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Abstract

A rank two abelian group C, X Cj, is in a natural way a SL2(Z)-module. This induces an action
of SL2(Z) on its group cohomology H™ (G, R) for any trivial coefficient domain R. In the present
note we determine this module including the question when the universal coefficient theorem
sequence splits.

Introduction

Let G be a group and R a commutative ring, seen as trivial RG-module. Then, Aut(G), the
automorphism group acts on G, but also, R-linearly, on H™ (G, R), the group cohomology in degree
m for any m € IN. The universal coefficient theorem (e.g. [1, Theorem 2.7.1], with the appropriate
modification made since we deal with cochain complexes) gives a natural exact sequence

0 — H™(C? Z)®z R — H™(C?,R) — Tor(R,H™TY(C?,7Z)) — 0

So, once the module structure of H™(C?,Z) is known, one gets the module structure of H™(C2, R)
for any coefficient domain R, up to the nature of an exact sequence. Moreover, for any group G the
Bockstein sequence gives an exact sequence

.— H™(G,Z) X5 H™(G,Z) — H™(G,Z/kZ) — H™ (G, Z) — ...
and in case GG is an abelian group of exponent n = k this yields an exact sequence
0 — H™(G,Z) — H™(G,Z/nZ) — H™(G,Z) — 0

In case G is an elementary abelian p-group of rank p and n = p for an odd prime p, the GL ,(Z)-module
H™(G,Z/nZ) is clearly the m-th homogeneous component of the tensor product of the symmetric
and the exterior algebra on the natural representation, where the generators of the exterior algebra
are in degree 1 and the generators of the symmetric algebra are in degree 2. The case p = 2 is similar;
only the exterior algebra does not occur and the generators of the symmetric algebra are in degree
1. This is an immediate consequence of the well known structure of the mod p cohomology rings of
these groups. Chapman [2] gives also the integral cohomology of an abelian group. Nevertheless, the
structure there is much less appealing, even more as his results are valid for odd groups only.

The above sequences give a recursive understanding of the composition factors of H™(CF, R) as
R GL,(Z)-module. It does not tell much how these factors are glued together. Using elementary
methods, in the present article we try to close this gap and give the entire module structure for
p=2.
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Theorem 1 Let n be a natural number and let R be a commutative ring regarded as trivial C2-
module. Let Sy (A) be the symmetric algebra of degree k over the free A-module A%. The group Sla(Z)
acts on this algebra in the natural way. Let T'(2) be the level 2 congruence subgroup of SL2(Z). Let
nR = {r € R| nr =0} be the ideal of n-torsion elements in R. Then, as R SL2(Z)-modules we have
the following exact sequences.

0 — Si(R/nR) — H**(C,, x Cp,R) — ,R-Sk_1(R) — 0

for k > 1. This sequence is non-split exactly if (g) ‘nR € nR. The sequence regarded as R T'(2)-
modules is always split.
Moreover, we have an exact sequence

0 — Sk_1(R/nR) — H**1(Cp x Cp, R) — R S (R) — 0
for k>1.

We remark that in case n is odd, then (Z) -nRR CnR. In case n is even, then this condition may

be satisfied or not. For example for R = Z/2"7Z and n = 2, one gets that the exact sequence coming
from the universal coefficient theorem in even degree is split if and only if v # /.

The paper is organized as follows. In section 1 we introduce a particular sign convention for the
tensor product of two projective resolutions of cyclic groups. Section 2 determines the lifting of the
identity map to the projective resolutions obtained by twisting with the generator by the standard
Borel subgroup. In section 3 the same is done for the Levi complement. Then, in the following
section 4 we determine an adapted basis for the group cohomology. In section 5, the final section,
we prove the theorem and discuss the splitting question.

1 Setup

Let C, be the cyclic group of order n. In this section we set up the notation to determine the action
of Sls(Z) on H*(C,, x Cp,Z) induced by the natural action of Sl2(Z) on C,, x C,,. Of course, the
action will have I'(n), the congruence subgroup of level n in the kernel. So, in fact we shall construct
an action of Sla(Z/nZ). But, as we shall see, this will only formally depend on n.

