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There is an extensive literature on conjugacy of torsion units in the group of
augmented units in an integral group ring ZZG of a finite group G as long
as one looks at conjugacy in the corresponding rational group ring QG (cf.
for example [LB-83a, LT-90, LP-92, MRSW-87]). H. Zassenhaus conjectured
([Za-74]) that every torsion unit of ZZG is conjugate to an element ofG∪(−G)
by a unit of QG.

However, very few results are known if one restricts to conjugacy in ZZG.
The principal motivation for integral conjugacy of torsion units arise from

the famous subgroup rigidity theorem of A. Weiss ([W-87]), G. Thompson
([Th-89]) and K. W. Roggenkmap and L. L. Scott ([R-92]) that states in the
most simple form that subgroups of finite order and augmentation 1 of the
group ring ẐZpG are conjugate in the units of ẐZpG to subgroups of G as

long as G is a p-group. Here ẐZp is the ring of p-adic integers. This of course
implies that every augmented unit of finite order is part of a group basis of
ẐZpG.

Does this also happen if one replaces ẐZp by ZZ? To be more precise: Is
every augmented unit of finite order in ZZG part of a group basis of ZZG?

For p-groupsG this has been an open question. For non-p groups there are
counterexamples but the subgroups under consideration are not conjugate to
a subgroup of any group basis even in the units of ẐZqG for a suitably chosen
prime q. Therefore essentially a local phenomenon is measured. The integral
case in the above sense has been open up to now.

Out of the results treated in the literature concerning conjugacy classes
of units in the integral group ring of a finite group I want to mention the

1



discussion of group rings of abelian groups in G. Higman’s thesis [H-39], the
direct calculations of Hughes and Pearson [HP-72] on the integral group ring
of the dihedral group of order 6, similar calculations of C. Polcino-Milies
[PM-74] concerning the dihedral group of order 8 and those of Allen and
Hobby on the alternating group of degree 4 ([AH-80]). A. K. Bhandari and
I. S. Luthar ([BL-83b]) counted the number of conjugacy classes of elements
of finite order in the augmented units of the integral group ring of dihedral
groups of order 2p for odd primes p. Neither Allen and Hobby nor Luthar and
Bhandari determine which of their units are contained in group bases and
which are not. The results in [HP-72, PM-74, AH-80, BL-83b] are obtained
by complicate calculations and so I think another method has to be applied.

In 1989 K. W. Roggenkamp and L. L. Scott developed a theory similar
to A. Fröhlich’s theory of invertible bimodules to determine the conjugacy
classes of units u in V (ZZG), the group of units of augmentation 1 in the
integral group ring ZZG for a finite group G, that are conjugate in V (QG)
to an element of the fixed group basis G. We refer to [R-89, RT-92] for
details. This theory was applied in [Zi-92] to integral group rings of dihedral
groups of order 2n+1, n being any natural number greater or equal to 2, and
to integral group rings of dihedral groups of order 2p, p being any odd prime
number. Here the difficulties mentioned above do not arise.

The results of [R-89], [RT-92, Part I, Chapter VII] are summarized as
follows: Let U be a fixed subgroup of G and let CZZG(U) be the centralizer
of U in ZZG. We will assume CZZG(U) to be abelian and ZZG to be Eichler
over ZZ. Then the kernel ClZZG(CZZG(U)) of the natural induction homomor-
phism Cl(CZZG(U)) −→ Cl(ZZG), Cl(Λ) being the locally free class group of
the ring Λ, parametrizes up to automorphisms of U , the conjugacy classes–
conjugate in V (ZZG)– of subgroups H of V (ZZG) that are in V (QG) conju-
gate to U . An element of this kernel is induced from an element of the class
group of the center of ZZG if and only if the corresponding conjugacy class
of groups H are part of some group bases.

In the author’s forthcoming dissertation [Zi-92] this theory is applied to
certain dihedral groups G = Dm with subgroup U generated by a non central
involution b in Dm.

First we set m = 2n, n being a natural number the following result is
obtained:

Theorem 1 [Zi-92] Let D2n be the dihedral group of order 2n+1.
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1. The V (QD2n)–orbit of a non central involution b ∈ D2n splits into
2n−1 ·∏k≤n h

+
k conjugacy classes in ZZD2n , h+

k being the class number
of the maximal real subfield of the field of 2k–th roots of unity over Q.

2. Out of these conjugacy classes 2n−1 classes consist of involutions being
member of group bases.

3. Cl(CZZD2n (b)) ' C2n−1 ×∏

k≤nCl(ZZ[ζ2k + ζ−1
2k ])2, with ζ2k−1

2k + 1 = 0.

4. ClZZD2n (CZZD2n (b)) ' C2n−1 ×∏

k≤nCl(ZZ[ζ2k + ζ−1
2k ]).

