
SELF-TILTING COMPLEXES YIELD UNSTABLE MODULES
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Abstract. Let G be a group and let R be a commutative ring. Let TrP icR(RG) be
the group of isomorphism classes of standard self-equivalences of the derived category of
bounded complexes of RG-modules. The subgroup HDR(G) of TrP icR(RG) consisting of
self-equivalences fixing the trivial RG-module acts on the cohomology ring H∗(G, R). The
action is functorial with respect to R. The self-equivalences which are ’splendid’ in a sense
defined by J. Rickard act natural with respect to transfer and restriction to centralizers of
p-subgroups in case R is a field of characteristic p. In the present paper we prove that this
action of self-equivalences on H∗(G, R) commutes with the action of the Steenrod algebra
and study the behaviour of the action of splendid self-equivalences with respect to Lannes’
T -functor.

Introduction

In an earlier joint paper [9] with Raphaël Rouquier I defined the group TrP icR(A) of
standard self-equivalences of a derived module category Db(A) for an R-algebra A which
is projective as an R-module. For any A-module M let HDM (A) be the subgroup of
TrP icR(A) which is formed by the self-equivalences mapping M to an isomorphic copy.
Then, in an earlier paper [11] I showed that, under some hypothesis on M , the group
HDM (A) acts in a natural way on the Ext-algebra Ext∗A(M,M). In case of A being a
group algebra RG, with R being a field of characteristic p and G being a finite group, then
J. Rickard defines in [8] what is a splendid equivalence by some technical conditions basically
by asking that the homogeneous components of a tilting complex are p-permutation modules
induced from diagonal p-subgroups, and by some invertibility condition in the homotopy
category. These splendid equivalences induce self-equivalences of the derived categories of
centralizers of p-subgroups by the Brauer construction. In [12] I showed that then, for
M = R being the trivial module, the action of those splendid equivalences commute with
transfer and restriction from and to the cohomology rings of centralizers of p-subgroups. In
the present paper we enlarge these properties still further. The action of self-equivalences
of the bounded derived category Db(RG) on H∗(G,R) commutes with the action of the
Steenrod algebra on H∗(G,R) for any prime p.

As consequence of the above statements, any cohomology ring H ∗(G, Fp) defines a functor
H∗(G, Fp)⊗ �

p HD � p(B0(
�

pG)) − from the modules over the group of derived self-equivalences

of the principal block of the group ring Fp HD �
p (FpG) fixing the trivial module to the

category of unstable modules Up and similarly in the opposite direction. Obviously, we may
restrict to splendid self-equivalences.

We shall describe the composition of Lannes’ T -functor with the first functor and the im-
age of free unstable modules by the second. Moreover, by a result of Lannes TV (H∗(G, Fp))
decomposes into direct product of cohomology rings as unstable modules. We shall prove
that this decomposition is also a decomposition as modules over the action of splendid self-
equivalences. This will give evidence that splendid equivalences are the correct objects to
study in this context.

The paper is organized as follows. Section 1 recalls the necessary definitions and properties
of Even’s norm map as it is used here and the definition of the Steenrod operation. In
Section 2 it is shown that the normalized part of the outer automorphism group of the
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group ring behaves well with respect to the norm map norm
G×Cp

G on the cohomology ring
of G. Section 3 proves that splendid self-equivalences of the derived category of a group
ring fixing the trivial module act equivariantly with respect to the Steenrod operation on
the cohomology ring of the group. Finally, in Section 4 we work on the relation of unstable
modules and the action of splendid self-equivalences of the derived category of a group ring.

Acknowledgement. I thank Serge Bouc for many fruitful discussions over the last years.
In particular he mentioned to me a subtlety concerning the difference between homo-
topy equivalences and quasi-isomorphisms for tensor product complexes which lead to Re-
mark 3.4. I thank the referee for pointing out an error in the proof of Proposition 2.1 in the
original version of the paper.

1. Preliminary definitions and known results

1.1. Equivalences between derived categories of group rings. The notation con-
cerning derived categories and derived equivalences we use here and throughout the whole
article is the one in [5]. Let R be a commutative ring and let A and B be R-algebras. A
complex T is a tilting complex if it is a bounded complex with finitely generated projec-
tive homogeneous components so that HomDb(A)(T, T [n]) = 0 for n 6= 0 and so that the

smallest triangulated subcategory of Db(A) which is closed under taking direct summands
of finite direct sums and which contains T also contains the rank 1 free module A. The
fundamental result of Rickard [7] shows that the derived categories Db(A) and Db(B) are
equivalent as triangulated categories if and only if there is a tilting complex T in D b(A) so
that EndDb(A)(T ) ' B.

If A is flat as R-module, then for any tilting complex T there is a complex X in Db(A⊗R

Bop) so that X ⊗
�
B − is an equivalence which maps B to T . A complex X in Db(A⊗R Bop)

so that X ⊗
�
B − is an equivalence is called a twosided tilting complex. Suppose A = B and

A is projective as R-module. Then (cf [9]), the set TrP icR(A) of isomorphism classes of
twosided tilting complexes in Db(A⊗R Aop) is a group with group law −⊗

�
A −.

For any A-module M set

HDM (A) := {[X] ∈ TrP icR(A) | X ⊗
�
A M 'M}.

If any automorphism of M is given by multiplication with a unit in the centre of A, then in
[11] it is shown that Ext∗A(M,M) is an R HDM (A)-module by the action

HomDb(A)(M,M [n]) −→ HomDb(A)(X ⊗
�
A M,X ⊗

�
A M [n])

(α−1
X

)∗(αX)∗
−→ HomDb(A)(M,M [n])

where αX : X ⊗
�
A M −→M is an isomorphism.

