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Abstract

In an earlier paper we studied the impact of equivalences between derived categories
of group rings on their cohomology rings. Especially the group of auto-equivalences
TrP ic(RG) of the derived category of a group ring RG as introduced by Raphaël Rouquier
and the author defines an action on the cohomology ring of this group. We study this ac-
tion with respect to the restriction map, transfer, conjugation and the local structure of
the group G.

Introduction

Let R be a complete discrete valuation domain or a field. The cohomology ring of a finite
group G with values in the trivial module R has a very rich structure. One of these structures
is the structure of a Mackey functor (see e.g. [14, (53.3)] or [1]) with structure mappings
being the transfer, the restriction and the conjugation. Let TrP ic(B0(RG)) be the group
of isomorphism classes of auto-equivalences of standard type of the derived category of the
principal block of RG as defined and studied by Raphaël Rouquier and the author in [13].
Let HDR(G) be the subgroup of those auto-equivalences which fix the trivial module up to
isomorphism. In [16] an action of HDR(G) on H∗(G,R) is defined so that the cohomology
ring is an R (HDR(G))-module. We study in the present paper the connection between the
functor ‘cohomology of a finite group G’ and, for fixed G, the action of HDR(G).

A major problem is that derived equivalences are not well suited for restriction to subrings
or quotient rings. But, if one restricts to splendid equivalences introduced by J. Rickard [9],
then, at least for centralizers CG(Q) of p-subgroups Q and in case R is a field, restriction maps
may be defined using the Brauer construction [3].

In the present paper we define the respective structures and show compatibility of the
Mackey functor structure with respect to local subgroups in a certain sense and under some
additional hypothesis. We show that this action of the group of splendid auto-equivalences
may be interpreted as action of the sheaf HSplenk(−) of splendid auto-equivalences fixing the
trivial module on the Mackey functor H∗(−, Fp), “mod p group cohomology”.

It should be noted that it is in general not possible to modify an element in TrP ic(RG)
in the natural way so that the modified element fixes the trivial module. An example is given
in section 1.

The paper is organized as follows. In Section 1 the most basic definitions concerning derived
equivalences are given. Section 2 defines the subgroup of splendid auto-equivalences and in
Section 3 we prove the compatibility of the Mackey functor structure with the structure as
modules for the group of splendid auto-equivalences of the derived category. Finally Section 4
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states the main theorem. The notations and definitions used in the paper follow the conventions
of [7].

1 Recall some facts

1.1 Equivalences and auto-equivalences of derived categories

In [13] Raphaël Rouquier and the author defined and studied the group of auto-equivalences
of a derived category.

Recall that, following Bernhard Keller [6], a two-sided tilting complex X for two R-algebras
Λ and Γ so that Λ is flat as an R-module is an element X in Db(Λ⊗R Γop) so that X ⊗

�
Γ − is

an equivalence of categories.
We denote by [X] the isomorphism class of a complex X in the derived category.
In case one of Λ or Γ is a symmetric R-algebra, then by [15] the other is as well. So, if Λ

is a classical symmetric order over a Dedekind domain, then Γ is a classical symmetric order
as well. In this case the inverse to X ⊗

�
Γ − is HomR(X,R) ⊗

�
Γ −. If R is a field, analogous

statements hold as was already observed by Rickard.

Definition 1.1 [13] Suppose Λ is an R-projective R-algebra. Then,

TrP icR(RG) := {isomorphism classes [X] | X ∈ Db(Λ⊗RΛop) is a two-sided tilting complex}

is a group under −⊗
�
Λ −.

Let G be a group and R a commutative ring. In [16] it is shown that the group

HDR(G) := StabTrP icR(RG)(R) := {[X] ∈ TrP ic(RG) | X ⊗
�
RG R ' R}

acts on the cohomology ring H∗(G,R). This action is functorial in R.

1.2 Definition of splendid equivalences

We recall Rickard’s definition of a splendid equivalence [9]. Let p be a rational prime and let R
be either a field of characteristic p or a complete discrete valuation domain of characteristic 0
with field of fractions of characteristic p. Let G and H be finite groups with a common Sylow
p subgroup P . Let B0(RG) be the principal block of the group ring RG and B0(RH) likewise.
A p-permutation module is a direct factor of a permutation module. Let ∆P be the diagonal
embedding of P in G×H.