First we have to get a projective resolution of Z as Z(C,, x Cy,)-module. Let ' = Z(C,, x C,,).
A free resolution P of Z as Z(C,, x Cy,)-module is given by the tensor product of two copies of the
ordinary free resolutions of Z as ZC,, module. We see that the homogeneous component in degree
m is

m—+1

P, =DMt .= @ T.
r=1

Write
C2 =<a,bla" =b" =aba b1 =1>
and set B:=b—1and A :=a— 1. Moreover, A, := Y, a’, Agp =Y i (ab)" and Ay := >0 | b

We abbreviate
._ 0 A, L Ay 0 . B 0
J._<0 . >,K._<_A B>andp._<A Ab)

The differential d in degree n is then multiplication from the right by the following matrices.

K 0 0o ... 0 D 0 0 . 0 0
J K 0 : -J D 0
Dopir=| 0 J K : and Doy, = 0 —-J D
S 0 : ' 0 0
0 0 J K 0 0O —-J D 0
B
0 0 (07 Aa) (m+2,m+1) 0 0 —J (A) (m+1,m+2)
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Thus d,, : T*t2 — L

We shall define an action of Sly(Z) on H*(C2,7Z). Generating elements for Sl(Z) are « :=

(1) } and 3 = (1) I)l ) This means a(a) = a, a(b) = ab, f(a) = b and B(b) = a~ L.

Clearly, o3 has order 6 and 3 has order 4. What we have to find are chain isotopies 7, and 73 such
that

To: P “Pand 75 : P— PP

are isomorphisms as ZG-complexes.
2 The Borel subgroup action

0 1

We need some notations. Set M := < Lo ) and N := ( (1) (1S > for 6 := — >~ 11 b Z; éai €
Z(Cy,, x Cy,). Define matrices To;, and Tor+1 by

0 if i > j
—1 ep - .
Do, 0 kElZizg (LJf} ifi<j<k
2k+1)i,5 = (g:})M 1fl§j§k+1 an (21@1,]_ (zfl)(()) jfi<j:k+1
1 ifi=j=k+1

Lemma 1
Tit1 - Di = a(Dy) - Ty, for any k € IN.

Proof. We proceed by induction on k.
In degree 0, the statement is true, since there the matrix 7T is the identity matrix.
For the induction step we use the following identities:

0-A=Ap—Agpand 6- B=—-A, +bAg aswellas 6+ (ab—1) = Ay — A,

Observe now

u-a(D)N +v-alJ)N = u(?f w)-(éf)+v(

_ u( V) (A NOELRCI

1
0
= uMD+ (v—u)MJ
By similar computations we get z-J +y-a(K)M = (z+vy)-J +y- NK . Now,

("HMD - ((J)MJ ifk+1>j>i

. B . .
. M fk+1=79>

(Togyr - Dar)ij = (171) A it K+ J=1
—J ifj=i—1
0 ifj<i—1

(OMD— ()MJ  ifk+1>j>i

_ Q4)<aﬁ21) ifk+1=j>i
-J ifj=i—1
0 ifj<i—1
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On the other hand

(I=Da(D)N = (=) IN fk+1>j>i
(.5) ab=113_ ;. () ifk4+1=35>1

(a(Dak) - Tog)i; = i—1 A 0 =
—J ifj=i—1

0 ifj<i—1

Because MD — MJ = a(D)N and MJ = JN we get
Jj—1 Jj—1 j—1 Jj—1 j—1
D)N — N = MD + (— _ M
(il)a() (iZ)J (11) + (iZ) (il)) U
j—1 J
= MD — M
(12 )wp— (7)o

k
As J - ( (6) ) = ( 8 ) we thus get Topy1Dox = a(Dag)Tok.
We still have to prove Togy2 - Dopy1 = a(Dagy1) - Togy1 - Since NJ = J we get

0 ifi>j+1

(Toess Dorst)is =4 1 J ifi=j+1<k+1
2ht2 " L2k1)hg (CONK+(7)J ifi<j+1<k+1
(0 A,) ifi=k+1=j+1

and, because JM = J and (0 A,)M = (0 A,) we obtain

0 ifi>j+1
J ifi=j+1<k+1
(@(Dait1) - Tokr1)ig = (O Da(E)M+ (7)) ifi<j+1<k+1
(0 Ag) ifi=k+1=j+1

Now, a(K)M = NK + J and thus
(o) (a)s = (o) (G0) = (G2)
B G_i)NK+<¢jJJ

Thus the result follows. [ ]

Lemma 2 Define
Tr—1(z) = afx) - Ty,

Then, these mappings T define a chain isomorphism P — *P.

Proof. This follows from Lemma 1. In fact, the so defined mappings make the following diagrams
commutative.

