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Abstract

Using the result of Roggenkamp and Scott [33] that the p-adic group ring
of a p-group determines its group bases we prove that for a p–group G, the de-
rived equivalence class of the group ring over the p-adic integers determines the
group basis up to isomorphism. We furthermore prove that two Green orders
[30] are isomorphic if they are ’of the same type’. These two results represent
results that arose in collaboration with Klaus W. Roggenkamp. We give a sur-
vey on the classification of the set of tilting complexes over a hereditary order
over a complete discrete rank 1 valuation domain. The section on hereditary
orders reports on joint work with Steffen König [17]. The last section gives a
definition and first properties of Picard groups of derived module categories
of orders. This section represents joint work with Raphaël Rouquier.

1 Introduction

Derived categories arose first in algebraic geometry in the early 60’s and proved there
to be a powerful tool. Inspired by the work of D. Happel [8] and Cline, Parshall,
Scott [3] J. Rickard proved in 1989 a Morita theorem for derived categories [23, 25].
He proved that the derived categories of any two rings are equivalent if and only
if there is a so called tilting complex over one of the rings, the other one is the
endomorphism ring of.

In Section 2 we explain some of the technicalities in the definitions concerning
derived module categories and equivalences between them in more detail.
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We apply in the present paper the theory of J. Rickard to various sorts of prob-
lems. In Section 3 we discuss derived equivalences of Green orders. Green orders
are defined by K. W. Roggenkamp to clarify the structure of blocks of p-adic group
rings of cyclic defect [30]. They generalize in a sense Brauer tree algebras since for
every ordinary Brauer tree algebra there is a Green order which reduces modulo
the radical of the base ring to this Brauer tree algebra. Green orders are as well
associated to trees, though they have additional datas associated to each vertex,
not only to one exceptional vertex. We prove that two Green orders are derived
equivalent if they share the same set of data.

In Section 4 we give a summary of joint work with Steffen König on derived
equivalences of hereditary orders. Analogous to the situation in the representation
theory of algebras we say that an order is a hereditary order if it is an order whose
ideals are projective. Their structure is clarified by [2, 9] (see [22]) and we shall use
this knowledge to describe over a complete discrete rank 1 valuation domain R for a
given hereditary R–order Λ all derived equivalences, all tilting complexes and their
endomorphism rings in a purely combinatorial manner. The result gives an example
for two R–algebras Λ and Γ which are derived equivalent, but R/rad R ⊗R Λ is
not derived equivalent to R/rad R⊗R Γ, though Λ is an R–order. If also Γ was an
R–order, then the theorem of J. Rickard [25] would establish a derived equivalence
between R/rad R⊗R Λ and R/rad R ⊗R Γ.

In Section 5 we discuss derived equivalences of local orders. We prove there that
derived equivalences of local orders are nothing else than Morita equivalences. As
a consequence we see by the theorem of K. W. Roggenkamp and L. L. Scott [33]
that if two group rings of p-groups over the p-adic integers are derived equivalent,
then the two groups are already isomorphic. The converse is obvious.

Section 6 is devoted to define Picard groups for derived module categories of
orders. The derived equivalences of standard type between R–algebras Λ and Γ
are introduced in [25], R being a commutative ring. We shall elaborate on derived
equivalences of standard type with Λ = Γ in case of an R–order Λ. We give in
Section 6 the definition and some of the properties. We also look at examples mainly
where this newly defined Picard group of derived module categories gives nothing
new in addition to the theory of A. Fröhlich on Picard groups for module categories
of orders.

Our interest in derived module categories of orders arose with the far reaching
conjectures of M. Broué. M. Broué observed a very close connection between the
modular character theory of blocks with abelian defect group and their Brauer cor-
respondent. He suspected that this connection is just the observable surface of a
much deeper and more structural connection between Brauer corresponding blocks.
He conjectured in [1] that if G is a finite group and k an algebraically closed field of
characteristic p, if, furthermore, B is a block of kG with abelian defect group D and
if b is the Brauer correspondent of B in kNG(D), the group ring of the normalizer
of the defect group, then B and b are derived equivalent.

J. Rickard proved in [24] that Brauer tree algebras over an algebraically closed
field of characteristic p > 0 are derived equivalent to each other if and only if
they share the same number of edges and the multiplicity of the exceptional vertex
of their defining Brauer tree. In [18] M. Linckelmann generalized the result of J.
Rickard to blocks of cyclic defect of group rings over a complete discrete valuation
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domain R of characteristic 0 and algebraically closed residue field of characteristic
p > 0. The tilting complexes, M. Linckelmann used, reduce to those, J. Rickard
introduced, when they are taken modulo the radical of R. R. Rouquier constructed
the twosided tilting complexes out of a stable equivalence of Morita type [34]. This
is an equivalence of stable module categories which is induced by tensoring with
a bimodule. As is known, a derived equivalence induces a stable equivalence à la
Morita [25, 16].

We are, hence, generalizing in Section 3 the results of M. Linckelmann [18] since
cyclic blocks of p-adic group rings are Green orders and since for each generalized
Brauer tree algebra there is a Green order reducing modulo the radical of the ground
ring to that generalized Brauer tree algebra.

Our result on Green orders should be seen as an extension of M. Linckelmann’s
work on Broué’s conjecture for integral cyclic blocks, especially without the assump-
tion of the residue field being algebraically closed or large enough.

We finish the introduction by emphasising that the Sections 3 and 5 represent
joint work with Klaus W. Roggenkamp, Section 4 reports on joint work with Steffen
König and Section 6 reports on joint work with Raphaël Rouquier.

Acknowledgement: Part of the work in the last section was done while the author
was guest at the École Normale Supérieure and the author wants to express his
thanks to the members of the ”Équipe des Groupes Finis“ for their warm hospitality
during his stay.

2 Preliminaries

For defining the derived category we use the notation of [37]. Let Λ be a ring. A
complex is a pair (C, d) where C is a Z–graded Λ–module and d is a Z–graded
endomorphism of C homogeneous of degree 1 with d · d = 0. A complex of finitely
generated modules is a complex such that the homogeneous components are finitely
generated modules. Objects in the various categories below are always complexes
satisfying additional constraints, as described below. Morphisms are complex mor-
phisms modulo homotopy. A complex is called finitely generated if its underlying
graded module is finitely generated.

• Db(Λ): The objects of the derived category are complexes of finitely generated
projective Λ–modules, such that only finitely many homogeneous components
of positive degree are not zero and the total homology is a finitely generated
Λ–module.

• Kb(Λ): The objects of the homotopy category are finitely generated complexes
of finitely generated projective Λ–modules.

