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Abstract

We give a series of examples for a program initiated by A. Weiss [18] to classify con-
jugacy classes of torsion units of integral group rings by a notion of ’genus’. The goal
is there to compute on one hand side the number of genera and on the other hand side
to compute the size of the different genera. In the present paper we examine dihedral
groups of prime index and show that under certain restrictions on the prime index there
are precisely 4 different genera of finite subgroups of the group of units of augmentation 1.
We furthermore give, without restriction on the prime index, those conjugacy classes of
torsion units which consist of elements belonging to group bases.

1 Introduction

The structure of the torsion units of the integral group ring ZG of a finite group G attained
quite some attention since the breakthrough of K. W. Roggenkamp and L. L. Scott in 1987
(cf. [13]) and A. Weiss in 1988 (cf. [17]). A group ring is furnished with the structure of an
augmentation map induced by the trivial representation. Denoting by Z the p-adic integers,
Roggenkamp and Scott proved [13] that for a finite p-group G every ﬁnlte subgroup U of the
units of Z G of augmentation 1 is conjugate in the units of Z G to a subgroup of G as long
as the order of G equals the order of U. One year later, A. Welss proved in [17] that the
condition that the order of G equals the order of U is not necessary. The restriction to units
of augmentation 1 is not essential since the units of the coefficient domain are a direct factor
of the whole unit group.

For non p-groups the situation is much more complicate.

We denote for any finite group G and any Dedekind domain R by V(RG) the group of units
of RG with augmentation 1. A. Weiss introduced in [18] the notation of a genus of a finite
subgroup U of the group of units of ZG of augmentation 1. The genus of U is the set of all
V(ZG)—conjugacy classes of subgroups V of V(ZG) such that for all primes g the groups U
and V are conjugate in V(ZqG). By Weiss’ result [17] for p—groups G, the genera of finite
subgroups of V(ZG) are parametrized by the G—conjugacy classes of subgroups of G. For non
p—groups no example was carried out so far. Weiss’ project initiated in [18] divides the problem
of determining the conjugacy class structure of finite subgroups of V(ZG) into two parts.

1) Determine all genera.
2) Determine for each genus its size.

Another problem is the question if a finite subgroup of V(ZG) can be extended to a group
basis. A group basis of ZG is a subgroup U of the group of units of augmentation 1 such that
U forms an additive basis for ZG.

It was an open problem if there is a non p—group G and a unit u of augmentation 1 in ZG
such that the group generated by u lies in the same genus as a finite subgroup of G but u is
not an element of any group basis.
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The aim of the present paper now is twofold. First we give examples for a full computation
of the different genera for a series of groups G. Secondly we give a series of examples for a
computation of the cardinality of the genus of an involution containing a subgroup of G and
determine which conjugacy class belongs to a conjugacy class of a maximal finite subgroup of
the group of units of augmentation 1 and which can be extended to a group basis, and if this
is possible, then in how many essentially different ways.

e Let D, =< a,bla?,b?, baba > be the dihedral group of order 2p for an odd prime number
p. All of the involutions in D, are conjugate.

e For an abelian group A we use the notation A = {a?|a € A} and A = {a € Ala® = 0}.
e We denote by (;, a primitive p-th root of unity and w), := ¢, + gp—l.
e We use the usual notation h} := |Cl(Z[w(p)])| and h,, - hf := |CU(Z[C])]-

Theorem 1 1. In V(ZD,) there are precisely

SN el 05 (2]
P Ci(Zlw(p)])

conjugacy classes of involutions being conjugate to b in Zqu for every prime number q.
In other words, the genus (cf. [18]) of b splits into o, conjugacy classes.

2. Out of the conjugacy classes of involutions in 1. there are exactly
7p i= |CUZ[w(p)) 2|
classes consisting of elements for which there is a group basis they are a part of.

3. b is contained in exactly (p — 1)/2 conjugacy classes of group bases.