1'\2n+1 ‘Dan F2n+2 1'\2n+2 ‘Dant1 F2n+3
b Tan—1 | T2n,  and I Ton | Tong1
F2n+1 Dap F2n+2 1—\2n+2 Dan+1 F2n+3

Hence, the mapping 7 is a chain map. The fact that it is invertible is immediate from the definition.
]
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3 The action of the Levi complement

Recall that the Levi complement is generated by the automorphism 3 with 3(a) = b and 3(b) = a~1.
Let V, := .7 a’. Define

P:<(1) voa)andQ:<(1) _Ova)

(n—1)"™t%"  ifl+k=2m+2 and k odd

Lemma 3 The matrices

(To)ki =< —(n—1)""%-V, ifl+k=2m+2 andk even
0 else
and -
(n—1)"t"2 -V, ifl+k=2m+2 andk odd
(Tom—1)k = (n—1)m32 if l+k=2m+2 and k even
0 else

satisfy the relations T, . 1Dy, = 3(D,)T;,

Proof. It is obvious that (T4,,D2m—1)i; = 0if i +j & {2m +2,2m + 1}.
Assume now that i + j € {2m + 2,2m + 1}.
1—4
n — 2 (Dom—1)2m—+2—i.i if 7 1s odd
(TgmDam—1)i,5 = ( i (Dam—1)om+2-4 o
—(n —1)""% (Dam—1)2m+y2—ij - Va if i is even

1)m+

Moreover,

-1 % D m—1)i,2m+1—j if 71 dd
(ﬁ(Dmel)TQ/m—l)i,j - (n é B( ? 1) 2m+1-=g '1 j .IS ©
(n—1)"2 B(Dam-1)i2mt+1—; - Vo if j is even

This is zero if i + j & {2m + 2,2m + 1}. Hence,

A, ifioddand i+ j=2m+1
(nfl)%~ a ! —1 ifievenandi+j=2m+1
Ay ifiodd and i +j =2m + 2
-B ifi even and i +j =2m + 2

if 5 is odd

(B(D2m—1)Tgm_1)ij =
A, ifioddandi+j—=2m+1

i=2 a =1 ifievenandi+j=2m+1
(n=1)= Va- A,  ifioddandi+j=2m+2
-B ifi even and i +j =2m + 2

if j is even

Of course, the first, fourth, sixth and seventh case do not occur.
On the other hand,

A, ifjoddandi+j=2m+2
_yma i B ifjevenandi+j=2m+2 .. ..
(n=1) _A ifjoddandi+j—om41 Liisodd
A, ifjevenandi+j=2m+1
(Tym Dom—1)ij =
Ay ifjoddandi+j=2m+2
i B ifjevenandi+j=2m+2 ....
—(n—1)""2V, - “A ifjoddandi+j=2m+1 if 4 is even
A, ifievenandi+j=2m+1
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The second, the third, the fifth and the eighth case do not occur. Using V,-A4 = a~! — 1 and
Volg = (n—1)A,, one sees that T3, Doy—1 = B(Dam—1)Tap_1-

One has to verify the second of the two equations. The reader will see immediately that this is
completely analogous to the above calculations.

Hence, we have proved the proposition. [

As in lemma 2 we get

Lemma 4 74 (z) := B(x)T},,, for any k € N defines a chain isomorphism P — sp. ]

4 Determination of the cohomology group and the action of
the special linear group

The Kiinneth formula gives a description of H*(C2, R) in terms of H*(C,,, R) and certain extension
groups. If R is a field, this would have answered our problem immediately, however, for arbitrary R
these extension terms make the Kiinneth formula non functorial. To determine H*(C2, R) and the
action of SL2(Z) on it, we hence proceed via our projective resolution

0 Db 22 p3 ds pd da
and apply Homgzcz (—, R). This gives a complex

d3 di

0— R Rz % g3 B, o 4

whose cohomology is H*(C2, R).

