DEGENERATION-LIKE ORDERS IN TRIANGULATED CATEGORIES

BERNT TORE JENSEN, XIUPING SU, AND ALEXANDER ZIMMERMANN

ABSTRACT. In an earlier paper we defined a relation <a between objects of the derived
category of bounded complexes of modules over a finite dimensional algebra over an alge-
braically closed field. This relation was shown to be equivalent to the topologically defined
degeneration order in a certain space comproj(A,d) for derived categories. This space
was defined as a natural generalization of varieties for modules. We remark that this re-
lation <a is defined for any triangulated category and show that under some finiteness
assumptions on the triangulated category <a is always a partial order.

1. INTRODUCTION

For a finite dimensional k-algebra A over an algebraically closed field k£ one defines for any
positive integer d a variety mod(A, d) as the algebraic variety of d-dimensional A-modules.
The general linear group Gly(k) acts naturally by conjugation on mod(A,d) and two points
in mod(A,d) correspond to isomorphic modules if and only if they belong to the same orbit
under this group action. A module M degenerates to a module N in mod(A,d) if N is in
the topological closure of the orbit of M. Riedtmann and Zwara characterized in [7, 10]
this degeneration by an algebraic relation namely M degenerates into N if and only if there
is a module Z so that N can be embedded into M & Z with quotient being isomorphic to
Z. Zwara proved in [9] algebraically that this so-defined relation on isomorphism classes of
modules is transitive.

In [4] we defined a topological space comproj(A,d) so that points in this space corre-
spond to right bounded complexes of projective A-modules with fixed homogeneous com-
ponents in each degree. A base change group acts on this space as well and orbits cor-
respond to isomorphism classes in the derived category. We showed that degeneration in
mod(A,d) induces a degeneration in comproj(A,d) for suitably defined d. Moreover, we
defined algebraically a partial order <A by setting X <A Y if there is a complex Z so that
Y — X®Z — Z — Y][l] is a distinguished triangle in the derived category. Then,
we showed that for two complexes X and Y in the bounded derived category, X <a Y if
and only if X degenerates to Y in comproj(A, d) for sufficiently big d. By consequence, <a
is a partial order on isomorphism classes of complexes in D?(A). We need that A is finite
dimensional over an algebraically closed field in order to be able to apply methods from
algebraic geometry.

We show in the present paper that for any commutative ring R the obvious generalization
of <A to an arbitrary triangulated category is a partial order for any triangulated R-linear
category T satisfying the following three properties:

1) Homy(X,Y) is an R-module of finite length for any X,Y

2) for any X,Y € T there is a non zero integer nxy so that Hom7(X,Y[nxy]) =0, and
3) idempotent morphisms split in 7.

These hypotheses are satisfied for the bounded derived category of finitely generated modules
over a finite dimensional algebra over a field R. Moreover, they imply that 7 satisfies the
Krull-Remak-Schmidt theorem.

The paper is organized as follows. In Section 2 we give the basic definitions and show by
an example that without some finiteness hypothesis on the triangulated categories, it will
not be reasonable to have a partial order defined by <a. In Section 3 we imitate Zwara’s
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proof [9] in order to show transitivity of our relation <a. In Section 4 we show that if
M <A N then, Hom7 (X, M) has smaller length over R than Hom (X, N) for any object
X. Moreover, as a consequence we show that <a is anti-symmetric. We finish the proof of
the main result Theorem 5 in Section 5.

2. BASIC DEFINITIONS AND AN AUXILIARY RESULTS

Definition 1. e Let 7 be a triangulated category with shift functor [1]. Then, we
say for two objects X and Y of 7 that Y <a X if there is an object Z of 7 and a
distinguished triangle

X —YoZ —7Z— X][1]

e We say that idempotent morphisms split in 7 if for any object X and any ¢ = e €
Endr(X) there is an isomorphism X ~ X, @ X so that via this isomorphism the

idx, 0 ) of X, @ Xo.

endomorphism e is mapped to the endomorphism < 0 o

Remark 2.1. For module categories this partial order is studied by Riedtmann [7] and
Zwara [10, 9]. In [4] we extend the main result of Zwara [10] to derived categories.

Example 2.2. (1) Let A be an abelian category admitting countable direct sums and
M and N be two objects. Then,

O—>Mi—d>M—>O—>O

is exact and hence also

. o e’}
0— MY me (EB(N@M)) — PW oM —0
i=1 i=1
is exact. Now, since

o o [e.e] [e.e]
Mea (@(N@M)) ~PMeN) ~PNeM)~Nea (@(M@N))
i=1 i=1 i=1 i=1
we get N <a M for any two modules M and N in the derived category D’(A) of
bounded complexes of objects in A. Hence M <a N <A M for any two objects M
and N in A even though M and N may be not isomorphic.
This example shows that it does not make sense to try to prove that <a is a
partial order without some finiteness assumption on the category.