Obviously, Kb(Λ) is a full subcategory of Db(Λ). The category of finitely generated
Λ–modules embeds into Db(Λ) by choosing for each module a fixed projective reso-
lution, which then can represent the module in Db(Λ). The definition of a projective
resolution of a bounded complex is more technical and we refer for a definition to
[10]. Db(Λ) as well as Kb(Λ) are not necessarily exact categories. They, however,
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carry another structure, they are triangulated. For each X and Y in Db(Λ) and
each mapping α ∈ HomDb(Λ)(X,Y ), we associate the mapping cone

C(α) := (X [1] ⊕ Y,

(

−dX α
0 dY

)

),

where X [1] differs from X by a shift by +1 in the graduation. There is a natural
mapping homogeneous of degree 0 from Y to C(α) and a natural mapping homo-
geneous of degree 1 from C(α) to X . The triangulated structure is preserved by a
functor F if and only if C(F (α)) ' F (C(α)), with the isomorphism being natural
in the obvious way.

For the tensor product there is the so called left derived tensor product functor
extending the usual tensor product. This is quite technical and we refer to [10]
for the definition and the most fundamental properties. However, we shall use this
functor −⊗L

Λ − frequently.

Following J. Rickard’s fundamental paper [23] we call two rings Λ and Γ derived
equivalent if there is a complex T , bounded above and bounded below, of finitely
generated projective Λ–modules such that

1. each endomorphism of T homogeneous of degree n is homotopic to 0 if n 6= 0
and the endomorphism ring of T of complex morphisms homogeneous of degree
0 modulo homotopy is isomorphic to Γ,

2. and, furthermore, the smallest triangulated category generated by direct sum-
mands of finite sums of T inside the category of bounded complexes of pro-
jective Λ–modules modulo homotopy contains Λ as complex concentrated in
degree 0.

T is then called a tilting complex from Λ to Γ.

J. Rickard proved in [23] that the categories Db(Λ) and Db(Γ) are equivalent as
triangulated categories if and only if there is a tilting complex T from Λ to Γ.

In [25], J. Rickard proved that if Λ and Γ are derived equivalent R–orders, R
being an integral domain, then there is a so called twosided tilting complex X of
Λ–Γ–bimodules, such that X as complex of Λ–modules is a tilting complex from Λ
to Γ and X as complex of Γ–modules is a tilting complex from Γ to Λ, and there is
a complex Y of Γ–Λ–bimodules, such that

X ⊗Γ Y ' Λ in Db(Λ ⊗R Λop),

and

Y ⊗Λ X ' Γ in Db(Γ ⊗R Γop).

Here, for a ring A, the ring Aop is the opposite ring. The functor

X ⊗L
Γ − : Db(Γ) −→ Db(Λ)

induces an equivalence with quasi-inverse Y ⊗L
Λ −.
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3 Green–orders

This section represents results of joint work with Klaus Roggenkamp.
In this section we give a sufficient criterion for Green–orders (cf. [30]) to be

derived equivalent. The tilting complex is explicitly constructable and the method
is entirely combinatorial.

In [30] a Green order is defined to clarify the structure of blocks of integral
group rings with cyclic defect. For the reader’s convenience we include the definition.
Earlier, Wilhelm Plesken obtained results in this direction in his Habilitationsschrift
[21].

Following [30] we define a Green–order Λ as the following.

Definition 1 Let R be a Dedekind domain with field of fractions K.

1. An R–order Λ is called an isotypic order provided there is a twosided Λ–ideal
J with

(a) J contains a K–basis of KΛ,

(b) J is a projective left Λ–module,

(c) Λ/J is a direct product of local R–algebras,

(d) J is nilpotent modulo the Higman ideal1 of Λ.

2. An R–order Λ is called a Green order if

(a) there exists a finite connected tree T with vertices {vi}i=1,...n and edges
ei,j numbered in such a way that edges with numbers ei,j connect the
vertices vi and vj .

(b) A vertex corresponds to a central idempotent ηi ofKΛ with ηi·(
∑n

j=1 ηj) =

ηi and
∑n

i=1 ηi = 1.

(c) The edges correspond to indecomposable projective Λ–lattices Pi,j .

(d) There is an embedding of the tree in the plane such that the projective
resolution of ηi0Pi0 ,j0 is given by Green’s walk around the Brauer tree T
[6].

Here the walk around the Brauer tree is defined formally as follows. To each
vertex of the graph there is an ordering of the edges incident to the vertex by
saying that the orientation is counterclockwise, say, which means that the edge e
which comes before another edge f , both incident to the vertex v in the clockwise
orientation of the embedding in the plane, the edge e is larger than f at v. Take
now M := ηi0Pi0,j0 as in the definition. A projective resolution is then a complex
with homology concentrated in degree 0 and projective entries all of which are
zero in positive degrees. The first projective in the projective resolution is Pi0,j0 .
The second is given by the ordering at the vertex j0. Take the largest edge which
is smaller and not equal to j0. This is associated to the projective Pj0,j1 and is
obtained by going counterclockwise around the vertex j0. In degree -1 we hence

1The Higman ideal of an R–order Γ is the R–annihilator of Ext1
Λ⊗RΛop(Λ,−) [32].
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write Pj0 ,j1 . The mapping between Pi0,j0 and Pj0,j1 is the maximal one. As next
projective we take the edge which is the largest one incident to j1 which is smaller
than Pj0 ,j1 but not equal to it, take the projective associated to it, write it in degree
−2 and proceed this way. Proceeding this way we get a complex of projective
modules. The resulting complex is required to have homology M in degree 0 and
homology 0 elsewhere.

It is shown in [30] that an indecomposable isotypic order is Morita equivalent to
an order with the following structure:

Assume first that Λ is a basic isotypic order. Let Ω be the endomorphism ring of
an irreducible Λ–module. Let m be the cardinality of a complete set of orthogonal
idempotents in KΛ. Then there is an element ω ∈ Ω such that J is a principal ideal,
generated by γ and γm = ω · 1m×m. Then,

Λ = (ω · Ω)m×m + UT (Ω,m),

where we denote for any ring Γ by UT (Γ,m) the upper triangular m ×m matrix
with entries in Γ. The integer m is called the size of the isotypic order. The pair
(Ω, ω) is called the type of the isotypic order.

A Green order is built in the following way. We fix orders Ωi in skewfields Di,
regular elements ωi ∈ Ωi, one for each vertex and isomorphisms fi,j : Ωi/ωi −→
Ωj/ωj , one for each edge. We abbreviate

Ω := Ω1/(ω1Ω1).

Then, we put at each vertex an isotypic order Λi of type (Ωi, ωi) and size ’number
of vertices adjacent to the vertex vi’. We identify the diagonal entries of Λi and
Λj according to the following rule: We fix a walk around the Brauer tree. If a
vertex vi is passed for the kth

i time, and the walk then turns to the vertex vj going
one step further, the order Λj is hit for the kth

j time, then the kth
i entry of Λi is

identified modulo ωi with the kth
j entry of Λj modulo ωj via fi,j . In [30] Klaus W.

Roggenkamp proved that this is a Green order and every Green order arises this
way.

This section is devoted to prove the

Theorem 1 Two Green orders are derived equivalent if the following data coincide:

1. The number of vertices,

2. the set2 of pairs (Ωi, ωi) and

3. the mappings Ωi −→ Ω.

3.1 The tools

We begin with an almost trivial lemmata.

