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Abstract

An automorphism α of a group G is called almost inner if α(g) is conjugate to g in G
for any g ∈ G. Obviously, there exist p-groups G and non inner automorphisms of G
inducing the identity on the mod p cohomology ring H∗(G, IFp). We pose the question
if there are p-groups G and almost inner automorphisms which are not inner but which
induce the identity on H∗(G, IFp). In the present paper we treat some examples to give
evidence that there are no such groups G.

Introduction

Let G be a finite group and R be a commutative ring with trivial G-action. Then, any
automorphism α of G induces by functoriality an automorphism of the cohomology ring
H∗(G,R). Jackowski and Marciniak proved [8] that in case α induces an inner automorphism
of the group ring RG, then α∗ is the identity. Furthermore, they posed the following question
([8, Question 4.10] and [7]) for a p-group G: is any automorphism α of G necessarily inner
whenever α induces the identity on H∗(G, Z)? Note that for non p-groups a generalization
of this question has a negative solution by an example of Hertweck [4]. Indeed, recently,
in [4] Hertweck constructed a non p-group G and a non inner automorphism α of G which
becomes inner in ZG.

What might be the above Jackowski’s question for mod p cohomology? The Quillen
stratification of the cohomology variety implies that an automorphism α of the p-group G
which is the identity on the mod p cohomology ring fixes each conjugacy class of maximal ele-
mentary abelian subgroups. Obviously, there exist p-groups G and non inner automorphisms
inducing the identity on H∗(G, Fp). So, for mod p cohomology, it seems natural to restrict to
almost inner group automorphisms α of a p-group G, that is, α(g) is conjugate to g for any
g ∈ G. As mentioned by Jackowski and Marciniak [8] the group C8×Aut(C8) = C8×(C2×C2)
has an almost inner automorphism α that is not inner; however α∗ is not trivial. Here we
denote by Cn the cyclic group of order n.

Let A be an abelian p-group acting on the cyclic p-group Cpn . In this paper we prove that
any almost inner automorphism of Cpn ×A which induces the identity on H∗(Cpn ×A, Fp)
is inner. Actually we show the following result.
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wolfach” financed by the ”Research in Pairs” program of the ”Volkswagen Stiftung”. The first named author
was also supported in part by NSERC-grant OGP0036631 and Fonds voor Wetenschappelijk Onderzoek, and
the second named author got partial support from the CCCI.
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Theorem 1 Let G be a semidirect product of a cyclic p-group by an abelian p-group. Let
α be an almost inner but not inner automorphism of G. Then, α induces a non trivial
automorphism of H3(G, Fp).

In the final remark we mention that this result remains valid for the group G = C8×Q8

(and the field F2). Here Q8 denotes the quaternion group of order 8. Note that this group
has been used in [9] to construct a group H with a non inner automorphism but which
induces an inner automorphism on the group ring SH over some semilocal ring of algebraic
integers (thus a semilocal version of Hertweck’s example).

The paper is organized as follows. In section 1 and 2 we introduce the notation and
recall some known facts. In section 3 we restrict our group theoretical setup, and in section
4 we do the cohomology constructions.

1 Notations

Let G be a finite group and let α be an automorphism of G. For any ZG-module M we
denote by αM the ZG-module with the same additive structure as M but g ∈ G acts on
αM as α(g) acts on M . Let R be a commutative ring and view R as an RG-module via the
trivial action. Then, α acts on the cohomology ring H ∗(G,R) via the following construction
(see e.g. [2, page 80]). Take a projective resolution P of Z as ZG-module. Then, P is a
chain complex with homology Z in degree 0 and exact in all the other degrees. The complex
αP has homology α

Z ' Z in degree 0. Hence, there is a chain map

τ : P −→ αP

with
τ =

⊕

n∈
� τn,

where
τn : Pn −→

αPn

is the mapping between the homogenous components. Any two such mappings τ differ by
a homotopy. Applying Hom � G(−, R) to P and to αP the mapping

τ : P −→ αP

induces a cochain map

τ∗ := Hom(τ,R) : Hom � G( αP,R) −→ Hom � G(P,R)

Moreover, the identity map gives an identification

Hom � G( αP,R) ' Hom � G(P, α−1

R) ' Hom � G(P,R)

Since τ ∗ is a cochain map, it induces a mapping on the cohomology of the complexes:

τ∗ : H∗(Hom � G( αP,R)) −→ H∗(Hom � G(P,R))

The map

τn : Hn(Hom � G( αP,R)) ' Hn(G,R) −→ Hn(G,R) ' Hn(Hom � G(P,R))
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is the mapping induced by α on the cohomology.
Observe that the map τ is defined as soon as αR ' R. This in turn is true not only for

trivial G-modules R.
We discuss the possible form of τn.