In case A = RG is a group ring for a finite group G, a more subtle notion is useful. Let
R be a field of characteristic p or a complete discrete valuation ring of characteristic 0 with
residue field of characteristic p. Let B be the principal block of RG and let P be a Sylow
p subgroup of G. Let ∆ be the diagonal embedding of G into G × G. A twosided tilting
complex X in Db(B⊗Bop) is a splendid complex (cf Rickard [8]) if X is a complex of modules
whose homogeneous components are projective as right-RG-modules and projective as left
RG-modules, so that Hom•

RG(X,X) is homotopy equivalent to B as complex of left and as
complex of right modules, and so that each of the homogeneous components of X are ∆(P )-
projective p-permutation modules. Let SplenP icR(G) be the set of homotopy equivalence
classes (X) of splendid complexes X whose isomorphism class is in TrP icR(B). Let

HSplenR(G) := {(X) ∈ SplenP icR(G) | [X] ∈ HDR(B)}.

Suppose that R is a field of characteristic p. Then, for any p-subgroup Q of G, denote by b
the principal block of RCG(Q). The Brauer functor

B ⊗Bop −mod 3 N 7→ N(∆Q) := N∆Q/
∑

S<Q; S 6=Q

N∆S ∈ b⊗ bop −mod
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induces a homomorphism

SplenP icR(G) −→ SplenP icR(CG(Q)).

In [12] it is shown that the action of an X in HSplenR(G) so that X(∆(Q)) ∈
HSplenR(CG(Q)) on H∗(G,R) commutes with restriction resG

CG(Q) and transfer trG
CG(Q)

between H∗(G,R) and H∗(CG(Q), R).

1.2. Steenrod operations. Let G be a group and let H be a subgroup of G of finite
index. Then, G ≤ H oS|G:H| via the action of G on the cosets modulo H. Suppose R is a
commutative, hereditary coefficient ring.

We recall below the definitions of Even’s norm map and Steenrod operations from Ben-
son’s book [1].

Let P = (Pi, di)i∈ � be a projective resolution of R as RH-module. Then,
⊗|G:H|

i=1 P is a
(not necessarily projective) resolution of R as R(H o S|G:H|)-module. Let Q = (Qi, ∂i)i∈ �
be a projective resolution of R as R(H o S|G:H|)-module. Then, there is a morphism of

R(H oS|G:H|)-module complexes τ : Q −→
⊗|G:H|

i=1 P.

We denote by Rs the sign representation of S|G:H| and R
(r)
s the r-fold tensor product of

Rs with itself.
An element x ∈ Hn(H,M) is given as an equivalence class of homomorphisms with

representative x : Pn −→M and this defines a homomorphism
⊗|G:H|

i=1 Pn −→
⊗|G:H|

i=1 M of

R(H oS|G:H|)-modules. As
⊗|G:H|

i=1 Pn is a direct factor of the degree |G : H| ·n-homogeneous

component of
⊗|G:H|

i=1 P, the cocycle x defines a homomorphism

Qn·|G:H| −→ (

|G:H|
⊗

i=1

P)n·|G:H| −→

|G:H|
⊗

i=1

Pn −→

|G:H|
⊗

i=1

M ⊗R(n)
s .

We have to tensor with R
(n)
s in order to get the mapping well defined with respect to the sign

convention for tensor products of complexes. Observe that for even degree cohomology this
is tensor product with the identity. The restriction to G ⊆ (H oS|G:H|) defines an element

normG
H(x) in Hn|G:H|(G,

⊗|G:H|
i=1 M ⊗R R

(n)
s ). However, the sign of normG

H(x) depends on
the embedding of G into H o S|G:H|. Since later on the embedding will be fixed once and
for all, this ambiguity will not be of importance for us.

The Steenrod operations are defined by the following procedure.
Observing that in case p is odd, any p-cycle is of even parity and so, one can forget the

sign representation which had to be introduced earlier in order to get the norm map well
defined. We take

norm
G×Cp

G : Hn(G, Fp) −→ Hn·p(G× Cp, Fp) ' ⊕
np
i=0H

np−i(G, Fp)⊗
�

p Hi(Cp, Fp)

and express

norm
G×Cp

G (x) = ⊕np
i=0D

np−i(x)⊗ ai

where a2i = a2i
1 and a2i+1 = β(a1)a2i. We define

Sqi := Dn−i : Hn(G, F2) −→ Hn+i(G, F2)

if p = 2 and

P i := (−1)i+mn(n+1)/2(m!)−nD(p−1)(n−2i) : Hn(G, Fp) −→ Hn+2(p−1)i(G, Fp)

with m = p−1
2 for p odd.

We will have to use a more diagrammatic method to express the above in order to be
able to prove that the Steenrod operations commute with the action of self-equivalences of
the derived category.
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As above let P be a projective resolution of R as RG-module and let Q be a projective
resolution of R as RG oSp-module. As usually there is a mapping, unique up to homotopy,

Q
τ
−→

⊗

1≤i≤p P lifting the identity on R. Then,

HomR(Gp)(
⊗

1≤i≤p

P, (
⊗

1≤i≤p

M)[p · n]) ' HomR(Gp)(
⊗

1≤i≤p

P,
⊗

1≤i≤p

M [n])

'
⊗

1≤i≤p

HomRG(P,M [n])

with obvious isomorphisms. Observe that since the action of Sp does not enter the picture
yet, the sign representation does not play a rôle here.

With the diagonal ∆ we get

HomRG(P,M [n])
∆
−→

⊗

1≤i≤p

HomRG(P,M [n])

and we observe that the image of ∆ under the isomorphism

HomR(Gp)(
⊗

1≤i≤p

P,
⊗

1≤i≤p

M [n]) '
⊗

1≤i≤p

HomRG(P,M [n])

is in HomR(Go � p)(
⊗

1≤i≤p P, (
⊗

1≤i≤p M [n]) ⊗R R
(n)
s ). Now, the restriction of the sign

representation of Sp to Cp always is the trivial representation; for p = 2, since there 1 = −1,
and for p an odd prime, since there any p-cycle has even parity. Therefore, ∆ factors through

res
Go � p

Gp by a mapping ∆′. So, the norm map norm
G×Cp

G can be seen as left composition of
the left vertical homomorphisms in the following commutative diagram.