4. There is a further genus of involutions in V(ZD,) which has the cardinality |Cl1(Z]w(p)])|-

If 2 generates a prime ideal in Z[w(p)| and if (213771 —1,p—1) = 1, then these are the
only two genera of involutions.

5. In V(ZD,) there is only one genus of subgroups of order p. This genus has cardinality

CuziG)  p-1
izl 2

In case 2 generates a prime ideal in Z[w(p)] and if (217771 —1,p—1) =1 we get the following
picture of the conjugacy class structure of units of finite order in V(ZD)).

| || genera |
order of elements 2 2 P
. . + p—1 —
cardinality of the genus op | hy | 55 hy
contained in group bases Tp 0 p—;l
number of group bases containing fixed element p2;1 0 Tp

Examples for primes where both conditions are fulfilled are

p € {3,5,7,11,19,23,29,47,53,59,67,71,79,83,101,103,107, 131, 139, 149,
163,167,173,179, 191,197, 199, 227, 239, 263, 269, 271, 293, 317}

p—

If 2 does not generate a prime ideal in Z[w(p)] or if (2T1 —1,p— 1) # 1 then there are in
general more genera of involutions.
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Corollary 1 [1] If there is a prime number q such that 4¢* divides p — 1 and (p — 1)/(44¢?) is
a square, then op > 7p.

A large number of conjugacy classes of involutions can be obtained using the results of Cor-
nell and Washington [4] and that of Seah, Washington and Williams [15] for p = 11290018777.
Most of them consist of elements that do not belong to any group basis, though, again all are
conjugate locally to a group element.

We used the MAPLE V computer program to see, using results of van der Linden [16] that
for the dihedral group of order 2-37 we get o, = 3 and 7, = 1. If we replace the number 37 by
101 the same holds true if we assume the generalized Riemann hypothesis.

In Statement 4. and 5. of Theorem 1 we use the theorem of Bhandari and Luthar [2]
in which the number of conjugacy classes of involutions and that of subgroups of order p in
V(ZD,) are computed. The methods of Bhandari and Luthar are very different from ours.

In [7] Hughes and Pearson gave an example of a unit u of order 2 in the integral group ring
7S5 of the symmetric group of order 6 that generates a maximal finite subgroup of the group
of units of augmentation 1, however, every group basis of ZS3 is conjugate in the units of ZS3
to S3. Therefore, the unit u cannot be conjugate to an element of S5 being naturally embedded
in ZS3. However, u is not even conjugate in 7555 to a group element. In fact, its conjugacy
class is contained in the genus described in part 4. of the theorem. Frohlich, Reiner and Ullom
proved (cf. [6]) that for p > 3 there are (p —1)/2 - |CIU(Z[w(p)])}2)| conjugacy classes of group
bases in V(ZD,). All of the group bases are conjugate to D, in the units of Zqu for every
prime q.

Acknowledgement. Most of this work was done while I was preparing my dissertation. I
want to thank Klaus W. Roggenkamp for his patience, help and encouragement.

2 The method

We shall use a method developed by K. W. Roggenkamp in collaboration with L. L. Scott and
presented by K. W. Roggenkamp in [11] and [14, Part I Chapter VII|. The main idea is to
interpret the conjugacy classes of subgroups of units as isomorphism classes of bimodules.

Proposition 1 (K.W.Roggenkamp and L.L.Scott [11] and [14, Part I Chapter VII])

Let G be a finite group and let U be a finite subgroup of V(ZG). Assume that Czc(U) :=
{z € ZG| Yu € U : zu = uz} is abelian and assume that ZG satisfies the Eichler condition.
Let V(ZG) be the group of units of ZG of augmentation 1.

e The number of conjugacy classes of subgroups H of V(ZG), which are in ZqG for all
primes q conjugate to U is !

Clz;g(CZg(U)) = keT(Cl(ng(U)) —_— CZ(ZG)).

o IfU < @, then among them
im(Clza(Cra(G)) — Clza(Cza(U)))

parametrizes the conjugacy classes of subgroups contained in group bases in the same
genus as G and

ker(Clza(Cza(G)) — Clza(Cza(U)))

parametrizes the conjugacy classes of group bases in the genus of G containing U .