(2) Let G = Q32 be the generalized quaternion group of order 32 and let ZG be its
integral group ring. In [8] Swan gives a projective non-free ideal a of ZG so that
a®ZG ~ ZG @ ZG. Since a is not free, we have that ZG # a. The split exact
sequence

0 —a—=>2ZG®a — ZG —0

induces an exact sequence
0—a —>ZGOZG —ZG —0

which shows ZG <a a. Likewise, a <A ZG and we get a <A ZG <a a in the derived
category of ZG-modules.

Hence it is clear that it will be necessary to have conditions to ensure the Krull
Schmidt property in 7 in order to make <a a partial order.

We recall a property of triangulated categories.
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Proposition 1. [5, Lemma 1.4.3, page 55] [6, Lemma 1.1] Let
A5 C -5 E-S AN
and
B-% D-% E - B[
be distinguished triangles, and let f : A — B be given so that e, f[1] = ey. Then, there is
a mapping g : C — D so that the following two properties are fulfilled:
(1) (f,9,idg) is a mapping of triangles
A % C — E — Al
Lf Ly H LfI
B % D — E — B[]
(2) and

b
49 poc S b an
is a distinguished triangle for some mapping D — A[1].

3. TRANSITIVITY

In [9] Zwara showed transitivity of the relation defined algebraically on isomorphism
classes of A-modules. In this section we shall adapt his proof to our situation of triangulated
categories.

Proposition 2. Let T be a triangulated category in which idempotent morphisms split.
Suppose that for any object X of T the endomorphism ring Endy(X) is an artinian ring.
Then, the relation <a is a reflexive and transitive relation on isomorphism classes in T .

Proof. It is clear that <a is reflexive, since

X4 X®0— 0— X]1]

is a distinguished triangle.

We want to show that <a is transitive. Let M, W, N so that M <A W and W <A N.

Then, there are distinguished triangles
9
W-sMeZ—Z— W] and N—)WEBZ1Q>Z1 — N[1]

for some objects Z and Z; in T.

First, we shall show that we may assume that f is nilpotent.

Let A = End(Z1). By the Wedderburn-Artin theorem we can write

Afrad(A) ~ ©F  Mat,, (A),

where A; are division rings for all i € {1,...,L}.

We consider the image f € A/rad(A) of f. Suppose that f # 0. We write f = (f,),
where f; € Mat,,(A;).

By Gauss’ algorithm, for each i there exist invertible elements g; and h; of M atn, (A;)
such that g, f;h; is idempotent with units or zeroes on the diagonal and zero elsewhere. Since
rad(A) is nilpotent, we can find an idempotent e € A so that e maps to the idempotent
€ = (g;f;hi)i of A/rad(A) (cf e.g. [2, Theorem 1.7.3]). Let G and H be elements of A such
that the images G and H in A/rad(A) are G = (g;); and H = (h;);, respectively. Then G
and H are invertible and GfH — e € rad(A).

Let F := GfH. We have the following morphism of triangles.
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g
N — Woz @), Z; — N[

1 il ; 1 1
N — WoZ (LZ Zy — N[1],

where in the diagram the endomorphism of W @ 7 is ( é qu ) and the endomorphism

gH
of Z1 is H. So we get a triangle N—W @ Z; (LZ Z1 —» NJ[1]. We will show that eF'e has
a right inverse.

Since e is idempotent and since idempotents split in 7, there is a decomposition Z; =
Z(1y @ Zg)y such that e preserves the decomposition, is identity on Z(;y and 0 on Z.
Moreover, we have eFe € End(Z(1)) and eFe — e € rad(End(Z))). By [2, Lemma 1.2.2]
we know that eF'e has a right inverse in End(Z(;y), which we denote by F’. Applying the
octahedral axiom on the following diagram of triangles,

A
W e Z(l) D Z(Q)—> Z(l) D Z(Z) N[l]

S/

Z (1]
!/ I !
gH g g , 1 g .
where A = r | = eFe eFe |,o0= 0 and y = | eFe |, wegeta triangle
eFe €Fe e'Fe
N — X[-1] — Z) — N[1].
1 ¢gF 0
We have | 0 1 0 | € Autr(W @ Z(1) © Z(3)) and F' € Auty(Z(;)) making the
0 €e'FeF' 1
left most square of the following diagram commutative.
WeZuyeZe - Zg — X — (W Zu @ Zp)[1]
\J \J 3

0,1,0)*
W& Zu) @ Zy) L9 Zay — WeZp)l] — W Zy o Zy)lll,

Since the vertical mappings are isomorphisms, they induce an isomorphism X = (W &

Zz))[1)-
So the above triangle becomes a triangle

N — W@Z(Z) — Z(Q) —)N[l]

Since Z(y) is a direct summand of Z;, by induction on the length of End(Z1) we can assume
that f is nilpotent.

