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Abstract. Let G be a finite group and let k be a field of characteristic p. It is known
that a kG-module V carries a non-degenerate G-invariant bilinear form b if and only if V

is self-dual. We show that whenever a Morita bimodule M which induces an equivalence
between two blocks B(kG) and B(kH) of group algebras kG and kH is self-dual then the
correspondence preserves self-duality. Even more, if the bilinear form on M is symmetric
then for p odd the correspondence preserves the geometric type of simple modules. In
characteristic 2 this holds also true for projective modules.

1. Introduction

Let k be a field and let G be a finite group. It is well-known that a kG-module V , simply
called a G-module, carries a non-degenerate G-invariant k-bilinear form if and only if V is
isomorphic to its dual V ∗ = Homk(V, k). Up to an automorphism of V , a simple self-dual
G-module V ∼= V ∗ carries exactly one G-invariant bilinear form different from the zero. In
case k is large enough, for instance k algebraically closed, this means that such a form, if
it exists, is unique up to a scalar. If in addition the characteristic p of k is odd this form
is symmetric or antisymmetric. The case p = 2 turns out to be more subtle. Note that in
this case an antisymmetric form is symmetric. By Fong’s Lemma ([4], Chap. VII, Theorem
8.13), a simple self-dual G-module V different from the trivial module always carries a
non-degenerate G-invariant symplectic form. However, it may happen that V even has a
non-degenerate G-invariant quadratic form. This holds true, for instance, if G is solvable
but not in general. What really happens is not an easy task to decide; it is a question in
cohomology (see [11]), at least for arbitrary groups. To be brief throughout the paper we
call a G-module of symmetric, antisymmetric, symplectic, resp. quadratic type if V carries a
non-degenerate G-invariant form of symmetric, antisymmetric, symplectic, resp. quadratic
type. The reader not familiar with duality theory of modules may refer Chapter VII of [4].

In representation theory of finite groups G we are often interested in the category of
modules belonging to a p-block BG of kG where the underlying field k is of characteristic p.
Instead of investigating BG we may study a Morita equivalent p-block BH for some other
group H. Recall that one calls two blocks Morita equivalent if their module categories are
equivalent as exact categories. Morita theory shows that the module categories of the two
blocks are equivalent if and only if there is an H × G-bimodule M = HMG where M is a
progenerator for BH and for BG. Moreover the functor

V 7→ M ⊗kG V

defines an equivalence from the module category of BG onto that of BH . The correspon-
dence preserves all functorial properties of module categories, in particular being simple,
indecomposable, projective, Loewy structure and the like. For more details the reader is
referred to Chapter 4 in [10].
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In this note we study the behaviour of self-duality including the type of forms under
Morita equivalence. We start with a series of examples which illuminates the situation.

2. Examples

In this section we show that Morita equivalence does not need to preserve self-duality of
simple modules. In case it does, examples show that the geometric type of simple modules
may vary via the correspondence.

In order to state the examples we need that blocks are determined by their Brauer trees
up to Morita equivalence. Kupisch determined the structure of indecomposable modules of
a Brauer tree algebra, and hence he implicitly determined their module category, i.e., the
Morita equivalence class of a Brauer tree algebra. In modern terms Kupisch’s result reads
as follows.

Theorem 2.1. (Kupisch [7, 8]) Let A1 and A2 be two Brauer tree algebras. Then A1 and

A2 are Morita equivalent if and only if their Brauer trees, including the exceptional vertex

and its multiplicity, coincide.

In the following examples we shall use Brauer trees computed by Hiss and Lux in [5]. The
geometric type of simple self-dual modules, i.e. symmetric or alternating, is taken from [1]
or [6].

Example 2.2. Let k be an algebraically closed field of characteristic 3 and let G = SL2(5)
be the double cover of the alternating group A5 of degree 5. Then a non principal 3-block,
say B1(G), of G is a Brauer tree algebra corresponding to the Brauer tree

T : • • •

without an exceptional vertex. The ordinary characters of the algebra have dimensions 2,
4 and 2. Both of the simple modules in characteristic 3 of B1(G) admit an, up to scalar
unique, G-invariant bilinear form. This form is alternating for both modules.

The principal 3-block of the alternating group H = A5 is also a Brauer tree algebra with
Brauer tree T . The ordinary characters of this algebra have dimensions 1, 5 and 4. In
characteristic 3 both simple modules admit an, up to scalar unique, A5-invariant bilinear
form which is symmetric in both cases.

