
PICARD GROUPS FOR DERIVED MODULE CATEGORIES

RAPHAËL ROUQUIER AND ALEXANDER ZIMMERMANN

Abstract. We introduce in this paper a generalization of Picard groups to derived cat-
egories of algebras. We study general properties of those groups and we construct braid
group actions on these groups for particular classes of algebras.

1. Introduction

Let k be a commutative ring and A a k-algebra. A bounded complex X of (A,A)-

bimodules is invertible if there is a bounded complex Y of (A,A)-bimodules such that

X ⊗L

A Y ' A in the derived category of (A,A) − bimodules

and Y ⊗L

A X ' A in the derived category of (A,A) − bimodules.

We define the group TrPic(A) : its elements are isomorphism classes of invertible com-

plexes in the derived category of (A,A)-bimodules. The product of the classes of X and X ′

is the class of X ⊗L

A X
′. The inverse of the class of X is the class of Y where X ⊗L

A Y ' A.

By Rickard’s theory [13], an equivalence between the derived categories of two k-algebras

A and B which are projective as k-modules induces an isomorphism between TrPic(A) and

TrPic(B). The subgroup of TrPic(A) given by complexes with homology concentrated in

degree 0 is the usual Picard group Pic(A). As we shall see later, the group Pic(A) is not an

invariant of the derived category.

The paper is organized as follows.

In a first section, we review and prove some results about standard derived equivalences.

Flat central base change is dealt with in §2.4. Then we show that for commutative rings,

standard derived equivalences come from Morita equivalences.

In a second part, we study various general properties of TrPic. Some of these are analogs of

classical properties of Picard groups such as base change and Fröhlich’s localization sequence.

The third part of the paper is devoted to the study of Brauer tree algebras A with

no exceptional vertex. Let n be the number of simple modules of A. We construct a

morphism from Artin’s braid group on n + 1 strings to TrPic(A). When n = 2, we show

this morphism is an isomorphism modulo some central subgroup : TrPic(A) is isomorphic
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to a central extension of PSL2(Z). This applies in particular when A is the group algebra

of the symmetric group S3 over a field of characteristic 3.

The results in this paper have been exposed by the second author at the ICRA VII

conference in August 1994 [19] and at the AMS Summer Research Institute “Cohomology,

Representations and Actions on Finite Groups” in July 1996 in Seattle. In [18], Yekutieli has

considered independently the group TrPic, in particular the case of local and commutative

algebras, and given applications to dualizing complexes.

2. On Rickard’s tilting theory

2.1. Notations and terminology. Let us fix some conventions for the rest of the paper.

Let k be a commutative ring and A a k-algebra. By an A-module, we always mean a left

A-module. We denote by A◦ the opposite algebra of A. We denote by A-mod the category

of finitely presented A-modules which is an abelian category if A is right coherent.

Let C = (C i, di) be a complex of A-modules where we denote by di the differential

Ci → Ci+1. For n an integer, we denote by C[n] the complex with C[n]i = Cn+i and

differential (−1)nd.

We denote by Db(A) the full subcategory of the derived category of A-modules consisting

of objects with bounded homology. We identify the category of A-modules with the full

subcategory of Db(A) of complexes concentrated in degree 0. Unless otherwise specified,

morphisms are taken in the derived category.

A complex of A-modules is perfect if it is quasi-isomorphic to a bounded complex of

finitely generated projective A-modules. We denote by A-perf the full subcategory of Db(A)

of perfect complexes.

Given two k-modules M and N , we write M ⊗N for M ⊗k N .

For C = (C i, di) and D = (Dj, δj) two bounded complexes, we denote by C ⊗ D the

total complex associated with the double tensor complex. This has degree n term (C ⊗

D)n =
⊕

i+j=nC
i ⊗ Dj and the differential in degree n is

∑

i+j=n di ⊗ 1 + (−1)i1 ⊗ δj.

Analogously we denote by Hom(C,D) the total complex of the double homomorphism

complex. It has degree n term
∏

i+n=j Hom(C i, Dj) and the differential ∂n in degree n is

∂n(f) =
∏

i+j=n(di ◦ f − (−1)nf ◦ δj).

Note that given X in Db(A◦) and Y in Db(A), then X ⊗L

A Y is a complex with bounded

homology when X is quasi-isomorphic to a bounded complex of flat A◦-modules or Y is

quasi-isomorphic to a bounded complex of flat A-modules.

A full triangulated subcategory of a triangulated category is called épaisse if it is closed

under taking direct summands [12, §1].
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The subcategory of a triangulated category generated by an object is the smallest épaisse

full triangulated subcategory containing that object.

2.2. Standard derived equivalences.

2.2.1. Let B be a k-algebra.

The following theorem of Rickard gives the essentials of the Morita theory for derived

categories [11, 13].

Theorem 2.1. The assertions (i)–(iii) are equivalent :

(i) The bounded derived categories Db(A) and Db(B) are equivalent as triangulated cate-

gories.

(ii) The categories of perfect complexes A-perf and B-perf are equivalent as triangulated

categories.

(iii) There is a perfect complex T of A-modules such that

(a) B is isomorphic to End(T ),

(b) Hom(T, T [i]) = 0 for i 6= 0,

(c) A-perf is generated by T .

If A and B are projective over k, then the assertions (i)–(iii) are equivalent to (iv) :

(iv) There is a bounded complex X of (A⊗B◦)-modules whose restrictions to A and to B◦

are perfect and a bounded complex Y of (B⊗A◦)-modules whose restrictions to B and

to A◦ are perfect such that

X ⊗L

B Y ' A in Db(A⊗ A◦) and Y ⊗L

A X ' B in Db(B ⊗ B◦).

If A and B are right coherent, then the assertions (i)–(iii) are equivalent to (v) :

(v) The bounded derived categories of finitely presented modules Db(A-mod) and

Db(B-mod) are equivalent as triangulated categories.

When the assertions (i)–(iii) of the theorem are fulfilled, we say that A and B are derived

equivalent. A complex T satisfying the conditions in (iii) is called a tilting complex for A.

Complexes X and Y satisfying the conditions in (iv) are called two-sided tilting complexes,

inverse to each other. The restriction of X to A is a tilting complex, as well as the restriction

of Y to B. Similar statements hold of course restricting X to B◦ and Y to A◦. It is clear

from the definition that the functors Y ⊗L

A − and X ⊗L

B − are then inverse equivalences

between Db(A) and Db(B), as well as between A-perf and B-perf. Equivalences between

Db(A) and Db(B) of the form X ⊗L

B − for a complex X ∈ Db(A⊗B◦) are called standard.

It is unknown whether every equivalence of derived categories is naturally isomorphic to

a standard derived equivalence [13, §3]. It is only known that every equivalence between
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Db(A) and Db(B) agrees with a standard equivalence on isomorphism classes of objects

when A and B are projective over k [13, Corollary 3.5].

2.2.2. For algebras projective over k, two-sided tilting complexes can, up to isomorphism,

be chosen to be bounded complexes of modules that are projective as A-modules and pro-

jective as B◦-modules. This is a consequence of the following lemma (see also [14, Lemma

9.2.6]) :

Lemma 2.2. Assume A and B are projective over k. Let X be a bounded complex of

(A⊗ B◦)-modules such that the restrictions of X to A and to B◦ are perfect.

Then X is isomorphic to a bounded complex of (A⊗B◦)-modules all of whose terms are

projective as (A ⊗ B◦)-modules except possibly the non-zero term in the smallest degree,

which is projective as an A-module and projective as a B◦-module.

Proof. Let us start with mentioning that the projectivity assumption of A and B over k

ensures that the restriction to A of a projective (A⊗B◦)-module is projective and likewise

the restriction to B◦.

Let S be a bounded complex of projective A-modules isomorphic to ResAX and let n be

an integer such that the terms of S vanish in degrees less than n.

Let Y be a projective resolution of X : this is a right bounded complex of projective

(A⊗B◦)-modules isomorphic to X. Let Z = τ≥n−1Y : this is a bounded complex isomorphic

to X, with zero terms in degrees less than n−1 and with projective terms in degrees greater

than n− 1. We will now show that the degree n− 1 term of Z is projective as an A-module

and as a B◦-module.

Since ResA Z is isomorphic to the bounded complex of projective A-modules S, there

exists a morphism in the category of complexes of A-modules α : S → ResA Z which is an

isomorphism in Db(A). Let D be the cone of α. Then D is an acyclic bounded complex all

of whose terms are projective except possibly the non-zero term in the smallest degree. Such

a complex is homotopy equivalent to zero. Indeed the largest degree non-zero differential

is surjective with image a projective module, hence splits. So, D is homotopy equivalent

to a smaller complex and we continue by induction. This shows that ResA Z is a bounded

complex of projective A-modules. The same argument shows that ResB◦ Z is a bounded

complex of projective B◦-modules.

2.2.3. Assume A and B are projective over k. Let T be a tilting complex for A and

f : B → End(T ) an isomorphism. Then there exists a two-sided tilting complex X for A⊗B◦

with the following property: There is an isomorphism between T and the restriction ResAX

of X to A so that if we denote by φ : End(T ) → End(ResAX) the induced isomorphism,
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then φf is right multiplication by B. Such a complex X associated with T is unique up to

unique isomorphism in Db(A⊗ B◦) (see [8] and [13]).

We denote by αA1 the (A ⊗ A◦)-module equal to A as a right A-module and where the

left action of a ∈ A is given by multiplication by α(a) : this is the restriction of the natural

structure of (A⊗ A◦)-module on A through the morphism α⊗ 1 : A⊗ A◦ → A⊗ A◦.