A bounded complex X of finitely generated B0(RG)⊗R B0(RH)op-modules is said to be a
splendid tilting complex if

• the complex HomB0(G)(X,X) is isomorphic to B0(H) in the category Kb(B0(H)) and

HomB0(H)(X,X) is isomorphic to B0(G) in the category Kb(B0(G))

• each homogeneous component of X is projective as B0(RG) as well as B0(RH)-module

• all homogeneous components are relatively ∆P -projective p-permutation modules.

It is a consequence of Rickard’s theory of equivalences between derived categories [8] that

X ⊗B0(RG) − : Db(B0(RH)) −→ Db(B0(RH))

is an equivalence of triangulated categories, and hence X is a two-sided tilting complex.
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1.3 The Brauer construction

Let R be a discrete valuation ring with residue field k := R/rad R of characteristic p. Let Q
be a p-subgroup of G. Then, (see [9]) the map

−(Q) : kG−mod −→ k NG(Q)−mod

M −→ MQ/(
∑

R<Q

TrQ
R(MR))

extends to a functor. For a permutation module M = kΩ one has M(Q) ' k(ΩQ). Moreover

B0(kG)(Q) ' B0(kCG(Q)).

We have the following

Lemma 1.2 (Rickard [9]) (−G)(Q) is isomorphic to (−(∆(Q))CG(Q) as functors from the
category of relatively ∆(Q)-projective p-permutation k(G × Q) modules to the category of k-
vector spaces.

2 Splendid auto-equivalences

Suppose that R is a complete discrete valuation ring of characteristic 0 and residue field of
characteristic p or a field of characteristic p. Let B0(RG) be the principal block of RG.

We denote by (X) the homotopy equivalence class of a complex X.

Definition 2.1

SplenP icR(G) := {(X) | X is splendid and [X] ∈ TrP icR(B0(RG))}

Then, Rickard proves

Theorem 1 (Rickard [9]) For any (X) ∈ SplenP ick(B0(kG)), applying the Brauer functor
one has (X(∆Q)) ∈ SplenP ick(B0(CG(Q))).

Lemma 2.2 SplenP icR(G) is a group which maps to TrP icR(B0(RG)).

Proof. If X is splendid, then HomR(X,R) is splendid as well. In fact, HomR(X,R) is
B0(RG)-projective on either side as the homogeneous components of this complex are the
R-duals of the homogeneous components of X. These are projective as the group ring is a
symmetric algebra.

Moreover,

HomB0(RG)(HomR(X,R),HomR(X,R)) ' HomR(HomR(X,R) ⊗RG X,R)

' HomR(B0(RG), R)

' B0(RG)

is a chain of isomorphisms in the homotopy category of B0(RG) bimodules. Similarly,

HomB0(RG)op(HomR(X,R),HomR(X,R)) ' HomR(X ⊗RG HomR(X,R), R)

' HomR(B0(RG), R)

' B0(RG)
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Finally, all homogeneous terms of HomR(X,R) are ∆(P )-projective permutation modules,
as they are just the duals of the terms of X.

We shall have to prove that if X and Y are splendid, also Z := X⊗B0(RG) Y is splendid. In
fact, it is clear that Z is a complex of left and right projective modules since these are direct
sums of tensor products of left and right projective modules. Moreover,

HomR(Z,R) ⊗B0(RG) Z ' HomR(Y,R)⊗B0(RG) HomR(X,R)⊗B0(RG) X ⊗B0(RG) Y

' HomR(Y,R)⊗B0(RG) B0(RG)⊗B0(RG) Y

' B0(RG)

and likewise Z ⊗B0(RG) HomR(Z,R) ' B0(RG) in the homotopy category of B0(RG)-
bimodules.

Since the homogeneous terms of Z are direct sums of tensor products of ∆(P )-projective
p-permutation modules, they are ∆(P )-projective p-permutation modules as well.

This concludes the proof.

Definition 2.3 We define

HSplenR(G) := StabSplenP icR(G)(R) = {(X) ∈ SplenP icR(G) | X ⊗RG R ' R}

The group HSplenk(G) contains those outer automorphisms of G which is the identity on
a fixed Sylow subgroup. Denote by Inn(RG) the group of inner automorphisms of RG, denote
by AutP (G) the group of automorphisms of G whose restriction to P is the identity on P and
denote by Inn(G) the group of inner automorphisms of G.