Let P and Q be non isomorphic indecomposable projective lattices. Let P
φ

−→ Q

be a homomorphism. An endomorphism of complexes (α, β) of P
φ

−→ Q induces
morphisms (ρ, σ, τ) ∈ End(kerφ) ⊕End(imφ) ⊕End(cokerφ).

2we count multiply occuring elements



Derived Equivalences of Orders 7

Lemma 1 Let Λ be an order and let P and Q be indecomposable projective modules.
With the above notation, if τ = 0, then (α, β) is homotopic to (α′, 0). If ρ = 0 and
τ = 0 then (α, β) is homotopic to 0.

Proof: Since τ = 0, the morphism β factors through imφ, which is an irreducible
sublattice of Q. But, P −→ imφ is an epimorphism, and hence, β even factors
through P . This gives a homotopy annihilating β. We even showed more: The
factoring annihilates σ, leaving ρ and τ untouched. This proves the lemma.

Proposition 1 Let Λ be a Green order, with data (Ωi, ωi)i=1,..,n, n ∈ IN and fixed
isomorphisms Ωi/(ωiΩi) ' Ω1/(ω1Ω1) for i = 1, ..., n, associated with the following
tree. (We walk around the tree counterclockwise.)

. . .

U
...

L

...

R
.
..

.

..

. . .

. . .

. . .

. . .

Ω1 Ω2 Ω3

Then, the Green order Λ is derived equivalent to the Green order Γ which shares
the data (Ωi, ωi)i=1,..,n, n ∈ IN and the fixed isomorphisms Ωi/(ωiΩi) ' Ω1/(ω1Ω1)
for i = 1, ..., n with Λ and which has the Brauer tree

. . .

L
...

R

...

U
..
.

..

.

. . .

. . .

. . .

. . .

Ω3 Ω1 Ω2

Proof of the Proposition 1.
We denote the indecomposable projective Λ module linking Ω1 with Ω2 by P and

the indecomposable projective Λ module linking Ω2 with Ω3 by Q. For the notation
of a path in a graph we understand that as usually there is only one path between
two edges.
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We denote by ki + 1 the number of vertices adjacent to the vertex with label Ωi

with i = 1, 2, 3. The order Λ then is Morita equivalent to the following:

(

L (Ω1)
k1

((ω1)
k1)tr Ω1

)





U (Ω2)
k2−1 (Ω2)

k2

((ω2)
k2−1)tr Ω2 Ω2

((ω2)
k2)tr ω2 Ω2





(

Ω3 ((Ω3)
k3)tr

(ω3)
k3 R

)

...
...

...
...

. . . . . .. . . . . .

...
...

...
...

Here, the dots indicate that there are a number of other matrix rings following
always linked with these lines which indicate the pullback of the orders Ωi and Ωj

along the fixed isomorphism fi,j of Ωi/(ωiΩi) to Ωj/(ωjΩj).
We see that

P =

(

(Ω1)
k1

Ω1

)





(Ω2)
k2−1

Ω2

ω2





and

Q =





(Ω2)
k2−1

Ω2

Ω2





(

Ω3

(ω3)
k3

)

We form

L := { vertices i| the path from i to Ω2 passes Ω1} \ {Ω1},

R := { vertices i| the path from i to Ω2 passes Ω3} \ {Ω3}

and

U := { vertices i| the path from i to Ω2 passes neither Ω1 nor Ω3} \ {Ω2}.
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R :=
⊕

(
Π indecomposable projective

involving vertices in R )

Π,

L :=
⊕

(
Π indecomposable projective

involving vertices in L )

Π

and

U :=
⊕

(
Π indecomposable projective

involving vertices in U )

Π

Definition of the tilting complex: Let

X := (0 −→ U ⊕ L⊕ P ⊕ P −→ Q⊕R −→ 0)

with U ⊕P ⊕P ⊕L in degree 0, Q⊕R in degree 1 and the mapping is the maximal
one between the second copy of P and Q and zero between the other indecomposable
projectives.

Proof that this defines a tilting complex: Each homomorphism from a sum-
mand of U to Q factorizes through P as is seen from the matrix representation of
Λ. Each homomorphism from Q to U ⊕ P which has to be zero, if composed with
the maximal mapping P −→ Q, has to be zero since all homomorphisms are settled
rationally in the same simple algebra. There are no non zero mappings between L
and Q⊕R, since they do not share a rational component. By the same reason there
is no non zero mapping between U and L⊕ R as well as between P and R. Each
homomorphism from P to Q has to factor via the maximal mapping P −→ Q, by
definition.

Forming the mapping cone of the mapping

(0 −→ P −→ Q −→ 0) −→ (0 −→ P −→ 0 −→ 0),

which consists of the identity mapping in degree 0 and zero elsewhere, we get as
mapping cone Q, such that decomposing the complex X into direct summands, we
get that

P ⊕Q⊕ L⊕R⊕ U ' Λ

belongs to the smallest triangulated category which contains all summands of X .

Hence, X forms a tilting complex over Λ.

The endomorphism ring of the tilting complex: We have to compute the
endomorphism ring of X . We abbreviate by K := (0 −→ P −→ Q −→ 0) with the
maximal mapping in between and HomKb(PΛ)(−,−) = (−,−).
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End(X) =













(U,U) (U, P ) (U,L) (U,K) (U,R[1])
(P,U) (P, P ) (P,L) (P,K) (P,R[1])
(L,U) (L, P ) (L,L) (L,K) (L,R[1])
(K,U) (K,P ) (K,L) (K,K) (K,R[1])

(R[1], U) (R[1], P ) (R[1], L) (R[1],K) (R[1], R[1])













Let us examine the various sets of homomorphisms.
By different degrees

(U,R[1]) = (L,R[1]) = (P,R[1]) = (R[1], P ) = (R[1], L) = (R[1], U) = 0.

By the matrix representation one sees that

(U,L) = (L,U) = 0.

Since (P,R) = 0, we see that (K,R[1]) = (Q,R). Similarly, (R,P ) = 0 implies
(R[1],K) = (R,Q). Analogously,

(L,K) = (L, P ) and (K,L) = (P,L),

Obviously,

(P,K) = (P, ker(P −→ Q)) and (K,P ) = (P, P )/((P,Q) ◦ (Q,P )).

Now, (U,K) = (U, ker(P −→ Q)) = 0, since the modules belong to different rational
components, and (K,U) = 0, since every morphism from P to U factorizes through
Q, as one sees by the matrix representation.

We abbreviate

ker(P −→ Q) =: κP,Q and (P,Q) ◦ (Q,P ) =: ΦP,Q.

Recall that we denote by k1 + 1 the number of vertices adjacent to Ω1 and by
k3 + 1 the number of vertices adjacent to Ω3. The endomorphism ring now is

End(X) '













(U,U) (U, P ) 0 0 0
(P,U) (P, P ) (P,L) (P, κP,Q) 0

0 (L, P ) (L,L) (L, P ) 0
0 (P, P )/(ΦP,Q) (P,L) (K,K) (Q,R)
0 0 0 (R,Q) (R,R)













We now use the special structure of a Green order and see that

(P, P )/ΦP,Q = Ω1 as well as (P, κP,Q) = ω1 · Ω1.