Lemma 5
0 if 7 is odd
(d Joj = multiplication by n  if 7 is even and j =1
2mA1/0) N altiplication by —n if § is even and j =i — 1
0 otherwise
and

(5, )is = multiplication by n  if j is odd and j =i, or j is even and j =1+ 1
2m /by 0  otherwise

Proof. Observe that the mapping v — Xy — ¢(X~) for any ¢ : I'* — R with R having trivial
C2-action is 0 for X € {A, B}. Analogously, the mapping v — Xy — ¢(Xy) forany ¢ : T* — R
with R having trivial C2-action is n- for X € {A,, Ay}. The result then follows immediately from
the structure of the differentials d as determined at the beginning of section 1. [ ]

Now,

ker(dyy,.1) = R® .R®R® ,R®R®...® ,ROR
= {(91.92, - gam41) € RZ™ | gos € wR, 1<i<m}

where ,R:={r € R|n-r =0}, and

im(ds,,) nROOENROO0ESNRB®0D ... OnRO0BnR

= {(g1,92,---+92m+1) € R*™" | go; = 0 and g2i41 € nR}
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where nR = {nr € R | r € R}. Also,

ker(ds,,) = {(91,92,---,92m) € B*™ | - (g2i1 + g2i—2) = 0
and ng; = ngam =0, 2<i<m}
= {(91,92:-- -, 92m) € B*™ | (g2i—1 + g2i—2) € nR,2<i<m
and g1, gam € R}

Finally,

im(ds,_1) = {(91,92:--,92m) € R*™ | gaix1 = —nfa; and ga; = nfs; and g1 = gom =0
for certain fo; € Rand 1 <i<m—1}

Using the above we can show the following.
Lemma 6 The groups H*(C2, R) are as follows:
H*™(C?,R)=R/nR® ,R®R/nR® ,R®R/nR&...® ,R® R/nR

with 2m + 1 direct summands and

m—1

H*"YC}R) ~ .Ro[@(R/mRo.R) &R

i=1
where the summands in the middle R/nR @® ,R are identified with
{(f +2.=f) | f € Ryz €, R}/{(nf,—nf)| f € R}
the latter of which is in the basis used for describing the matriz T, .

Proof. The description for the even degrees follows immediately from the description of ker(d3,, )
and im(dayy,).
The same applies for the odd degrees using the identification

R/nR& R — {(92i, 92i+1) | 92i + g2i+1 € nR}/{(ng2i, —1g2:) | g2i € R}
(920 + nR, g2i + g2i+1) «— (92i, 92i+1) + {(ng2i, —ng2i) | 92 € R}

The fact that this mapping is well defined is immediate. This proves the lemma. ]

With the preceding lemma we are able to trace back the action of o and 8 on the cohomology
n—1 .
groups. Define o :=3 """/ j = (n-(n—1))/2.

Lemma 7 In the above basis, regarding the 2m x 2m matriz o5, as an m + 1 x m + 1 matriz of
matrices we get
0 ifi>j

i 1 - o .
e (5 ) wisism
(;jl)<(1)) fi<j=mil
1 ifi=j=m+1

(o 77)-(3)-(57)

(a%,)ij =

Here,
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Moreover, in the same basis,

0 ifi+j#m+2
(ﬁzm)i,j: ((nl)il ( 0 ) ) ifi+j=m+2andj<m
(n—1)™ ifj=m+1landi=1

Proof. This follows from the description of 79,,. Since the module R is trivial, the action of o on
the free elements does not appear and what remains is the multiplication by T%,,. This, however,
is realized by the above matrix since multiplication by ¢ acts on a trivial module as multiplication
by o. [

5 Proof of the Theorem

We are now able to prove Theorem 1. The theorem follows essentially from Lemma 7. We view the
symmetric algebra as polynomial algebra in two variables X and Y.

Even degree cohomology: Both generators of the group SLo(Z) fix the R-submodule consisting
of the odd numbered columns. Hence, this is an R SLo(Z)-submodule. For even degree cohomology
H?™(C2, R) the module monomorphism of S,,(R/nR) into H*™(C,, x Cp, R) is as follows: XY™~
is mapped to the 2¢+ 1 column vector (for any 0 < i < m). Forming the quotient by this submodule,
we are left with the set of even numbered columns and with matrices acting as if one had erased odd
numbered columns and rows. By the same argument we see that this module is isomorphic to the
degree m — 1 homogeneous polynomials in 2 variables with coefficients in , R. Hence the quotient is
isomorphic to , R - Spm—1(R).

We discuss when the sequence splits. For this, by elementary linear algebra it is sufficient to have
o- R CnR. Now, 0 =n(n—1)/2. If n is odd, then o is a multiple of n and thus clearly o- R C nR.
It is then easily verified that it is sufficient to deal with the case n = 2".