So H. Cohn’s conjecture that h+
k = 1 for all numbers k (cf. [ACH-65]) is

true if and only if every involution in V (ZZD2n) is part of a group basis for
all n ∈ IN . The conjecture is proved by J. van der Linden [vdL-82] for k ≤ 7
and for k = 8 using the generalized Riemann hypothesis.

We apply this result to describe the central automorphism group of ZZD2n

explicitly:

Theorem 2 [Zi-92] The outer central automorphism group Outcent(ZZD2n)
of the integral group ring of the dihedral group D2n of order 2n+1 is generated
by conjugation by a − b + 1, an automorphism of order 2n−1 modulo inner
automorphisms, and conjugation by 1 + b · (a + a−1), an automorphism of
order 2n−2 modulo inner automorphisms. Here a is an element of order 2n

in D2n and b is a non central involution in D2n .

For an abelian group A we denote by A[2] the kernel of the endomorphism
of A sending each element to its square. We define η(p) := ζp + ζ−1

p for a
primitive pth root of unity ζp. If m is a prime p we obtain the following result:

Theorem 3 [Zi-92] Let Dp be the dihedral group of order 2p, p being an odd
prime.

1. In ZZDp there are exactly

|Cl(ZZ[η(p)]C2)|
|Cl(ZZ[η(p)])|

conjugacy classes of involutions, locally and rationally conjugate to b.
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2. An involution b ∈ Dp is contained in exactly p−1
2

representatives of
conjugacy classes of group bases.

3. Out of the conjugacy classes of involutions rationally and locally con-
jugate to b in ZZDp exactly |(Cl(ZZ[η(p)]))[2]| conjugacy classes consist
out of involutions, contained in a group basis.

4. If p ∈ {(2nq)2 + 1|n ∈ ZZ, n ≥ 2, qZZ ∈ Spec(ZZ)} is prime, there is
a conjugacy class of involutions whose elements are conjugate to b in
V (ẐZrDp) for all primes r, but they are not part of any group basis of
ZZDp.

The last part is an immediate application of the result of Ankeney, Chowla
and Hasse of [ACH-65].

Remark 1 In [BL-83b] A. K. Bhandari and I. S. Luthar determined the
total number of conjugacy classes of involutions in V (ZZDp) without mind-
ing if a conjugacy class is locally conjugate to the fixed involution b of Dp.
A. K. Bhandari and I. S. Luthar do not discuss at all questions concerning
the relation of elements of finite order and group bases they lie in. They do,
however, also look at elements of order p in V (ZZDp) and they are able to
give the generators explicitely if the class number of ZZ[η(p)] is equal to 1.

I am very grateful to Professor Dr. J. Ritter to bring this result of
A. K. Bhandari and I. S. Luthar to my attention at the Erfurt conference.

Remark 2 The proof of Theorem 3 is incomparatively easier than that of
Theorem 1 since in case of dihedral groups of order 2p, p being an odd prime,
there are only three Wedderburn components for QDp and two of them are
abelian. In contrary the Wedderburn decomposition of QD2n is much more
involved.

The method used in the proofs of the Theorems 1 and 3 are illustrated by
another example, the semidihedral group of order 16. In fact we will prove
here the

Theorem 4 Let S be the semidihedral group of order 16. In the group of
augmented units of ZZS there is a conjugacy class C of involutions such that
each representative of C is not part of a group basis of ZZS.
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Remark 3 Because of the subgroup rigidity theorem every involution of
ZZS is conjugate by a unit of the 2-adic group ring ẐZ2S to an involution in
S (cf. [W-87, Th-89, RT-92, R-92]).

Remark 4 Since S is a 2-group this solves an open problem: In case of
p-groups G the coefficient domain ZZ is definitively worse than ẐZp in spite
of subgroup rigidity!

We have to consider various pullback diagrams arising all in the same
manner: If A is a K-algebra for a field K of characteristic 0 and if Γ is
an R-order in A for R being the ring of algebraic integers in K. Then let
e2 = e ∈ Z(A) be a central idempotent. It is well known (see [CR-82,7,
(2.12)] that

Γ
·e−→ Γe

↓ ·(1 − e) ↓
Γ(1 − e) −→ Γe/(Γ ∩ Γe)

is a pullback diagram. We call this diagram induced by e.
Let S =< a, b|a8 = b2 = baba−3 = 1 > be the semidihedral group of

order 16. We prove that there is an involution u in V (ZZS), the group of
augmented units, not contained in a group basis.

Let C ′ := CZZS(b) be the centralizer of the involution b in ZZS. Then
obviously C ′ is additively generated by the set

{1, b, a+ a3, (a+ a3)b, a2 + a6, (a2 + a6)b, a5 + a7, (a5 + a7)b, a4, a4b}.