Furthermore, denoting by k2 + 2 the number of vertices adjacent to Ω2,

(P,U) = (Ωk2

2 )tr and (U, P ) = (ω2 · Ω2)
k2 .
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The endomorphism ring of P is a pullback

(P, P ) −→ Ω1

↓ ↓
Ω2 −→ Ω

which we abbreviate as usual as Ω1 − Ω2. We look at the endomorphism ring of
K more closely. The endomorphism ring as complex is just Ω1 − Ω2 − Ω3 and we
factor the middle term by Lemma 1. Thus,

(K,K) = Ω1 − Ω3.

The equations

(L, P ) = Ωk1

1 , ((P,L) = (ω1 · Ω1)
k1)tr, (R,Q) = (ω3 · Ω3)

k3 , (Q,R) = (Ωk3

3 )tr

are also immediate from the description of Λ as above.
Now,

End(X) '













(U,U) (ω2 · Ω2)
k2 0 0 0

(Ωk2

2 )tr Ω2 − Ω1 ((Ω1)
k1)tr (ω1 · Ω1) 0

0 Ωk1

1 (L,L) (Ω1)
k1 0

0 Ω1 (ω1 · Ω
k1

1 )tr Ω1 − Ω3 (Ωk3

3 )tr

0 0 0 (ω3 · Ω3)
k3 (R,R)













This results then is a Green order which looks like the following:

(

Ω2 (Ω2)
k2−1

((ω2)
k2−1)tr (U,U)

)





Ω1 ((ω1)
k1)tr ω1

(Ω1)
k1 (L,L) (Ω1)

k1

Ω1 (ωk1

1 )tr Ω1





(

Ω3 ((Ω3)
k3 )tr

(ω3)
k3 (R,R)

)

. . . . . .. . . . . .

. . . . . .. . . . . .

...
...

...
...

In the three by three matrix ring we change second and the last row and column
and then the first and the last row and column. In the matrix ring corresponding
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to the vertex where Ω2 is attached to, we conjugate by a suitable power of

















0 1 0 . . . 0
...

. . .
. . .

...
...

. . .
. . . 0

0 . . . . . . 0 1
ω2 0 . . . . . . 0

















and in the matrix where Ω1 is attached to we conjugate by

















0 1 0 . . . 0
...

. . .
. . .

...
...

. . .
. . . 0

0 . . . . . . 0 1
ω1 0 . . . . . . 0

















and we get the following Greenorder:

(

(U,U) (Ω2)
k2

((ω2)
k2)tr Ω2

)





Ω1 ((Ω1)
k1)tr Ω1

(ω1)
k1 (L,L) (Ω1)

k1

ω1 (ωk1

1 )tr Ω1





(

Ω3 ((Ω3)
k3)tr

(ω3)
k3 (R,R)

)

. . . . . .
. . . . . .

. . . . . .. . . . . .

...
...

...
...

which is Morita equivalent to the one we claimed it to be.

3.2 The theorem and its proof

Recall the theorem.

Theorem 1 Two Green orders are derived equivalent if the following data coincide:

1. The number of vertices,

2. the pairs (Ωi, ωi) and
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3. the mappings Ωi −→ Ω.

This result generalizes the result [18] of Linckelmann considerably since we cover
all Green orders and we do not need the ground ring to have an algebraically closed
residue field.

The proof illuminates the derived equivalence given in [18] and shows how to get
a tilting complex since it is entirely constructive and combinatorical. This is the case
since if Λ1 is a Green order and T1 is a tilting complex over Λ1 with endomorphism
ring a Green order Λ2 and if T2 is a tilting complex over Λ2 with endomorphism ring
a Green order Λ3, it is not so difficult, using certain mapping cone constructions,
to obtain a tilting complex T3 over Λ1 with endomorphism ring Λ3.

The proposition hence gives an inductive procedure to obtain a tilting complex
over a Green order Λ which has endomorphism ring Γ if Λ and Γ share the same
data, in other words fit into the framework of the theorem.

The theorem also implies part of the result of F. Membrillo–Hernandez [20],
since the ramification index of Ωi over R gives the multiplicity of the corresponding
exceptional vertex, if one reduces modulo the radical of the ground ring.

Proof of the theorem:

We reduce the number of vertices of valencity3 greater than two in the tree.

1) Choose any leaf in the tree. From that leaf walk along the Brauer tree walk
until one encounters a vertex with multiplicity greater than two. The indecomposable
projective just before is P , the indecomposable projective attached to the vertex
immediately after P is Q. L,R and U are now defined, using the notation in our
tilting complex X in the proof of the proposition. We are in the following situation:

. . .

U
...

...

R. . .
...

. . .

. . .

P Q

2) The endomorphism ring of this tilting complex is a Green order with one edge
less on the line which starts from the leaf we started from. Its graph looks as the
following:

3The valencity of a vertex in a Green order is the number of edges which are adjacent to the
vertex
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. . .

U
..
.

..

.

R. . .
...

. . .

. . .

Since the number of edges is an invariant under derived equivalences, we obtain
by induction a stem using the inverse of that equivalence.

3) We are left to show that for a stem we can permute the various (Ωi, ωi). In
fact this can be done by the tilting complex above.

We are given the following stem:

. . . . . .Ω1 Ω2 Ω3 Ωi−2 Ωi−1 Ωi Ωi+1 Ωn−2 Ωn−1 Ωn

In our procedure we may choose for P the indecomposable projective linking Ω1

and Ω2 and for Q the indecomposable projective linking Ω2 and Ω3. The result is
a stem with Ω1 and Ω2 interchanged, hence, the permutation (1, 2) as element of
the symmetric group Sn of degree n acting in the obvious way on our stem. By
symmetry, we also get (n− 1, n).

Let P be the indecomposable projective linking the vertices i− 1 and i and let
Q be the indecomposable projective linking i and i + 1. The procedure tilts then
the above order to the order Λ̃ associated to the tree

. . . . . .Ω1 Ω2 Ω3 Ωi−2

Ωi−1

Ωi

Ωi+1 Ωn−2 Ωn−1 Ωn

We choose now, in Λ̃, as P the projective indecomposable linking Ωi with Ωi−1

and as Q the projective indecomposable linking Ωi−2 and Ωi−1.
The result is a Green order, again denoted by Λ̃ to the tree
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. . . . . .Ω1 Ω2 Ω3 Ωi−2 Ωi Ωi−1 Ωi+1 Ωn−2 Ωn−1 Ωn

This enables us to interchange Ωi−1 and Ωi. Hence, we get the involutions
(i− 1, i) of Sn for all i ∈ {3, ..., n− 1}.

Since we can obtain now the involutions (i, i + 1) for all i ∈ {1, .., n − 1}, the
involutions obtained so far generate the symmetric group of degree n.

4 Hereditary orders

This section is a summary on joint work with Steffen König.