As a consequence, the type of bilinear forms is usually not preserved by Morita equiva-
lence, even if self-duality is preserved on simple modules.

Example 2.3. Let k be again an algebraically closed field but of characteristic 7 and let
G = 3McL be the triple cover of a the McLaughlin simple group McL.

Then, a non principal 7-block, say B2(3McL), of G is a Brauer tree algebra corresponding
to the Brauer tree

S : • • • ◦2

with an exceptional vertex ◦2 of multiplicity 2. The ordinary characters of the algebra have
dimensions 792, 4752, 6336 and 2376 read from the left in the order of the tree. None of the
three simple modules in characteristic 7 is self-dual, hence none of them admit a G-invariant
bilinear form.

The principal 7-block B3(M23) of the Mathieu group H = M23 is a Brauer tree algebra
also with Brauer tree S. The ordinary characters of the algebra have dimensions 1, 1035,
2024 and 990 read from the left. The exceptional vertex corresponds to the two ordinary
characters of degree 990. All simple modules in characteristic 7 admit an, up to scalar
unique, H-invariant bilinear form which is symmetric in all three cases.
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As a consequence every Morita bimodule inducing a Morita equivalence between B3(M23)
and B2(3McL) has the property that each self-dual simple B3(M23)-module is sent to a
simple B2(3McL)-module which is not self-dual.

3. Self-dual Morita bimodules

Let H and G be finite groups and let k be a field. Furthermore, let M be an H × G-
bimodule where H acts on the left and G on the right. Then M ∗ = Homk(M,k) becomes
an H × G-bimodule by setting

(hfg)m = f(h−1mg−1)

for h ∈ H, g ∈ G, f ∈ M ∗ and m ∈ M . Indeed, the module structure follows by

((h2h1)f(g1g2))m = f((h2h1)
−1m(g1g2)

−1)

= f(h−1
1 h−1

2 mg−1
2 g−1

1 )

= (h1fg1)(h
−1
2 mg−1

2 )

= (h2(h1fg1)g2)m.

Definition 3.1. Let M be an H × G-bimodule. A k-bilinear form (·, ·) on M is called

H × G-invariant if

(hmg, hng) = (m,n)

for all h ∈ H, all g ∈ G and all m,n ∈ M .

The next lemma is well-known. For the readers convenience we give the proof.

Lemma 3.2. Let M be an H × G-bimodule. Then M is isomorphic to M ∗ as an H × G-

bimodule if and only if M carries a non-degenerate H × G-invariant bilinear form. More

precisely, if ϕ : M → M ∗ is an isomorphism, then (m,m′) := ϕ(m)(m′) is a non-degenerate

H × G-invariant bilinear form. If (·, ·) is a non-degenerate H × G-invariant bilinear form,

then the map M 3 m 7→ (·,m) ∈ M ∗ is an isomorphism of H × G-bimodules.

Proof. If ϕ : M → M ∗ denotes an H × G-isomorphism we put

(m,n) := ϕ(m)n

for m,n ∈ M . Clearly, the form (·, ·) is k-linear, but it is also H × G-invariant since

(hmg, hng) = ϕ(hmg)(hng)

= (hϕ(m)g)(hng) (since ϕ is H × G-linear)

= ϕ(m)(h−1(hng)g−1) (the module structure of M ∗)

= ϕ(m)n

= (m,n).

In addition (·, ·) is non-degenerate since ϕ is an isomorphism.
Conversely, if (·, ·) is a non-degenerate H × G-invariant bilinear form on M then we put

ϕ(m)n := (m,n)

for all m,n ∈ M . Note that ϕ is a k-isomorphism since the bilinear form is non-degenerate.
Furthermore, ϕ is H × G-linear since

(hmg, n) = ϕ(hmg)n

and
(hmg, n) = (m,h−1ng−1) = ϕ(m)(h−1ng−1) = (hϕ(m)g)n

for all h ∈ H, g ∈ G and m,n ∈ M .
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Proposition 3.3. Let M be a self-dual H ×G-bimodule which is projective as a G-module.

If V is a self-dual G-left module then M ⊗kG V is a self-dual H-left module. More precisely,

if β : M → M ∗ is an H×G-linear isomorphism and α : V → V ∗ is a G-linear isomorphism,

then

M ⊗kG V −→ (M ⊗kG V )∗

m ⊗ v 7→


m′ ⊗ v′ 7→

∑

g∈G

β(mg−1)(m′) · α(v)(g−1v′)




is an H-linear isomorphism.

