Tilted symmetric orders are symmetric orders

Alexander Zimmermann

LAMFA, Université de Picardie, 33 rue St Leu, F-80039 Amiens Cedex 1, France

Abstract

We prove in this note that a ring which is derived equivalent to a symmetric order is again a symmetric order. Group rings of finite groups over an integral domain of characteristic 0 are symmetric orders.

Introduction and statement of the result

Let R be a noetherian integral domain with field of fractions K. We call an R-algebra Λ with $K \otimes_R \Lambda$ being semi-simple artinian and Λ being finitely generated projective as R-module a (classical) R-order. An R-algebra is called symmetric if $Hom_R(\Lambda, R) \simeq \Lambda$ as $\Lambda \otimes_R \Lambda^{op}$ -modules. The bounded derived category of a ring A is denoted by $D^b(A)$. For more ample remarks to the definition see e.g. [3].

Theorem 1 Assume that R is Dedekind domain and Λ is a symmetric R-algebra, projective as R-module. If $D^b(\Lambda) \simeq D^b(\Gamma)$ as triangulated categories for an R-algebra Γ , then Γ is a symmetric R-algebra as well. Especially, if Λ is an R-order, then Γ is an R-order as well.

In case Γ is supposed to be an order as well, Rickard proved this statement in [4]. His proof does not work if one does not know that Γ is R-projective. We get this fact as a consequence of the symmetry, which we prove first. The existence of a derived equivalence induced by a derived functor follows by a theorem of Keller (cf [1] or [3, Theorem 8.3.2]). König discovered that there are rings which are not orders but derived equivalent to a hereditary order [2]. Theorem 1 answers a question of K. W. Roggenkamp posed at the occasion of the "Darstellungstag Bayreuth 1994".

Acknowledgement: The author wishes to thank Bernhard Keller for much help in numerous discussions, especially for giving the advice to try to prove a statement like Lemma 1 first.

The proof

By a result of Keller [1] there are a complex X in $D^b(\Lambda \otimes_R \Gamma^{op})$ such that $X \otimes_{\Gamma} \Gamma =: T$ and a complex X' in $D^b(\Gamma \otimes_R \Lambda^{op})$ such that $\Gamma \otimes_{\Gamma} X' \simeq Hom_{\Lambda}(T, \Lambda)$ and furthermore

$$X \otimes^{\mathbb{L}}_{\Gamma} -: D^b(\Gamma) \longrightarrow D^b(\Lambda)$$

and

$$-\otimes^{\mathbb{L}}_{\Gamma} X': D^b(\Gamma^{op}) \longrightarrow D^b(\Lambda^{op})$$

are equivalences of triangulated categories. The identification of Γ as endomorphism ring of T and as endomorphism ring of $Hom_{\Lambda}(T,\Lambda)$ is done coherently; a fact which defines X' in a coherent way once X is chosen. One should observe that since Λ is R-projective of finite

type, one can choose a projective resolution of X and of X' as bimodules, as described in [3, Proposition 6.3.1 and Lemma 6.3.12], representing the same object in the derived category. Any projective $\Lambda \otimes_R \Gamma^{op}$ module is projective as Γ^{op} -module since Λ is projective as Γ^{op} -module. The analogous statement is valid for X'. Hence, the left derived tensor product can be replaced by the ordinary tensor product. Then, one gets

$$(X \otimes_{\Gamma} -) \otimes_{\Gamma} X' \simeq X \otimes_{\Gamma} (- \otimes_{\Gamma} X')$$

as functor $D^b(\Gamma \otimes_R \Gamma^{op}) \longrightarrow D^b(\Lambda \otimes_R \Lambda^{op})$. Hence, the functor

$$G := X \otimes_{\Gamma}^{\mathbb{L}} - \otimes_{\Gamma}^{\mathbb{L}} X' : D^b(\Gamma \otimes_R \Gamma^{op}) \longrightarrow D^b(\Lambda \otimes_R \Lambda^{op})$$

is an equivalence.