LO1(A) is the locally free class group of the Z—order A. If we have an inclusion of Z-orders A C B then we
get a homomorphism B ®4 — : Cl(A) — CI(B)
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The goal is, therefore, to compute the locally free class groups of the centralizer of U in ZG.
The method used in this direction is Milnor’s Mayer Vietoris sequence in the version of Reiner
and Ullom [10]. This sequence gives the class group, in case of presence of the Eichler condition
and a pullback diagram of rings with epimorphic mappings, in terms of the class groups of the
constituents and certain indices of unit groups. More precisely: Let R be a Dedekind domain
with field of fractions K and let A be an R-order in the separable K-algebra A, satisfying the
Eichler condition. Let, furthermore, e2 = e be a nontrivial idempotent in the centre of A.

Then,
A — A-e
! Loy
A-(1—e) Z5 A-e/(A-enh) = A

is a pullback diagram with epimorphic mappings. We denote by Cl(—) the locally free class
group and by U(—) the group of units. Then, Reiner and Ullom proved, that there is a mapping
0 such that

1—UR)/ <ps(UA-e)-p_(UN-(1—e))) >
L CUA) — Cl(A - €) x CI(A- (1 —¢)) — 1

is an exact sequence of abelian groups. We say that this pullback diagram and the Mayer
Vietoris sequence are induced by the idempotent e.

3 The proof of the theorem

3.1 The principal genus of involutions

We shall prove in this section the first, the second and the third statement of Theorem 1. For
this purpose we have to compute the relevant class groups via pullbacks and Mayer—Vietoris
sequences.

We use the following notation:

e (, is a primitive p** root of unity.
e w(p) :=Cp+ ¢t and wilp) == ¢, + ¢,

e Zlw(p)] = Z[¢p]) N IR is the ring of algebraic integers of the maximal real subfield of the

p" cyclotomic field.

o m:=(1—-¢,)-(1—¢, ") induces the unique prime above p in Z[w(p)].
e The prime field of characteristic p will be denoted by IF},.

In @ D, we have a central idempotent e := 1 P_,a'. We shall look in the sequel at the
p Lui=

pullback diagrams of ZD,,, Czp,(D,) and Czp, (b) associated to this idempotent.

Case ZD,: The pullback diagram associated to e is

7D, 5 Z<b>=1Z0,
vl Tty :
Zlw(p Zlw(p
( 7 Zw(p)] Zw(p)] > - BG

as is well known.



Units in integral group rings )

Case (C7p,(b): For the pullback assotiated to Czp,(b) we see that since a goes to (, in
the two dimensional representation, the image of Czp, (b) in A is Zw(p)] < b >. Moreover,
CZDp (b) e = ZCQ and CZDP (b)/(CZDp (b) n (CZDP (b) . 6)) = ]FPCQ. The pullback diagram
associated to e is now
Czp, (b) = 70,
L-a-e !
Z]w(p)]Co — IF,C,

Case Czp,(D,): Though the computation of Cl1(Z(ZD,)) is done in [5] and [6] by Fréhlich
and Frohlich, Reiner, Ullom we give the calculations within our terminology for the reader’s
convenience.
i —i 2 -1 . p—1
Z(ZDp) =<l,a'+a *,(1+a+a“+..+aP7 ") bli= 1,...,T > .

The pullback diagram for Z(ZD,) corresponding to e is

Z(ZD,) — Z+p-Z-b
! !
Zw(p)] —  Z/(p-Z).

In the above three cases we use the Mayer Vietoris sequences and hence have to compute
the images of the unit groups of the factors in their common finite quotient.

For this we use mainly two tools.
1) In U(Z[w(p)]) there are units

ug =1+ wi(p) +wa(p) + ... +wi(p) with k =1,...,(p—3)/2

and
vp =1 —wi(p) +wa(p) — ... + (=1 -wip(p) with k =1,..., (p — 3)/2.