Proof. Let β : M → M ∗ denote an H×G-isomorphism and α : V → V ∗ a G-isomorphism.
Therefore, since α and β are kG-linear the map γ := β ⊗kG α : M ⊗kG V → M∗ ⊗kG V ∗ is
a well-defined k-vector space isomorphism satisfying (β ⊗kG α)(m ⊗kG v) = β(m) ⊗kG α(v)
for all m ∈ M and v ∈ V (cf. e.g. [2, Theorem 12.10]).

Now, let m ∈ M,v ∈ V and h ∈ H. Since

γ(h(m ⊗kG v)) = γ(hm ⊗kG v)

= β(hm) ⊗kG α(v)

= hβ(m) ⊗kG α(v) (since β is H-linear)

= hγ(m ⊗kG v).

the map γ is H-linear.

Finally, we claim that
M∗ ⊗kG V ∗ ∼= (M ⊗kG V )∗

as H-left modules. We prove this via a sequence of isomorphisms.

Observe that V ∗ is not only a G-left but in a natural way also a G-right module via the
definition

(fg)v = f(gv)

for f ∈ V ∗, g ∈ G and v ∈ V .

Considering V ∗ as G-right module HomkG(M,V ∗) makes sense. With this observation
we have

Claim (i) HomkG(M,V ∗) ∼= Homk(M ⊗kG V, k) = (M ⊗kG V )∗ as H-left modules.

The isomorphism is given by sending α ∈ HomkG(M,V ∗) to the map Φ(α) : M ⊗kG V → k
with Φ(α)(m ⊗kG v) = α(m)v where m ∈ M and v ∈ V . Note, that Φ is well-defined since
α is G-linear, for

Φ(α)(mg ⊗kG v) = α(mg)(v) = (α(m)g) (v) = α(m)(gv) = Φ(α)(m ⊗kG gv).

Furthermore, Φ is H-linear since

Φ(hα)(m ⊗kG v) = (hα)(m)v = α(h−1m)v = Φ(α)(h−1m ⊗kG v) = (hΦ(α))(m ⊗kG v).

Finally, α → Φ(α) is obviously a monomorphism. In order to show that Φ is an isomorphism
we define a k-linear map

Ψ : Homk(M ⊗kG V, k)→HomkG(M,V ∗)

by putting (Ψ(ϕ)(m))(v) := ϕ(m⊗v) for ϕ ∈ Homk(M ⊗kG V, k), m ∈ M and v ∈ V . Since
ϕ is defined over M ⊗kG V we have

(Ψ(ϕ)(mg))v = ϕ(mg ⊗kG v) = ϕ(m ⊗kG gv) = (Ψ(ϕ)(m))(gv) = (Ψ(ϕ)(m)g)v
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for m ∈ M, g ∈ G and v ∈ V . Thus Ψ(ϕ) ∈ HomkG(M,V ∗). Moreover,

((Φ ◦ Ψ)(ϕ))(m ⊗−) = Φ(m 7→ ϕ(m ⊗−)) = ϕ(m ⊗−)

for m ∈ M . Thus Φ is surjective, hence an isomorphism.

Claim (ii) HomkG(M,kG) ⊗kG V ∗ ∼= HomkG(M,V ∗) as H-left modules:

The isomorphism is given by

α ⊗kG f 7→ ̂α ⊗kG f

for α ∈ HomkG(M,kG) and f ∈ V ∗ where
(
( ̂α ⊗kG f)(m)

)
(v) = (fα(m))(v) = f (α(m)v)

for m ∈ M and v ∈ V . Here V ∗ is considered as a G-right module by the natural action as
defined above. Furthermore, the space HomkG(M,kG) is an H ×G-bimodule via the action

(hfg)(m) := g−1f(h−1m)

for m ∈ M , g ∈ G, h ∈ H and f ∈ HomkG(M,kG).

First we show that the map ̂ is well-defined.