Lemma 1 Let P be a free RG-module of rank n and let α be an automorphism of RG. Then,
choosing a basis of P , any isomorphism αP

ϕ
−→ P can be decomposed as ϕ(x) = α−1(x)M

for a n× n-matrix M with coefficients in RG.

Proof. Choose a basis for P . We then obtain an RG-isomorphism α0 : P −→ αP by
applying α to each of the components (with respect to this basis). The automorphism
α0 ◦ ϕ is determined by a n× n-matrix N with coefficients in RG; that is, α0(ϕ(x)) = xN .
So the result follows.

2 Constructing projective resolutions

For the reader’s convenience, we recall a method due to C. T. C. Wall [10] for constructing
projective resolutions for group extensions.

Let
1 −→ N −→ G −→ H −→ 1

be an exact sequence of finite groups and let B be a free resolution of the ZN -module Z.
Let C be a free resolution for the ZH-module Z. Then, ZG ⊗ � N B is a free resolution for
the ZG-module

ZG⊗ � N Z ' ZH.

Take a free resolution C = (Cn, d1) of ZH. Then, each of the homogeneous components
Cn of C is a free ZH-module and can be replaced by the above argument by a direct
sum of the projective resolution ZG ⊗ � N B. The corresponding identification map is the
augmentation and will be denoted by ε as well. Call the k−th homogeneous component of
the free resolution of the n−th homogeneous component of C the ZG-module An,k. Let d0

denote the differential of each of the free resolutions of Cs. Since B is exact in non zero
degrees, there exist ZG linear maps

d1 = (d1)n,m : An,m → An−1,m

so that d1d0 + d0d1 = 0. In other words, there is a chain map

d1 : (ZG⊗ � N B)dim � HCs −→ (ZG⊗ � N B)dim � HCs−1

which lifts the differential d1 of C; but one takes alternate signs for differentials resolving
Cs and Cs+1. Of course, d1 is not necessarily a differential again. Nevertheless, we have the
following statement.

Proposition 2 (C. T. C. Wall [10]) There exists ZG-linear endomorphisms dr of bidegree
(−r, r− 1), that is, there are ZG-linear maps dr : An,m → An+r−1,m−r (r ≥ 1, m ≥ r), such
that

d1ε = εd1 and

k∑

i=0

didk−i = 0
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for each k. Moreover, (
⊕n

k=1 Ak,n−k,
∑n

k=0 dk) is a free resolution of the ZG-module Z.
Furthermore, any set of dr satisfying the above properties gives rise to a free resolution of
the ZG-module Z.

Remark 3 The proof of proposition 2 is done inductively. That is, if one has found dk

which satisfies
∑k

i=0 didk−i = 0, then there are dn with d0, d1, . . . , dk already determined.

3 Almost inner automorphisms and metabelian groups

We shall discuss p-groups G which have a cyclic normal subgroup N = Cpn and an abelian
complement Ab. That is, we get a split extension of finite groups

1 −→ N −→ G −→ Ab −→ 1 .

As is well known (cf e.g. [6, Satz I.13.9]), the group of automorphisms of the cyclic
p-group Cpn has a Sylow p-subgroup which is cyclic in case p is odd and is isomorphic to
C2 × C2n−2 in case p = 2 (and n ≥ 2).

If p is odd,
G ' (Cpn ×Cpk)× Ãb

for some k and Ãb an abelian group. Now, if α is an almost inner automorphism of G, then
any element x ∈ G is conjugate to its image α(x). So, since Ãb is abelian, it follows that α

acts as the identity on Ãb and α induces an automorphism on (Cpn ×Cpk).