Let us consider the set of isomorphism classes of two-sided tilting complexes for A⊗ B◦

whose restriction to B◦ is in a given isomorphism class. It is acted on simply transitively

by Out(A) = Aut(A)/ Inn(A) as shown by the following proposition.

Proposition 2.3. Let X and X ′ be two-sided tilting complexes for A⊗B◦. The restrictions

of X and X ′ to B◦ are isomorphic if and only if there exists α ∈ Aut(A) such that

X ′ ' αA1 ⊗A X.

Proof. Assume X and X ′ have isomorphic restrictions to B◦. Let Y be a two-sided tilting

complex in Db(B⊗A◦) inverse to X and let Y ′ be a two-sided tilting complex in Db(B⊗A◦)

inverse to X ′.

The complexes X ′ ⊗L

B Y and X ⊗L

B Y ' A have isomorphic restrictions to A◦, hence they

have both homology concentrated in degree 0. As a consequence, X ′ ⊗L

B Y is isomorphic

to its degree 0 homology M = H0(X ′ ⊗L

B Y ) and M is free of rank 1 as an A◦-module.

The complexes X ′ ⊗L

B Y and X ⊗L

B Y
′ are two-sided tilting complexes for A ⊗ A◦, inverse

to each other. Consequently, M ⊗A X ⊗L

B Y
′ ' A. It follows that X ⊗L

B Y
′ has homology

concentrated in degree 0. Let N = H0(X ⊗L

B Y
′). Then M ⊗A N ' A. Since M is free

of rank 1 as an A◦-module, we deduce that N is free of rank 1 as an A◦-module. Now,

N ⊗A M ' A. The bimodule M is invertible and free of rank 1 as an A◦-module. By [3,

Theorem 55.12], there exists an automorphism α of A so that M is isomorphic to αA1 as an

A⊗ A◦-module. The result follows.

2.2.4. Let us give now three results about compositions, products and sums of two-sided

tilting complexes.

Standard equivalences can be composed [13, Proposition 4.1] :

Proposition 2.4. If C is a k-algebra, X a two-sided tilting complex for A⊗ B◦ and X ′ a

two-sided tilting complex for B⊗C◦, then X⊗L

BX
′ is a two-sided tilting complex for A⊗C◦.

Tensor products of standard derived equivalences give standard derived equivalences [13,

Lemma 4.3] :
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Proposition 2.5. Let C and D be two k-algebras. Assume A and B are flat over k. Let

X be a two-sided tilting complex for A ⊗ B◦ and let X ′ be a two-sided tilting complex for

C⊗D◦. Then X⊗LX ′ is a two-sided tilting complex for (A⊗C)⊗ (B⊗D)◦. In particular,

X ⊗L C is a two-sided tilting complex for (A⊗ C) ⊗ (B ⊗ C)◦.

The following result is clear :

Proposition 2.6. Let {Ai}i∈I be a finite family of k-algebras, A =
∏

i∈I Ai and let ei be

the central idempotent of A such that eiA = Ai.

Let T be a complex of A-modules. Then T is a tilting complex for A if and only if eiT is

a tilting complex for Ai, for every i ∈ I.

Let B be a k-algebra and X a two-sided tilting complex for A⊗B◦. Let fi be the central

idempotent of B = EndA(X) given by the multiplication by ei on X and Bi = fiB. Then

Xi = eiX ' Xfi is a two-sided tilting complex for Ai⊗ (Bi)
◦, X =

⊕

iXi and B =
∏

i∈I Bi.

2.3. Some invariants of a standard derived equivalence. Let X be a two-sided tilting

complex for A⊗B◦.

2.3.1. Hochschild cohomology. [13, Proposition 2.5]

Let i be an integer. Let fi : HHi(A) = HomA⊗A◦(A,A[i]) → Hom(X,X[i]) be given by

(φ : A→ A[i]) 7→ (φ⊗A 1X : A⊗A X = X → A[i] ⊗A X = X[i]).

Similarly, we have a map gi : HHi(B) → Hom(X,X[i]) given by

(φ : B → B[i]) 7→ (1X ⊗B φ : X ⊗B B = X → X ⊗B B[i] = X[i]).

Then fi and gi are isomorphisms and we put

HHi(X) = f−1
i gi : HHi(B)

∼
→ HHi(A).

In particular, we have an isomorphism

HH0(X) : ZB
∼
→ ZA.

2.3.2. Grothendieck groups. [6]

Recall that we denote the category of finitely generated projective A-modules by A-proj.

Let K0(A) be the Grothendieck group of A-proj. The natural embedding A-proj →

Kb(A-perf) induces an isomorphism of the Grothendieck groups [17]. So, the equivalence

X ⊗L

B − : Kb(B-perf) → Kb(A-perf) induces an isomorphism K0(B)
∼
→ K0(A).

Let us assume now that A and B are right coherent. Let G0(A) be the Grothendieck

group of A-mod. The embedding A-mod → Db(A-mod) induces an isomorphism of the

Grothendieck groups [17]. So, the equivalence X ⊗L

B − : Db(B-mod) → Db(A-mod) induces

an isomorphism G0(B)
∼
→ G0(A).
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2.4. Flat central base change. Proposition 2.5 solves trivially the problem of extending

a standard derived equivalence through an extension of A coming from an extension of k.

Base change with respect to the centers of A and B is more subtle, since the actions of

the centers of A and B on a two-sided tilting complex for A⊗ B◦ are the same only up to

homotopy.

Let Z = ZA and let R be a flat commutative Z-algebra. Let X be a two-sided tilting

complex for A⊗B◦. We identify ZB with Z through the isomorphism HH0(X) (cf §2.3.1).

Let A′ = A⊗Z R and B′ = B ⊗Z R. Let I be the ideal of R⊗R generated by the elements

x⊗ 1 − 1 ⊗ x for x ∈ R. We assume that A, B, A′ and B′ are flat over k.

Theorem 2.7. With the assumptions above, there is a pair (X ′, f) associated with X unique

up to unique isomorphism, where

• X ′ is a bounded complex of A′-projective and B ′◦-projective (A′ ⊗ B′◦)-modules such

that I is contained in the kernel of the canonical map R⊗ R → EndA′⊗B′◦(X ′) and

• f : ResA′⊗B◦ X ′ ∼
→ A′ ⊗A X an isomorphism.

Given such a pair, we have ResA⊗B′◦ X ′ ' X ⊗B B
′ and X ′ is a two-sided tilting complex

for A′ ⊗ B′◦.

Let C be a k-algebra, Y be a two-sided tilting complex for B ⊗ C◦ and (Y ′, g) a pair

associated with Y . Let U = X ⊗L

B Y . We identify Z with Z(C) via HH0(U). Assume C

and C ⊗Z R projective over k and let

h = (f⊗B1Y )(1X′⊗B′ g) : ResA′⊗C◦(X ′⊗L

B′Y ′)
∼
→ X ′⊗L

B′B′⊗L

BY
∼
→ A′⊗AX⊗L

BY = A′⊗AU.

Then (X ′ ⊗L

B′ Y ′, h) is a pair associated with U .

Lemma 2.8. Let M,N be two perfect complexes of A-modules. Then the canonical mor-

phism

HomA(M,N) ⊗Z R
∼
→ HomA′(A′ ⊗AM,A′ ⊗A N)

is an isomorphism.

Proof. Let E be the full subcategory of A-perf of complexes N such that the lemma holds

for the pair (M,N), for all perfect complexes M .

Note that E is stable under translation. Let N1 → N → N2  be a distinguished triangle

in A-perf. We put M ′ = A′ ⊗A M , N ′ = A′ ⊗A N , etc... Thanks to the flatness of R over

Z, we have a commutative diagram with exact rows

HomA(M,N2[−1])⊗ZR
��

��
HomA(M,N1)⊗ZR

��
��

HomA(M,N)⊗ZR
��

��
HomA(M,N2)⊗ZR

��
��

HomA(M,N1[1])⊗ZR

��
Hom

A′ (M
′,N′

2[−1])
��

Hom
A′ (M

′,N′
1)

��
Hom

A′ (M
′,N′)

��
Hom

A′ (M
′,N′

2)
��

Hom
A′ (M

′,N′
1[1])
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The five lemma shows that, if the lemma holds for (M,N1[i]) and (M,N2[i]) for any i, it

will hold for (M,N). Hence, E is a triangulated subcategory of A-perf. If N is a direct

summand of N ′ and the lemma holds for (M,N ′), it holds for (M,N). Hence, E is an épaisse

full triangulated subcategory of A-perf and in order to prove that it is equal to A-perf, it is

enough to prove that it contains A.

The same arguments show that the full subcategory of A-perf of complexes M such

that the lemma holds for HomA(M,A[i]) for any integer i is an épaisse full triangulated

subcategory. So, all we have to do now is to prove the lemma for M = A and N = A[i].

When i 6= 0, both terms in the lemma are zero, whereas for i = 0, the result is clear.

Proof of the theorem. Let T be the restriction of X to A and let T1 = A′ ⊗A T . Consider

the canonical morphism

φ1 : B′ = EndA(T ) ⊗Z R → EndA′(T1).

By Lemma 2.8, φ1 is an isomorphism. Similarly, HomA′(T1, T1[i]) ' HomA(T, T [i])⊗ZR =

0 for i 6= 0.

Since A is in the subcategory of A-perf generated by T , it follows that A′ is in the

subcategory of A′-perf generated by T1. Hence T1 is a tilting complex for A′ and φ1 : B′ ∼
→

EndA′(T1).

Similarly, the restriction T2 of X ⊗B B
′ to B′◦ is a tilting complex for B ′◦ and we have a

canonical isomorphism φ2 : A′◦ ∼
→ EndB′◦(T2).