Indeed, for f ∈ V ∗, g ∈ G, α ∈ HomkG(M,kG), v ∈ V and m ∈ M one have
(
( ̂(αg) ⊗kG f)(m)

)
(v) = (f((αg)(m))) (v) (definition of ̂)

= f (((αg)(m)) v) (right module structure of V ∗)

= f
((

g−1(α(m))
)
v
)

(right module structure of HomkG(M,kG))

= f
(
g−1 (α(m)v)

)
(associativity of the kG-action on V ∗)

= (gf)(α(m)v) (left module structure of V ∗)

=
(
( ̂α ⊗kG (gf))(m)

)
(v) (definition of ̂)

Furthermore, the map ̂ is H-linear, for

( ̂hα ⊗kG f)(m) = f(hα)(m) = fα(h−1m) = ( ̂α ⊗kG f)(h−1m) = (h( ̂α ⊗kG f))(m).

Thus it remains to prove that ̂ is a k-isomorphism. First we consider the case M = kG.
Let α ∈ HomkG(kG, V ∗), hence

α(
∑

g∈G

agg) =
∑

g∈G

agα(g) =
∑

g∈G

agα(1)g = f
∑

g∈G

agg

where α(1) = f ∈ V ∗ and ag ∈ k for g ∈ G. If id denotes the identity in HomkG(kG, kG)
then

( ̂id ⊗kG f)(
∑

g∈G

kgg) = f
∑

g∈G

kgg = α(
∑

g∈G

kgg),

hence ̂id ⊗kG f = α. Thus the above map is an epimorphism, and therefore an isomorphism
since the dimensions of the spaces in (ii) are obviously equal for M = kG. Since any free
G-module is a direct sum of modules isomorphic kG the map ̂ is also an isomorphism if
M is a free module. Since a projective module is a direct summand of a free module and
since the isomorphisms are all compatible with taking direct summands the proof of (ii) is
complete.

Claim (iii) Homk(M,k) ∼= HomkG(M,kG) as H × G-bimodules:

Abstractly this follows by Frobenius reciprocity [9, Chapter VI, formula (8.7)] and the fact
that kG is a symmetric algebra. However, we need the isomorphism explicit. Let (·, ·) be
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the symmetrizing bilinear form making kG into a symmetric algebra. For all x, y ∈ kG the
value of (x, y) is the coefficient of 1 in xy ∈ kG (cf. e.g. [2, Theorem 62.1]). Then the map

HomkG(M,kG)
ρM−→ Homk(M,k)

f 7→ (m 7→ (f(m), 1))

is a k-linear. If ρM (f) = 0 we get

0 = (f(mx), 1) = (f(m)x, 1) = (f(m), x)

for all m ∈ M and all x ∈ kG. Since (·, ·) is non degenerate f(m) = 0 for all m ∈ M and
hence f = 0. Therefore ρM is injective.

Moreover, ρM is a morphism of H × G-bimodules. Indeed, for g ∈ G and h ∈ H, for
f ∈ HomkG(M,kG) and m ∈ M , we have

(ρM (hfg)) (m) = ((hfg)(m), 1) (definition of ρM )

= (g−1f(h−1m), 1) (H × G-bimodule structure of HomkG(M,kG))

= (1, g−1f(h−1m)) (since (·, ·) is symmetric)

= (g−1, f(h−1m)) (since (·, ·) is associative)

= (f(h−1m), g−1) (since (·, ·) is symmetric)

= (f(h−1m)g−1, 1) (since (·, ·) is associative)

= (f(h−1mg−1), 1) (f is kG-linear)

= ρM (f)(h−1mg−1) (definition of ρM )

= (h (ρM (f)) g) (m) (H × G-bimodule structure of Homk(M,k))

and so ρM (hfg) = h (ρM (f)) g which shows that ρM is H × G-linear.

The inverse isomorphism is given by sending ϕ ∈ Homk(M,k) to ΛM (ϕ) ∈ HomkG(M,kG)
defined by

ΛM (ϕ)(m) =
∑

x∈G

ϕ(mx−1)x

for m ∈ M : First note, that ΛM (ϕ) is G-linear since it is the trace under the G-action.
Furthermore,

((ρM ◦ ΛM )(ϕ)) (m) = (
∑

x∈G

ϕ(mx−1)x, 1)

=
∑

x∈G

ϕ(mx−1)(x, 1)

=
∑

x∈G

ϕ(mx−1)δx,1

= ϕ(m)

for m ∈ M and ϕ ∈ Homk(M,k) where δ denotes the Kronecker symbol. Thus, ρM is
surjective and ρ−1

M = ΛM is an isomorphism of H × G-bimodules.
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Since ΛM is H × G-linear, ΛM ⊗kG idV ∗ is well defined (cf. e.g. [2, Theorem 12.10]).
Summarizing (i), (ii) and (iii) we get explicit isomorphisms