2) We use a theorem of Roggenkamp and Scott (cf. [12]): A unit in an order, which is a unit
in an overorder in the same algebra, is a unit itself in the smaller order.

In the first case, Myrna Pike Lee [8] proved that each unit in the finite quotient is liftable
to a unit to the two by two matrix ring. Hence,

cizn,) "= clziw ).

In the third case, the units ug and —1 for k =1,..., (p — 3)/2 generate all of U(Z/(p - Z)).
The Mayer Vietoris sequence degenerates hence to

0 — Cl(Czp, (D,)) — CUZ[w(p)]) & CUZ + p- Tb) — 0

CU(Z + p - Zb) is computed by the pullback diagram

Z+p-Z-b — Z
1 !
Z — Z/(2-p-7).

corresponding to f := (1 4 b)/2 as follows: The units in Z generate a subgroup of order 2 in
the group of units in IF),. Hence, this subgroup is cyclic of order (p —1)/2. The Mayer Vietoris
sequence is then, using CI1(Z) = 1,

1—Cps L CUZ+p-Zb) — 1.

Now,
CUZ(ZD,)) ~ Cl(Zw(p)]) & Cp%l.
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In the second case, we proceed as follows. Define units

140 1-0 1-0 140
= ;—uk+ 5 v € Zlw(p)] < b> and fi := 5 Ukt ;_

o v € Zlw(p)] < b>.
Mapping b to 1, ay maps to 2k + 1 and B to (—1)*.
Mapping b to —1, 8 maps to 2k + 1 and ay to (—1)*.
But, IF, < b >= IF, @ IF,, and we see that a; and 0 for k =1,..., (p — 3)/2 generate all the
units in IF,Cs.

The Mayer Vietoris sequence induced by e degenerates to

0 — CI(Czp, (b)) — CUZw(p)|Ca) & CUZCy) — 0.

Obviously, CI(ZC3) = 1. We have to compute Cl(Z[w(p)]C2). The idempotent f := (1 +b)/2
induces a pullback diagram

Z[w(f)]@ - Z[wl(p)]
Zlw(p)]  — Zlw(p)] @z Fa.

The Mayer Vietoris sequence is at this point not generally exploitable since the structure of the
unit groups is quite complicate and varies from prime to prime.

The next step which is needed to apply Proposition 1 is to compute the induction homo-
morphism of the class group of Czp, (D) =: Z(ZD),) to that of Czp, (b).

Denoting by A the induction homomorphism we have the commutative diagram

0 0
T T

0 — /i; — m; — 0
T T

0 — Cl(CZDp(b)) — Cl(Z[W(p)]CQ)@Cl(ZCQ) — 0
1 T

0 — C'Z(Z(ZDP)) — ClZwp)))eClZ+p-Z-b) — O
T T

0 — Vp — Yp —s 0
T T
0 0

with exact rows and columns where 7, and &, are defined to be the kernel and the cokernel of
~ respectively. Since A = X - (1 —e) @ Ae, and surely A - (1 — ¢e) is injective,

_ [CU(Zw(p)]Cs)]

/ 2
K| = and v, = Cp-1.
%l = S Cizw D) » =0

The next step which we need to apply Proposition 1 is to compute the kernels Clzp, (Czp, (Dp))
of Cl(Czp,(Dp)) — CUZD,) and Clzp,(Czp, (b)) of Cl(Czp, (b)) — CI(ZD,) as well as
the image of Clzp,(Czp, (D)) — Clzp,(Czp, (b)).