Since C ′ is abelian we have to calculate the kernel ClZZS(C ′) of the homomor-
phism Cl(C ′) to Cl(ZZS) and prove that there is an element (A) in ClZZS(C ′)
not being an image of an element of Cl(Z(ZZS)) under the induction map,
Z(ZZS) being the center of ZZS.

We use Reiner-Ullom’s version of Milnor’s Mayer-Vietoris-Sequence (cf.
[RU-74], [CR-82,7, 49.28)]). The idempotent e4 = (1 + a4)/2 induces a
pullback diagramm

C ′ ·e4−→ B2

↓ ·(1 − e4) ↓
ZZ[

√
−2] < b > −→ B2

with B2 (cf. [Zi-92]) being the image of the residue modulo (1 − a4)C ′ in
ZZD4, the group ring of the dihedral group of order 8. Moreover B2 is the
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image of B2 under the map ZZD2 −→ IF2D2
1 induced by reduction modulo

2. Since in ZZ[
√
−2] only 1 and −1 are units as is well known, we see that in

ZZ[
√
−2] < b > only ±1,±b are units (an element of ZZ[

√
−2] < b > is a unit

if and only if it is a unit in its maximal order ZZ[
√
−2] ⊕ ZZ[

√
−2] induced

by the two one-dimensional representations (cf. [R-83, Lemma 3])). Since
B2 is a subring of ZZ(C4 × C2)

2, it has only trivial units ±1,±b (cf.[H-39]).
Next we see that U(B2) is generated by

{b, 1 + a + a3, b + a+ a3, }

and is elementary abelian of order 8. Therefore

U(B2)/(U
∗(ZZ[

√
−2] < b >) · U ∗(B2)) ' C2 × C2,

if we denote by ∗ the images of the unit groups in B2 under the natural map.
Hence the following sequence of groups is exact:

1 −→ C2 × C2 −→ Cl(C ′) −→ Cl(B2) ⊕ Cl(ZZ[
√
−2] < b >) −→ 1

We are therefore concerned with the calculation of the group Cl(B2) and also
of Cl(ZZ[

√
−2] < b >).

First we have a pullback diagram

ZZ[
√
−2] < b > −→ ZZ[

√
−2]

↓ ↓
ZZ[

√
−2] −→ ZZ[

√
−2]/2ZZ[

√
−2]

by the idempotent (1 + b)/2. Second we observe that ZZ[
√
−2]/2ZZ[

√
−2] '

IF2C2. And third we realize that

1 −→ C2 −→ Cl(ZZ[
√
−2] < b >) −→ Cl(ZZ[

√
−2]) ⊕ Cl(ZZ[

√
−2]) −→ 1

is an exact sequence of abelian groups. Since Cl(ZZ[
√
−2]) = 1, a result

known to Gauß, we see that

Cl(ZZ[
√
−2] < b >) ' C2.

1IF2 is the field with 2 elements
2Cn denotes the cyclic group of order n
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Though Cl(B2), and more generally Cl(Bn), is calculated in [Zi-92] we
repeat the few necessary arguments for the special case Cl(B2). The idem-
potent (1 + a2)/2 induces the pullback diagram

B2 −→ B1

↓ ↓
ZZ < b > −→ ZZ/4ZZ < b >

which in turn induces the Mayer-Vietoris-sequence

1 −→ C2 −→ Cl(B2) −→ Cl(B1) ⊕ Cl(ZZ) −→ 1.

Since B1 = ZZ < b > +2ZZ < a, b >⊆ ZZV4, the group ring of Klein’s 4-
group, the following pullback diagram is induced by the idempotent (1+a)/2:

B1 −→ ZZ < b >
↓ ↓

ZZ < b > −→ ZZ/4ZZ < b >

Therefore again by the Mayer-Vietoris-sequence we obtain the following exact
sequence:

1 −→ C2 −→ Cl(B1) −→ Cl(ZZ < b >) ⊕ Cl(ZZ < b >) −→ 1

Therefore Cl(B2) is of order 4, it is cyclic as is shown in [Zi-92], but we don’t
need this here and so we don’t prove it.

Next we have to calculate the class group of the center of ZZS. It is
generated additively by

{1, a+ a3, a2 + a6, a5 + a7, (1 + a2 + a4 + a6)b, (1 + a2 + a4 + a6)ab}

The idempotent e4 induces the pullback diagram

Z(ZZS)
·e4−→ Z2(1)

↓ ↓
ZZ[

√
−2] −→ ZZ[

√
−2]/2ZZ[

√
−2].

Since

Z2(1) = ZZ +ZZ(a+ a3)+ 2ZZa2 +ZZ(1+ a2)b+ZZ(a+ a3)b ⊂ ZZ(C4 ×C2),
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the group of units of Z2(1) contains only ±1. Therefore the Mayer-Vietoris-
sequence becomes there

1 −→ C2 −→ Cl(Z(ZZS)) −→ Cl(Z2(1)) ⊕ Cl(ZZ[
√
−2]) −→ 1.