M ⊗kG V
β⊗α
−→ M∗ ⊗kG V ∗

ΛM⊗idV ∗

−→ HomkG(M,kG) ⊗kG V ∗

d
−→ HomkG(M,V ∗)

Φ
−→ Homk(M ⊗kG V, k) = (M ⊗kG V )∗

as H-left modules.
We need to verify the formula given in the Proposition.

m ⊗ v
β⊗α
7→ β(m) ⊗kG α(v)

ΛM⊗id
7→

∑

g∈G

β(mg−1)g ⊗kG α(v)

=
∑

g∈G

β(mg−1) ⊗kG gα(v)

d
7→ m′ 7→


v′ 7→


∑

g∈G

gα(v)
(
β(mg−1)(m′)v′

)






= m′ 7→


v′ 7→


∑

g∈G

β(mg−1)(m′) · gα(v)(v′)







Φ
7→


(m′ ⊗ v′) 7→


∑

g∈G

β(mg−1)(m′) · α(v)(g−1v′)







This complets the proof.

The following is the translation of the isomorphism given in Proposition 3.3 in terms of
bilinear forms.

Corollary 3.4. Let M be an H × G-bimodule which is projective as a G-module. Suppose

that M carries a non-degenerate H ×G-invariant non-degenerate bilinear form b. Let V be

a G-left module with a non-degenerate G-invariant bilinear form B. Then, for m,m ′ ∈ M
and v, v′ ∈ V ,

B̃(m ⊗kG v,m′ ⊗kG v′) =
∑

g∈G

b(mg−1,m′)B(v, g−1v′)

defines a non-degenerate H-invariant bilinear form on M ⊗kG V .

Proof. By Lemma 3.2, the bilinear form b is associated to an H × G-isomorphism
β : M → M∗ via

b(m,m′) = β(m)m′

for m,m′ ∈ M . Similarly, B is associated to a G-isomorphism α : V → V ∗ via

B(v, v′) = α(v)v′

for v, v′ ∈ V . Proposition 3.3 shows that an isomorphism

Ψ : M ⊗kG V −→ (M ⊗kG V )∗
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is given by

(Ψ(m ⊗ v)) (m′ ⊗ v′) =
∑

g∈G β(mg−1)(m′) · α(v)(g−1v′)

=
∑

g∈G b(mg−1,m′)B(v, g−1v′).

Thus, by Lemma 3.2, the bilinear form B̃ defined on M ⊗kG V by

B̃(m ⊗kG v,m′ ⊗kG v′) =
∑

g∈G

b(mg−1,m′)B(v, g−1v′)

is non-degenerate and H-invariant.

Theorem 3.5. Let BG and BH be blocks for G and H respectively. Suppose that the H×G-

bimodule M = HMG defines a Morita equivalence between BG and BH and suppose that M
is self-dual. Then a BG-left module V is self-dual if and only if M ⊗kG V is a self-dual

BH -left module.

Proof. By Proposition 3.3, the functor M ⊗kG − maps self-dual G-modules to self-dual
H-modules.

On the other hand, HomkH(M,kH) becomes a G × H-bimodule via

(gαh)(m) = α(mg)h

for all g ∈ G, h ∈ H and α ∈ HomkH(M,kH). Then HomkH(M,kH) is the inverse Morita
bimodule to M and hence HomkH(M,kH) defines the inverse functor from the category of
BH -modules onto the category of BG-modules. In order to prove the only if part it is, by
Proposition 3.3, enough to show that the G × H-bimodule HomkH(M,kH) is self-dual as
well.

First note that
HomkH(M,kH) ∼= Homk(M,k) = G(M∗)H

as G×H-bimodules (by Claim (iii) in the proof of Proposition 3.3, changing left- and right
structures there). If we define a G × H-structure on M by setting

g ◦ m ◦ h = h−1mg−1

then the inverse of the given isomorphism HMG −→ HM∗

G defines an isomorphism from

G(M∗)H to M ∼= (G(M∗)H)∗ and we are done.

Example 2.3 shows that not all Morita bimodules do admit a non-degenerate invariant
bilinear form.