The following commutative diagram with exact rows and columns is induced by the induc-
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tion mapping to ZD):

0 0 0
T T T
0 — Kp — Ii;) — m;’
T T T
0 — Clge,(Czp, () — Cl(Cp, () >  ClZwp))
T T T
0 — Clgp (Z(ZD,) — CUZ(ZD,) % ClZwp@)? — 0
T T
0 — Tp - Tp - 0
T T T
0 0 0

Here, ¢ and 1 are just the induction homomorphisms to the maximal order

Zlw(®)] Zw(p)]
( Zlw(p)] 2w ()] ) YLOL

in Q D), containing ZD,,. Lee [8] gives us the image of ¢). The injectivity of x, — &, follows
from the serpent lemma. We obtain immediately:

k’e’l‘[ClZDp (Z(ZDP)) — Clch (CZD,, (b))] =% = Cp_;l.
The knowledge of v, leads to the knowledge of
lim(Clzp, (Z(ZD,)) — Clzp,(Czp, (b)))]-

Therefore, Statement 2. and 3. of Theorem 1 follows.

We now just have to compute the cokernel s, for determining Clzp,(Czp, (b)) and by
Proposition 1 the number of conjugacy classes in the genus of b. For this purpose we compute
the image of ¢.

To determine the image of ¢ we take an idele a := (ap)pespecziw(p) of Z[w(p)] inducing
the ideal A, say. Then the idele

= J[ (+b)+0-0b)-ap)

p€SpecZ[w(p)]

gives an ideal in A. Using the representation

T ( w(p)1—2 w(p)1—1 )’bH ( 2__‘3(7’) (1) )

we see that ( is equal to

51}((2—@5321—%) :)

By [9, (24.2) & (8.5)] we can take the norms first and intersect afterwards, hence, 8 induces
the ideal 44 ~ A. Therefore, ¢ is an epimorphism and so is xj, — &, by the serpent lemma.
We use the above commutative diagram to see that

|CUZ[w(p)IC2)|

Ky = CUZL))/(CUZLI)?) and 5] = S s
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The size of k, can now be determined to

|coker[Clzp,(Z(ZD,)) — Clzp,(Czp,(D))]| =
Gz )Gl
|CUZ[w(p)])[?

This gives us Statement 1 in Theorem 1.

This gives us two sources for candidates for units not belonging to any group basis: Firstly,
if bt is not a power of 2 and secondly if [Cl(Z[w(p)]Ca| # |CU(Z[w(p)])|?, the latter being the
class number of a maximal order above Z[w(p)]Cs.

By these discussions up to here the conjugacy class structure of the genus of b is completely
determined.

[CUZIw ().

3.2 The trivial genus of involutions
In this subsection ? we shall prove Statement 4. of Theorem 1.
An involution v in another genus is given by the completely reducible representation < (1) 0 > .

The centralizer in Q D), of v is

(om0 Y,
o0 = (57 g ) xace

The centralizer of v in ZD,, is C' := ZD, N QC. Clearly, C - (1 — e) =~ Z[w(p)] © Z[w(p)].
The units ug from the beginning of Section 3.1 in both components generate A := (Z/p - Z)C>
modulo 7 - C - e.

Hence, the Mayer—Vietoris sequence corresponding to C' with the idempotent e is

1 — Cl(C) — Cl(( Z[wo(p)] Zlw(p

) )) x CUZC) — 1.
But the kernel of the induction homomorphism to Ci(ZD,) = Cl(Z]w(p)]) may then be cal-
culated by the commutativity of the following diagram and the small observation following
it:

I — a@p) — CELE)) — 1

T Tx
1 — Cl(C) — ClZwp))? — 1
X is an epimorphism since the ideal ( Z[wo(p )] El > induced to the maximal order (Z[w(p)])2,

the two by two matrix ring, is equal to A in the class group of (Z[w(p)])2.-
Therefore, the kernel of C1(C) — CI(ZD,) is equal to the kernel of x, which has size equal
to the order of Cl(Z[w(p)]). In fact, it is isomorphic to Cl(Z[w(p)]) via the codiagonal.

We now discuss cases where we have found all the conjugacy classes of involutions in the
two genera discussed so far.