Lemma 2.4 OutPR(G) := AutP (G)/(Inn(RG) ∩AutP (G)) ≤ HSplenR(G).

Proof. The observation that an automorphism of G is trivial in the Picard group if and
only if it is inner in RG rather than in G is a known fact. What we have to show is therefore
the following: Let α be an automorphism of G fixing a Sylow p subgroup P and let [α] be its
image in PicR(G). Then, [α] ∈ HSplenR(G).

It is clear that αRG1 is projective from either side.
Let P be a Sylow p-subgroup of G. Since α|P = idP , the bimodule αRG1 is ∆P -projective.

Hence, we proved the statement.

Remark 2.5 In general Inn(RG)∩Aut(G) 6= Inn(G). See [11] for a finite group G where this
strict inequality holds for any semi-local coefficient domain R. Martin Hertweck recently gave
an example where one can remove the condition of R being semi-local [5]. For cohomology of
finite groups one may always assume that R is local though.

2.1 The trivial module may not be preserved

Let A be an algebra over a field k.

Lemma 2.6 Let Y and Z be right bounded complexes of A-modules. Then,

Homk(Y, k)⊗k Z ' RHomk(Y,Z)

as A⊗k Aop-modules.
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Proof. Let M and N be A-modules. Then,

Homk(M,k) ⊗k N −̃→ Homk(M,N)

φ⊗k n 7→ m 7→ φ(m)n

is an isomorphism of A⊗k Aop-modules.
Moreover, the degree (i, j) homogeneous component of the bicomplex Homk(Y,Z) is

Homk(Y−i, Zj) while the degree i homogeneous component of Homk(Y, k) is Homk(Y−i, k).
Therefore, Homk(Y−i, Zj) has degree (i, j) in the bicomplex Homk(Y, k) ⊗k Z. It is more-
over clear that the bi-differentials of the bicomplexes Homk(Y,Z) and of Homk(Y, k) ⊗k Z
correspond under the above isomorphism at the level of modules. Therefore, using again
the above isomorphisms on the level of modules, the total complexes of Homk(Y,Z) and of
Homk(Y, k)⊗k Z are isomorphic. This completes the proof.

Example: Denoting by T (G) the épaisse sub-categorie of the stable module categorie which
contains the trivial module, Carlson and Rouquier prove [4] that any functor F : T (G) −→
T (H) of triangulated categories has the property that the functor F̃ := (Homk(F (k), k) ⊗k

−) ◦ F sends the trivial module to the trivial module (see also Roggenkamp [10]).
We shall show with an example that the analogous statement is not true for splendid

equivalences and by consequence for derived equivalences neither.
Let k = F3 be the field with three elements and let G = H = S3 be the symmetric group

on three letters.
Then there are two indecomposable projective kG-modules P+ and P− up to isomorphism

and the complex X+ defined by

. . . −→ 0 −→ P+ ⊗k Homk(P+, k) −→ kG −→ 0 −→ . . .

with homology concentrated in degree 0 and 1 is a splendid tilting complex with isomorphism
class in SplenP ick(G). If P+ denotes the projective cover of the trivial module, then

X+ ⊗kG k ' (. . . −→ 0 −→ P+ ⊗k k −→ k −→ 0 −→ . . .) ' Ω1(k)[1]

where Ω is the syzygy operator. This module is two-dimensional and represents the non trivial
element in Ext1(k−, k) where k− is the sign representation.

Denoting the k-dual of an object Y by Y ˇ, we shall prove

(X ⊗B k)ˇ ' kˇ ⊗B Xˇ.

Hence, by adjointness of tensor products and covariant homomorphism functor

Homk(X ⊗B k, k) ' HomB(X,Homk(k, k))

' HomB(X, kˇ)

Since HomB(X,−) is an inverse to the functor −⊗A X, as well as −⊗B Homk(X, k), we get
that

HomB(X, kˇ) ' kˇ ⊗B Homk(X, k) .

Hence,

(X ⊗kG k)ˇ ⊗k (X ⊗kG k) ' Endk(X ⊗kG k)

' Endk(Ω
1(k))

and the latter is a four-dimensional, non trivial module.
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3 Group cohomology as module and as Mackey functor

As is well known, H∗(G, k) together with restriction, transfer and conjugation is a Mackey
functor. We shall discuss the compatibility of this structure with respect to the action of
splendid auto-equivalences of the derived category.