Remark 3.6. Given two Morita equivalences between two blocks BG and BH of group
algebras kG and kH, the composition of the one with the inverse of the other gives a Morita
self-equivalence of the block BG. Now, the isomorphism classes of Morita self-equivalences
of BG form the Picard group Pic(BG) which is isomorphic to the outer automorphism group
Out(BG) := Autk−alg(BG)/Inn(BG) where as usual Inn(BG) denotes the inner automor-
phisms of BG. Each α ∈ Autk−alg(BG) induces an equivalence by sending a module V to
αV , which is defined to be V as a k-vector space, but where the action of BG on αV is given
by

a • v = α(a)v

for a ∈ BG and v ∈ V . Since (αV )∗ ∼= α(V ∗) the automorphism α preserves the property of
self-duality on modules. Since BH ' EndBG

(M), whatever isomorphism is taken to identify
BH with EndBG

(M) the question whether a given module M⊗kGV carries a non degenerate
H-invariant bilinear form is independent of this choice.

There are Morita equivalences which are induced by self-dual bimodules.
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Example 3.7. Let G be a finite p-solvable group and let N = Op′(G). We put H = G/N
and

e =
1

|Op′(G)|

∑

g∈Op′(G)

g.

Clearly, e is the block idempotent of the principal block B0 of kG and ekG ∼= kG/N = kH as
H×G-bimodules where N obviously acts trivially on both sides. The bimodule HMG = ekG
is a Morita bimodule which induces an equivalence between the principal block of kG and
the group algebra kH. In fact

EndkG(ekG) ∼= ekGe ∼= kG/N = kH,

and obviously ekG is a progenerator of ekG = B0. Moreover, ekG ∼= (ekG)∗ as H × G-
bimodules since, by a well-known result on duality,

(ekG)∗ ∼= ēkG = ekG

where − denotes the anti-automorphism of kG defined by g → ḡ = g−1. Thus the equivalence
preserves self-duality, by Proposition 3.3. Clearly, this fact is obvious since N acts trivially
on all modules in B0.

4. Morita equivalence and forms in odd characteristic

Throughout this section let k be a field of odd characteristic (which includes the charac-
teristic 0 case as well). A G-module V is called of symmetric resp. antisymmetric type if V
carries a non-degenerate G-invariant symmetric resp. antisymmetric bilinear form.

Proposition 4.1. Let M be an H × G-bimodule inducing a Morita equivalence between a

kG-block BG and a kH-block BH . Suppose that M is of symmetric type. Let V be a self-dual

G-left module. If V is of symmetric resp. antisymmetric type then M ⊗kGV is of symmetric

resp. antisymmetric type.

Proof. Suppose b is a symmetric bilinear form and the bilinear form B is symmetric
resp. antisymmetric if V is of symmetric resp. antisymmetric type. With the notation of
Corollary 3.4, we have

B̃(m ⊗kG v,m′ ⊗kG v′) =
∑

g∈G b(mg−1,m′)B(v, g−1v′)

=
∑

g∈G b(m,m′g)B(gv, v′) (since b and B are G-invariant)

= ±
∑

g∈G b(m′g,m)B(v′, gv) (by symmetry of b and B)

= ±B̃(m′ ⊗kG v′,m ⊗kG v),

where the + sign appears for symmetric and the − sign for antisymmetric type modules V .

Example 4.2. We consider again Example 3.7. Note that the Morita module ekG is of
symmetric type. As a form one can take the standard non-degenerate G-invariant symmetric
form on kG defined by

b(g, g′) = δg,g′

for g, g′ ∈ G restricted to ekG. The restriction is indeed non-degenerate as one can check
easily. Thus Proposition 4.1 applies.

Now let V be a simple self-dual kG-module. Thus V carries a G-invariant non-degenerate
bilinear form. If k is algebraically closed then - up to scalars - there is exactly one non-
degenerate G-invariant form which is symmetric or antisymmetric since the characteristic is
odd ([4],Chap. VII, 8.12). Thus, for k algebraically closed, a simple self-dual G-module is
either of symmetric or antisymmetric type but not of both. In particular, the Morita module
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M = ekG in Example 4.2 is never of antisymmetric type since otherwise, by Proposition 4.1,
there are simple H-modules which are of symmetric and antisymmetric type. Indeed it is
well-known, that a group algebra kH ∼= ekG in odd characteristic never has a non-degenerate
H-invariant antisymmetric form.

Theorem 4.3. Let k be an algebraically closed field of odd characteristic. Let M be an

H ×G-bimodule inducing a Morita equivalence between a kG-block BG and a kH-block BH .

If M is of symmetric type then the equivalence preserves the type of simple self-dual modules.