For i ∈ {1, 2}, we denote by Xi a two-sided tilting complex for A′ ⊗ B′◦ associated with

Ti as in §2.2.3. It comes with an isomorphism Ti
∼
→ ResA′ Xi.

We have a canonical isomorphism of B ′◦-modules :

g1 : HomA′(A′ ⊗A X,X1[i])
∼
→ HomA′(ResA′ X1, X1[i]).

In particular, HomA′(ResA′(A′ ⊗A X), X1[i]) = 0 for i 6= 0. On the other hand, right

multiplication by B on A′ ⊗A X and X1 are compatible with the canonical isomorphism

EndA′(A′ ⊗A X)
∼
→ EndA′(X1). So, g1 is an isomorphism of (B ⊗ B ′◦)-modules and

RHomA′(A′⊗AX,X1) and RHomA′(ResA′⊗B◦ X1, X1) are isomorphic in Db(B⊗B′◦). Since

X1 is a two-sided tilting complex for A′ ⊗B′◦, we know that g comes from an isomorphism

f1 : ResA′⊗B◦ X1
∼
→ A′ ⊗A X.

Similarly, X ⊗B B
′ and ResA⊗B′◦ X2 are isomorphic.

We have isomorphisms in Db(B ⊗ B′◦) :
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ResB⊗B′◦ RHomA′(X1, X2) ' RHomA′(ResA′⊗B◦ X1, X2)

' RHomA′(A′ ⊗A X,X2)

' RHomA(X,ResA⊗B′◦ X2)

' RHomA(X,X ⊗B B
′)

' RHomA(X,X) ⊗B B
′

' ResB⊗B′◦ B′.

Note that I is contained in the kernel of the canonical map R ⊗ R◦ → EndA′⊗B′◦(Xi)

for i ∈ {1, 2}. It follows that I is contained in the kernel of the canonical map R ⊗

R◦ → HomA′(X1, X2). Hence, the action of B ′ ⊗B′◦ on HomA′(X1, X2) factors through the

canonical surjection

ψ : B′ ⊗B′◦ → (B′ ⊗B′◦)/I(B′ ⊗ B′◦).

Similarly, the action of B ′ ⊗ B′◦ on B′ factors through ψ. Now, the restriction of ψ to

B ⊗ B′◦ is surjective. Hence, RHomA′(X1, X2) ' HomA′(X1, X2) and B′ are isomorphic

in Db(B′ ⊗ B′◦). Since X2 is a two-sided tilting complex, this shows that X1 and X2 are

isomorphic and that (X1, f1) fulfills the requirements of the theorem.

Let now (X ′, f) be as in the theorem. We have an isomorphism f−1
1 f : ResA′⊗B◦ X ′ ∼

→

ResA′⊗B◦ X1, hence we have isomorphisms in Db(B ⊗ B′◦) :

RHomA′(ResA′⊗B◦ X ′, X1) ' RHomA′(ResA′⊗B◦ X1, X1) ' ResB⊗B′◦ B′.

Since I is contained in the kernel of the canonical maps R ⊗ R◦ → EndA′⊗B′◦(X ′) and

R⊗ R◦ → EndA′⊗B′◦(X1), we conclude as above that X ′ and X1 are isomorphic.

The centralizer in B′ of B is the center of B ′, hence the canonical map

EndB′⊗B′◦(B′) → EndB′⊗B◦(ResB′⊗B◦ B′) is an isomorphism. It follows that the canonical

map EndA′⊗B′◦(X1) → EndA′⊗B◦(ResA′⊗B◦(X1)) is an isomorphism. Consequently, there is

a unique isomorphism i : X ′ → X1 such that f = f1i.

The last part of the theorem is clear.

Note that we have on our way proven the following result :

Proposition 2.9. Let A be a k-algebra, Z = ZA, R a flat commutative Z-algebra and

A′ = A ⊗Z R. Let T be a tilting complex for A. Then A′ ⊗A T is a tilting complex for A′

with endomorphism ring End(T ) ⊗Z R.
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2.5. Degenerate cases. We will see in this section that, for local or commutative algebras,

Rickard’s theory gives nothing more than the usual Morita theory.

Lemma 2.10. Let A be an indecomposable k-algebra and T a tilting complex for A. If

H i(T ) is projective for every i ∈ Z, then there is a progenerator P for A and an integer n

such that T ' P [n].

Let B be a k-algebra and X a two-sided tilting complex for A ⊗ B◦. Assume H i(X) is

a projective A-module for every i ∈ Z. Then there is an integer n such that M = Hn(X)

induces a Morita equivalence between A and B and X 'M [−n].

Proof. We have T ' ⊕i∈ � H i(T )[−i]. The module M is finitely generated since T is perfect.

Since T generates Kb(A-perf), it follows that
⊕

i∈ � H i(T ) is a progenerator for A. If T has

non-zero homology in more than one degree, the indecomposability of A gives two distinct

integers i and j such that Hom(H i(T ), Hj(T )) 6= 0, hence such that Hom(T, T [j − i]) 6= 0,

which is impossible.

Let us come to the second part of the lemma. The assumption implies that ResAX is

a tilting complex for A with projective homology. Hence, by the first part of the lemma

there is an integer n and an (A⊗ B◦)-module M such that X is isomorphic to M [−n] and

the restriction of M to A is a progenerator. Now, the canonical map B → EndAM is an

isomorphism, hence M gives a Morita equivalence between A and B.

The following result is due to Roggenkamp and the second author for A local (cf [19]).

Theorem 2.11. Let A be an indecomposable k-algebra which is local or commutative.

Let T be a tilting complex for A. Then there is a progenerator P for A and an integer n

such that T ' P [n].

Let B be a k-algebra and X a two-sided tilting complex for A⊗B◦. Then there is an integer

n such that M = Hn(X) induces a Morita equivalence between A and B and X 'M [−n].

In the local case, thanks to Lemma 2.10, the proposition follows from the following lemma

(cf. also [15]) :

Lemma 2.12. Let A be a local ring. Let X be a bounded complex of projective A-modules

such that HomDb(A)(X[i], X) = 0 for i < 0. Then X is homotopy equivalent to a projective

module translated in some degree.

Proof. Let us put X = (Xn, dn). Replacing X by a complex which is homotopy equivalent

to X, we may and will assume that the largest n such that Xn 6= 0 satisfies Hn(X) 6= 0 and

that if m is minimal such that Xm 6= 0, then dm is not a split injection.
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Let ψ1 : Xm → A be a surjection and ψ2 : A → Xn a split injection with splittings ζ1

and ζ2 such that dmζ1 is not split injective and ζ2d
n−1 is not surjective. We note that the

existence of ψ1 and ψ2 follow from the fact that the indecomposable projective A-modules

are free of rank 1 [1, Chap. II, §3, Exercice 3]. Let f = ψ2ψ1 be the composition

f : Xm ψ1
−→ A

ψ2
−→ Xn.

Let gm : X → Xm[−m] be the morphism of complexes which is the identity in degree m

and 0 in the other degrees and g′n : Xn[−n] → X the morphism of complexes which is the

identity in degree n and 0 in the other degrees. Let g be the composition

g : X[m− n]
gm[m−n]
−→ Xm[−n]

f [−n]
−→ Xn[−n]

g′n−→ X.

Assume g is homotopy equivalent to zero. Then there are morphisms h ∈

HomA(Xm, Xn−1) and h′ ∈ HomA(Xm+1, Xn) such that

f = dn−1h+ h′dm.

Therefore

1A = ζ2d
n−1hζ1 + ζ2h

′dmζ1.

Since ζ2d
n−1 is not surjective, ζ2d

n−1hζ1 is not invertible, hence lies in the radical of A.

Similarly, dmζ1 is not split injective, hence ζ2h
′dmζ1 is in the radical of A. So, 1A is in the

radical of A. This is impossible.

It follows that g is not homotopy equivalent to zero and consequently HomDb(A)(X[m −

n], X) 6= 0. This shows that m = n.

Proof of the theorem. We assume now that A is commutative. Let m be a maximal ideal of

A. We denote by A � the localization of A at m. By Proposition 2.9, T � = A � ⊗A T is a

tilting complex for A � . Since A � is local, it follows that H i(T � ) is finitely generated and

projective for all integers i. Since H i(T ) ⊗A A � is finitely generated and projective for all

maximal ideals m of A, we conclude that H i(T ) is a finitely generated projective A-module

[1, Chap. I, §3, Proposition 12] for every i and the result follows from Lemma 2.10.

Together with Proposition 2.6, Theorem 2.11 has the following consequence :

Corollary 2.13. Let A be a local k-algebra or a commutative k-algebra and B a k-algebra

derived equivalent to A. Then A and B are Morita equivalent.

Remark 1. There are nevertheless non-trivial equivalences of derived categories in commu-

tative algebra and algebraic geometry involving non-affine varieties or some extra structures.

An example is the Koszul duality between the exterior algebra Λ(V ) of a vector space V

and the symmetric algebra S(V ∗) of the dual vector space V ∗, where there is an equivalence
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between the derived categories of bounded complexes of finitely generated graded mod-

ules. There are also derived equivalences of Mukai type involving in particular Calabi-Yau

varieties.

2.6. Stable equivalences. We call a k-algebra A a Gorenstein k-algebra if A∗ =

Homk(A, k) is a projective A-module. In this section, we assume that A is a finitely gen-

erated projective k-module and a Gorenstein k-algebra. All modules will be assumed to

be finitely generated. Let B be a Gorenstein k-algebra finitely generated projective as a

k-module.