For the convenience of the reader we shall first recall the definition of a Mackey functor
and define what we understand by an action of a group sheaf on a Mackey functor.

3.1 Action on Mackey functors

Let G be a group and let R be a commutative ring. We recall the definition of a Mackey functor
(see e.g. [1, 14]). A Mackey functor is a pair of functors (M ∗,M∗), the first contravariant and
the second covariant, from the category of G-sets to the category of R-modules so that M∗

and M∗ are identical on objects subject to the following conditions.
(M1) Let X and Y be G-sets and iX resp. iY be the injections of X or Y in X

∐
Y . Then

they are supposed to satisfy M ∗(iX) ⊕M∗(iY ) and M∗(iX) ⊕M∗(iY ) are mutually inverse
isomorphisms between M∗(X

∐
Y ) and M∗(X)

∐
M∗(Y ).

(M2) Moreover, they satisfy the following condition on pullbacks: If

T
γ
−→ Y

δ ↓ ↓ α

Z
β
−→ X

is a pullback of G-sets, then M ∗(β)M∗(α) = M∗(δ)M
∗(γ).

A morphism of Mackey functors θ : (M ∗,M∗) −→ (N∗, N∗) is a natural transformation
θ : M∗ −→ N∗ and θ : M ∗ −→ N∗ (the same for M ∗ and for M∗).

A group sheaf on a partially ordered set C of subgroups of G is a contravariant functor
G : C −→ Group where Group is the category of groups with group homomorphisms.

Definition 3.1 An operation of a group sheaf on a Mackey functor M is an operation of G(S)
on M(S) for any S ∈ C by morphisms of Mackey functors.

3.2 Elementary properties

Lemma 3.2 We have a homomorphism of groups

−(∆Q) : SplenP ick(G) −→ SplenP ick(CG(Q))

(X) −→ (X(∆Q))

Proof.
Let (X), (Y ) ∈ HSplenk(G). By Theorem 1 one has (X(∆Q)) ∈ SplenP ick(B0(CG(Q))). To
simplify notation denote for a moment H := CG(Q).

One has the following isomorphism of functors.

HomB0(kG)(X,−) ' X−1 ⊗B0(kG) −

Moreover, using Lemma 1.2,

X−1 ⊗B0(kG) − ' (HomB0(kG)(X,−))(∆Q)

' HomB0(kH)(X(∆Q),−(∆Q))

which may be applied to kG since kG is ∆Q-projective. Then, since group rings are symmetric
and therefore the k-dual is isomorphic to the B0(kH)-dual on the principal block,

X−1(∆Q) ' X(∆Q)−1 .
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Moreover,

(HomB0(kG)(X,Y ))(∆Q) ' HomB0(kH)(X(∆Q), Y (∆Q))

as kH ⊗k kHop-bimodules again by Lemma 1.2. But this may be interpreted as

((X−1 ⊗B0(kG) Y )⊗B0(kG) kG)(∆Q) ' ((X−1(∆Q)⊗B0(kH) Y (∆Q))⊗B0(kH) kH)

' ((X(∆Q)−1 ⊗B0(kH) Y (∆Q))⊗B0(kH) kH)

and therefore
(X−1 ⊗B0(kG) Y )(∆Q) ' (X(∆Q)−1 ⊗B0(kH) Y (∆Q))

This concludes the proof.

Lemma 3.3 If X is a splendid tilting complex, then

X(∆Q)⊗kC(Q) k ' XG(Q)

Proof. Let X ∈ SplenP ick(G). An inverse to the auto-equivalence X⊗kG− of Db(B0(kG))
is Homk(X, k) ⊗kG − which is isomorphic to HomkG(X,−). It is clear that if X is splendid,
also Y := Homk(X, k) is splendid. So, Lemma 1.2 implies that

(Y (∆Q))CG(Q) ' Y G(Q)

But, Raphaël Rouquier proves in [12, Lemma 2.2] that for p-permutation modules taking
k-duals commutes up to functorial isomorphism with the Brauer functor. Hence,

HomkCG(Q)(X(∆Q), k) ' (HomkG(X, k))(Q)

Since Y (∆Q)⊗kCG(Q)− is an inverse to HomkCG(Q)(Y (∆Q),−) which in turn is an inverse
to HomkCG(Q)(X(∆Q),−), we get

Y G(Q) ' Y (∆Q)⊗kCG(Q) k

Replacing X by Y taking double duals, the lemma is proved.