HomRG(P, M [n])
∆
−→ HomR(Gp)(

⊗p

i=1 P,
⊗p

i=1 M [n])
↓ ∆′ ‖

HomR(GoSp)(
⊗p

i=1 P, (
⊗p

i=1 M [n])⊗R R
(n)
s )

res
GoSp

Gp

−→ HomR(Gp)(
⊗p

i=1 P,
⊗p

i=1 M [n])
↓

HomR(GoSp)(Q, (
⊗p

i=1 M [n])⊗R R
(n)
s )

↓ res
GoSp

G×Cp

HomR(G×Cp)(Q,
⊗p

i=1 M [n])

One should observe that ∆ is not linear over the base ring unless this base ring R is Fp.

2. Ring automorphisms

The group OutR(RG) = AutR,1(RG)/Inn(RG) of outer augmented R-algebra automor-
phisms acts on H∗(G,R) in the obvious way. We shall prove that this action is compatible
with Steenrod operations.

Proposition 2.1. Let R = Fp. The action of Out �
p (FpG) on H∗(G, Fp) commutes with

the action of mod p Steenrod operations on H∗(G, Fp).

To prove this, we shall show that for any automorphism α of FpG there is an automorphism
α̂ of Fp(G oSp) so that the diagram

α̂Q
τ
−→

⊗p
1

αP

ρ ↓ ↓ ⊗σ

Q
τ
−→

⊗p
1 P

commutes. Here, the vertical homomorphisms are chain maps which lift the identity on
Fp : The complex Q is a projective resolution of Fp and a mapping ρ lifting the identity
on Fp exists by the universal property of Q being a projective resolution. P is a projective
resolution of Fp as G-module. Then, we use the tensor product of p copies of the lifting σ
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of the identity on Fp onto P as complex of FpG-module. This tensor product is easily seen
to be Fp(G oSp)-linear.

In order to define α̂ we observe the well known fact that

Fp(G oSp) ' Fp (G×G× · · · ×G)
︸ ︷︷ ︸

p factors

⊗ �
p FpSp

is isomorphic to the skew tensor product of the first factor with the quotient group acted
upon : Fp(G o Sp) is the ordinary tensor product as Fp-module, and the multiplication is
defined via a torsion by Sp:

(g1 ⊗ σ1) · (g2 ⊗ σ2) = g1σ1(g2)⊗ σ1σ2 .

Since Fp (G×G× · · · ×G)
︸ ︷︷ ︸

p factors

'
⊗p

i=1 FpG, we may take α̂ := (⊗p
i=1α) ⊗ id � p

and we verify

readily that α̂ is a ring automorphism of Fp(G o Sp). Moreover, a projective resolution of
⊗p

i=1Fp as Fp(G o Sp)-module is Q := (
⊗p

i=1 P) ⊗ �
p R, where P is a projective resolution

of Fp as FpG-module and R is a projective resolution of Fp as an FpSp-module (cf e.g.
[1, Chapter 4.1]). Note that since the Sylow p subgroup of Sp is cyclic, the homogeneous
components of R are indecomposable projective FpSp-modules.

We shall have to compare the diagram

Hom �
pG(P, Fp[n])

∆
−→ Hom �

p(Gp)(
⊗p

i=1 P,
⊗p

i=1 Fp[n])
↓ ∆′ ‖

Hom �
p(Go � p)(

⊗p
i=1 P, (

⊗p
i=1 Fp[n])⊗ �

p Fp
(n)
s )

res
Go � p

Gp

−→ Hom �
p(Gp)(

⊗p
i=1 P,

⊗p
i=1 Fp[n])

↓

Hom �
p(Go � p)(Q, (

⊗p
i=1 Fp[n])⊗ �

p Fp
(n)
s )

↓ res
Go � p

G×Cp

Hom �
p (G×Cp)(Q,

⊗p
i=1 Fp[n])

with the diagram corresponding to the twisted resolutions

HomFpG(αP, Fp[n])
∆
−→ HomFp(Gp)(

⊗p

i=1
⊗αP,

⊗p

i=1 Fp[n])
↓ ∆′ ‖

HomFp(GoSp)(
α̂
⊗p

i=1 P, (
⊗p

i=1 Fp[n])⊗Fp
Fp

(n)
s

)
res

GoSp

Gp

−→ HomFp(Gp)(
⊗α
⊗p

i=1 P,
⊗p

i=1 Fp[n])
↓

HomFp(GoSp)(
α̂Q, (

⊗p

i=1 Fp[n])⊗Fp
Fp

(n)
s

)

↓ res
GoSp

G×Cp

HomFp(G×Cp)(
α̂Q,

⊗p

i=1 Fp[n])

and we shall have to define mappings from the morphism groups of the bottom diagram
to the corresponding morphism sets of the top diagram in a way such that the squares which
are created this way are commutative. Since P as well as αP are projective resolutions of the
trivial module, there is a chain homotopy isomorphism σ : P −→α P and this isomorphism
induces a chain homotopy isomorphism ⊗p

1σ :
⊗p

i=1 P −→
⊗p

i=1
αP and a chain homotopy

isomorphism ρ : Q −→ α̂Q defined by taking the identity on the factors corresponding to
R. It is then straightforward to see that all squares which occur are commutative.

In order to compute

norm
G×Cp

G : Hn(G, Fp) −→ Hpn(G× Cp, Fp)

we have to map a cocycle by res
Go � p

G×Cp
◦ τ∗ ◦∆′.
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Since res
Go � p

G×Cp
= δ∗ for δ being the diagonal embedding of G into Gp, and since α̂ ◦ δ =

δ ◦ (α× idCp),

norm
G×Cp

G ◦ α∗ = res
Go � p

G×Cp
◦ τ∗ ◦∆′ ◦ α∗

= res
Go � p

G×Cp
◦ α̂∗ ◦ τ∗ ◦∆′

= (α× idCp)
∗ ◦ res

Go � p

G×Cp
◦ τ∗ ◦∆′

= (α× idCp)
∗ ◦ norm

G×Cp

G

The proof is complete here.

3. Derived self-equivalences

Let R be a field of characteristic p, let B(RG) be the principal block of RG and let X be
a twosided tilting complex in Db(B(RG)⊗R B(RG)op). Starting from X, we shall construct
a twosided tilting complex in Db(B(RG oSp)⊗R B(RG oSp)

op).
It should be noted that Andrei Marcus constructed in [6] a tilting complex in B(RG oSn)

if p does not divide n. However, in order to apply this construction to the Steenrod operation
we are obliged to pass to n = p.