Lemma 4 Let G be a split metacyclic group. Then, any almost inner automorphism of G
is inner.

Proof. Let α be an almost inner automorphism on G = C×A, with C and A cyclic groups.
Suppose Ab = 〈a〉. As C is normal in G, α induces an automorphism on C. Since C is cyclic,
we may use an inner automorphism of G to modify α in such a way that α is the identity
on C. As G/C is abelian, we get α(a) = ac = xax−1 for some x ∈ G and c ∈ C. Again
because Ab is abelian, we may also assume that x ∈ C. It follows that α is conjugation by
x.

Because of Lemma 4 and the preceding discussion we get at once the following applica-
tion.

Corollary 5 If p is odd and if G is a split extension of a cyclic p-group and an abelian
p-group, then any almost inner automorphism of G is inner.

Let now p = 2 (n ≥ 2) and thus Aut(N) = C2 × C2n−2 . Let α be an almost inner
automorphism of G. If the image of Ab → Aut(N) is cyclic, then we again may apply
Lemma 4.

Lemma 6 Let G = C2n ×Ab for an abelian group Ab and let α be an almost inner auto-
morphism of G. If the induced homomorphism Ab −→ Aut(C2n) has a cyclic image, then
any almost inner automorphism of G is inner.
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Proof. In this case,
G ' (C2n ×C2k)× Ãb

for a certain k and an abelian group Ãb. Therefore, any almost inner automorphism α
induces an almost inner automorphism on each of the factors. Since Ãb is abelian and since
C2n ×C2k is split metacyclic, the induced automorphisms on the factors are inner. Thus α
is inner.

We now shall discuss the remaining case where in fact almost inner automorphisms can
occur. So p = 2, G = C2n ×Ab for an abelian group Ab, and the induced mapping ϕ
of Ab to the automorphism group Aut(C2n) = C2n−2 ×C2 does not have a cyclic image.
Thus ϕ(Ab) = C2m × C2 with m ≤ n − 2. Here the factor group C2 is generated by
the automorphism that maps a to a−1, where a is the generator of C2n . It follows that
Ab = 〈b〉 × 〈c〉 × Ãb, so that bab−1 = a−1 and c induces the automorphism of order 2m on

C2n . Any almost inner automorphism α of G induces the identity on Ãb and an almost
inner automorphism on C2n ×(〈b〉 × 〈c〉). So we shall now discuss the action of α on the
latter group.

Lemma 7 Let G = C2n × (C2k × C2l). Suppose C2n = 〈a〉, C2k = 〈b〉, C2l = 〈c〉 and
bab−1 = a−1. Then G has an almost inner automorphism α0 so that α0(c) = a2n−1

c and α0

acts trivially on 〈a, b〉. Furthermore, α0 is not inner and for any almost inner automorphism
α of G there exists an inner automorphism γ so that αγ either equals α0 or the identity.

Proof. Let α be an almost inner automorphism of G. Because of Lemma 4, we may modify
α by an inner automorphism so that

α(a) = a and α(b) = b.

Hence, α induces an almost inner automorphism on the abelian group G/〈a, b〉

α(c) = as · c

for some s. As bc = cb, we get b · as · c = α(b)α(c) = α(c) · α(b) = as · c · b . Therefore,
a−s = as which implies s ∈ {0, 2n−1}.

Clearly α0 is an automorphism. We now prove that it is almost inner. Write cac−1 = av

and v = 2rv′ + 1 with 0 ≤ r < 2n and (v′, 2) = 1. Let q = 2n−1−r. Then q(v − 1) = 2n−1v′.
So it follows that

aqca−qc−1 = aqa−vq = aq(1−v) = a2n−1

and thus α0 = a2n−1

c = aqca−q. Hence, for any integers x, y,

α0(a
xb2yc) = axb2ya2n−1

c = axb2yaqca−q = aq(axb2yc)a−q.