Remark 3.4 Let α ∈ AutP (G). Then,

( αkG1)(∆Q)⊗CG(Q) k ' ( αkG1)
G(Q) = k(Q) = k

3.3 The transfer with respect to local subgroups

We will prove in this section that the transfer in group cohomology is compatible with the
action of HSplenk(G). For a subgroup H of a group G denote by trG

H the transfer map.

Proposition 3.5 Let G be a finite group and let Q be a p-subgroup. Let k be a field of
characteristic p. For any X with [X] ∈ HSplenk(G) we denote by FX the action of [X] on
H∗(G, k). Suppose that X(∆Q) ∈ HSplenk(CG(Q)). Then the diagram

H∗(G, k)
FX−→ H∗(G, k)

trG
CG(Q) ↑ ↑ trG

CG(Q)

H∗(CG(Q), k)
FX(∆Q)
−→ H∗(CG(Q), k)

is commutative.
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Proof. The transfer map trG
CG(Q) can be defined as composite

HomkCG(Q)(k, k[n])'HomkG(k, kG⊗kCG(Q)k[n])→ HomkG(k, kG⊗kGk[n]) ' HomkG(k, k[n])

and so we have to show that two diagrams are commutative. The first one is

HomkG(k, kG ⊗kC k[n]) −→ HomkG(k, kG⊗kG k[n])
FX ↓ ↓ FX

HomkG(XG, X ⊗kC k[n]) −→ HomkG(XG, X ⊗kG k[n])

where the commutativity is clear. The second diagram is

HomkCG(Q)(k, k[n]) −̃→ HomkG(k, kG ⊗kC k[n])

FX(∆Q) ↓ ↓ FX

HomkCG(Q)(X
G(Q), XG(Q)[n])

α
−→ HomkG(XG, X ⊗kCG(Q) k[n])

where commutativity is less clear. But, all mappings beside α are defined as isomorphisms,
so there is only one α possible which makes the diagram commutative. We have to show that
this α is the mapping coming from the natural isomorphism from Frobenius reciprocity.

Since XG ' k in the derived category of G-modules, the complex XG is exact in any degree
besides in degree 0, where its homology is the trivial module. Hence, the restriction of X G

to CG(Q) is exact as well, besides in degree 0, where its homology is the trivial module k.
Since XG(Q) ' k in the derived category of CG(Q)-modules, the complex XG(Q) is exact in
any degree besides in degree 0, where its homology is the trivial module. So, in the derived
category of complexes of CG(Q)-modules, we get the following isomorphism:

resG
CG(Q)(X

G)
ϕ
' XG(Q) ' k

Now, α decomposes as follows:

HomkCG(Q)(k, k[n])
FX(∆Q)
−→ HomkCG(Q)(X

G(Q), XG(Q)[n])

ϕ∗(ϕ∗)−1

←− HomkCG(Q)(X
G, XG[n])

' HomkG(XG, XG[n] ↑GCG(Q)) by Frobenius reciprocity

Now, we see that

X ⊗kG HomkCG(Q)(kG, k) ' HomkCG(Q)(kG,X ⊗kG k)

x⊗ φ 7→ (m 7→ x⊗ φ(m))

are naturally isomorphic. Using again Lemma 3.3 we get that F −1
X ◦α◦FX(∆Q) equals Frobenius

reciprocity HomkCG(Q)(k, k[n]) ' HomkG(k, k ↑G
CG(Q)).

This proves Proposition 3.5.

3.4 The restriction with respect to local subgroups

We shall prove sensibly the same thing as for transfer now for restriction.

Proposition 3.6 Let G be a finite group and let Q be a p-subgroup. Let k be a field of
characteristic p. For any X with [X] ∈ HSplenk(G) we denote by FX the action of [X] on
H∗(G, k). Suppose that X(∆Q) ∈ HSplenk(CG(Q)). Then the diagram

H∗(G, k)
FX−→ H∗(G, k)

resG
CG(Q) ↓ ↓ resG

CG(Q)

H∗(CG(Q), k)
FX(∆Q)
−→ H∗(CG(Q), k)

is commutative.