We consider the complex

X⊗p := X ⊗R X ⊗R · · · ⊗R X

with p factors as object in Db(B(RGp) ⊗R B(RGp)op). Of course, this is an invertible
complex as for the endomorphism complex we get

HomRGp(X⊗p, X⊗p) '

p
⊗

i=1

HomRG(X,X) '

p
⊗

i=1

B(RG) in Db(RGp ⊗R (RGp)op).

We consider now the complex of R(G oSp)-right modules

XGo � p := X⊗p ⊗RGp R(G oSp).

It is immediate that XGo � p ' X⊗p ⊗R RSp as R(Gp)-left modules, where the p factors of
G × G × . . . · · · × G act on the respective copy of X ⊗X ⊗ · · · ⊗ X respectively and each
acts trivially on RSp.

We shall now define a left action of R(G oSp) on XGo � p which commutes with the right
action of G oSp (see [1, Chapter 4.1]).

Let σ be an element of Sp. The degree n homogeneous component of X⊗p is

(X⊗p)n =
⊕

k1+···+kp=n

Xk1 ⊗R Xk2 ⊗R · · · ⊗R Xkp
.

The differential δn on the tensor product complex is
∑

k1+···+kp=n

d⊗id⊗· · ·⊗id+(−1)k1 id⊗dn−k⊗id⊗· · ·⊗id+· · ·+(−1)k1+···+kp−1id⊗· · ·⊗id⊗d.

Now, σ acts on the tensor product complex permuting the factors

x1 ⊗ · · · ⊗ xp ∈ Xk1 ⊗R Xk2 ⊗R · · · ⊗R Xkp

accordingly to σ acts on the index set {1, . . . , p} multiplied by a sign (−1)ν where

ν =
∑

j<k; σ(j)>σ(k)

deg(xj)deg(xk) .

A more standard definition of XGo � p by tensor induction followed by ordinary induction,
can be done using that X itself is a complex of G×G-modules.
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Let H be a finite group and let Y be a complex of RH-modules. Then, the tensor induced

complex Y ⊗↑
H×Cp
H is isomorphic to Y ⊗R Y ⊗R · · · ⊗R Y

︸ ︷︷ ︸

p factors

as complex of R(H×Cp)-modules.

But actually, Y ⊗↑
H×Cp
H is a complex of R(H oSp)-modules, as is seen easily from the definition

(cf e.g. [1]).

We will not use the two following lemmas, though we cite them since they might become
important in later studies.

Lemma 3.1. Lt S be a p-subgroup of H. If Y is a direct sum of relatively S-projective

H-modules, then Y ⊗↑
H×Cp
H is relatively S o Cp-projective.

Proof. Let U be an RS-modules, so that Y | U ↑HS . Let π : U ↑HS −→ Y and ι : Y −→
U ↑HS with π ◦ ι = idY . Then, the monomorphism

Y ⊗R Y ⊗R · · · ⊗R Y
︸ ︷︷ ︸

p factors

ι⊗···⊗ι
−→ U ↑HS ⊗RU ↑HS ⊗R · · · ⊗R U ↑HS

︸ ︷︷ ︸

p factors

is split by π⊗π⊗· · ·⊗π and both morphisms are clearly morphisms of R(H oSp)-modules.
Moreover,

U ↑HS ⊗RU ↑HS ⊗R · · · ⊗R U ↑HS
︸ ︷︷ ︸

p factors

' (U ⊗R U ⊗R · · · ⊗R U)
︸ ︷︷ ︸

p factors

↑H×H×···×H
S×S×···×S

as R(H×H×· · ·×H)-modules. Nevertheless, the isomorphism consists of re-identifying the
order of the tensors, and this isomorphism is clearly H oSp-linear. But now, the isomorphism
induces an isomorphism

U ↑HS ⊗RU ↑HS ⊗R · · · ⊗R U ↑HS
︸ ︷︷ ︸

p factors

' (U ⊗R U ⊗R · · · ⊗R U)
︸ ︷︷ ︸

p factors

↑
Ho � p

So � p
.

Since Y is a direct factor of this induced module, and since Cp is the Sylow p subgroup of
Sp, the result follows.

We observe that

XGo � p :=

(

X⊗↑
(G×G)×Cp
G×G

)

↑
(Go � p)×(Go � p)
(G×G)o � p

Indeed,

(

X⊗↑
(G×G)×Cp
G×G

)

is a tensor product of p copies of X, the direct product of p copies

of G acting from the left and from the right on the different copies of the p-fold tensor
product, and on which Cp acts from the left and from the right by permuting the factors of
the tensor product. Moreover, (G×G) oSp embeds into (G oSp)× (G oSp) via the mapping
(g1, g2, c) 7→ (g1, c)× (g2, c), where g1, g2 ∈ Gp. It is immediate to see that this construction
gives the one defined above in a more elementary manner. However, we did not look at the
differentials yet. Here, either we deal with multicomplexes and take the total complex of
these multicomplexes, or we have to go back to the elementary definition above.

Lemma 3.2. Let P be a Sylow p subgroup of G. If X is a direct sum of ∆(P )-projective
modules, then XGo � p is a direct sum of ∆(P o Cp)-projective modules.

Proof. Let P be a p-Sylow subgroup of G. Then, P p is a p-Sylow subgroup of Gp and
P o Cp is a p-Sylow subgroup of G oSp. Let ∆(P ) be the diagonal of P in G×G. Since by

Lemma 3.1

(

X⊗↑
(G×G)×Cp
G×G

)

is ∆(P p)×Cp-projective, XGo � p is ∆(P oCp)-projective. Indeed,
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Cp in ∆(P p)×Cp is diagonally embedded in (G oSp)× (G oSp) and XGo � p is induced from

(G×G)p×Cp. So, if

(

X⊗↑
(G×G)×Cp
G×G

)

is ∆(P p)×Cp-projective, XGo � p is ∆(P oCp)-projective.

The result follows from there.

Proposition 3.3. Let R be a field of characteristic p and let G be a finite group with Sylow

p subgroup P . Then, for any X with isomorphism class in TrP icR(B(RG)), the complex

XGo � p is a twosided tilting complex in TrP icR(B(R(G oSp))).