Now to deal with odd exponents of b, write v + 1 = 2r′v′′ with 1 ≤ r′ ≤ n and (v′′, 2) = 1.
It follows that

α0(a
xb2y+1c) = axb2y+1a2n−1

c

= axb2y+1(a2n−1

)v
′′

c

= axb2y+1a−2n−1−r
′
2r

′
v′′c

= axb2y+1a−2n−1−r
′

(1+v)c

= a2n−1−r
′

axb2y+1c(c−1a−v2n−1−r
′

c)

= a2n−1−r
′

(axb2y+1c)a−2n−1−r
′
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Hence this proves that α0 is indeed almost inner.
Finally, suppose α0 is inner. Since 〈b, c〉 is abelian, there exists x ∈ N so that

axca−x = a2n−1

c

and
axbca−x = a2n−1

bc.

Therefore axca−x = b−1axbca−x and thus axca−x = a−xca−x. So a2x = 1 and thus 2n−1|x.
But then ax is central and this yields a contradiction.

4 Computing H∗(G, Fp)

In this section we will prove Theorem 1. So we consider a p-group G which is a semidirect
product of a cyclic p-group by an abelian p-group. In order that G has an almost inner
automorphism α that is not inner, the results in Section 3 yield that p = 2 and

G ' (C2n ×(C2k × C2l))× Ãb,

for some abelian group Ãb. Moreover, up to inner automorphisms α is unique.

4.1 H∗(G, IFp) as vector space

We are only interested in cohomology with values in Fp. By the Künneth formula,

Hn(G, Fp) =
n⊕

r=0

Hr(Ãb, Fp)⊗ � Hn−r(Cpn ×(Cpk × Cpl), Fp)).

Note that for integral cohomology the situation would be more difficult. Since our automor-
phism is the identity on Ãb, we may trace the action of α by the knowledge of the action of
α on H∗(Cpn ×(Cpk × Cpl), Fp).

So, we may assume
G = C2n ×(C2k × C2l)

and we use the same notation as in the statement of Lemma 7. Let m be a positive integer
so that c−1ac = am. For an element g ∈ G of order n we denote ∆g :=

∑n−1
i=0 gi. Put,

A := a− 1, B := b− 1 and C := c− 1.
We shall have to give an explicit projective resolution of ZG-modules of the trivial

module Z. For this we shall use Proposition 2 several times. We start with the standard
projective resolution of the trivial ZC2n-module Z:

Z
ε
←− ZC2n

A
←− ZC2n

∆a←− ZC2n

A
←− ZC2n

∆a←− ZC2n

A
←− ZC2n

∆a←− . . .

A complex giving a free resolution of the trivial ZG/C2n -module Z is obtained from the
total complex of the tensor product of the standard projective resolutions, as ZC2k and ZC2l

respectively, of the trivial module Z.
Set Λ := ZC2k × ZC2l . Using Proposition 2 we get a projective resolution

0←− Z←− Λ←− Λ2 ←− Λ3 ←− Λ4 ←− Λ5 ←−
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The differentials are

d1 =

(
C

B

)
; d2 :=




∆c 0
−B C
0 ∆b


 ; d3 :=




C 0 0
B ∆c 0
0 −∆b C
0 0 B


 ; d4 :=




∆c 0 0 0
−B C 0 0
0 ∆b ∆c 0
0 0 −B C
0 0 0 ∆b




; . . .

Let Γ := ZG. To compute a complex giving a free resolution of the trivial ZG-module Z we
consider the total complex of the tensor product of the standard resolution of ZC2n -modules
and the resoution obtained for Λ-modules. So we obtain the diagram:

Γ0,0 ← Γ2
1,0 ← Γ3

2,0 ← Γ4
3,0 ← Γ5

4,0 ← Γ6
5,0

↑ ↑ ↑ ↑ ↑ ↑
Γ0,1 ← Γ2

1,1 ← Γ3
2,1 ← Γ4

3,1 ← Γ5
4,1 ← Γ6

5,1

↑ ↑ ↑ ↑ ↑ ↑
Γ0,2 ← Γ2

1,2 ← Γ3
2,2 ← Γ4

3,2 ← Γ5
4,2 ← Γ6

5,2

↑ ↑ ↑ ↑ ↑ ↑
Γ0,3 ← Γ2

1,3 ← Γ3
2,3 ← Γ4

3,3 ← Γ5
4,3 ← Γ6

5,3

↑ ↑ ↑ ↑ ↑ ↑
Γ0,4 ← Γ2

1,4 ← Γ3
2,4 ← Γ4

3,4 ← Γ5
4,4 ← Γ6

5,4

↑ ↑ ↑ ↑ ↑ ↑
Γ0,5 ← Γ2

1,5 ← Γ3
2,5 ← Γ4

3,5 ← Γ5
4,5 ← Γ6

5,5

↑ ↑ ↑ ↑ ↑ ↑
Γ0,6 ← Γ2

1,6 ← Γ3
2,6 ← Γ4

3,6 ← Γ5
4,6 ← Γ6

5,6

The vertical differentials
d0 : Γi+1

i,j −→ Γi+1
i,j−1

are multiplication by A if j is odd and multiplication by ∆a if j is even.
To define d1 we proceed in several steps. The morphisms

d1 : Γi+1
i,0 −→ Γi

i−1,0

are determined by the same matrix as the morphisms

d1 : Λi+1
i,0 −→ Λi

i−1,0 .

The morphisms
d1 : Γi+1

i,1 −→ Γi
i−1,1

and
d1 : Γi+1

i,2 −→ Γi
i−1,2

are defined by matrices obtained from the matrices in degree (∗, 0) by replacing c by c∇m
a

and b by b∇2n−1
a . Continuing this way, the morphisms

d1 : Γi+1
i,2f−1 −→ Γi

i−1,2f−1

and
d1 : Γi+1

i,2f −→ Γi
i−1,2f
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are defined by matrices obtained from the matrices in degree (∗, 0) by replacing c by c(∇m
a )f

and b by b(∇2n−1
a )f . Now note that

Ab = b(a− 1)∇2n−1
a and Ac = c(a− 1)∇m

a

and thus

A
(
c(∇m

a )f−1 − 1
)

=
(
c(∇m

a )f − 1
)

A and A
(
b(∇2n−1

a )f−1 − 1
)

=
(
b(∇2n−1

a )f − 1
)

A.

Since also ∆a is central in ZG and one then easily verifies that the diagram is commutative,
i.e., d0d1 = d1d0. The diagram does not have exact lines, however. Nevertheless, since the
extension for G splits, in degree (∗, 0) the sequence is exact. Next, define

0 = d2 : Γi+1
i,2f −→ Γi−1

i−2,2f+1

and
d2 : Γi+1

i,2f−1 −→ Γi−1
i−2,2f

is determined by the (i + 1)× (i− 1)-matrix

d2 := −




λf 0 . . . . . . . . . . . . 0

0 λf 0
...

κf 0 λf 0
...

0 κf 0 λf 0
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

... 0 κf 0 λf

... 0 κf 0
0 . . . . . . . . . . . . 0 κf




with

κf :=
(2n − 1)f ·2

k

− 1

2n
and λf :=

mf ·2l

− 1

2n
,

That the latter numbers are integers follows from the following calculations.
Since c∇m

a A = Ac we get

(
(c∇m

a )f
)2l

· A = Ac2l

= A

and hence
(
(c∇m

a )f
)2l

− 1 = y∆a for some y ∈ Z < b, c >. Putting a = 1 one obtains

(cm)f2l

− 1 = mf2l

− 1 = y2n.

This gives
(
(c∇m

a )f
)

2l − 1 =
mf2l

− 1

2n
∆a .
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Similarly, as ∇2n−1
a = ∆a − a−1,

(b∇2n−1
a )2

k

− 1 = b2k (
(∆a − a)(∆a − a−1)

)2k−1

− 1

= ((2n − 2)∆a + 1)2
k−1

− 1

= ((∆a − 1)(∆a − 1))2
k−1

− 1

= (∆a − 1)2
k

− 1

=

2k∑

i=1

(−1)2
k−i

(
2k

i

)
∆i

a

=
2k∑

i=1

(−1)2
k−i

(
2k

i

)
2n(i−1)∆a

= 2−n




2k∑

i=1

(−1)2
k−i

(
2k

i

)
(2n)i


∆a

=

(
(2n − 1)2

k

− 1

2n

)
∆a

Thus
(
b∆2n−1

a

)2k

A = A. It follows that
(
b∆2n−1

a

)2k

− 1 ∈ Z〈b, c〉∆a. So we obtain for any
f ,

(
b(∇2n−1

a )f
)2k

− 1 =
(2n − 1)f ·2

k

− 1

2n
∆a

Further one easily verifies that

c (∇m
a )f b

(
∇2n−1

a

)f
= cb(m∆a − a−1∇m

a−1)