Group cohomology and splendid equivalences 9

Proof. Again using Lemma 3.3 and the hypothesis, resG
CG(Q)(X

G) ' k ' XG(Q) in

the derived category of bounded complexes of resG
CG(Q)-modules. Let ϕ : XG ' XG(Q) be

this isomorphism. Let β : XG ' k and α : XG(Q) −→ k so that ϕ = α ◦ β−1. Then
FX acts on ξ ∈ H∗(G, k) as (β∗)−1β∗(X ⊗ χ) and FX(∆Q) acts on η ∈ H∗(CG(Q), k) as
(α∗)−1α∗(X(∆Q)⊗ η). Therefore, the following diagram is commutative:

HomDb(kG)(k, k[n]) −→ HomDb(kG)(X
G, XG[n])

resG
CG(Q) ↓ ↓ resG

CG(Q)

HomDb(kCG(Q))(k, k[n]) HomDb(kCG(Q))(res
G
CG(Q)X

G, resG
CG(Q)X

G[n])

‖ ↓ (ϕ∗)(ϕ∗)
−1

HomDb(kCG(Q))(k, k[n]) −→ HomDb(kG)(X
G(Q), XG(Q)[n])

Now, since ϕ = α ◦ β−1,

HomDb(kG)(X
G, XG[n])

(β∗)−1β∗

−→ HomDb(kG)(k, k[n])

↓ resG
CG(Q) ↓ resG

CG(Q)

HomDb(kCG(Q))(X
G, XG[n])

(β∗)−1β∗

−→ HomDb(kCG(Q))(k, k[n])

ϕ∗(ϕ∗)
−1 ↓ ‖

HomDb(kG)(X
G(Q), XG(Q)[n])

(α∗)−1α∗

−→ HomDb(kCG(Q))(k, k[n])

is commutative. Combining these two commutative diagrams we get a commutative diagram

HomDb(kG)(k, k[n])
FX−→ HomDb(kG)(k, k[n])

↓ resG
CG(Q) ↓ resG

CG(Q)

HomDb(kCG(Q))(k, k[n])
FX(∆Q)
−→ HomDb(kCG(Q))(k, k[n])

This concludes the proof.

3.5 An example and an application

Remark 3.7 Proposition 3.5 implies that for R = Fp and G = Sp the symmetric group on p
letters, any element in HSplenR(G) acts trivially on H∗(G,R). This fact was proven in [16]
by explicit calculation.

In fact,

tr
�

p

Cp
◦ res

�
p

Cp
: H∗(Sp, Fp) −→ H∗(Sp, Fp)

is just multiplication by [Sp : Cp] = (p − 1)! and is hence invertible since we are working in

characteristic p. So, res
�

p

Cp
is linear with respect to the action of splendid auto-equivalences

[X] ∈ HSplenk(Sp) with (X(∆Cp)) ∈ HSplenk(Cp) if and only if tr
�

p

Cp
is.

Denoting Cp :=< (1, 2, 3, . . . , p) > a p-Sylow subgroup of Sp, it is well known that

resG
Cp

: H∗(Sp, R) −→ H∗(Cp, R)

is injective since the p-Sylow subgroup of Sp is abelian. Hence, the fact that the restriction
to the centralizer of Cp is compatible with the action of HSplenk(Sp) proves that the action
of HSplenR(G) on H∗(Sp, R) is trivial if the action of HSplenR(Cp) on H∗(Cp, R) is trivial
and one may prove that the trivial module is fixed also when one takes the Brauer functor of
the auto-equivalence in question. This can be checked individually for the auto-equivalences
considered in [16]. Moreover,

HSplenR(Cp) ⊆ {φ ∈ AutR(RCp)|
φR ' R}



10 Alexander Zimmermann

as Cp =< c > is a p-group. Any such automorphism αx is fixed by αx(c) = 1 + (c− 1)x for an
x ∈ FCp. Since H∗(Cp, R) is generated by an element ζ in degree 2, and an element χ in degree
1 we have to evaluate the action in degree 1 and 2 only. Ones sees readily that αx(ζ) = x · ζ

and αx(χ) = x · χ. Now, the image of res
�

p

Cp
in H∗(Cp, R) is the fix point ring H∗(Cp, R)Cp−1

under the normalizer action. This action is multiplication by a primitive p−1-th root of unity
in R/pR and H∗(Cp, R)Cp−1 is generated in degree 2(p− 1) and 2p− 3. The operation of αx

is by multiplication by xp−1, but the unit group of R is cyclic of order p− 1.
One would like to get the same result for R being the p-adic integers. But, using the

Brauer construction one is forced to work over a field as ring of coefficients (but see [17],
where the lifting question to a complete discrete valuation domain is studied and where parts
of the present results are announced). Moreover, what we proved is valid only for splendid
auto-equivalences. We plan in the near future to give a handy criterion for deciding whether
an equivalence is splendid.