If X is splendid, then XGo � p is a twosided tilting complex with homogeneous components

which are ∆(P )-projective p-permutation modules.

Remark 3.4. The complex XGo � p is in general not splendid even if X is splendid. This
surprising fact can be seen if one wants to apply Brauer functors with respect to the Sylow
p-subgroup of Sp. The complex XGo � p will then be transformed into a complex which is
not a tilting complex anymore.

Proof of Proposition 3.3. We will show that the above defined complex XGo � p is a twosided
tilting complex in Db(B(R(G oSp))⊗R B(R(G oSp))

op).
We get isomorphisms of (the total complexes of) double complexes

Hom•
R(Go � p)(X

Go � p , XGo � p) ' Hom•
R(Gp)(X

⊗p, XGo � p ↓Gp)

'
⊕

σ∈ � p

Hom•
R(Gp)(X

⊗p, X⊗p)⊗ σ

'
⊕

σ∈ � p

(
p
⊗

i=1

Hom•
RG(X,X)

)

⊗ σ

Moreover, we have to recover the action of R(G o Sp) coming from the left action of

R(G oSp) on the first and of the second variable XGo � p . The action on the first variable is

going to become the right action of R(G oSp) on Hom•
R(Go � p)(X

Go � p , XGo � p) and the action

on the second variable is going to become the left action on this Hom-complex.
The action of the subgroup Gp of G o Sp trivially is factorwise on the tensor products,

on each of the direct summands. The action of Sp from the right on the complex XGo � p is
given by the induction

X⊗p ↑
(Go � p)2

G2o � p
' X⊗p ⊗R RSp

The action from the right on the Hom•-complex comes from the action on the second
variable which is, after having applied Frobenius reciprocity, just the above described. Hence
the action of Sp from the right permutes the direct summands of

⊕

σ∈ � p

(
p
⊗

i=1

Hom•
RG(X,X)

)

⊗ σ .

We shall study the left action of GoSp on the Hom-complex. The action of Gp ≤ GoSp on
the left trivially is again the factorwise action on the two factors of the tensor products, in
each of the direct summands. Now, the action of σ ∈ Sp from the left permutes the factors
in the tensor product on the level of the modules in each degree; and applies a sign according
to the above described formula; and henceforth also the factors in the tensor product

⊕

σ∈ � p

(
p
⊗

i=1

Hom•
RG(X,X)

)

⊗ σ .

Now, we may assume that the homogeneous components of X are free as B(RG) ⊗R

B(RG)op-modules, except the left most one, which is projective as RG-right and projective
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as RG-left module. Then, using the Künneth formula,

H0(Hom•
R(Go � p)(X

Go � p , XGo � p)) =

(
p
⊗

i=1

HomK(RG)(X,X)

)

⊗R RSp

and Hn(Hom•
RG(XGo � p , XGo � p)) = 0 for n 6= 0 again by the Künneth formula. The

Künneth formula applies without problems since R is a field. Then, at the final step we
use that X is a tilting complex from either side. So, Hom•

RG(XGo � p , XGo � p) is quasi-
isomorphic to its degree 0 homology as left module and as right module. Therefore, by
ordinary Morita theory (see e.g. Curtis-Reiner [2, (3.54)]) Hom•

R(Go � p)(X
Go � p , XGo � p) is an

invertible B(R(G o Sp))-bimodule. This implies that XGo � p is a two-sided tilting complex
in TrP icR(B(R(G oSp))). As a consequence, since R(G oSp) is a symmetric algebra,

Hom•
R(Go � p)(X

Go � p , XGo � p) ' H0(Hom•
R(Go � p)(X

Go � p , XGo � p)) ' B(R(G oSp))

in the derived category of R(G oSp)⊗R R(G oSp)
op-modules.

By Lemma 3.2, if X is a complex of p-permutation modules over G×G which are induced
from the diagonal of a fixed p-Sylow subgroup of G, then XGo � p also is a complex p-
permutation modules over (G o Sp) × (G o Sp), induced from a fixed Sylow p subgroup of
G oSp.

Proposition 3.3 follows.

Remark 3.5. It is straightforward to generalize the statement and the proof of Proposition
3.3 to the case where X is a twosided tilting complex between two blocks B and b of RG
and RH for two finite groups G and H and R is a field of finite characteristic. Moreover, it
is an easy task to pass to any wreath product by a fixed permutation group Π.

We now study first properties of XGo � p with respect to the action on Ext-algebras [11].

Lemma 3.6. Let M be an RG-module for a finite group G and let X be a tilting complex

with isomorphism class in HDM (G). Let Rs be the sign representation of Sp. Then, the

isomorphism class of XGo � p is in HD(⊗p
i=1M)(G oSp) ∩HD((⊗p

i=1M)⊗RRs)(G oSp).

Proof.

XGo � p ⊗Go � p
(⊗p

i=1M) ' (X⊗p ⊗R RSp)⊗Gp×� p
(⊗p

i=1M)

' (X⊗p)⊗Gp (⊗p
i=1M)

'

p
⊗

i=1

(X ⊗G M)

' ⊗p
i=1M

where the last is an isomorphism in the derived category. Moreover,

XGo � p ⊗Go � p
((⊗p

i=1M)⊗R Rs) ' (X⊗p ⊗R RSp)⊗Gp×� p
((⊗p

i=1M)⊗R Rs)

'
(
(X⊗p)⊗Gp (⊗p

i=1M)
)
⊗R (RSp ⊗ � p

Rs)

'

(
p
⊗

i=1

(X ⊗G M)

)

⊗R Rs

' (⊗p
i=1M)⊗R Rs

is a similar computation. This proves the statement.

We are now able to prove that the mod 2 Steenrod square Sq and the mod p Steenrod
operation P commute with the action of HDR(G).
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Theorem 1. Let G be a finite group, let R be a field of characteristic p. Then, for any X
with isomorphism class in HDR(G), the following squares are commutative. If p = 2, then

Hn(G,R)
X⊗G−
−→ Hn(G,R)

Sqi
n ↓ ↓ Sqi

n

Hn+i(G,R)
X⊗G−
−→ Hn+i(G,R)

is commutative and if p ≥ 3,

Hn(G,R)
X⊗G−
−→ Hn(G,R)

P i
n ↓ ↓ P i

n

Hn+2(p−1)i(G,R)
X⊗G−
−→ Hn+2(p−1)i(G,R)

is commutative.