The following proposition and corollary show that for such algebras, Rickard theory can

be made more precise : equivalences of the derived categories can be lifted to equivalences

of homotopy categories, which induce stable equivalences [13, Corollary 5.5] and [7].

Proposition 2.14. Let X be a two-sided tilting complex for A ⊗ B◦ and Y an inverse to

X.

Then there exists a bounded complex C of (A⊗B◦)-modules and a bounded complex D of

(B ⊗ A◦)-modules with the following properties :

1. X and C are isomorphic

2. Y and D are isomorphic

3. There is an integer n such that

• C−i = 0 and Di = 0 for i > n,

• C−i and Di are projective for i < n,

• C−n is projective as an A-module and projective as a B◦-module,

• Dn is projective as a B-module and projective as a A◦-module.

4. C ⊗B D is homotopy equivalent to A as a complex of (A,A)-bimodules

5. D ⊗A C is homotopy equivalent to B as a complex of (B,B)-bimodules.

Proof. By Lemma 2.2, there is a bounded complex C of (A ⊗ B◦)-modules and an integer

n such that C is isomorphic to X, C i = 0 for i < −n, C i is projective for i > −n and C−n

is projective as an A-module and projective as a B◦-module.

Let D = HomA(C,A) : this is a bounded complex of (B ⊗A◦)-modules isomorphic to Y

and Di = 0 for i > n, Di is projective for i < n and Dn is projective as a B-module and

projective as an A◦-module.

All terms of the bounded complex C⊗BD are projective, except the degree 0 term, which

is projective over k. Since C⊗BD has homology only in degree 0, it is homotopy equivalent

to a bounded complex Z with no terms in positive degrees, whose terms in negative degrees

are projective and whose degree 0 term is k-projective. Since Z has homology only in
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degree 0 and this homology module H0(Z) ' A is projective over k, the restriction to k of

Z is homotopy equivalent to H0(Z). Since A⊗A◦ is Gorenstein, an injection of a projective

module inside a module splits if it splits when restricted to k. We deduce that Z is homotopy

equivalent to H0(Z) as a complex of (A⊗ A◦)-modules.

Similarly, D ⊗A C is homotopy equivalent to B.

Let M be an (A ⊗ B◦)-module, projective as an A-module and as a B◦-module. Let N

be a (B ⊗ A◦)-module, projective as a B-module and as an A◦-module. We say that M

induces a stable equivalence between A and B with inverse N if

M ⊗B N ⊕ projective ' A⊕ projective as (A,A) − bimodules and

N ⊗AM ⊕ projective ' B ⊕ projective as (B,B) − bimodules.

Let ΩA⊗A◦A be the kernel of the multiplication map A⊗ A◦ → A. This module ΩA⊗A◦A

induces a stable equivalence of A. We denote by Ω−1
A⊗A◦A an indecomposable (A ⊗ A◦)-

module which is an inverse of ΩA⊗A◦A.

For V an A-module, ε = ±1 and n a non-negative integer, we put

Ωεn
A V =

(

Ωε
A⊗A◦A

)⊗An ⊗A V.

Corollary 2.15. Let X be a two-sided tilting complex for A⊗B◦ and Y an inverse to X.

Let C and D be as in Proposition 2.14, M = Ω−n
A⊗B◦C−n and N = Ωn

B⊗A◦Dn. Then M and

N induce inverse stable equivalences between A and B. Furthermore, up to projective direct

summands, the isomorphism classes of M and N are independent of the choice of C and D.

Proof. The complex C ⊗B D is a bounded complex all of whose terms are projective but

the degree 0 term, which is isomorphic to C−n⊗BD
n⊕ projective module. By Proposition

2.14 (4), we have C−n ⊗B D
n ' A⊕ projective module. Since

(Ω−n
A⊗B◦C−n) ⊗B (Ωn

B⊗A◦Dn) ⊕ projective module ' C−n ⊗B D
n ⊕ projective module,

it follows that M ⊗B N ⊕ projective module ' A ⊕ projective module. Similarly, N ⊗A

M ⊕ projective module ' B ⊕ projective module. So, M and N induce inverse stable

equivalences between A and B.

Assume C1 and C2 are two complexes with the properties of C in Proposition 2.14 : they

are quasi-isomorphic, C−i
1 = 0 for i > m, C−i

2 = 0 for i > n, C−i
1 is projective for i < m and

C−i
2 is projective for i < n. Assume n ≥ m. Then C−n

2 [n] is isomorphic to the cone of a

morphism E → C2 where E is a bounded complex of finitely generated projective modules.

So, C−n
2 [n] is isomorphic to the cone of a morphism E → C1. Since A⊗B◦ is Gorenstein, this

morphism, a priori in the derived category, comes from a genuine morphism of complexes f .
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The cone of f is homotopy equivalent to a bounded complex with C−m
1 ⊕ projective module

in degree −m and zero or projective terms elsewhere. It follows that

C−n
2 ⊕ projective module ' Ω−m+n

A⊗B◦ C−m
1 ⊕ projective module

and the unicity statement is proved.

3. Picard groups

3.1. Definitions.

Definition 3.1. We denote by TrPic(A) the group of isomorphism classes of two-sided

tilting complexes for A ⊗ A◦ where the product of the classes of X and Y is given by the

class of X ⊗A Y .

That this is indeed a group follows from Proposition 2.4.

Note that a standard derived equivalence between two algebras A and B induces an

isomorphism between TrPic(A) and TrPic(B).

By §2.3, we have canonical morphisms

TrPic(A) → AutZA

TrPic(A) → AutG0(A) (if A is right coherent)

TrPic(A) → AutK0(A).

The usual Picard group Pic(A) is the group of isomorphism classes of invertible (A,A)-

bimodules. Hence, we have a canonical injection

Pic(A) → TrPic(A).

Note that Pic(A) is not a normal subgroup of TrPic(A) nor an invariant of Db(A) . For

example, two Brauer tree algebras with the same numerical invariants are standardly derived

equivalent [11] but they have non-isomorphic Picard groups if the trees have non-isomorphic

automorphism groups.

We denote by TrPic0(A) the subgroup of TrPic(A) given by those elements X whose

induced automorphism of ZA fixes the idempotents, i.e., such that eX ' Xe for every

idempotent e of ZA. Recall that the k-algebra A is indecomposable if Z(A) has no non-

trivial idempotent.

Thanks to Proposition 2.6, we have :
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Lemma 3.2. Let {Ai}i∈I be a finite family of indecomposable k-algebras, A =
∏

i∈I Ai and

let ei be the central idempotent of A such that eiA = Ai. The map X 7→ {eiXei}i induces

an isomorphism

TrPic0(A)
∼
→

∏

i

TrPicAi.

We denote by Sh(A) the subgroup of TrPic(A) generated by A[1]. It is clear that Sh(A)

is central in TrPic(A). The group Sh(A) is an infinite cyclic group and the direct product

Pic(A) × Sh(A) is a subgroup of TrPic(A).

Theorem 2.11 has the following consequence :

Proposition 3.3. If A is a matrix algebra over an indecomposable commutative k-algebra

or over a local k-algebra, then TrPic(A) = Pic(A) × Sh(A).

3.2. Base change. In this section, we assume A is flat over k.

Let R be a commutative k-algebra. Then Proposition 2.5 gives a canonical morphism

TrPic(A) → TrPic(A⊗ R).

The next two lemmas help reducing the study of TrPic(A) to the case of algebras over

fields.

Lemma 3.4. Assume k is a local ring with maximal ideal m. Then the kernel of the canon-

ical map

TrPic(A)
φ
→ TrPic(A⊗ k/m)

is contained in Out(A).

Proof. Let T be a bounded complex of finitely generated projective A-modules such that

T ⊗ k/m is homotopy equivalent to its 0-homology. Then T is homotopy equivalent to its

0-homology : this is a consequence of the following fact. Let f be a morphism between

two finitely generated projective A-modules. By Nakayama’s lemma f is a surjection if and

only if f ⊗ 1k/ � = 1A/ � A ⊗A f is a surjection. Similarly, f is a split injection if and only if

f ⊗ 1k/ � = 1A/ � A ⊗A f is a split injection.

IfX is in the kernel of the map φ of the lemma, then the restriction ofX to A is isomorphic

to a projective A-module N and X is in Pic(A). Since N ⊗ k/m is a free A⊗ k/m-module

of rank 1, it follows that N is a free A-module of rank 1. Hence, X is actually in Out(A)

by Proposition 2.3.

For m a maximal ideal of k, we put A � = A⊗ k � .
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Let H be a set of maximal ideals of k such that, given a maximal ideal m of k outside H,

the restriction to A � of a two-sided tilting complex for A � ⊗A◦� has finitely generated and

projective homology.

Lemma 3.5. Assume A is indecomposable. Then the kernel of the canonical map

TrPic(A)/ Sh(A) →
∏

� ∈H

TrPic(A � )/ Sh(A � ),

is contained in Pic(A).

Proof. Let X be a two-sided tilting complex such that X ⊗ k � ' A � [n � ] as an (A � ⊗ A◦� )-

module for every m ∈ H, where n � is an integer. Then H i(X) ⊗ k � is a finitely generated

projective A � -module for m ∈ H. It is also finitely generated projective for m /∈ H by

assumption. So, X has finitely generated projective homology. Now, Lemma 2.10 says that

X is in Pic(A) × Sh(A).

Let Z = ZA be the centre of A, let R be a flat commutative Z-algebra and assume A

and A⊗Z R are flat over k. Then Theorem 2.7 gives a canonical morphism

TrPic(A) → TrPic(A⊗Z R).