3.6 Conjugation

Proposition 3.8 Let x ∈ G and Q be a p-subgroup of G. Then, denoting by cx the conjugation
morphism, for any X with (X) ∈ HSplenR(G) the following diagram is commutative:

H∗(C(Q), R)
cx−→ H∗(C(Q)x, R)

X(∆Q) ⊗RG − ↓ ↓ X(∆Qx) ⊗RG −

H∗(C(Q), R)
cx−→ H∗(C(Q)x, R)

Proof. Lemma 3.3 implies that we have to prove that the diagram

HomRCG(Q)(R,R[n])
cx−→ HomRCG(Q)x(xR, xR[n])

X(∆Q) ⊗RG − ↓ ↓ X(∆Qx) ⊗RG −

HomRCG(Q)(X
G(Q), XG(Q)[n])

cx−→ HomRCG(Q)(X
G(Qx), XG(Qx)[n])

is commutative. But this is clear.

4 Group sheaf action on the Mackey functor H∗(−, k)

We are ready to state and to prove our main theorem.
Denote by Group the category of groups with morphisms being group homomorphisms and

denote by k −Alg the category of k-algebras with morphisms being algebra homomorphisms.
Let k be a field of characteristic p and let G be a finite group. Denote for any p-subgroup
Q of G by HSplenk(CG(Q)) the group of splendid auto-equivalences of the bounded derived
category Db(kCG(Q)) which fix the trivial module.

Fix a set Pp,G of p-subgroups of G which may contain all p-subgroups of G or not. Suppose
that for any Q1, Q2 ∈ Pp,G we have Q1 < Q2 ⇒ Q2 ≤ CG(Q1). This is the case for example
if all elements of Pp,G are abelian. In fact this is also necessary for all but the maximal
elements of Pp,G. This gives a category whose objects is Pp,G and whose morphism sets
are inclusion (that is Hom �

p,G
(Q1, Q2) contains one element, the inclusion, if Q1 ≤ Q2 and

Hom �
p,G

(Q1, Q2) = ∅ if Q1 6⊆ Q2). Define

Cp,G := {CG(Q)| Q ∈ Pp,G} ∪ {{1}}

with morphisms being again induced by inclusion. Taking centralizers CG(−) : Pp,G −→ Cp,G

is a contravariant functor: Q1 ⊆ Q2 ⇒ CG(Q1) ⊇ CG(Q2). Define a contravariant functor by

Cp,G −→ Group

CG(Q) 7→ HSplenk(CG(Q))
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and which maps an inclusion CG(Q1) < CG(Q2) to the Brauer construction:

HSplenk(CG(Q2))) 3 (X) 7→ (X(∆Q1)) ∈ HSplenk(CG(Q1))) .

Then, the functor Cp,G −→ Group which is HSplenk(−) on objects and HSplenk(CG(Q1) ≤
CG(Q2))(X) := (X(∆Q1)) on morphisms is a sheaf of groups.

Furthermore,
H∗(−, k) : Cp,G −→ k − Alg

is a contravariant functor of k-algebras, a ringed space. Moreover, (H ∗(−, k), res, T r, c) is
a Mackey functor on the set of all subgroups of G. The Mackey functor structure may be
restricted to Cp,G if this set is stable under intersection. It is clear that Cp,G is stable under
conjugation. So, the condition to be stable under intersection implies that the Mackey formula
makes sense for functors on Cp,G.

Define the sub-functor HSplenk, �
p,G

(−) of HSplenk(−) by

HSplenk, �
p,G

(CG(Q))

:= {(X) ∈ HSplenk(CG(Q))| (X(∆Q̂)) ∈ HSplenk(CG(Q̂)) for all Q̂ ∈ Pp,G and Q̂ ≥ Q}

Remark 4.1 Let P be a p-Sylow subgroup of G. By Remark 3.4 one has

{[φ] ∈ OutR(G)| φ|P = idP } ≤ HSplenk, �
p,G

(CG(Q)) for all Q ∈ Pp,G.