Proof. We use the interpretation of the Steenrod operation from section 1.2. We have to
apply X ⊗G − or XGo � p ⊗Go � p

− or (X ⊗R RCp)⊗G×Cp − to the various mappings in the
diagram

HomRG(P, R[n])
∆
−→

⊗p
i=1 HomRG(P, R[n])

↓ ∆′ ‖

HomR(Go � p)(
⊗p

i=1 P, (
⊗p

i=1 R[n])⊗R R
(n)
s )

res
Go � p

Gp

−→ HomR(Gp)(
⊗p

i=1 P,
⊗p

i=1 R[n])
↓

HomR(Go � p)(Q, (
⊗p

i=1 R[n])⊗R R
(n)
s )

↓ res
GoCp

G×Cp

HomR(G×Cp)(Q,
⊗p

i=1 R)

and shall prove that the squares which are induced by this are commutative in each case.
The square

HomRG(P, R[n])
∆
−→

⊗p
i=1 HomRG(P, R[n])

↓ X ⊗G − ↓
⊗p

i=1 X ⊗G −

HomRG(X ⊗G P, X ⊗G R[n])
∆
−→

⊗p
i=1 HomRG(X ⊗G P, X ⊗G R[n])

is obviously commutative. Moreover, the square
⊗p

i=1 HomRG(P, R[n]) ' HomRGp(
⊗p

i=1 P,
⊗p

i=1 R[n])

⊗p
i=1(X ⊗G −) ↓ ↓ X⊗p ⊗Gp −

⊗p
i=1 HomRG(X ⊗G P, X ⊗G R[n]) ' HomRGp(

⊗p
i=1 P,

⊗p
i=1 R[n])

is commutative as well. This proves the announced commutativity of the diagrams with
respect to the mappings ∆ and ∆′.

The square

HomR(Go � p)(
⊗p

i=1 P,
⊗p

i=1 R[n]⊗R R
(n)
s )

res
GoCp

Gp

−→ HomR(Gp)(
⊗p

i=1 P,
⊗p

i=1 R[n])

↓ XGo � p ⊗Go � p
− ↓ X⊗p ⊗Gp −

HomR(Go � p)(X
Go � p ⊗Go � p

⊗p
i=1 P,

res
Go � p

Gp

−→ HomR(Gp) (X⊗p ⊗Gp

⊗p
i=1 P ,

XGo � p ⊗Go � p

⊗p
i=1 R[n]⊗R R

(n)
s

)

X⊗p ⊗Gp

⊗p
i=1 R[n])



SELF-TILTING COMPLEXES YIELD UNSTABLE MODULES 11

again is commutative. In fact the complex XGo � p is an induced complex. And so,
XGo � p ⊗Go � p

− is the same as X⊗p ⊗Gp −. This proves that applying the various twosided
tilting complexes derived from X to the upper square of the original diagram yields a parallel
square with, together with the mappings of the corresponding corners, forms a commutative
cube.

Next, the square

HomR(Go � p)(Q,
⊗p

i=1 R[n]⊗R R
(n)
s ) −→ HomR(Gp)(

⊗p
i=1 P,

⊗p
i=1 R[n])

↓ XGo � p ⊗Go � p
− ↓ X⊗p ⊗Gp −

HomR(Go � p)(X
Go � p ⊗Go � p

Q, −→ HomR(Gp) (X⊗p ⊗Gp

⊗p
i=1 P ,

XGo � p ⊗Go � p

⊗p
i=1 R[n]⊗R R

(n)
s

)

X⊗p ⊗Gp

⊗p
i=1 R[n])

is commutative by the same trivial reasons.
The only part which remains to be proven is that the square (*) below

HomR(Go � p)(Q,
⊗p

i=1 R[n]⊗R R
(n)
s )

res
Go � p
G×Cp
−→ HomR(G× � p)(Q,

⊗p
i=1 R[n])

↓ XGoCp ⊗GoCp
− (X ⊗R RCp)⊗G×Cp − ↓

HomR(Go � p)(X
Go � p ⊗Go � p

Q,
res

Go � p
G×Cp
−→ HomR(G×Cp)

(
(X ⊗R RCp)⊗G×Cp Q,

XGo � p ⊗Go � p

⊗p
i=1 R[n]⊗R R

(n)
s

)

(X ⊗R RCp)⊗G×Cp

⊗p
i=1 R[n])

is commutative.
In order to prove this fact we replace R by a fixed projective resolution. Let P be

a projective resolution of R as RG-module and let Q be a minimal projective resolution
of R as a RSp-module. Using that RSp has cyclic defect group, we observe that each

homogeneous component of Q is indecompoable. A projective resolution PGo � p of R as

R(G oSp)-module is then
⊗p

i=1 P ⊗R Q and a projective resolution of R
(n)
s as R(G o Sp)-

module is
⊗p

i=1 P ⊗R

(

Q⊗R R
(n)
s

)

. Note Qs := Q ⊗R R
(n)
s . We shall replace R by this

resolution PGo � p and R
(n)
s by the resolution PGo � p ⊗R R

(n)
s .