3.3. A localization sequence. Assume k is a Dedekind domain with field of fractions K.

Recall that an algebra B over a field K is separable if B ⊗K L is semisimple for any field

extension L of K. The k-algebra A is a hereditary order if it is a finitely generated projective

k-module, if every left ideal of A is a projective A-module and if A⊗K is separable.

When k is a discrete valuation ring, the following result follows from the classification of

tilting complexes by S. König and the second author [9].

Lemma 3.6. Let A be an hereditary order. Then the restriction to A of a two-sided tilting

complex for A ⊗ A◦ has projective homology. If A is in addition indecomposable, then

TrPic(A) = Pic(A) × Sh(A).

Proof. Let X be a two-sided tilting complex for A⊗A◦. As A is hereditary, every indecom-

posable direct summand of the restriction T of X to A has non-zero homology in at most

one degree, and this homology group is a projective A-module or a torsion module. Since

EndA(T ) ' A is torsion free, it follows that there is no indecomposable direct summand of

T whose non-zero homology group is a torsion module. Hence, H i(T ) is projective for every

i and the second part of the lemma follows from Lemma 2.10.

Assume A is an indecomposable k-algebra, finitely generated and projective as a k-module.

We assume also that A ⊗ K is separable. Let H be the set of maximal ideals m of k for

which A � is not a maximal order. It is known that H is finite [2, §29A].
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Let TrPicent(A) be the kernel of the canonical morphism TrPic(A) → AutZA.

The following theorem generalizes Fröhlich’s localization sequence for Picard groups [3,

Theorem 55.25].

Theorem 3.7. There is an exact sequence :

1 → TrPicent(ZA)
f
→ TrPicent(A)

g
→

∏

� ∈H

TrPicent(A � )/ Sh(A � )

Here, g is the product of the canonical maps

TrPicent(A) → TrPicent(A � ) → TrPicent(A � )/ Sh(A � )

and f : TrPicent(ZA) → TrPicent(A) is given by X 7→ ResZA⊗ZA
◦

ZA◦ X ⊗ZA A, where A is

viewed as a ZA⊗ (A⊗A◦)-module by the action (z ⊗ (a1 ⊗ a2)) · a = za1aa2 for a1, a ∈ A,

a2 ∈ A◦ and z ∈ ZA.

Proof. Fröhlich’s theorem [3, Theorem 55.25] says that the restriction of f to a map

Picent(ZA) → Picent(A) is well-defined in the sense that X ⊗ZA A is an invertible (A,A)-

bimodule when X is an invertible (ZA,ZA)-bimodule. Fröhlich’s theorem states moreover

that the sequence

1 → Picent(ZA)
f
→ Picent(A)

g
→

∏

� ∈H

Picent(A � )

is exact.

Recall from Proposition 3.3 that

TrPicent(ZA) = Picent(ZA) × Sh(ZA).

It follows that f is well-defined and injective and that gf = 0.

When m /∈ H, the order A � is maximal, hence hereditary [2, §26B]. It follows from

Lemmas 3.6 and 3.5 that ker g is contained in Picent(A)×Sh(A), hence that ker g = im f .

Remark 2. 1. In general, g will not be surjective : for example, if A is indecomposable

and commutative but there is a maximal ideal m of k such that k � ⊗ A is not inde-

composable, then g is not surjective. Examples for such rings are group rings ZG for

an abelian group G over the integers Z.

2. We don’t know any example of an element in

TrPicent(ZG) − Picent(ZG) × Sh(ZG)

for a finite group G.
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3.4. Stable Picard groups. We assume here A is a finitely generated Gorenstein k-

algebra, projective as a k-module.

We say that an A-module M is projective-free if it has no projective direct summand.

Given a finitely generated A-module M , there is a projective-free A-module N , unique up

to isomorphism, such that M ' N ⊕ projective module. We call N the projective-free part

of M .

Definition 3.8. We denote by StPic(A) the group of isomorphism classes of projective-free

(A ⊗ A◦)-modules inducing a self-stable equivalence of A. The product of the classes of M

and N is the class of the projective-free part of M ⊗A N .

A stable equivalence induced by a bimodule between two algebras A and B gives rise to

an isomorphism between StPic(A) and StPic(B).

We have a natural inclusion Pic(A) → StPic(A). Corollary 2.15 gives a canonical map

TrPic(A) → StPic(A) and the following diagram is commutative :

Pic(A)

�� �������
���

�� TrPic(A)

	
� � � � � � �
� � �

StPic(A)

The bimodule ΩA⊗A◦A defines a central element of StPic(A) : this is the image of A[−1] ∈

TrPic(A).

Let Out0(A) be the subgroup of Out(A) of those automorphisms fixing the isomorphism

classes of non-projective indecomposable modules. The group Out0(A) is invariant under

stable equivalence [10].

4. Brauer tree algebras

4.1. Definition. Let Γ be a finite connected tree with a cyclic ordering of the edges adjacent

to a given vertex and with a particular vertex v, the exceptional vertex, and a positive integer

m, the multiplicity of the exceptional vertex. Let k be a field.

To this data (Γ, v,m) one associates a finite dimensional symmetric k-algebra, called a

Brauer tree algebra, characterized up to Morita equivalence by the following properties :

The isomorphism classes of simple modules are parametrized by the edges of Γ. De-

note by Pj a projective cover of a simple module Sj corresponding to an edge j. Then

rad(Pj)/ soc(Pj) is the direct sum of two uniserial modules Ua and Ub where a and b are the

vertices of j. For c ∈ {a, b}, let j = j0, j1, . . . , jr be the cyclic ordering of the r + 1 edges
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around c. Then the composition factors of Uc, starting from the top, are

Sj1, Sj2, . . . , Sjr , Sj0, Sj1, . . . , Sjr

where the number of composition factors is m(r + 1) − 1 if c is the exceptional vertex and

r otherwise. Note that when m = 1, the choice of an exceptional vertex is irrelevant.

Associated to a Brauer tree algebra are two numerical invariants: the number of edges of

the tree Γ and the multiplicity of the exceptional vertex.

By [13, Theorem 4.2], two Brauer tree algebras with the same numerical invariants are

derived equivalent. So, a Brauer tree algebra associated with (Γ, v,m) is derived equivalent

to a Brauer tree algebra associated with a line with the same number of edges as Γ and with

an exceptional vertex at an end having multiplicity m. Hence, to study TrPic for a Brauer

tree algebra reduces to this last case.

4.2. Some elements of TrPic. We now restrict ourselves to the case of Brauer tree algebras

where the multiplicity m is 1.

Let A be a basic Brauer tree algebra associated to a line with n edges numbered 1, . . . , n

such that i is adjacent to i + 1, and with no exceptional vertex, so that the multiplicity m

is 1. We assume n > 1.

The Loewy series of the projective indecomposable modules are as follows :

P1 =
S1

S2

S1

, Pn =
Sn
Sn−1

Sn

and Pi =
Si

Si−1 Si+1

Si

for i 6= 1, n.

The dimensions of the vector spaces of homomorphisms between projective modules is given

by :

dimk HomA(Pi, Pj) =











0 if |i− j| > 1,

1 if |i− j| = 1,

2 if i = j.

By [16, Lemma 2] a projective cover of the (A⊗A◦)-module A is given by
⊕

1≤i≤n Pi⊗P
∗
i

f
→

A, where P ∗
i is the A◦-module Homk(Pi, k).

Let

Xi = (0 → Pi ⊗ P ∗
i

f
→ A→ 0),

where A is in degree 0. The isomorphism class of this complex does not depend on the

choice of f .

Theorem 4.1. The complex Xi is a two-sided tilting complex, hence defines an element ti

of TrPic(A).
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Proof. To prove that Xi is a two-sided tilting complex, we follow the method of [16, Theorem

6]. We have

Xi ⊗A X
∗
i = (0 → Pi ⊗ P ∗

i

1⊗Af
∗+f

−→ Pi ⊗ P ∗
i ⊗A Pi ⊗ P ∗

i ⊕ A
f⊗A1−f∗

−→ Pi ⊗ P ∗
i → 0).

The map

f ⊗A 1 :
⊕

j

Pj ⊗ P ∗
j ⊗A Pi ⊗ P ∗

i → Pi ⊗ P ∗
i

is surjective. Now, the projective A-modules
⊕

j 6=i Pj ⊗P ∗
j ⊗A Pi⊗ P ∗

i and Pi⊗P ∗
i ⊗A Pi⊗

P ∗
i have no common non-zero direct summand. By [16, Lemma 1], this implies that the

restriction of f ⊗A 1 to Pi ⊗ P ∗
i ⊗A Pi ⊗ P ∗

i remains surjective. Since Pi ⊗ P ∗
i is projective,

the map

f ⊗A 1 − f ∗ : Pi ⊗ P ∗
i ⊗A Pi ⊗ P ∗

i ⊕ A→ Pi ⊗ P ∗
i

is a split surjection. By duality, the map

1 ⊗A f
∗ + f : Pi ⊗ P ∗

i → Pi ⊗ P ∗
i ⊗A Pi ⊗ P ∗

i ⊕ A

is a split injection. Hence, Xi ⊗A X
∗
i is homotopy equivalent to a module V which satisfies

Pi ⊗ P ∗
i ⊕ Pi ⊗ P ∗

i ⊕ V ' Pi ⊗ P ∗
i ⊗A Pi ⊗ P ∗

i ⊕ A.

As Pi ⊗A P
∗
i ' HomA(Pi, Pi) has dimension 2, we obtain V ' A and finally Xi ⊗A X

∗
i is

homotopy equivalent to A.