We are ready to state our main results.

Theorem 2 Let Pp,G be a partially ordered set of p-subgroups of the finite group G. Suppose
that if Q1 < Q2 and Q1, Q2 ∈ Pp,G, then Q2 centralizes Q1.
Let Res: Cp,G −→ k−Mod and Trans: Cp,G −→ (k−Mod)op be two functors which are identical
on objects: H∗(−, k) : Cp,G −→ k − Alg and which are on morphisms

Res(CG(Q1) ≤ CG(Q2)) := res
CG(Q2)
CG(Q1)

while
Trans(CG(Q1) ≤ CG(Q2)) := tr

CG(Q2)
CG(Q1)

Then,
HSplenk, �

p,G
(−) : Cp,G −→ Group

acts by natural transformations on Res and on Trans. That means that the functor giving the
group operation structure on each subgroup

HSplenk, �
p,G

(−)×H∗(−, k) −→ H∗(−, k)

is functorial in the sense that for any Q1 < Q2 one has

HSplenk, �
p,G

(CG(Q1))) × H∗(CG(Q1)), k) −→ H∗(CG(Q1)), k)

Br
CG(Q1)
CG(Q2) ↓ res

CG(Q1)
CG(Q2) ↓ res

CG(Q1)
CG(Q2) ↓

HSplenk, �
p,G

(CG(Q2))) × H∗(CG(Q2)), k) −→ H∗(CG(Q2)), k)

is commutative and similarly for Trans.

Proof. This follows from Proposition 3.5 and Proposition 3.6.
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Theorem 3 Suppose Cp,G is stable under intersection. Then, the constant sheaf

HSplenk, �
p,G

(G) : Cp,G −→ Group

acts by morphisms of Mackey functors on

H∗(−, k) : Cp,G −→ k − Alg

Proof. This is exactly the statement of Proposition 3.5, Proposition 3.6 and Proposition 3.8.

Remark 4.2 1. It is interesting to note that Serge Bouc used in [2] functors M which
satisfy only two third of the Mackey functor axioms to construct resolutions of Mackey
functors. More precisely, he used functors F which satisfy all the Mackey functor axioms
which may be formulated by use of conjugation and restriction only. Dually one could
use transfer instead of restriction. In our situation in Theorem 2 this is exactly the type
of functors we consider.

2. It would be useful to know when

(X) ∈ HSplenk(G) implies (X(∆Q)) ∈ HSplenk(CG(Q))].

This would imply considerable simplifications in the formulation of Theorem 2 and The-
orem 3.

3. In case Cp,G has only one non-trivial element, Theorem 2 is exactly Proposition 3.6 and
Proposition 3.5.

Acknowledgement: I wish to thank Serge Bouc for explaining to me the subtleties of
Mackey functors and for communicating to me a gap in an earlier version of the paper.
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[4] Jon F. Carlson and Raphaël Rouquier, Self-equivalences of stable module cate-
gories, Mathematische Zeitschrift 233 (2000) 165-178.

[5] Martin Hertweck, Eine Lösung des Isomorphieproblems für ganzzahlige Gruppenringe
von endlichen Gruppen, (Shaker Verlag 1999, ISBN 3-8265-6055-8)

[6] Bernhard Keller, A remark on tilting theory and DG-algebras, manuscripta mathe-
matica 79 (1993) 247-253.

[7] Steffen König and Alexander Zimmermann (eds), Derived equivalences for group
rings, (Springer Lecture Notes in Mathematics 1685, 1998).



Group cohomology and splendid equivalences 13

[8] Jeremy Rickard, Derived equivalences as derived functors, J. London Math. Soc. 43
(1991), 37-48.

[9] Jeremy Rickard, Splendid equivalences: derived categories and permutation modules,
Proc. London Math. Soc. 72 (1996), 331-358.

[10] Klaus W. Roggenkamp, From Dedekind’s group determinant to the isomorphism
problem, C. R. Math. Rep. Acad. Sci. Canada Vol. 21 (1999) 97-126.

[11] Klaus W. Roggenkamp and Alexander Zimmermann, Outer group automorphisms
may become inner in the integral group ring, J. Pure and Appl. Alg. 103 (1995) 91–99.
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