutation ω of TΛ is such that ω(i1,2e2) = i2,3e2. Hence, we have

the defining map

g(i1,2,e2) : Λi1,2 −→ Λi2,3

of a Green order with image being Λi1,2e2.
The Λ–module homomorphism

Λi1,2
( ·e1

e2g(i1,2,e2)
)

−→ e1Λi1,2 ⊕ e2Λi2,3
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is injective. In fact, since g(i1,2,e2)(Λi1,2) = e2Λi1,2, an element λ in the kernel has to be in the
kernel of the mapping (·e1, ·e2) which is impossible since

Λi1,2 ⊆ Λi1,2e1 ⊕ Λi1,2e2.

On the other hand, the composite

Λi1,2
( ·e1

e2g(i1,2,e2)
)

→ e1Λi1,2 ⊕ e2Λi2,3
χ
−→









0
Ω
0
Ω









is zero. In fact, in the lowest entry of the module on the right the composition yields 0: We
have a commutative diagram

Λi1,2
g(i1,2,e2)

−→ Λi2,3
·e2−→ Λi2,3e2

↓ ·e3 ↓ f̃i2,3,e2

Λi2,3e3
f̃i2,3,e3
−→









0
0
0
Ω









Now,

χ ◦ g(i1,2,e2) = fi2,3,e2 ◦ ·e2 ◦ g(i1,2,e2) = fi2,3,e3 ◦ ·e3 ◦ g(i1,2,e2)

and g(i1,2,e2) has image in Λe2. Since e2e3 = 0, we obtain the result.

The second entry is dealt by the following argument.

We have to deal with

i1,2Λi1,2
( ·e1

e2g(i1,2,e2)
)

−→ i1,2Λi1,2e1 ⊕ e2i1,2Λi2,3 = i1,2Λi1,2e1 ⊕ e2i2,3Λi2,3
(−fi1,2e1 ,fi2,3e2 )

−→ Ω

We know that fi2,3e2 = fi1,2e2 by the second property of a Green order in Roggenkamp’s
theorem. Hence, since we started with an element in Λi1,2, the composite is 0.

Now, since i1,2e2 < i2,3e2 in TΛ, we get that









0
Ω
0
0









is a Λ-submodule of









0
Ω
0
Ω









and hence

we get a short exact sequence of Λ-modules

0 −→









0

Ω
0
0









−→









0

Ω
0

Ω









ν
−→









0
0
0
Ω









−→ 0

Clearly,

ker χ ⊆ ker νχ .

Moreover,

νχ|Λi1,2e1 = 0 and νχ|Λi2,3e2 = f̃i2,3e2 .

Now,

ker f̃i2,3e2 = ker gi2,3e3 = im gi1,2e2 = (Λi1,2e2) .
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Moreover,

Λi1,2
e2gi1,2e2
−→ Λi2,3e2

↓ ·e2 ↓









0
fe2
0
fe2









Λi1,2e2
f̃i1,2e2
−→









0
Ω
0
Ω









is commutative; the image of f̃i1,2e2 being ker ν. What remains now to prove is that

0 −→ Λi1,2
(e1

e2
)
→ Λi1,2e1 ⊕ Λi1,2e2

(−f̃i1,2e1 ,f̃i1,2e2 )
−→









0
Ω
0
0









−→ 0

is exact. But this follows from the definition.
Collecting the pieces, we get that

ker(χ) ' Λi1,2.

4.2. Restricting to the right. The restriction to the right is treated completely analogously
as the restriction to the left. We leave the verification to the reader.

Remark 6. It might be a interesting to try to see if the functor obtained by tensoring with
our module X1 differs from the functor defined by P. Gabriel and Chr. Riedtmann in [3].

5. Appendix

We shall repeat a lemma which is well known to the experts1, however, as far as it is known
to the author, it was never written down.

Lemma 2. • Let R be a commutative ring and let Λ and Γ be R–algebras which are
projective as R–modules.

• Let X be a complex in Db(Λ⊗R Γop) such that X in Db(Λ) is isomorphic to a tilting
complex T and X in Db(Γop) is a isomorphic to a tilting complex S.

• Let mΛ be the smallest natural number, such that there is a T ′ ' T in Kb(PΛ) with
Tk

′ = 0 for all k ≤ mΛ

• and let nΛ be the smallest natural number such that there is a T ′′ ' T in Kb(PΛ) with
Tk

′′ = 0 for all k ≥ nΛ.
• Similarly, mΓ and nΓ are defined.

Then, mΛ = mΓ =: m and for n = max(nΓ, nΛ) there is a X̃ ' X in Db(Λ ⊗R Γop) with
X̃k being a projective Λ⊗R Γop module for k = n, n− 1, ...,m and Xn+1 is a module which is
projective if restricted to Λ and is projective when restricted to Γop.

Proof. Since we are dealing with projective modules, mΛ = mΓ.
Without loss of generality we may, and will assume that m = 0. We take a projective

resolution as complex of bimodules of X :

. . . −→ P3
d3−→ P2

d2−→ P1
d1−→ P0 −→ 0 −→ . . .

We truncate as follows:

X ′ := (0 −→ ker(dn) −→ Pn −→ . . . −→ P0 −→ 0)

1in fact, it was mentioned to the author by J.Rickard
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and observe that, since both rings are projective as R–modules, P0, . . . , Pn are both projective
when restricted to either side. Clearly,X ' X ′ inDb(Λ⊗RΓop) since the homology in the degree
n+ 1 is 0. Since n = max{nΛ, nΓ}, the complex (0 −→ ker(dn) −→ Pn −→ 0) decomposes as

L
(id,0)
−→ L⊕ L′ as complex of Λ–modules. Since Pn = L⊕ L′ we conclude that L is projective.

Likewise, ker(dn) is projective as right Γ-module.
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