The action of the functor

Fi := Xi ⊗A −

on simple modules is easily described. One has

Fi(Si) ' Ω(Si)[1] and Fi(Sj) ' Sj for j 6= i,

where Ω(Si) is the kernel of a surjective map Pi → Si.

Let us now describe the action of Fi on projective modules.

Given i, j with |i− j| = 1, we denote by Pi → Pj a non-zero map from Pi to Pj — such a

map is unique up to a scalar. From now on, complexes with zero terms in positive degrees

will be written as Cr → · · · → C0, where C0 is in degree 0.

Lemma 4.2. We have

Fi(Pj) '







Pj if |i− j| > 1
Pi → 0 if i = j
Pi → Pj if |i− j| = 1
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Proof. When |i− j| > 1, we have P ∗
i ⊗A Pj ' HomA(Pi, Pj) = 0, hence Fi(Pj) ' Pj.

The morphism

f ⊗A 1 :
⊕

j 6=i

Pj ⊗ P ∗
j ⊗A Pi → Pi

is not surjective. Since Pi is projective indecomposable, the morphism

f ⊗A 1 : Pi ⊗ P ∗
i ⊗A Pi → Pi

is surjective by [16, Lemma 1] and therefore Xi⊗A Pi has homology concentrated in degree

−1. As P ∗
i ⊗A Pi is two-dimensional, we obtain Fi(Pi) ' Pi[1].

The last case is clear.

4.3. Determination of the automorphism group. Now, we need to understand the

automorphisms of A.

Lemma 4.3. Let B be a Brauer tree algebra with n edges and multiplicity m = 1. Then

Out0(B) ' k×/µn(k), where µn(k) is the group of n-th roots of unity of k.

Proof. As explained in §4.1, the algebra B is derived equivalent to a basic Brauer tree

algebra whose tree is a star. By §3.4, we are reduced to proving the lemma for such a B.

Let B a basic star Brauer tree algebra with n edges and multiplicity 1.

Let us define an algebra Al for l ≥ 0 with generators ei, i ∈ Z/nZ, and t, with relations

tl+1 = 0, e2
i = ei, eiej = 0 if i 6= j, 1 =

∑

i

ei and tei = ei+1t.

It is well known that B ' An (cf [4]).

The algebra Al is serial, hence indecomposable modules are determined (up to isomor-

phism) by their Loewy series. So Out0(Al) is the subgroup of Out(Al) given by the auto-

morphisms fixing the isomorphism classes of simple modules.

For x ∈ k×, let αl(x) be the automorphism of Al given by αl(x)(ei) = ei and αl(x)(t) = xt.

Then αl(x) gives an element of Out0(Al). Assume x ∈ µn(k) and let y =
∑

i x
iei ∈ Al. Then

yty−1 = xt and yeiy
−1 = ei for all i, hence αl(x) is an inner automorphism.

We will prove by induction on l that for 1 ≤ l ≤ n, the morphism k× → Out0(Al),

x 7→ αl(x) is surjective and has kernel µn(k).

Note that t is a generator of the Jacobson radical J(Al) of Al and that the map sending

the generators t, ei of Al on the generators t, ei of Al−1 induces an isomorphism Al/J(Al)
l ∼
→

Al−1.

An automorphism ϕ of A1 inducing the trivial automorphism of A0 ' A1/J(A1) has to

fix the elements ei : Indeed, we have ϕ(ei) = ei + t
∑

j ϕijej where ϕij ∈ k for such an
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automorphism. Since ϕ(ei)ϕ(ej) = 0 for i 6= j, we get ϕij = 0 if i 6= j. As 1 = ϕ(1) =
∑

i ϕ(ei), we also get ϕii = 0. This implies ϕ(ei) = ei.

Let y =
∑

i aiei +
∑

i bieit be an arbitrary invertible element of A1 (here, ai ∈ k× and

bi ∈ k). Then an elementary calculation shows

y−1 =
∑

i

1

ai
ei −

∑

i

bi
ai−1ai

eit.

Hence, yty−1 = (
∑

i ciei)t, where ci = ai/ai−1. Note that
∏

i ci = 1. It follows that α1(x) is

not inner, for xn 6= 1.

Assume the result holds for Al−1, l ≥ 2. Let ϕ be an automorphism of Al in Out0(Al).

Then ϕ induces an automorphism of Al−1 in Out0(Al−1). By the induction hypothesis, we

may assume that this induced automorphism is trivial, multiplying if necessary by some

αl(x) and by an inner automorphism. Then ϕ(ei) = ei + tl
∑

j ϕijej for some ϕi,j ∈ k. As

ϕ(ei)ϕ(ej) = 0 for i 6= j, we get ϕij = 0 if i 6= j. Since 1 = ϕ(1) =
∑

i ϕ(ei), we also get

ϕii = 0. This implies ϕ(ei) = ei. We have now ϕ(t) = t+ tl
∑

i ϕiei for some ϕi ∈ k. So,

ϕ(t)ϕ(ei) = ei+1t+ ϕit
lei and ϕ(ei+1)ϕ(t) = ei+1t + tlϕi+lei+1−l.

As 1 < l ≤ n, we have ei+1−l 6= ei, hence ϕi = 0 for 1 ≤ i ≤ n. Therefore, ϕ(t) = t and ϕ is

trivial. Hence, the result is true for Al.

It follows that Out0(An) =< αn(x) >x∈k×' k×/µn(k).

Up to isomorphism, Ωn
A⊗A◦(A) has a unique non-zero and non-projective direct summand.

We denote it by M . It induces a self-stable equivalence of Morita type. Since it is indecom-

posable, the module M ⊗A V is indecomposable for any simple A-module V [10, Theorem

2.1]. We have then M ⊗A Vi ' ΩnVi ' Vn+1−i. So, M ⊗A− sends simple modules to simple

modules. It now follows from [10, Theorem 2.1] that M induces a self-Morita equivalence.

In other words, M is an invertible bimodule and we denote by ω the element (of order 2)

of Out(A) it induces. Note that the image of ω in StPic(A) is central, hence ω is central in

Out(A).

The image of ω in AutG0(A) corresponds to the non-trivial automorphism of the tree of

A.

We denote by Γ the subgroup of TrPic(A) generated by t1, . . . , tn and by G the subgroup

of TrPic(A) generated by t1, . . . , tn, ω and [1].

Proposition 4.4. We have

Out(A) =< ω > ×Out0(A).

The group Out0(A) centralizes Γ and ωtiω = tn+1−i. Furthermore, Γ ∩ Out(A) = 1 and

G ∩ Out0(A) = 1.
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Proof. Since indecomposable A-modules are determined by their radical series, an auto-

morphism of A which fixes the isomorphism classes of simple modules will fix the iso-

morphism classes of all modules. Hence, Out0(A) is the kernel of the canonical map

Out(A) → AutG0(A). This map factors actually through the group of automorphisms

of the tree of A. The group of automorphisms of the tree has order 2 and is generated by

the image of ω. It follows that Out(A) =< ω > ×Out0(A). Note that we have followed [10,

Theorem 4.7].

Let us consider the complex

1Aω ⊗A (
⊕

1≤i≤n

Pi ⊗ P ∗
i

f
→ A) ⊗A (ωA1) ' (

⊕

1≤i≤n

(1Aω ⊗A Pi) ⊗ (1Aω ⊗A Pi)
∗ g
→ A).

This complex defines again a projective cover of A, hence is isomorphic, as a complex, to

the complex
⊕

1≤i≤n Pi ⊗ P ∗
i

f
→ A. As 1Aω ⊗A Pi ' Pn+1−i, the complex

1Aω ⊗A Xi ⊗A (ωA1) ' (Pn+1−i ⊗ P ∗
n+1−i

g
→ A)

is isomorphic to Xn+1−i, hence, ωtiω = tn+1−i.

Similarly, one proves that Out0(A) centralizes each of the elements ti of Γ.

Let us prove that Out(A) ∩ Γ = 1. Since the canonical map Out(A) → StPic(A) is

injective, we can check this property in StPic(A). But, the image of ti in StPic(A) is trivial,

hence the property holds. Finally, the image of G in StPic(A) intersects trivially the image

of Out0(A), so we conclude that G ∩ Out0(A) = 1.

Remark 3. By Propositions 2.3 and 4.4, when doing calculations inside G, it is enough to

look at the action on projective indecomposable modules : for σ, σ ′ ∈ G, we have σ = σ′ if

and only if σ(P ) ' σ′(P ) for any indecomposable projective module P . Our main tool will

then be Lemma 4.2.

4.4. Braid relations. Denote by Bn+1 the Artin braid group on n + 1 strings, generated

by σ1, . . . , σn with the relations σiσj = σjσi if |i − j| > 1 and σiσi+1σi = σi+1σiσi+1. We

put w0 = σ1(σ2σ1) · · · (σn−1 · · ·σ1)(σn · · ·σ1).

Theorem 4.5. There is a surjective group morphism

Bn+1 → Γ, σi 7→ ti.

The image of w0 is ω[n].

Proof. The first braid relation titj = tjti if |i − j| > 1 is immediate, since P ∗
i ⊗A Pj '

HomA(Pi, Pj) = 0 for |i− j| > 1.

By Remark 3, we have only to check that FiFi+1Fi(P ) ' Fi+1FiFi+1(P ) for every projec-

tive indecomposable module P .



24 RAPHAËL ROUQUIER AND ALEXANDER ZIMMERMANN

Since Fi+1 preserves cones, the complex Fi+1(Pi → Pi−1) is isomorphic to the cone of a

non-zero morphism (Pi+1 → Pi) −→ Pi−1. Therefore this complex is isomorphic to a three

terms complex Pi+1 → Pi → Pi−1. Note that the notation follows the convention above and

that such a complex is well defined up to isomorphism.