Proof. This is an immediate consequence of Proposition 4.1.

Remark 4.4. Let k be an algebraically closed field of odd characteristic. By definition, a
Morita bimodule M = HMG is a projective kG-right and a projective kH-left module. If M
carries a non-degenerate H ×G-invariant symmetric form then a projective indecomposable
kG- resp. kH-module of antisymmetric type occurs with even multiplicity in M . Note that,
by ([12], Proposition 2.2), an indecomposable projective module is of antisymmetric type if
and only if its head is of antisymmetric type.

5. Morita equivalence and forms in even characteristic

In characteristic 2 the geometry of self-dual modules turns out to be more subtle. In this
case an alternating form is symmetric. By Fong’s Lemma ([4], Chap. VII, Theorem 8.13),
a simple non-trivial self-dual kG-module V always carries a non-degenerate G-invariant
symplectic form, but it may happen that V even has a non-degenerate G-invariant quadratic
form. This happens if H1(G,V ) = 0 ([11], Proposition 2.4) and a connecting homomorphism
to the first cohomology group carries the essential information what really happens. We call
an arbitrary module V ∼= V ∗ of quadratic type if it carries a non-degenerate G-invariant
quadratic form, say Q. The corresponding G-invariant non-degenerate symplectic form B
defined by

B(v, v′) = Q(v + v′) − Q(v) − Q(v′)

for v, v′ ∈ V is called the polarization of Q. Note that the quadratic form Q is non-degenerate
if

radQ := {v | v ∈ radB, Q(v) = 0} = 0.

Throughout the following k is assumed to be a perfect field of characteristic 2. The next
Lemma can be found as Proposition 2.2 in [3].

Lemma 5.1. Let P be a projective kG-module not containing the projective cover of the

trivial module. Then each G-invariant symmetric form on P is the polarization of a G-

invariant quadratic form on P .

If the Morita module M defines an equivalence and if M is of symmetric type then it
preserves projective modules of quadratic type, more precisely

Theorem 5.2. Let M be an H ×G-bimodule inducing a Morita equivalence between a kG-

block BG and a kH-block BH . If M is of symmetric type then the equivalence preserves the

property ”being of quadratic type” on projective modules.

Proof. Let P be a projective kG-module of quadratic type. Then P is an orthogonal sum
of orthogonal indecomosable modules. By ([12], Lemma 3.6), an orthogonal indecomposable
module is either indecomposable or of the form S ⊕ S∗ where S is indecomposable. Since

(M ⊗kG (S ⊕ S∗))∗ ∼= M∗ ⊗kG (S ⊕ S∗)∗ ∼= M ⊗kG (S ⊕ S∗)

by Claim (i), (ii) and (iii) in the proof of Proposition 3.3 we need to prove the Theorem
only for orthogonal indecomposable projective modules.
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So let P be an orthogonal indecomposable projective kG-module in BG of quadratic type.
Thus P carries a non-degenerate G-invariant symplectic form B which is also symmetric.
According to Corollary 3.4 the form B̃ defined by

B̃(m ⊗kG p,m′ ⊗kG p′) =
∑

g∈G

b(mg−1,m′)B(p, g−1p′)

for m,m′ ∈ M and p, p′ ∈ P is a non-degenerate H-invariant bilinear form on M ⊗kG P .
Since b and B are symmetric the form B̃ is symmetric as well. Thus, if the projective module
M ⊗kG P does not contain the projective cover of the trivial kH-module, say PH(1), then
M ⊗kG P is of quadratic type, by Lemma 5.1. In case it contains PH(1) it is either PH(1)
or a direct sum of two copies of PH(1). But, by ([12], Remark 3.5 (b)), PH(1) and hence
any finite direct sum of it is always of quadratic type if 2 | |H|. In case 2 - |H| the trivial
module k is projective and obviously of quadratic type. This completes the proof.

At the moment we are not able to prove an analogue of Theorem 5.2 for simple self-dual
modules with the methods we have developed so far. However, it can be shown that a
Morita equivalence between two principal 2-blocks which sends the trivial module to the
trivial one preserves on simple modules the property ”being of quadratic type” or not. This
is a consequence of the theory of polynomial endo-functors of module categories of group
rings.
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Faculté de Mathématiques et LAMFA (UMR 6140 du CNRS),
33 rue St Leu,
F-80039 Amiens Cedex 1,
France

E-mail address: alexander.zimmermann@u-picardie.fr