We omit the proof that Cl(Z2(1)) ' C4 × C2, since it is not important
here, and refer to [Zi-92]. What is important is the wellknown fact that
Cl(ZZ[

√
−2]) = 1. Let A be an ideal of ZZ[

√
−2] < b > locally but not

globally free. The existence of A is guaranteed by the fact that the class
group Cl(ZZ[

√
−2] < b >) = C2. By [Ta-84] we see that

1 −→ C2 −→ Cl(ZZS) −→ Cl(ZZD2) ⊕ Cl(

(

ZZ[
√
−2] ZZ[

√
−2]

ZZ[
√
−2] ZZ[

√
−2]

)

) −→ 1

is the Mayer-Vietoris-sequence corresponding to the idempotent e4. Now,

Cl(

(

ZZ[
√
−2] ZZ[

√
−2]

ZZ[
√
−2] ZZ[

√
−2]

)

) ' Cl(ZZ[
√
−2]) ' 1(1)

by Swan’s theorem (cf. [S-62]).
Let (A) be an arbitrary preimage of the isomorphism class (A) in Cl(C ′).

(Observe that (A) maps to 1 if it is induced to an isomorphism class of an

ideal of

(

ZZ[
√
−2] ZZ[

√
−2]

ZZ[
√
−2] ZZ[

√
−2]

)

.)

If (A) would be induced by an ideal of Z(ZZS), say B, we calculate

A ' A⊗C′ C ′(1 − e4)

' B ⊗Z(ZZS) C
′ ⊗C′ C ′(1 − e4)

' B ⊗Z(ZZS) C
′(1 − e4)

' B ⊗Z(ZZS) Z(ZZS)(1 − e4) ⊗Z(ZZS)(1−e4) C
′(1 − e4)

' Z(ZZS)(1 − e4) ⊗Z(ZZS)(1−e4) C
′(1 − e4)

' C ′(1 − e4);

the fifth isomorphism holds because of (1). This however is a contradiction
to the choice of A and of A.

Let us turn to the question if there is an isomorphism class of an ideal
in ClZZS(C ′) such that none of the representatives are induced by an ideal
of the center of ZZS rather than an isomorphism class of an ideal in Cl(C ′).
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Let B̂ be an ideal generating the class group of ZZS. It has order 2 and is
isomorphic to a Swan-module by a theorem of Endo (cf. [Ta-84, 3. Theorem
2.5 & Theorem 2.6]). Those, however, are induced by an ideal of the center
of ZZS: For the proof of this fact it is convenient to prove a little lemma
analogous to [GRH-88, Theorem 2.7].

Lemma 1 [Zi-92] K is the quotient field of the Dedekind domain R of char-
acteristic 0. Let Λ be an R–order in a finite dimensional K–algebra A and
let ∆ be an R–order in a finite dimensional K–algebra B, such that Λ ≤ ∆
and A ≤ B and let J be a locally free Λ–right ideal. Then J ⊗Λ ∆ ' J · ∆
evaluated in B.

Proof.
0 −→ ∆ −→ B −→ B/∆ −→ 0

is an exact sequence of ∆–modules and therefore also of Λ-modules. Then
an exact sequence of Λ–modules is induced:

TorΛ
1 (J,B/∆) −→ J ⊗Λ ∆ −→ J ⊗Λ B

Since J is projective,
TorΛ

1 (J,B/∆) = 0.

Hence

J ⊗Λ B ' (J ⊗Λ ∆) ⊗R K

' K ⊗R J ⊗Λ ∆

' (J ⊗R K) ⊗Λ ∆

' A⊗Λ ∆

' K ⊗R Λ ⊗Λ ∆

' K ⊗R ∆

' B

and the lemma is proved if one follows the isomorphisms. q.e.d.
Since for Swan-modules one can choose idèles with coefficients in the

center of ZZS representing them ([Ta-84, 1 (3.13)]), by the lemma they are
induced by an ideal of the center of ZZS.
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Let ϕ denote the map Cl(C ′) −→ Cl(ZZS) and ψ denote the map
Cl(Z(ZZS)) −→ Cl(C ′). If ϕ(A) is not equal to 1, it is equal to the iso-
morphism class of the above Swan-module D = ϕ(ψ(D̂)), for an ideal D̂ of
the center of ZZS, since induction from the center to the group ring factors
through Cl(C ′). Therefore there is an ideal E of C ′ in the kernel of ϕ with

(A) = (E) · ψ(D̂).

Since imψ is a group and ψ(D̂) is in imψ we conclude that

(E) ∈ ker ϕ \ imψ.

In either case there is an ideal, A if it is in ker ϕ, or E , if it is not, inducing an
involution in V (ZZS) not being part of a group basis but rationally conjugate
to b.
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