The complex Fi(Pi+1 → Pi) is isomorphic to the cone of a non-zero morphism (Pi →

Pi+1) −→ (Pi → 0) hence is isomorphic to Pi+1 → 0.

Similarly, Fi+1(Pi → Pi+1) ' (Pi → 0).

Now we have done the necessary computations to determine Fi+1Fi(Pj) for all j. Two

more are necessary to determine FiFi+1Fi(Pj) for all j.

The complex Fi(Pi+1 → Pi → Pi−1) is isomorphic to the cone of a non-zero morphism

(Pi+1 → 0) −→ (Pi → Pi−1), hence to Pi+1 → Pi → Pi−1.

We have Fi(Pi+1 → Pi+2) ' Pi → Pi+1 → Pi+2.
Summarizing, we have :
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P1

P2

...

Pi−2

Pi−1

Pi

Pi+1

Pi+2

Pi+3

.

..

Pn

���������������������
�

Fi

−→

�



















�

P1

P2

...

Pi−2

Pi → Pi−1

Pi → 0

Pi → Pi+1

Pi+2

Pi+3

.

..

Pn

���������������������
�

Fi+1
−→

�



















�

P1

P2

...

Pi−2

Pi+1 → Pi → Pi−1

Pi+1 → Pi → 0

Pi → 0

Pi+1 → Pi+2

Pi+3

.

..

Pn

���������������������
�

Fi

−→

�



















�

P1

P2

...

Pi−2

Pi+1 → Pi → Pi−1

Pi+1 → 0 → 0

Pi → 0 → 0

Pi → Pi+1 → Pi+2

Pi+3

.

..

Pn

���������������������
�

and
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�

P1

P2

..

.

Pi−2

Pi−1

Pi

Pi+1

Pi+2

Pi+3

...

Pn

���������������������
�

Fi+1
−→

�



















�

P1

P2

..

.

Pi−2

Pi−1

Pi+1 → Pi

Pi+1 → 0

Pi+1 → Pi+2

Pi+3

...

Pn

���������������������
�

Fi

−→

�



















�

P1

P2

..

.

Pi−2

Pi → Pi−1

Pi+1 → 0

Pi → Pi+1 → 0

Pi → Pi+1 → Pi+2

Pi+3

...

Pn

���������������������
�

Fi+1
−→

�



















�

P1

P2

..

.

Pi−2

Pi+1 → Pi → Pi−1

Pi+1 → 0 → 0

Pi → 0 → 0

Pi → Pi+1 → Pi+2

Pi+3

...

Pn

���������������������
�

Hence, we have indeed FiFi+1Fi(Pj) ' Fi+1FiFi+1(Pj) for all j.

By induction on i, we have
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�

P1

P2

P3

...

Pi

Pi+1

Pi+2

..

.

Pn

� ���������������
�

FiFi−1···F1

−→

�















�

Pi → Pi−1 → · · · → P2 → P1 → 0

P1 → 0

P2 → 0

...

Pi−1 → 0

Pi → Pi+1

Pi+2

..

.

Pn

� ���������������
�

and in particular,�





�

P1

P2

P3

...

Pn

� �����
�

FnFn−1···F1
−→

�





�

Pn → Pn−1 → · · · → P2 → P1 → 0

P1 → 0

P2 → 0

...

Pn−1 → 0

� �����
�

Now, by induction on i, we have

FiFi−1 · · ·F1(Pr → Pr−1 → · · ·P2 → P1) ' (Pr → Pr−1 → · · · → Pi+1)[i]

for i < r. In particular,

Fr−1 · · ·F1(Pr → Pr−1 → · · ·P2 → P1) ' Pr[r − 1].

We deduce that

F1(F2F1) · · · (Fn · · ·F1)(Pi) ' Pn−i+1[n].

In the next section, we will prove that for n = 2, the morphism B3 → Γ is bijective and

in section 4.6 that TrPic(A) is generated by Γ and Pic(A) × Sh(A).

4.5. Faithfulness of the braid group action. We assume now that A is a Brauer tree

algebra associated to a line with two edges and no exceptional vertex. An example of such

an algebra is the group algebra of the symmetric group S3 over a field of characteristic 3.

Put φ = t1ω. A tilting complex corresponding to φ acts as
(

P1

P2

)

φ
−→

(

P1 → P2

P1 → 0

)

As is shown in Theorem 4.5, we have ω = t1t2t1[−2]. Note that φ3 = t1t2t1ω = [2].

Theorem 4.6. The map

S =

(

1 −1
1 0

)

7→ φ and T =

(

0 1
−1 0

)

7→ ω

induces an isomorphism χ : PSL2(Z)
∼
→ G/ Sh(A). Hence the subgroup G of TrPic(A) is

isomorphic to a central extension of PSL2(Z).
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Since PSL2(Z) is generated by S and T with the relations S3 = T 2 = 1, we have indeed

a morphism PSL2(Z) → G/ Sh(A). This morphism is surjective, since G is generated by φ,

ω and [1].

Note that the morphism B3/Z(B3) → PSL2(Z) given by

σ1 7→ ST and σ2 7→ TS

is an isomorphism. As a consequence, we have :

Corollary 4.7. The morphism B3 → TrPic(A) given by σi 7→ ti is injective.

Let C be a bounded complex of projective modules. Then we have a decomposition

C = Cr ⊕ Ca in the category of complexes, where Ca is homotopy equivalent to 0 and Cr

has no non-zero direct summand which is homotopy equivalent to 0. We call Cr the reduced

part of C. This is well defined up to isomorphism in the category of complexes.

For X a complex of k-modules, we denote by dimX the dimension of X, viewed as a

k-module by forgetting the differential and the grading.

Let C ∈ TrPic(A) and Ci be the reduced part of C ⊗A Pi. For {i, j} = {1, 2}, we denote

by Cone(Ci → Cj) the reduced part of the cone of a non-zero morphism from Ci to Cj.

Since HomA(Ci, Cj) ' HomA(Pi, Pj) is one-dimensional, the morphism is well defined up to

a scalar in the homotopy category, hence Cone(Ci → Cj) is well defined up to isomorphism

in the category of complexes.

We deduce Theorem 4.6 from the following more precise result :

Proposition 4.8. Let C ∈ G equal to χ

(

a b

c d

)

up to shift.

Then forgetting the differential and the grading, C1 is isomorphic to P
|a|
1 ⊕ P

|c|
2 and C2 is

isomorphic to P
|b|
1 ⊕ P

|d|
2 .

Assume ab and cd are not both zero. Let C12 = Cone(C1 → C2) and C21 = Cone(C2 →

C1).

If ab ≤ 0 and cd ≤ 0, then dimC12 = | dimC1 − dimC2| and dimC21 = dimC1 + dimC2.

If ab ≥ 0 and cd ≥ 0, then dimC12 = dimC1 + dimC2 and dimC21 = | dimC1 − dimC2|.

Remark 4. Note that, for example when ab ≤ 0, cd ≤ 0, |b| ≤ |a| and |d| ≤ |c|, the

statement of the proposition is that every morphism C1 → C2 which is not homotopy

equivalent to zero is surjective. It is an obvious fact that any morphism in the homotopy

category can be represented by a monomorphism or an epimorphism in the category of

complexes by adding a large enough complex which is homotopy equivalent to 0. The

statement in the proposition is concerned with monomorphisms or epimorphisms between

reduced complexes.
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Proof. Note first that an element x =
(

a b

c d

)

of PSL2(Z) is determined by |a|, |b|, |c|, |d|

and by the signs of ab and cd. Note that if both ab and cd are non-zero, then these signs

are equal.

The proposition is clear when ab = cd = 0, since then C is isomorphic, up to shift, to A

or to M .

So, we assume (ab, cd) 6= (0, 0). We will prove the proposition by induction on |a|+ |b|+

|c| + |d|.

Conjugating if necessary x by T , we may assume that ab ≤ 0 and cd ≤ 0. Let us assume

that |b| ≤ |a| and |d| ≤ |c|. The other case can be dealt with the same proof as below,

conjugating all matrices by
(

0 1

1 0

)

.

We have

x =

(

−b a+ b
−d c+ d

)

S.

When b|a + b| = d|c+ d| = 0, we have two cases:

If x =
(

1 0

−1 1

)

then C ' X2, up to a shift.

If x =
(

1 −1

1 0

)

then C ' X1 ⊗AM , up to a shift.

In the first case, we have

C1 ' P2 → P1, C12 ' P1[1],
C2 ' P2 → 0, C21 ' P2 → P2 → P1

and we are done.

In the second case, we have

C1 ' P1 → P2, C12 ' P2[1],
C2 ' P1 → 0, C21 ' P1 → P1 → P2

and we are also done.

Assume now b|a + b| and d|c + d| are not both zero. Denote by C ′ a two-sided tilting

complex such that the class of C in TrPic(A) is the product of the class of C ′ by φ. Let C ′
1

be the reduced part of C ′ ⊗A P1 and let C ′
2 be the reduced part of C ′ ⊗A P2. The image of

C ′ in G/ Sh(A) is equal to χ
(

−b a + b

−d c + d

)

.

Note that our assumptions on the sign of ab and cd, on the absolute value of a compared to

that of b and on the absolute value of c compared to that of d imply |a+b|+|c+d| < |a|+|c|.