= cb(m∆a − (a−1 + a−2 + · · ·+ a−m)

= b
(
∇2n−1

a

)f
c (∇m

a )f

Making use of all this information one now verifies that

d2d0 + d1d1 + d0d2 = d1d1 + d0d2 = 0

in odd rows and
d2d0 + d1d1 + d0d2 = d1d1 + d2d0 = 0

in even rows. So we found the first two terms of the spectral sequence leading to Wall’s
criterion (Proposition 2) for a projective resolution.

Since the matrix for the differentials dk in Z < b, c > have nonzero entries only in
the diagonal and the lower diagonal, and because the matrix defining d2 never has two
consecutive non zero entries, one observes by elementary computation that one can pose
d3 = 0.

Since d2d2 = 0 the defining equation for d4 degenerates to d0d4 + d4d0 = 0 and here
d4 = 0 is possible. Consequently, we can take dr = 0 for any r ≥ 3. Hence,

d := d0 + (−1)id1 + d2

already is a differential (here the (−1)i means that one applies d1 on even columns and one
applies −d1 on odd columns).
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Lemma 8 The differential d as defined above yields a projective resolution of the trivial
ZG-module Z.

Proof. This is an immediate consequence of the above discussion and the theorem of
C. T. C. Wall.

Corollary 9 The spectral sequence provided by the bigraded module used in C.T.C. Wall’s
construction for this group degenerates in degree 3.

We write down the first terms of this resolution explicitly.

Γ← Γ2 ⊕ Γ← Γ3 ⊕ Γ2 ⊕ Γ← Γ4 ⊕ Γ3 ⊕ Γ2 ⊕ Γ← Γ5 ⊕ Γ4 ⊕ Γ3 ⊕ Γ2 ⊕ Γ← . . .

the differentials are

d1 :=




C
B
A


 ; d2 :=




∆c 0 0
−B C 0
0 ∆b 0
A 0 1− c∇m

a

0 A 1− b∇2n−1
a

0 0 ∆a




;

d3 :=




C 0 0 0 0 0
B ∆c 0 0 0 0
0 −∆b C 0 0 0
0 0 B 0 0 0
A 0 0 −∆c∇m

a
0 −λ1

0 A 0 b∇2n−1
a − 1 1− c∇m

a 0
0 0 A 0 −∆

b∇2n−1
a

−κ1

0 0 0 ∆a 0 c∇m
a − 1

0 0 0 0 ∆a b∇2n−1
a − 1

0 0 0 0 0 A




;

d4 := �
��������������������������

∆c 0 0 0 0 0 0 0 0 0
−B C 0 0 0 0 0 0 0 0
0 ∆b ∆c 0 0 0 0 0 0 0
0 0 −B C 0 0 0 0 0 0
0 0 0 ∆b 0 0 0 0 0 0
A 0 0 0 1 − c∇

m

a 0 0 −λ1 0 0

0 A 0 0 1 − b∇
2

n
−1

a −∆c∇m

a

0 0 −λ1 0
0 0 A 0 0 ∆

b∇
2n
−1

a

1 − c∇
m

a −κ1 0 0

0 0 0 A 0 0 1 − b∇
2

n
−1

a 0 −κ1 0
0 0 0 0 ∆a 0 0 ∆c∇m

a

0 0

0 0 0 0 0 ∆a 0 1 − b∇
2

n
−1

a c∇
m

a − 1 0
0 0 0 0 0 0 ∆a 0 ∆

b∇
2n
−1

a

0

0 0 0 0 0 0 0 A 0 1 − c(∇m

a )2

0 0 0 0 0 0 0 0 A 1 − b(∇2
n
−1

a )2

0 0 0 0 0 0 0 0 0 ∆a

���������������������������
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4.2 The action of the automorphism

We shall have to define homomorphisms

τk : ⊕k+1
j=1Γj −→ α(⊕k−1

j=1Γj)

and then τk defines the action of α0 on the cohomology in degree k. Because of Lemma 1
we shall define matrices Mk such that τk(x) = α(x) ·Mk.