Now,

XGo � p ⊗Go � p
PGo � p ' XGo � p ⊗Go � p

(
p
⊗

i=1

P⊗R Q

)

'

(
p
⊗

i=1

(X ⊗G P)

)

⊗R Q

and so, using Künneth formulas,

HomK(RGo � p)

(

XGo � p ⊗Go � p
PGo � p , XGo � p ⊗Go � p

(

PGo � p ⊗R R(n)
s

)

[n]
)

' HomK(RGo � p)

((
p
⊗

i=1

(X ⊗G P)

)

⊗R Q,

(
p
⊗

i=1

(X ⊗G P)

)

⊗R Qs[n]

)

'
⊕

i+j=n

HomK(RGp)

((
p
⊗

i=1

(X ⊗G P)

)

,

(
p
⊗

i=1

(X ⊗G P)

)

[i]

)

⊗R HomK(R � p)(Q,Qs[j])

'
⊕

i+j=n




⊗

� p
l=1 il=i

HomK(RG) (X ⊗G P, X ⊗G P[il])



⊗R HomK(R � p)(Q,Qs[j])
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Similarly,

HomK(RGo � p)

(

PGo � p , PGo � p ⊗R R(n)
s [n]

)

' HomK(RGo � p)

((
p
⊗

i=1

P

)

⊗R Q,

(
p
⊗

i=1

P

)

⊗R Qs[n]

)

'
⊕

i+j=n

HomK(RGp)

(
p
⊗

i=1

P,

(
p
⊗

i=1

P

)

[i]

)

⊗R HomK(R � p)(Q,Qs[j])

'
⊕

i+j=n




⊗

� p
l=1 il=i

HomK(RG) (P,P[il])



⊗R HomK(R � p)(Q,Qs[j])

with the same isomorphisms.

Now, we shall have to study how the restriction res
Go � p

G×Cp
is interpreted in this context.

Actually,

res
Go � p

G×Cp

(

HomK(RGo � p)

(

PGo � p ,PGo � p ⊗R R(n)
s [n]

))

' res
Go � p

G×Cp




⊕

i+j=n




⊗

� p
l=1 il=i

HomK(RG) (P,P[il])



⊗R HomK(R � p)(Q,Qs[j])





'
⊕

i+j=n

HomK(RG) (P,P[i]) ⊗R HomK(RCp) (Q,Q[j]))

since Hom•
R (P,P) ' R.

Similarly,

res
Go � p

G×Cp

(

HomK(RGo � p)

(

XGo � p ⊗Go � p
PGo � p , XGo � p ⊗Go � p

PGo � p ⊗R R(n)
s [n]

))

' res
Go � p

G×Cp




⊕

i+j=n




⊗

� p
l=1 il=i

HomK(RG) (X ⊗G P, X ⊗G P[il])



⊗R HomK(R � p)(Q,Qs[j])





'
⊕

i+j=n

HomK(RG) (X ⊗G P, X ⊗G P[i]) ⊗R HomK(RCp) (Q,Q[j])

by the same isomorphisms. This proves that the square (*) is commutative.
It is now direct to see that the action of X on the Ext-algebra commutes with mod p

Steenrod operations. In fact, the left square of the diagram

Hn(G, Fp)
norm

G×Cp
G−→ Hpn(G× Cp, Fp) '

⊕np
i=0 Hi(G, Fp)⊗

�
p Hnp−i(Cp, Fp)

X ⊗− ↓ (X ⊗ id) ⊗G×Cp − ↓ � np

i=0(X ⊗ id) ⊗− ↓

Hn(G, Fp)
norm

G×Cp
G−→ Hpn(G× Cp, Fp) '

⊕np
i=0 Hi(G, Fp)⊗

�
p Hnp−i(Cp, Fp)

is commutative as is shown above. The right square of the diagram is clearly commutative
for p = 2, since the cohomology of a cyclic group of order 2 s F2 in each degree. For odd p
the right square is commutative up to a scalar, which is easily seen to be the identity.

The proof of the theorem is finished here.
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4. Consequences

Let G be a finite group. As in [12] we call HSplen �
p (G) be the subgroup of homotopy

equivalence classes of splendid tilting complexes in TrP ic �
p (FpG) which in addition map

the trivial FpG-module to an (in the derived category of FpG-modules) isomorphic copy.
By Theorem 1 the action of the mod p Steenrod algebra Ap and the action of HD �

p (G) on
H∗(G, Fp) commute. Hence the cohomology ring H∗(G, Fp) is an Ap−HD �

p (G)-bimodule.
Let Up be the category of unstable modules over the mod p Steenrod algebra (cf e.g.

Schwartz [10]). Then, for any group G we get a functor Dp(G) defined by

H∗(G, Fp)⊗ �
p HD � p(G) − : Fp HD �

p (G)−mod −→ Up

By the usual adjointness formula

Hom �
p HD � p(G)

(
−,Hom�

p
(H∗(G, Fp), ?)

)
' Hom�

p

(

H∗(G, Fp)⊗ �
p HD � p(G) −, ?

)

as bifunctors Fp HD �
p (G) − mod × Up −→ Ens the functor Dp(G) has a right adjoint

Ep(G) := Hom� p
(H∗(G, Fp),−).

Of course there is a dual version of the above defined by EHom
p (G) defined by

−⊗Ap H∗(G, Fp) : Up −→ mod− (Fp HD �
p (G))

which has a right adjoint DHom
p (G) := Hom �

p HD � p(G)(H
∗(G, Fp),−).

We get a system of functors

Dp(G) : Fp HDp(G)−mod −→ Up

DHom
p (G) : Fp HDp(G)−mod −→ Up

Ep(G) : Fp HDp(G)−mod ←− Up

E⊗p (G) : Fp HDp(G)−mod ←− Up

where (Dp(G), Ep(G)) and (DHom
p (G), E⊗p (G)) are adjoint pairs and where we abbreviate

HDp(G) for HD �
p (G).

First, not very astonishing, we are able to find the image of the free unstable modules
F (n) by E⊗p (G). Recall that F (n) are determined as representing object to the functor
M 7→Mn for any n ∈ N :

Hom�
p
(F (n),−) ' (−)n .

Lemma 4.1. We get E⊗p (G)(F (n)) ' H∗(G)n as Fp HDp(G)-modules.

Proof. We apply Yoneda’s lemma to the equation

Hom �
p HDp(G)(F (n)⊗ 	 p

H∗(G),−) ' Hom� p
(F (n),HomHDp(G)(H

∗(G),−))

' Hom �
p HDp(G)(H

∗(G),−)n

' Hom �
p HDp(G)(H

∗(G)n,−)

to get the result.

We shall study the compatibility with Lannes’ T -functor (cf e.g. [10]). For this, we observe
that by functoriality, if N is an Ap-HDk(G) bimodule, then TV (N) is such a bimodule as
well.