Lemma 1 Let R be a commutative noetherian ring and let Λ be an R-algebra which is finitely generated projective as R-module. Let G be a derived equivalence as described above. Then,

$$G(Hom_R(\Gamma, R)) \simeq Hom_R(\Lambda, R).$$

Proof. This is a consequence of adjointness formulas and the fact that T is perfect over Λ . Indeed,

$$Hom_{D^{b}(\Gamma \otimes_{R}\Gamma^{op})}(\Gamma \otimes_{R} \Gamma^{op}, G^{-1}(Hom_{R}(\Lambda, R)[n]))$$

$$\simeq Hom_{D^{b}(\Lambda \otimes_{R}\Lambda^{op})}(T \otimes_{R} Hom_{\Lambda}(T, \Lambda), Hom_{R}(\Lambda, R)[n])$$

$$\simeq Hom_{D^{b}(\Lambda)}(T, Hom_{\Lambda^{op}}(Hom_{\Lambda}(T, \Lambda), Hom_{R}(\Lambda, R))[n])$$

$$\simeq Hom_{D^{b}(\Lambda)}(T[-n], Hom_{R}(Hom_{\Lambda}(T, \Lambda) \otimes_{\Lambda} \Lambda, R))$$

$$\simeq Hom_{D^{b}(\Lambda)}(T[-n], Hom_{R}(Hom_{\Lambda}(T, \Lambda), R))$$

$$\simeq Hom_{R}(RHom_{D^{b}(\Lambda)}(T, \Lambda) \otimes_{\Lambda} T[-n], R)$$

$$\simeq Hom_{R}(Hom_{D^{b}(\Lambda)}(T, T[-n]), R)$$

$$\simeq Hom_{R}(Hom_{D^{b}(\Lambda)}(T, T[-n]), R)$$

$$\simeq \begin{cases} Hom_{R}(\Gamma, R) & \text{if } n = 0 \\ 0 & \text{if } n \neq 0 \end{cases}$$

Here the first isomorphism is applying G, the second is an adjointness formula between $Hom_{\Lambda^{op}}(Hom_{\Lambda}(T,\Lambda),-)$ and $-\otimes_{\Lambda} Hom_{\Lambda}(T,\Lambda)$, the third is again a similar adjointness formula, the fourth is the fact that $-\otimes_{\Lambda} \Lambda$ is equivalent to the identity functor, and then we use again the adjointness of $Hom_{R}(Hom_{\Lambda}(T,\Lambda),-)$ and $Hom_{\Lambda}(T,\Lambda)\otimes_{\Lambda}-$. Finally we use the fact that T is a tilting complex. This proves that the homology of $G^{-1}(Hom_{R}(\Lambda,R))$ is concentrated in degree 0 and isomorphic to $Hom_{R}(\Gamma,R)$. This finishes the proof of the lemma.

Proof of theorem 1. Since Λ is symmetric, $\Lambda \simeq Hom_R(\Lambda, R)$ in $D^b(\Lambda \otimes_R \Lambda^{op})$. Moreover,

$$\begin{array}{lll} Hom_{D^b(\Gamma \otimes_R \Gamma^{op})}(\Gamma \otimes_R \Gamma^{op}, G^{-1}(\Lambda)[n])) & = & Hom_{D^b(\Lambda \otimes_R \Lambda^{op})}(T \otimes_R Hom_{\Lambda}(T, \Lambda), \Lambda)[n]) \\ & = & Hom_{D^b(\Lambda)}(T, Hom_{\Lambda}(Hom_{\Lambda}(T, \Lambda), \Lambda[n])) \\ & = & Hom_{D^b(\Lambda)}(T, T[n]) \\ & = & \left\{ \begin{array}{ll} \Gamma & \text{if } n = 0 \\ 0 & \text{else} \end{array} \right. \end{array}$$

applying G^{-1} gives that $\Gamma \simeq Hom_R(\Gamma, R)$ in $D^b(\Gamma \otimes_R \Gamma^{op})$.

If R is an integral domain, $Hom_R(\Gamma, R)$ is R-torsion free, hence so is Γ . Tensoring the derived equivalence induced by T with the field of fractions K of R (see [3, Proposition 6.2.4]), one gets a Morita equivalence between $A := K \otimes_R \Lambda$ and $B := K \otimes_R \Gamma$. Since Γ is R-torsion free, Γ is an R-order in B. This proves the theorem.

References

- [1] B. Keller; A remark on tilting theory and DG-algebras; Manus. Math. 79 (1993) 247-253.
- [2] S. König and A. Zimmermann; Tilting hereditary orders; Comm. in Alg. 24 (1996) 1897-1913.
- [3] S. König and A. Zimmermann; Derived Equivalences for Group Rings; with contributions by Bernhard Keller, Markus Linckelmann, Jeremy Rickard and Raphaël Rouquier. Springer Lecture Notes in Mathematics 1685, Springer Verlag Berlin-Heidelberg 1998.
- [4] J. Rickard; Derived equivalences as derived functors; J. London Math. Soc. 43 (1991) 37-48.