If we sum up the two cardinality of the two genera computed so far, we see that we have
localized
[CUZ[w(P))Ca)|

[CUZ[w(P)])I?

conjugacy classes of involutions. Bhandari and Luthar (cf. [2]) get as a whole v - bt conjugacy
classes of involutions where vq is the number of equivalence classes of elements a in Zw(p)],

where two elements a and b are said to be equivalent if there is a unit w in Zw(p)] with
u—1 € nZw(p)] and au — b € 2Z]w(p)].

np = (1+ )-ht

P

2Most of the content of this subsection arose within a discussion with Klaus W. Roggenkamp
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If 2 generates a prime ideal in Z[w(p)] then Zw(p)]/(2Z[w(p)]) is a field and every non zero
element in Z[w(p)] \ 2Z|w(p)] maps to a unit.

Writing down the Mayer Vietoris sequence as done in the beginning for Z[w(p)]Cs for the
idempotent f the index |Cl(Z[w(p)]C2)|/|CI1(Z[w(p)])|? is just the number of congruence classes
of units in Z[w(p)]/(2Z[w(p)]), where two elements a,b are to be called congruent, if a/b is the
image of a unit in Z[w(p)]. Hence, we have at least n,/h} equivalence classes. However, being
equivalent is a stronger relation as being congruent.

But, 2% — 1 is the size of U(Z|w(p)]/(2Z[w(p)])) in case of 2 is prime, taking into account
that 2 is unramified. Moreover, p — 1 is the order of U(Z[w(p)]/(7Z]|w(p)])), since p is totally
ramified.

We assume that the orders of these two unit groups of fields are coprime.

Given a and b two elements of Z[w(p)]. If there is a u € U(Z]w(p)]), then this has order n in
Zw(p)]/ (7 Z[w(p)]), say, and order m in Z[w(p)]/(2Z[w(p)]), say. We get two integers « and 3
such that an + Bm = 1. We see that u'~#™ =: v has the property that v — 1 € 7Z[w(p)] since

v—1=@W"*—1€rZw(p)]

and
v-oa—b=u-(w") P -a—b=u-a—bec2Zwp).

Hence, in this case being conguent is the same as being equivalent.

This proves that there is no further conjugacy class of involutions.

If 2 is not prime, then there are non zero elements in Zw(p)] not being mapped to a unit
modulo 2 and we get more genera of involutions. If the orders of the residue fields are not
coprime then the condition of [2] that only units which become trivial modulo 7 operate, gives
us more than two genera.

This proves Statement 4. of Theorem 1.

3.3 Units of odd order

In this section we shall prove Statement 5. of Theorem 1.
We have

p
D:=Czp,(<a>)=Z-(L+a+a’+..+a" ") b+ Z-a'
=1

Then
D-e=Z+p-Z-band D - (1 —e¢) =Z[(p]

interpreting A as twisted group ring A ~ Z[(,] ® z ZC5. Then, D -e/(D-eND) =2Z/(p-Z).
The units uy € Z[(p] generate again Z/(p-Z) modulo (1 —¢p,)-Z[(,]. We get the Mayer Vietoris
sequence

1 — CUD) — CUZ + pZd) x CU(Z[(p]) — 1.

The kernel of CI(D) — CI(ZD,) is calculated componentwise if we use CI(ZD,) = 1 x
Cl(Z[w(p)]). The mapping splits as direct product of two mappings, according to the idempo-
tent e and in the first component we have the kernel C i In the last component we observe
that Cl(A) ~ Cl(Z]w(p)]) via the reduced norm map. This, however, coincides with the inter-
pretation as twisted tensor product with the usual number theoretic norm. Then, the norm
map is surjective on the class groups, as is well known.

Therefore, the number of conjugacy classes of subgroups of order p of V(ZD,) that are
locally conjugate to < a > is equal to

_p—-1 |CUZIG))
2 2 [CUZ@ED]
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Coleman’s result (cf. [3] and [14, Part T Chapter II § 2]) 3 tells us that in V(Z,D,) a unit
of order p is conjugate to a power of a if and only if it is conjugate in D), already to a group
element. Therefore, in V(ZPDP), the genus of < a > splits into (p — 1)/2 conjugacy classes.
Hence, using the result in Bhandari and Luthar [2], we see that for units of order p there is no
other genus than the principal genus.
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