The paper [17] describes all tilting complexes over hereditary R–orders Λ com-
binatorially with R being a complete discrete rank 1 valuation domain. There we
then compute their endomorphism rings using that knowledge. Let us begin with
some observations on hereditary orders and hereditary rings.

Lemma 2 Let Λ be a hereditary ring. Then, each bounded, indecomposable complex
of finitely generated projective Λ–modules is isomorphic in Db(Λ) to a module.

Proof.

Let X be a bounded, indecomposable complex of finitely generated projective
modules. The largest degree with non zero homology is n, say, and let P be an
indecomposable summand of Xn, the degree n homogeneous part of X . Then,
dn : Xn−1 −→ Xn is the differential. dn(d−1

n (P )) =: U , may be assumed to be a
proper submodule of P . U is projective. Since Xn−1 is projective, U is isomorphic
by a mapping φ to a direct summand V of Xn−1, and dn restricted to V is an

isomorphism (with inverse φ) to U . We claim that 0 −→ U
ι

−→ P −→ 0 with P
being in degree n, and with ι being the natural embedding, is a direct summand
of X . We map P to Xn by its natural mapping σ and U is isomorphic to V , a
summand of Xn−1. By Definition,

ισ = φdn

and, denoting by πσ the splitting of σ,

φ−1ι = dnπσ .

Furthermore, dn−1φ
−1 = 0, since ker dn ∩ V = 0.

Throughout this section let R be a complete discrete rank 1 valuation domain
with field of fractions K, residue field k and prime ideal p. It is well known (cf.
[2, 9, 22]) that any indecomposable hereditary R–order Λ is Morita equivalent to
one described below. There is a division ring D, finite dimensional over K, such
that for the maximal order ∆ in D and a prime element πD of ∆ the hereditary
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order is Morita equivalent to one of the following form.

Λ =



















∆ . . . . . . . . . ∆

(πD)
. . .

...
...

. . .
. . .

...
...

. . .
. . .

...
(πD) . . . . . . (πD) ∆



















n×n

.

Here we denote by (πD) the ∆–ideal generated by πD.
Taking left modules, the isomorphism classes of indecomposable projective Λ–

lattices are numbered P (i) (where i ∈ Z/nZ) in such a way that rad(P (i + 1)) '
P (i). Thus, P (i) may and will be chosen as the i–th column in the above matrix.

Let T : 0 −→ P (k) −→ P (m) −→ 0 be an indecomposable direct summand of a
tilting complex, with homology in degree i, say. Let

0 −→ P (k) −→ P (m) −→ 0
↓ ↓

0 −→ 0 −→ H i(M) −→ 0

be the natural projection, which is by Lemma 2 an isomorphism in Db(Λ).
Let T be as above. The differential P (k) −→ P (m) is realized by an element

a ∈ ∆ by the structure of Λ as described above. We denote the valuation on D again
by v. We claim that the valuation of a is the minimum of {v(b)|P (k) · b ≤ P (m)}.
In fact, if v(a) 6= min{v(b)| ∃ b ∈ D : P (k) · b ≤ P (m)}, then let b0 be an element
with minimal valuation. We get a non trivial mapping

0 −→ 0 −→ P (k) −→ P (m) −→ 0
↓ ↓ ·b0 ↓

0 −→ P (k) −→ P (m) −→ 0 −→ 0

which is not homotopic to zero.

Corollary 1 An indecomposable summand of a tilting complex T is determined up
to isomorphism by a triple (P,Q, i) of projective indecomposable modules (P might
be 0 there) and a degree i where the homology is concentrated on.

Definition 2 An interval (i+ nZ, j + nZ) with i, j ∈ Z is the smallest non empty
image of intervals (i + nz1, j + nz2) with z1, z2 ∈ Z under the natural projection
Z −→ Z/nZ. That means

(i+ nZ, j + nZ) := {k|∃d ∈ Z : i < k < j + dn,
(j − i)

n
< d ≤ 1 +

(j − i)

n
}.

With the natural identification we use that notation for intervals of projective
modules: For i, j ∈ Z/nZ, (P (i), P (j)) := (i, j). We, furthermore, denote by
[i, j] := (i, j) ∪ {i, j} and [P (i), P (j)] := [i, j].

According to this definition an interval (P (i), P (j)) is never empty.
To formulate our results we need to define two more objects:
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Definition 3 The set TC contains the equivalence classes of the multiplicity free
tilting complexes over Λ modulo isomorphisms and modulo shift in the derived
category Db(Λ −mod).

Fix a circle in the plane and n different vertices on the circle, numbered clockwise
by 1, . . . , n, identified in the natural way with elements of Z/nZ.

Definition 4 The elements of the set C are quadruples (n1, n2,M1,M2) satisfying
the following conditions:

(a) Both n1 and n2 are integers, n1 is positive, n2 is non–negative and the sum
n1 + n2 equals n (the size of the hereditary order),

(b) the set M1 contains n1 of the fixed vertices (which in the following will be called
’stars’),

(c) the set M2 contains n2 ordered pairs (i, j) of fixed vertices (which in the fol-
lowing will be seen as ’arrows’ going from i to j and which will be written
i −→ j),

(d) (0) there is a star at the vertex 1; if i is the starting vertex of an arrow ending
at 1 and j is the ending vertex of an arrow starting at 1, then the intervals
(1, j] and [i, 1) have empty intersection,

(I) two different arrows (drawn as straight lines) do not intersect in interior
points of the circle,

(II) viewing the union of the arrows as an (non oriented) graph, it is the
disjoint union of n1 trees, each of them containing exactly one vertex
contained in M1,

(III) if there is an arrow leading from i to j, then there is no star strictly
between i and j.

Theorem 2 [17] There is a bijection between the sets TC and C.

We shall elaborate more on this bijection in a moment. It turns out that this
bijection is very explicit.

Using the rules (0) to (III) it turns out to be convenient to introduce the notation
of a cascade of fans.

A fan is attached to an arrow a = (vα −→ vω), called the basic arrow, with
either vω = 1 or else vα < vω, and consists of a set Se of arrows all ending in vω and
a disjoint set Sb of arrows all starting in vα. Furthermore, the arrows in Se have
beginning vertex larger than vα and the arrows in Sb have ending vertex smaller
than vω. The smallest vertex that occurs as a beginning vertex of an arrow in Se is
strictly larger than the largest vertex that occurs as an ending vertex of an arrow
in Sb, i.e. there is no crossing. So, a fan looks like the following:
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x

x+1

x+2

x+3

x+4

.

y-4

y-3

y-2
y-1

y

.
.
.
.

.
.

.

where x = vα and y = vω . Since the elements of a fan are arrows, each of these
arrows itself can serve as a basic arrow a of another fan. The resulting figure is
called cascade of fans if for each basic arrow a there is no directed path from the
beginning vertex of a to the ending vertex of a besides the basic arrow itself, i.e.
if the underlying graph is a tree. The largest interval [il, ir] such that there is a
path from il to ir only using arrows belonging to the cascade of fans is called the
interval the cascade of fans is based on. A cascade of fans is called complete if for
all basic arrows a of a fan in the cascade between the beginning vertex b and the
ending vertex e all the vertices in the interval (b, e) are ending or beginning vertices
of an arrow.