We continue the proof, showing that the relation is transitive. We get a factorisation
N—WeaeZ —-MaZeZ.
This gives
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where the triangle
7y =5 Zy — 7 — Z4[1]
is given by the octahedral axiom. It follows that for the mapping
91
(M®Z)e Z (f—1)> Zs

one has fi; = f1.
We abbreviate M' := M @ Z and have a new factorisation

(idM/ 0)
NoMmaez t 1
1 — M & Z, .

This gives again a diagram

(%)
N—M 27

\‘\\ /
M o Z
&) <‘ \Z3
77
where the triangle
Zo 2 7y — 7 — Zo|[1]
is given by the octahedral axiom. More generally we define inductively complexes Zj,
distinguished triangles
Zy 5 Zpp1 — Z — Zy[1]
and mappings (%) : M'® Zy — Zy,1 given by the factorisation
( idaypr 0 )
, 0 te1
N—M&Z_1 —

which induce the diagram

M,@Zg

o)
N——M'® Zp—r" 7,

TRy,
?
\
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Hence, we get a sequence of mappings (fs, fe11,idz) of distinguished triangles

fe Je+1

Zy /> g — Zpto

i, Ly i Le41 ~L Le42
Zgt1 fiiy Zpto ferg Zypts

{ { l

A = A = VA

{ { l

1 fora[L
z) Mz Yz,

Since the composition of morphism of triangles is a morphism of triangles, we get a
morphism of distinguished triangles

VA fifode Zk 41

Lu 4tk
Za foE;kH Zg12

1 {

VA = VA

{ 4

Now, since fi = v1f and since tgfor1 = fotor1, we get fifo... fx = fFiito... 0. Since f
is nilpotent we get fifs... fr = 0 for some k. Using Proposition 1 we get a triangle
(.,)

VAl - Zis1 @B Zo — Zjpo — Zl[l] .

Now,
0
Zy1a =~ cone( (L )) ~ Zgr1 ® cone(ty) ~ Zy1 © Z
1
Since
N— (M®Z)® Zk1— Zy12 — NI1]
is a triangle, we get M <A N as required. ]

4. ANTI-SYMMETRY

Proposition 3. Let R be a commutative ring and let T be an R-linear triangulated category.
Suppose that X is an object in T so that Hom7(X,Y) is an R-module of finite length
lengthp(Hom(X,Y)) for all Y in T. Then,
N <A M = lengthp(Hom (X, N[j])) < lengthp(Hom(X, M[j]))
for any integer j.
If X is an object in T so that Homy(Y, X) is an R-module of finite length for all Y in
T, then

N <a M = lengthp(Hom(N[j], X)) < lengthp(Hom(M[j], X))
for any integer j.
Proof. Let N <A M. Then, there is an object Z of T so that
M-—-N®&Z— Z — M[1]

is a distinguished triangle. Apply Homy(X,—) to this triangle. Abbreviating (X, —) :=
Homy(X,—) we get a long exact sequence

- (X,M[f) — (XN e (X, 2l]) — (X,2[) — ..
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For any j one gets
length ,(Hom (X, M[j])) + length,(Hom (X, Z[j]))
> lengthp(Homy (X, N[j]) ® Homy (X, Z[j]))
and so,
lengthg (Homy (X, M[j])) > lengthg(Homy (X, N[j]))
as soon as lengthp(Homy (X, Z[j])) and lengthp(Homy (X, M[j]) are finite.

The dual statement follows by the dual arguments, applying Homy(—, X) to the triangle.
This shows the proposition. ]

Suppose that M <A N and N <A M. Then, we know by Proposition 3 that for any
object X in 7 so that for all objects Y one has that Hom7(X,Y) and Hom (Y, X) are of
finite length over R, one has

lengthy (Hom7 (X, N[j])) = lengthp(Hom7(X, M[j]))
and

lengthy (Hom(N[j], X)) = lengthg(Homy(M][j], X))
for any integer j.
Proposition 4. Let R be a commutative ring and let T be an R-linear triangulated category
in which idempotent morphisms split and so that for any two objects X and Y of T the set
Homy(X,Y) is of finite length as an R-module. Suppose that M and N are two objects in
T so that there is n € Z\ {0} satisfying Hom1 (M, N[n]) = 0.