Hence by induction we have dim Cone(C ′
1 → C ′

2) = dimC ′
1 + dimC ′

2 and dim Cone(C ′
2 →

C ′
1) = | dimC ′

1 − dimC ′
2|. We have C1 ' Cone(C ′

1 → C ′
2) and C2 ' C ′

1[1]. Consider the

canonical map Hom(C ′
1[1], C ′

1[1]) → Hom(C1, C2). Then, the morphism C1 → C2 which

is the image of the identity morphism on C ′
1[1] under this canonical map is not homotopy

equivalent to zero. So, dim Cone(C1 → C2) = dimC ′
2 = dimC1 − dimC2.

We need to prove now that dim Cone(C2 → C1) = dimC1 + dimC2.
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Let z ∈ Z(A) such that multiplication by z induces a non-zero but non-invertible endo-

morphism of P1 : such an element is obtained as follows. Since EndA⊗A◦(A) ' Z(A) and

the head and the socle of A as an (A⊗A◦)-module are isomorphic to S1 ⊗ S∗
1 ⊕ S2 ⊗S∗

2 , we

take for z an (A⊗ A◦)-endomorphism of A with image isomorphic to S1 ⊗ S∗
1 .

Let z′ be the image of z by the automorphism of Z(A) induced by C ′. Then under the

isomorphism End(P1) ' End(C ′
1) induced by C ′, the image of the endomorphism given by

multiplication by z is the endomorphism given by multiplication by z ′.

Multiplication by z′ on a projective module has image in the socle of this module. Hence,

the morphism f : C ′
1[1] → C ′

1[1] given by multiplication by z′ extends to a morphism

g : C ′
1[1] → Cone(C ′

1 → C ′
2). Now, the identity map C ′

1[1] → C ′
1[1] extends to a map

h : Cone(C ′
1 → C ′

2) → C ′
1[1] and we have f = hg. As f is not zero, g is not zero either.

The reduced part of the cone of g has dimension dimC ′
1 + dim Cone(C ′

1 → C ′
2). Now, a

non-zero morphism C2 → C1 is equal to g up to a scalar. Hence, its cone has dimension

dimC2 + dimC1. So, the second part of the proposition holds for x.

Finally, we know by induction that C ′
1 is isomorphic to P

|b|
1 ⊕ P

|d|
2 and C ′

2 is isomorphic

to P
|a+b|
1 ⊕P

|c+d|
2 , when the differential and the grading are omitted. As dimC1 = dimC ′

1 +

dimC ′
2 and C1 = Cone(C ′

1 → C ′
2), we deduce that C1 is isomorphic to P

|a|
1 ⊕ P

|c|
2 when the

differential and the grading are omitted. Since C2 ' C ′
1[1], when omitting the differential

and the grading, C2 becomes isomorphic to P
|b|
1 ⊕ P

|d|
2 . So, the first part of the proposition

holds for x.

4.6. Transitivity of the braid group action. In this section we prove that, for A a

Brauer tree algebra with two edges and no exceptional vertex, the group TrPic(A) is gener-

ated, by t1, t2 and Pic(A) × Sh(A), and we deduce the structure of TrPic(A).

Let us start with some general properties on the image of simple modules by a derived

equivalence.

Let A be a finite dimensional algebra over a field k.

For X a bounded complex with non-zero homology, we denote by lb(X) the smallest

integer i with H i(X) 6= 0. Similarly, we denote by rb(X) the largest integer i with H i(X) 6=

0. We define the amplitude of X as Λ(X) = {lb(X), lb(X) + 1, . . . , rb(X)}. Finally, the

length `(X) of X is the cardinality of its amplitude.

Lemma 4.9. Let U −→ V −→ W  be a distinguished triangle in Db(A).

Then Λ(V ) ⊆ Λ(U) ∪ Λ(W ).

If lb(U) 6= lb(W ) + 1 and rb(U) 6= rb(W ) + 1, then we have Λ(V ) = Λ(U) ∪ Λ(W ).
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Proof. This follows immediately from the long exact sequence

· · · → H i(U) → H i(V ) → H i(W ) → H i+1(U) → · · · .

Let C be a two-sided tilting complex in Db(A ⊗ A◦). Replacing C by an isomorphic

complex, we may and will assume that C i = 0 for i /∈ Λ(C). To avoid trivialities, we assume

furthermore that Λ(C) has more than one element, or in other words that C is not a shifted

module.

Denote by F : Db(A) → Db(A) the functor C ⊗A −.

The following lemma is clear :

Lemma 4.10. If M is an A-module, then Λ(F (M)) ⊆ Λ(C).

Lemma 4.11. We have Λ(C) =
⋃

V Λ(F (V )) where V runs over the simple A-modules.

Proof. Since, as an A-module, C ' F (A), and as A has a composition series of simple

modules, Lemma 4.9 gives the inclusion Λ(C) ⊆
⋃

V Λ(F (V )). The reverse inclusion follows

from Lemma 4.10.

The next lemma is crucial — when `(C) = 2, this had been pointed out to us by J. Rickard.

Lemma 4.12. If V is simple, then Λ(F (V )) 6= Λ(C).

Proof. Let V be a simple module with Λ(F (V )) = Λ(C). Let T be the restriction of C∗ to

A. Then the complex of k-modules HomA(T, V ) ' C ⊗A V has amplitude Λ(C) = Λ(T ∗).

Let m = lb(T ) and n = rb(T ). There is a non-zero morphism T → V [−n], hence a non-zero

morphism f : P [−n] → T , which is injective, where P is a projective cover of V . There is also

a non-zero morphism T → V [−m]. This means that Tm has a direct summand isomorphic

to P whose intersection with Hm(T ) is non-zero. So, there is a non-zero morphism g : T →

P [−m] which is surjective. Now, the morphism f [n−m] ◦ g : T → T [n−m] is non-zero :

0 → Tm → Tm+1 → · · ·
↓
P
↓

· · · → T n−1 → T n → 0

But, T being a tilting complex, that is not possible unless m = n, which has been excluded,

so we get a contradiction.

From now, A is a Brauer tree algebra with two edges and no exceptional vertex.
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The algebra A has two simple modules S1 and S2 and we may assume the indexing is

chosen so that

lb(F (S1)) > lb(F (S2)) and rb(F (S1)) > rb(F (S2))(1)

since by Lemmas 4.11 and 4.12, there is no inclusion between the sets Λ(F (S1)) and

Λ(F (S2)). Note that, we have then lb(C) = lb(F (S2)) and rb(C) = rb(F (S1)).

Denote by X = P1 → P2 a complex with P2 in degree 0 and where the differential P1 → P2

is non-zero. We have H0(X) ' S2 and H−1(X) ' S1, hence we have a distinguished triangle

S1[1] → X → S2  

and applying F , a distinguished triangle

F (S1)[1] → F (X) → F (S2) 

By Lemma 4.9, this implies Λ(F (X)) ⊆ {lb(F (S2)), . . . , rb(F (S1)) − 1}, using (1). In

particular, `(F (X)) < `(C).

Let L be the kernel of a surjective map P2 → S2. We have an exact sequence

0 → S2 → L→ S1 → 0,

hence a distinguished triangle

F (S2) → F (L) → F (S1) 

By Lemma 4.9, we obtain Λ(F (L)) = Λ(C). The distinguished triangle

F (L) → F (P2) → F (S2) 

shows that lb(F (P2)) = lb(C). The distinguished triangle

F (S1) → F (P1) → F (L) 

shows that rb(F (P1)) = rb(C).

If rb(F (P2)) < rb(C), then Λ(F (X) ⊕ F (P2)) is strictly contained in Λ(C). We use the

notation of §4.2 for the complex X2. Let C ′ = C ⊗A X
∗
2 [1]. Then C ′ ⊗A P1 ' F (X) and

C ′ ⊗A P2 ' F (P2). Consequently, Λ(C ′) is strictly contained in Λ(C).

If rb(F (P2)) = rb(C), then Λ(F (X)[−1] ⊕ F (P1)) ⊆ Λ(C) and `(F (X)) + `(F (P1)) <

`(F (P2)) + `(F (P1)). Let C ′ = C ⊗A X1[−1]. Then C ′ ⊗A P1 ' F (P1) and C ′ ⊗A P2 '

F (X)[−1]. So, Λ(C ′) ⊆ Λ(C) and `(C ′ ⊗A P1) + `(C ′ ⊗A P2) < `(C ⊗A P1) + `(C ⊗A P2).

It follows by induction first on `(C), then on `(C ⊗A P1) + `(C ⊗A P2), that, modulo the

subgroup generated by t1 and t2, every element of TrPic(A) is in Pic(A) × Sh(A).
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Denote by B̃3 the extension of B3 =< σ1, σ2 > generated by z, σ1 and σ2 with the

relations z4 = (σ1σ2)
3 and zσ1z

−1σ−1
1 = zσ2z

−1σ−1
2 = 1. We have an injective morphism

B̃3 → TrPic(A) given by σi 7→ ti and z 7→ [1].

We have completed our description of TrPic :

Theorem 4.13. Let A be a Brauer tree algebra over a field k, with two edges and without

exceptional vertex. Then

TrPic(A) ' B̃3 × (k×/{±1}).

Remark 5. The results of §4 have a counterpart for Green orders as defined by

Roggenkamp. Details and proofs are given in [20].

Let O be a complete discrete valuation ring with residue field k and A a Brauer tree

algebra over k with n edges and no exceptional vertex. For Green-orders Λ over O, such

that Λ ⊗O k ' A, one can construct a morphism Bn+1 −→ TrPic(Λ) lifting the morphism

Bn+1 → TrPic(A) constructed in §4.4. Moreover, one proves that when n = 2, there is

an isomorphism B̃3 ' TrPic(Λ). The canonical map TrPic(Λ) → TrPic(A) will not be

surjective in general.
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