Lemma 3 A connected component of a combinatorial object in C is a complete
cascade of fans. Conversely, given a complete cascade of fans, one can choose a
star at a vertex belonging to the interval, the cascade of fans is based on, and this
then gives rise to a connected component of an object of C. A set of cascades of
fans in pairwise disjoint intervals give rise to an element of C.

The procedure to get the tilting complexes is now very instructive.
A vertex with number k represents P (k). An arrow from l to k represents

an indecomposable summand P (l) −→ P (k). A star at a vertex k represents an
indecomposable summand P (k). The graduation is then prescribed by the following
procedure.

We take the circle and divide the circle into segments such that each complete
cascade of fans belongs to exactly one segment. We cut the circle line at the bound-
aries of the segments and pull the circle segments to a straight line. Stars are
adjusted to degree 0. The arrows all point in direction left to right. Replacing stars
by projectives and arrows by torsion modules such that the degree is determined ’by
the place the arrow is standing’. That means, that inductively if P (k) is adjusted to
degree dk , say, then, for an arrow l −→ k we put P (l) at degree dk −1, for an arrow
k −→ l, we put P (l) at degree dk + 1. Inductively, we place each indecomposable
summand of the tilting complex at a certain degree.

For a given cascade of fans we are able to give the endomorphism ring of the
corresponding tilting complex explicitly.
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We form for each vertex v a subring of a matrix ring of size m where m is
the number of arrows ending at v plus the number of arrows starting at v plus the
number of stars attached to v (=0 or 1). We form a upper triangular matrix with
entries in ∆ := ∆/(πD). We shall define three integers bv, sv, ev associated to v in
the following. The m = bv + sv + ev diagonal entries are numbered consecutively
with

1. firstly the bv arrows emanating from v with increasing ending vertex,

2. secondly the number sv of stars, (0 or 1), if present,

3. thirdly the ev arrows ending at v, with increasing beginning vertex.

This way we associate to each arrow and each star a diagonal element in a
matrix, in fact to each arrow we associate two matrix diagonal elements in two
matrices and to each star we associate one matrix diagonal element.

We add a hereditary order (in its presentation as we described at the beginning
of the section as we introduced the structure theorem) with entries in ∆ of ∆–
dimension k2 with k being the number of stars.

Therefore, also to each star there is attached two diagonal elements in two ma-
trices.

We identify the diagonal entries of the hereditary order with the vertices stars
are attached to, in increasing index from left upper to right lower. We then form the
subring of the sum of the matrix rings defined by identifying modulo (π) the diagonal
entries of the various matrices, corresponding to equal arrows or stars. (Observe
that each arrow is counted twice, in the matrix corresponding to its beginning vertex
and in the matrix corresponding to its ending vertex. Observe furthermore, that
each star is also counted twice, in the hereditary order and in the matrix of the
vertex it is attached to.)

Example 1 We have for example the following cascade of fans for a hereditary
order with 8 indecomposable projectives.
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8

1

2

3

4

5

6

7

The endomorphism ring here is as follows. The line between two rings indicates
the image of the diagonal embedding into the two copies of the ring.

(

∆ ∆
(πD) ∆

)





∆ ∆ ∆
0 ∆ ∆
0 0 ∆





∆









∆ ∆ ∆ ∆

0 ∆ ∆ ∆
0 0 ∆ ∆
0 0 0 ∆









∆∆

(

∆ ∆
0 ∆

)

∆

∆

We give a corollary.

Corollary 2 Let Λ be as above with more than one indecomposable projective mod-
ule and let Γ be derived equivalent to Λ. Then, the ring Λ/((rad R)Λ) is not derived
equivalent to Γ/((rad R)Γ) if the corresponding tilting complex corresponds to a cas-
cade of fans with only one star.
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In fact, Λ/((rad R)Λ) has infinite global dimension, but Γ/((rad R)Γ) then has
not.

Example 2 Let n = 2. Then, we have the three possible cascade of fans.

2

1

2 2

11

The endomorphism rings are defined to be Γ1,Γ2 and Γ3. We state without proof
that all of the tilting complexes attached to them have a twosided tilting complex
in the sense of Rickard [25]. This means, there is a complex X of Λ−Γi–bimodules
and a complex Y of Γi −Λ-bimodules such that X ⊗L

Γi
Y ' Λ and Y ⊗L

Λ X ' Γi as
complexes of bimodules.

In the first case the complex

X [1] := (. . . −→ 0 −→

(

k 0
∆ ∆

)

−→ 0 −→ . . .)

with homology concentrated in degree 0 is a tilting complex of bimodules, even a
tilting module.

X [1] ⊗L
Γ1

− : Db(Λ) −→ Db(Γ1)

induces a derived equivalence between Γ1 and the hereditary order Λ. The complex

X [−1] := (. . . −→ 0 −→

(

0 ∆
0 ∆

)

−→

(

0 0
k k

)

−→ 0 −→ . . .)

with homology in degree 0 and 1 is a tilting complex from either side, and the functor

X [1] ⊗L
Λ − : Db(Γ1) −→ Db(Λ)

is a quasi-inverse to tensoring with X [−1].
In the second case, we have a Morita equivalence.
In the third case, we get a complex

X [3] := (. . . −→ 0 −→

(

∆ 0
∆ k

)

−→ 0 −→ . . .)

concentrated in degree 0, such that

X [3] ⊗L
Γ3

− : Db(Γ3) −→ Db(Λ)
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induces a derived equivalence. The complex

X [−3] := (. . . −→ 0 −→

(

∆ ∆
0 0

)

−→

(

k 0
k 0

)

−→ 0 −→ . . .)

with homology in degree 0 and 1 is a tilting complex with

X [−3] ⊗L
Λ − : Db(Λ) −→ Db(Γ3)

inducing a quasi-inverse to tensoring with X [3].

Acknowledgement: After the author reported to Bernhard Keller about the
twosided tilting complex in the direction that fits in the framework of Keller’s theo-
rem, that is X [3] exists by this theorem [12] in the last of the above cases, Bernhard
Keller suspected that this might have an inverse. He, independently from our at-
tempt, discovered the inverse complex in this case. We are grateful to Bernhard
Keller for persuading us to try to prove that the complexes are in fact invertible.

5 Local Orders

This section represents result of joint work with Klaus Roggenkamp.

The next theorem states that a twosided tilting complex between local, symmet-
ric orders has homology concentrated in a single degree.

Theorem 3 Let R be a Dedekind domain of characteristic 0 and let Λ and Γ be
local R–orders. If Λ is derived equivalent to Γ, then Λ is even Morita equivalent
to Γ. Moreover, any tilting complex over Λ has homology concentrated in a single
degree.

Corollary 3 The derived category of a group ring of a p-group G over any complete
Dedekind domain, which is a finite extension of the p-adic integers, determines G
up to isomorphism.

Remark 1 1. Theorem 3 does not use [33, 31], while Corollary 3 heavily does.