In order for the following sequence

0 — Sm(R/nR) — H*™(C?,R) — ,R-Spm_1(R) — 0
to split it is necessary and sufficient to find
v € Endr(Sm(R/nR)),v4 € Endg(n,RSm—-1(R))
Yo € Hompg(nRSm(R), Sm(R/nR)) and v3 € Hompg(Sm(R/nR),n RSm—1(R))

so that the mapping

( o ) : H2™(CR, R) — Sm(R/nR) ® wR - Sp-1(R)
Y3 4

is SL2(Z) linear. The latter is equivalent with

ayy — e = owy3 ;a3 = 300 3 ays = e B 78
ayy —ya = ogwys 5 By = B 5 Byz = w8 ; By = b

Here ¢ denotes the multiplication by X. It is clear that the equations for 5 and 74 are independent
from the equations for v, and 3. Moreover, 77 = id and y3 = 0 is a solution for these equations.
We may assume hence that v3 = 0 and 773 = id. Since ~y4 is SLo(Z)— linear, and since the matrix

( 11 32 > is triangular, one might modify the above matrix by the endomorphism ( zgl 791 )
3 4 4

so that one may assume that v4 = ¢d as well.
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Summarizing, we look for an R-linear mapping v : R - Sy—1(R) — Sm(R/nR) satisfying

ay —ya = owx and By =yf3

Clearly this implies _ _ _
o'y —yat =i ot
and thus also . . .
Ba' By —yBa’ft =i oiffa’ B
for any i € IN. Here we donote i := B3~ !. It is now clear that in case i is even, v = 0 suffices.

We define I'(2) := ker(PSLo(Z) — PSLy(IF3)) and it is well known that I'(2) is freely generated
by fa?p~! and o?.

1 — {1} — Sih(Z) — PSLy(Z) — 1

l ! l

is commutative. All vertical mappings are surjective, hence this induces a central extension

1— {1} —T2) —TI((2) —1

—

Since I'(2) is free on these two matrices and since these two matrices can be realised in I'(2) as well,
the sequence is split.
Since for even positive integers ¢ we clearly get that ioc € nR we thus get that the sequence

0 — Sm(R/nR) — H*™(C?,R) — ,R-Sm_1(R) — 0

is split as a sequence of RI'(2)-modules. The action of —1 is compatible with the splitting, since —1
is just 32 and the splitting is compatible with 3. Hence, we conclude that

H*™(C2,R) ~ Spu(R/nR)® ,R-Sm_1(R)

—

as RT'(2)-modules.

We shall prove that the above sequence is non split as R SLs(Z)-modules if () - ,R  nR. By
the above, this is equivalent to the existence of a map ~ so that

wR Spm_1(R) SN Sm(R/nR)
tot) L)
WR Sp_1(R) T2 S, (R/nR)

is a commutative diagram. Interpreting the symmetric algebra as polynomial algebra, we have to
find coefficients a; € (R/nR) so that

,Y(Y"m—l) _ Z aiXiym—i.
1=0

Now, if we set g := ( (1) } ) since g acts trivially on Y™ ~!, we have to have

AT + 277 1Y) = Agy (Y™ )
which gives the equation

A a; | ) XIymTitI) = \ovlym
33 (j) )

i=1 j=1
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for any A € , R. If one expresses this projective equation in affine coordinates cutting out the point
in infinity Y = 0, one gets

A a1+ )= 2v1)
=1

But, since {(£ + 1)?| i € IN} is a basis for the polynomial ring in one variable over any coefficient
ring, this equation has a solution if and only if A-2¥~1 =0 (in R/nR) for any A € ,R. This in turn

is equivalent to
n
(2) - 2RCnR.

Odd degree cohomology: The universal coefficient theorem provides us with a short exact
sequence

0 — H>™(CR, Z) @z R — H*™Y(C], R) — Tor{(H*™**(C}, Z), R) — 0

and for integer coefficients we see readily that from the above H?*™(C2,Z) = S,,(Z/nZ) and
H2?M Y (G2 7)) ~ S,,_1(Z/nZ) Of course, this can be seen directly from our description as well.
It should be possible to decide upon the splitting question this way, though we did not try to do so
here.

Finally we remark that the above implies that H?*(C2,Z) ~ H?***3(C2,7) ~ Si(Z/nZ) for all
k> 2.

Let n = p be an odd prime. Then, St ~ H?*(C2,Z) ~ H?**3(C?,Z) is the Steinberg module.
Using Chapman’s result [2] on the cohomology ring H*(A,Z) for an abelian group A, one sees that
this shift of three degrees essentially comes from the fact that H*(C2,Z) is generated in degree 2
and 3 and the degree 3 cohomology is just the trivial module.
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