If for any object X of T one has that the length of Homy(M,X) as R-module equals the
length of Hom7 (N, X) as R-module, then M ~ N.

Remark 4.1. e Bongartz showed a similar result for an abelian category [3]. We see
that his proof can be modified so that it applies to our situation as well.
e If we assume that Homy (M, M[n]) vanishes instead of Homy (M, N|[n]) the conclu-
sion of Proposition 4 still holds. The proof is similar.

Proof. Suppose M and N are objects satisfying the above hypothesis. Since Homy (M, N)
is of finite length over R, take generators f1, f, ..., f¢ of Hom7 (M, N) as an R-module. Let
f=(f1,f2,---, fo)" : M' — N. We show that f is split.

So, f induces an epimorphism

f*:= Homy (M, f) : Homy(M, M%) — Homy(M,N).
Let K be the cone of f so that M?¢ IyN K — M*[1] is a distinguished triangle.
Then,
(M, M¥[~j]) — (M, N[~j]) — ... — (M, K[-1]) — (M, M) — (M,N) — (M, K)
— ... —> (M, M[j]) — (M, N[j])
and
(N,Me[_j]) — (NaN[_]]) .. (NaK[_l]) — (NaMZ) — (N,N) — (NaK)
— .. — (N, M*[j]) — (N, N[j])
are both exact. By construction (M, M%) — (M, N) is surjective. Hence,

and
are both exact.
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Suppose Homy (M, N[n]) =0 and let j = |n|. If n < 0, then one gets that
0— (M,K[n+1)) — ... — (M,K[-1]) — (M, M%) — (M,N) — 0
is exact. Since the R-length of Homy (M, N[n]) equals the R-length of Homy(N, N[n]),
also Hom7 (N, N[n]) =0 and
0— (N,K[n+1]) — ... — (N, K[-1]) — (N, M*) — (N, N)
is exact. Since now the length over R of the corresponding terms coincide for (N, —) and
for (M, —), counting the alternate sum of R-lengths, we see that
0— (N,K[n+1]) — ... — (N, K[-1]) — (N, M%) — (N,N) — 0
is exact. If n > 0, then
0— (M,K) — ... — (M, M*[n]) — 0
is exact, and since the R-lengths of (M, N[i]) equals the R-lengths of (N, N[i]), also
(N,K) — ... — (N, M*n]) — 0
is exact. But then, counting again the alternate sum of the R-lengths, one gets that
0— (N,K) — ... — (N, M¥*n]) — 0
is exact and consequently
(N,K[-n+1]) — ... — (N, K[-1]) — (N, M%) — (N,N) — 0

is exact.

Hence, in any case, f is split and N is a direct factor of M™. The hypothesis on 7 implies
that the Krull-Schmidt theorem holds in 7 [1, Ch 1, Theorem 3.6]. We see that therefore
N and M have an indecomposable non zero direct factor U in common. Let N = U & N’
and M =U @ M'. By induction on the R-length of Hom(M, M) we are finished. [

Corollary 5. Let T be a triangulated category satisfying the assumptions in Proposition 4.
Then the relation <A 1s an anti-symmetric relation on the isomorphism classes of T .

Proof. Let M <A N and N <A M. Then, Proposition 3 shows that the hypothesis of
Proposition 4 are fulfilled and therefore N ~ M. O

5. THE MAIN RESULT
We are now ready to formulate our main result.

Theorem. Let R be a commutative ring and let T be an R-linear triangulated category
satisfying the following three conditions.
e For any two objects X and Y of T the set Hom1(X,Y) is of finite length as an
R-module.
e For any two objects X and Y in T there is an integer nxy € Z \ {0} so that
HomT(X,Y[nX’y]) = 0,
o Idempotent morphisms in T split.
Then, the relation <a defines a partial order relation on the set of isomorphism classes
of objects in T.

Proof. The fact that <a is reflexive and transitive is Proposition 2. The anti-symmetry
is Corollary 5. [

Remark 5.1. Examples for triangulated categories 7 satisfying the hypotheses of Theo-
rem 5 are
e the bounded derived category D?(A) of finitely generated A-modules over an artinian
R-algebra A,
e the bounded derived category of coherent sheaves over a projective variety.
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