2. Using G.Thompson’s result [36] there is an immediate generalization to the
following situation. Let S be a complete discrete valuation domain of char-
acteristic 0 in which a rational prime p is not invertible. Let A be a local
S–algebra which is finitely generated as S–module and let G be a finite p–
group. Then, the derived equivalence class of A ⊗S SG determines G up to
isomorphism as group basis. In other words, given groups G and H as above
and S and A as required above, then the derived categories of A ⊗S SG and
of A⊗S SH are equivalent if and only if G and H are isomorphic.

3. J. Rickard gave independently a different proof of Theorem 3, which indeed
uses only that Λ is local ([29]).
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4. M. Linckelmann proves Theorem 3 independently in case of a p–adic group
ring of a p–group [19]. More precisely: Let R be a complete discrete rank 1
valuation ring of characteristic 0 with residue field of characteristic p. Let P
be a p–group. Then, for any groupH , if RP and RH are stable equivalent à la
Morita (see e.g.[25]), then P ' H . Since by J.Rickard’s result in [25] derived
equivalent self injective rings are stably equivalent à la Morita, Theorem 3
follows.

Proof of Corollary 3: By Theorem 3 the group rings are Morita equivalent. Using
the result [33, 31] the groups are isomorphic.
Proof of Theorem 3: We abbreviate −∗ := HomΛ(−,Λ). Let Γ and Λ be derived
equivalent. Then, by Rickard’s theorem [25] there is a twosided tilting complex

C : ... −→ 0 −→ X0
∂0−→ X1 −→ ... −→ Xn−1

∂n−1

−→ Xn −→ 0 −→ ...

of Λ − Γ–bimodules such that
C∗ ⊗Λ C ' Γ

as complex of Γ − Γ–bimodules and

C ⊗Γ C∗ ' Λ

as complex of Λ − Λ–bimodules. Here, we already used that by shifting to an
appropriate degree, which does not harm the property of being a twosided tilting
complex between Λ and Γ, we may assume that the smallest degree with non zero
entry is 0.

We assumed to have orders. Therefore, we have to deal with a tilting complex
X whose homogeneous components Xi are projective on either side by J.Rickard’s
theorem [25]. Since now, all of the Xi are projective on either side, we may assume
that ∂∗0 is not surjective and ∂n−1 is not surjective. In fact, Xn−1 may be replaced
by ker∂n−1 and Xn by 0, analogously for the dual complex.

We form the complex

C ⊗Γ C
∗ : ... −→ 0 −→ X0 ⊗ X

∗
n

∂0⊗1⊕1⊗∂
∗

n−1

−→ X1 ⊗Γ X
∗
n ⊕ X0 ⊗Γ X

∗
n−1 −→ ...

... −→ Xn−1 ⊗Γ X
∗
0 ⊕ Xn ⊗Γ X

∗
1

∂n−1⊗1+1⊗∂
∗

0
−→ Xn ⊗Γ X

∗
0 −→ 0 −→ ...

We look at the right end of the complex. Since ∂n−1 and ∂∗0 both are not
surjective, their images have a non trivial Γ direct summand S and T ∗ respectively
that belongs to the radical of Xn and the radical of X∗

0 respectively.
We forget the Λ structure for the moment and concentrate only on the Γ structure

of Xn and X∗
0 .

We use [7, (6.2)], varying ∂∗
0 and ∂n−1 as Γ–module homomorphism, to assume

that
Xn = X0

n ⊕X1
n

with X0
n ≤ im(∂n−1) and im(∂n−1)/X

0
n ≤ rad(X1

n) as Γ-modules. Similar notations
are used for X∗

0 = (X∗
0 )0 ⊕ (X∗

0 )1. With this notation,

Xn ⊗Γ X
∗

0 = X0
n ⊗Γ (X∗

0 )0 ⊕X0
n ⊗Γ (X∗

0 )1 ⊕X1
n ⊗Γ (X∗

0 )0 ⊕X1
n ⊗Γ (X∗

0 )1.
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Then, we realize that

X0
n ⊗Γ (X∗

0 )0 ≤ im(∂n−1 ⊗ 1 + 1 ⊗ ∂∗0 )

and

im(∂n−1 ⊗ 1 + 1 ⊗ ∂∗0)/(X0
n ⊗Γ (X∗

0 )0) 6= (Xn ⊗Γ X
∗

0 )/(X0
n ⊗Γ (X∗

0 )0)

Therefore, ∂n−1⊗1+1⊗∂∗0 is not surjective and the homology at the end position
of C ⊗Γ C∗ is not zero.

But the complex C ⊗Γ C∗ is quasi-isomorphic to the complex centered at 0 with
homology Λ. But then n = 0.

This proves that C is isomorphic to a progenerator, hence, C induces a Morita
equivalence.

This proves the theorem.

6 Picard groups of derived categories

This section reports on joint work with Raphaël Rouquier.
We define an extension of the Picard group of an order to derived categories and

we prove some elementary properties.

Definition 5 Let R be a commutative ring and let A be an R–algebra, which is
projective as an R–module. Then, we call a twosided tilting complex AXA with

EndA( A|X) ' EndA(X |A) ' A

a twosided autotilting complex of A. The set of isomorphism classes of twosided

autotilting complexes of A forms a group under − ⊗L
A −. This group is called

TrP ic(A).

Remark 2 The neutral element is A as complex concentrated in degree 0, by defi-
nition of a twosided tilting complex, for each twosided autotilting complex X there
is an inverse complex Y with X ⊗A Y ' A and Y ⊗A X ' A as complexes of
bimodules. We have associativity since under our assumptions each projective bi-
module is projective on either side and the left derived tensor product then reduces
to the ordinary tensor product. The condition on A may be weakened but we do
not elaborate on this here.

Now, Λ is an R–order in a semisimple artinian algebra A, with R being an
integral domain. The field of fractions of R isK. Then, ifX is a twosided autotilting
complex of Λ, also K⊗L

RX is a twosided autotilting complex of K⊗R Λ. Moreover,

K ⊗L
R − : TrP ic(Λ) −→ TrP ic(K ⊗R Λ)

is a group homomorphism.

Definition 6 We define for Λ, K, R as above

TrI(Λ) := ker(K ⊗L
R −).
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Remark 3 For any ring B, let X be the module B, viewed as complex with ho-
mology concentrated in degree 1, then X generates an infinite cyclic group C∞ in
TrP icent(B). In the same manner, if a ring

B '

n
∏

i=1

Bi,

decomposes into non zero factors Bi and n ∈ N, then, the complexes with Bk in
degree 1 and Bj in degree 0 for a k ∈ {1, . . . , n} and all j ∈ {1, . . . , n}\{k}, generate
a subgroup Sh(B) :'

∏n
i=1 C∞ of TrP ic(B).

Note 1 For a semisimple artinian algebraA, since all modules are projective, hence
also the homology of a twosided (auto-)tilting complex is projective, each twosided
autotilting complex of A is isomorphic to its homology. Being derived equivalent
to a semisimple artinian algebra A is the same as being Morita equivalent to A.
Each twosided (auto-)tilting complex is, modulo Sh(A) isomorphic to a bimodule
inducing a Morita equivalence.