For the moment we put ∇ := ∇2n−1

a and ∇x := ∇x
a. It is clear that we may put M0 = 1.

Now, for k ≥ 1 the matrix k has to be such that

α0(dk) = Mkdk.

It is easy to see that

M1 =




a2n−1

0 ∇
0 1 0
0 0 1




and

M2 :=




1 0 0 ∆c2∇ 0 1+m
2 c∆c2

0 a2n−1

0 0 ∇ (2n−1 − 1)b
0 0 1 0 0 0

0 0 0 a2n−1

0 0
0 0 0 0 1 0
0 0 0 0 0 1




satisfy the desired equalities.
The matrix M3 can be taken as the following.




a2n−1

0 0 0 ∇ 0 0 1
2 (c− 1)∆c2 + ∆cm 0 σ

0 1 0 0 0 ∆c2∇ 0 −∆c2b(2n−1 − 1) 1+m
2 c∆c2 ρ

0 0 a2n−1

0 0 0 ∇ 0 (2n−1 − 1)b (2n−1 − 1)(∇)2

0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1+m

2 c∇m∆(c∇m)2

0 0 0 0 0 a2n−1

0 a2n−1

0 (2n−1 − 1)b∇2n

−1

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 a2n−1

0 ∇
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1




Here, ρ is a solution of the following equation (this obtained from computing the (2,6)-
position of the respective matrices)

−∆c2b(2
n−1)(c∇m − 1) +

1 + m

2
c∆c2(b∇

2n−1 − 1) + ρ(a− 1)

= (b− 1)
1 + m

2
c∆c2 + (1 + a2n−1

c)∆c2(2
n−1 − 1)b

This is equivalent to

bc∆c2((2
n−1 − 1)(∇m + a2n−1

+
1 + m

2
(−∇2n−1 + 1))) = ρ(1− a)
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Since the equation on the left hand side has augmentation 0 with respect to a, the equation
is solvable in the augmentation ideal with respect to a, hence the existence of ρ is proved.

The corresponding equation for σ is (this is obtained from computing the (1,6)-position):

σ(a− 1) +
1

2
((c− 1)∆c2 + ∆cm)(c∇m − 1)− λ∇2n−1

= (ca2n−1

− 1)
1 + m

2
c∆c2

Since − 1
2((c− 1)∆c2 + ∆cm)(c∇m − 1) + λ∇2n−1

+ (ca2n−1

− 1)1+m
2 c∆c2 has augmentation

0 with respect to a, this equation is solvable for σ.
In d3 only λ might be of odd augmentation. The rest of the coefficients of Hom � G(d3, F2)

are 0 regarded as mapping between two copies of Hom � G(Γ, F2). Thus, if we write the
elements of Hom � G(Γn, F2) ∼= (Hom � G(Γ, F2))

n as column vectors, then the image of
Hom � G(d3, F2) is contained in the 5-th row. The kernel of d4 has, for the same reason,
a complement that is contained in the direct sum of the 8-th and the 9-th row. In any
case, the 10 − th row (as well as the 6-th row) is fully contained in H 3(G, F2). Because
(2n−1−1)b∇2n−1

a has odd augmentation, we get that M3 does not act trivially on H3(G, F2).
This finishes the proof of Theorem 1.

Remark 10 We remark that with the very same methods one can see that with G =
C8×Q8 and Q8 being the quaternion group of order 8, and this acting on C8 via the natural
epimorphism

Q8 −→−→ C2 × C2 ' Aut(C8)

any non inner but almost inner automorphism of G induces a non trivial automorphism of
H3(G, F2). This is interesting since in [9] one constructs a group

H = (C2
p × C2

q )×(G×C2)

and a non inner automorphism α of H which becomes inner in SH for either a suitably big
ring of algebraic integers S or for any semilocalization S of Z. Of course, it follows that α
is almost inner and thus α induces the identity on H ∗(H, Z).

We remark that D. Benson computes in [1] the first terms of a projective resolution of
the trivial module Z for the group (Cp × Cq) ×Q8 in view of a possible counterexample to
the Poincaré conjecture.
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