Proposition 4.2. Let V be an elementary abelian p-group and let M be an HD �
p (G)-

module. Then,

(TV ◦ (Dp(G))) ' TV (H∗(G)) ⊗ �
p HD � p(G) −.
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Proof. We use the different adjointness formulas.

Hom�
p
(TV (Dp(G)M),−) ' Hom�

p

(
Dp(G)(M),H∗(V )⊗ �

p −
)

' HomHDp(G)

(
M,Hom�

p
(H∗(G),H∗(V )⊗ �

p −)
)

' HomHDp(G)

(
M,Hom�

p
(TV (H∗(G),−)

)

' Hom�
p
(TV (H∗(G))⊗HDp(G) M,−)

The rest follows by Yoneda’s lemma.

We shall elaborate more on Proposition 4.2. As quoted in Henn, Lannes and Schwartz
[4, Theorem 5.2] (see [3] for a proof) Lannes found that

TV (H∗(G, Fp)) '
∏

ρ∈Hom(V,G)/conjugation

H∗(CG(ρ(V )), Fp)

Let us recall how the mapping is constructed. For any fixed ρ ∈ Hom(V,G) one gets

V × CG(im ρ)
µφ
−→ CG(im ρ) ↪→ G

(v, c) 7→ ρ(v)c .

Taking cohomology, this induces a mapping

H∗(G, Fp)
resG

CG(im ρ)
−→ H∗(CG(im ρ), Fp) −→ H∗(V, Fp)⊗

�
p H∗(CG(im ρ), Fp)

Now, TV is left adjoint to H∗(V, Fp)⊗
�

p −, and therefore, this mapping induces a mapping

TV (H∗(G, Fp))
ad(µ∗

φ
◦resG

C
)

−→ H∗(CG(im ρ)) .

Taking the product of these mappings gives the required isomorphism.

In [12] we obtained that the Brauer construction with respect to the diagonal of a p-
subgroup of G in G×G yields a group homomorphism

SplenP ic �
p (G) −→ SplenP ic �

p (CG(Q)) .

In [12] we were not able to prove that under this homomorphism the property to fix the
trivial module is preserved. Nevertheless, we conjecture that this is true.

Conjecture 4.3. The mapping SplenP ic �
p (G) −→ SplenP ic �

p (CG(Q)) induces a map-
ping HSplen �

p (G) −→ HSplen �
p (CG(Q)).

Supposing Conjecture 4.3 is true, we shall show that the decomposition TV (H∗(G, Fp)) =
∏

ρ H∗(CG(im ρ), Fp) is compatible under the action of HSplen �
p (G) from the right.

Actually, the mapping HSplen �
p (G)→ HSplen �

p (CG(Q)) gives then a Fp HSplen �
p (G)-

module structure on H∗(CG(im ρ), Fp) for any ρ ∈ Hom(V,G).

Proposition 4.4. Suppose that Conjecture 4.3 is true. Then, the mappings above induce a

decomposition

TV (H∗(G, Fp)) =
∏

ρ

H∗(CG(im ρ), Fp)

as Ap-Fp HSplen �
p (G)-bimodules.

Proof. Let X be a twosided tilting complex in HSplen �
p (G). In [12] it is proved that the

diagram

H∗(G, Fp)
resG

CG(im ρ)
−→ H∗(CG(im ρ), Fp)

X ⊗G − ↓ ↓ X(∆(im ρ))⊗CG(im ρ) −

H∗(G, Fp)
resG

CG(im ρ)
−→ H∗(CG(im ρ), Fp)

is commutative.
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Now, V is abelian. So, im ρ ⊆ CG(im ρ) for any ρ ∈ Hom(V,G). Let Q be a free resolu-
tion of the trivial FpV -module and let P be a projective resolution of the trivial FpCG(im ρ)-
module. Then, Q⊗ �

p P is a projective resolution of the trivial Fp(V × CG(im ρ))-module.
In order to describe the mapping H∗(CG(im ρ), Fp) −→ H∗(V, Fp) ⊗

�
p H∗(CG(im ρ), Fp)

we have to determine a mapping τ which makes the diagram of Fp(V ×CG(im ρ))-modules

µP −→ Fp

τ ↑ ‖
Q⊗ �

p P −→ Fp

commutative. Since Q is a free resolution, and since im ρ ⊆ CG(im ρ) the resolution P is
a CG(im ρ)-module, and the mapping τ can simply be chosen to be multiplication via ρ. It
is obvious that this makes the diagram commutative.

Denote for the moment X ′ := X(∆(CG(im ρ))). Then, choosing these particular resolu-
tions and mappings, it is easily seen that

H∗(CG(im ρ), Fp)
µ∗

−→ H∗(CG(im ρ), Fp)⊗
�

p H∗(CG(im ρ), Fp)

X ′ ⊗G − ↓ ↓ (FpV ⊗
�

p X ′)⊗V ×CG(im ρ) −

H∗(CG(im ρ), Fp)
µ∗

−→ H∗(CG(im ρ), Fp)⊗
�

p H∗(CG(im ρ), Fp)

is commutative.
Now, it is sufficient to consider the adjoint mappings to the above. These yield commu-

tative diagrams

TV (H∗(G, Fp)) −→ H∗(CG(im ρ), Fp)
X ⊗G − ↓ ↓ X(∆(im ρ))⊗CG(im ρ) −

TV (H∗(G, Fp)) −→ H∗(CG(im ρ), Fp)

by the functoriality of the adjointness formulas. This finishes the proof.

Remark 4.5. If Conjecture 4.3 is not true, Proposition 4.4 remains true for the action of
⋂

ρ∈Hom(V,G) (−(∆(CG(im ρ))))−1 (HSplen �
p (CG(im ρ))) on TV (H∗(G, Fp)).

Remark 4.6. Observe that we really needed to have splendid equivalences in the proof
of Proposition 4.4. Moreover, Lemma 4.2 does not use any hypothesis on the nature of
the equivalences. Since the decomposition of TV (H∗(G, Fp)) as unstable module holds in
general, one would like to have an interpretation of this decomposition as module over the
bigger group of self-equivalences. This seems to include a generalization of [12].
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