We now look again to our R-order Λ in the semisimple K-algebra A.
Multiplication by elements c in the centre C of Λ from the right, provides an

endomorphism of X . The endomorphism ring of X is isomorphic to Λ itself, by left
multiplication with Λ. Hence, for each twosided autotilting complex X there is a
ring homomorphism

φX : C −→ Λ

sending multiplication by an element c from the right to multiplication by φX (c)
from the left. By Note 1, φX depends only on the isomorphism class of X . We have

(λφX (c)) · − = (λ(φX (c) · −))

= (λ · (− · c))

= ((λ · −) · c)

= (φX (c)λ) · −,

and therefore, φX defines an endomorphism of the centre C of Λ. Furthermore,
φX is multiplicative with respect to the twosided autotilting complex using again 1.
This means that for any two twosided autotilting complexes X and Y of Λ we have

φX⊗L
Λ

Y = φX ◦ φY .

Multiplication from the left by elements of C defines similarly an endomorphism
ψX of C, which turns out to be the inverse of φX . φ defines therefore a mapping

φ : TrP ic(Λ) −→ Aut( centre (Λ))

Definition 7 We define for Λ and φ as above

TrP icent(Λ) := kerφ.
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Remark 4 1. The Definitions 5, 6 and 7 generalize the analogous definitions for
Pic(−) and Picent(−) to derived auto equivalences of module categories in
the sense that the classical objects embed into the analogue for derived equiv-
alences by just viewing the corresponding module as complex concentrated in
degree 0. We have for any ring A that

Pic(A) ⊆ TrP ic(A)

and

Picent(A) ⊆ TrP icent(A).

2. I(−) distinguishes the various isomorphic modules, TrI(−), however, does
not.

A. Fröhlich developed in [5] a sophisticated and powerful theory of Picard groups.
We first tried to generalize the results there to TrP ic, TrP icent and TrI . Most of
the generalizations work, some even quite immediate. We present here only some
of the achievements. Further results and the omitted proofs of the results presented
here are given in [35].

In [5] for any R–order Λ there is defined a mapping Φ : Aut(Λ) −→ Pic(Λ) by
just mapping f ∈ Aut(Λ) to the twisted bimodule fΛ1, defined by the following
condition. The R–module structure of fΛ1 is as that of Λ, however, λ ∈ Λ acts
on fΛ1 by multiplication by f(λ) from the left and by multiplication by λ from the
right.

We denote for any ring A by TC(A) the set of isomorphism classes of tilting
complexes over A with endomorphism ring isomorphic to A. There is another
mapping χA : TrP ic(A) −→ TC(A) by mapping a twosided autotilting complex X
to a tilting complex T by just forgetting the left structure.

Theorem 4 [35] Let Λ be an R–order over an integral domain R with field of
fractions K in a semisimple algebra A. Then let X,Y ∈ TrP ic(Λ).

χΛ(X) = χΛ(Y ) ⇐⇒ there is an f ∈ Aut(Λ) : Φ(f) ⊗L
Λ X ' Y in TrP ic(Λ).

One of the most powerful results of Fröhlich is the localization sequence. We
are able to generalize this sequence to the following:

Theorem 5 [35] Let R be a Dedekind domain with field of fractions K and let Λ
be an R–order in the semisimple K–algebra A. Then there is an exact sequence

1 −→ Picent( centre (Λ)) −→ TrP icent(Λ) −→
∏

℘∈Spec(R)

TrP icent(Λ⊗R R℘).

The mapping Picent( centre (Λ)) −→ TrP icent(Λ) factors through Picent(Λ) and
is just −⊗centre (Λ) Λ. The mapping on the right is just −⊗R

∏

℘∈Spec(R) R℘.
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Remark 5 1. In the classical situation it has been proven by Fröhlich that

1 → Picent( centre (Λ)) → Picent(Λ) →
∏

℘∈Spec(R)

Picent(Λ⊗R R℘) → 1.

is exact. We cannot expect to have surjectivity at the right since by localizing
we get more central idempotents and this causes shifts in the new ring direct
components.

For example for Λ = ZC2, the integral group ring of the cyclic group of
order 2, we get

TrP icent(ZC2) = Picent(ZC2) = TrP icent(Z2C2) = 1

and for all p ∈ Spec(Z) \ {2} we have

TrP icent(ZpC2) = C∞ × C∞.

2. From the above it follows immediately that TrP icent(Λ) = Picent(Λ) × C∞

for commutative indecomposable R-orders Λ. This can be proven more di-
rectly.

Theorem 6 [35] Let R be a Dedekind domain with field of fractions K and let Λ
be a commutative indecomposable R–order in the semisimple K–algebra A. Then,

TrP icent(Λ) = Picent(Λ)× C∞.

Proof. We first reduce to the case where R is complete local. So let us assume
the statement is true for R being in addition complete local. Let

X := (0 −→ X0
∂0−→ X1 −→ .... −→ Xn−1

∂n−1

−→ Xn −→ 0)

be a twosided auto tilting complex of Λ. Then, let R℘ be the completion of R at a
prime ℘. R℘ ⊗R X is also a tilting complex for Λ℘ for all ℘ ∈ Spec(R). Since

TrP icent(Λ℘) = Picent(Λ℘) ×
∏

number of indecomposable factors of Λ℘

C∞

by the assumption, the homology R℘⊗Hn(X) = Hn(R℘ ⊗X) is torsion free, hence
is either zero or an R℘-lattice. Therefore Hn(X) is torsion free over R, and since
Hn(X)⊗R℘ has to be a direct factor of Λ℘, for all ℘ ∈ Spec(R), Hn(X) has to be
a direct factor of Λ (cf. [4, 31.32]).

Claim 1 Let Λ be a commutative indecomposable R-order in a separable K-algebra
A with R being a complete local Dedekind domain. Then

TrP icent(Λ) = Picent(Λ)× C∞.

Proof. We have the Krull-Schmidt theorem for projective Λ–modules. Projec-
tive covers exist. Since Λ is indecomposable commutative, one sided projectives are
two sided direct summands, and therefore the decomposition into projectives is the
block decomposition. Hence, there is only one simple module and Λ is local. The
result now follows from Theorem 3.

In the same spirit we state without proof the
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Theorem 7 [35] Let R be a Dedekind domain and let Λ be an indecomposable
hereditary order. Then,

TrP icent(Λ) = Picent(Λ) × C∞.

Remark 6 Theorem 7 follows from Theorem 5 and the discussion in Section 4.

Remark 7 After finishing the manuscript [35] we were informed during the ICRA
VII that H. Lenzing and H. Meltzer proved, without knowing of our attempt, and
with completely different methods, that for a canonical algebra A, TrP ic(A) is
finitely generated. H. Meltzer and H. Lenzing clarified the structure of TrP ic(A)
for A being a canonical algebra over an algebraically closed field to a large extent.
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