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Abstract

Work of J. Rickard proves that the derived module categories of two rings A and B are equivalent
as triangulated categories if and only if there is a particular object T , a so-called tilting complex,
in the derived category of A such that B is the endomorphism ring of T . The functor inducing
the equivalence however is not explicit by the knowledge of T . Suppose the derived categories
of A and B are equivalent. If A and B are R-algebras and projective of finite type over the
commutative ring R, then Rickard proves the existence of a so-called two-sided tilting complex
X, which is an object in the derived category of bimodules. The left derived tensor product by
X is then an equivalence between the derived categories of A and B. There is no general explicit
construction known to derive X from the knowledge of T . In an earlier paper S. König and the
author gave for a class of algebras a tilting complex T by a general procedure with prescribed
endomorphism ring. Under some mild additional hypothesis we construct in the present paper
an explicit two-sided tilting complex whose restriction to one side is any given one-sided tilting
complex of the type described in the above cited paper. This provides two-sided tilting complexes
for various cases of derived equivalences, making the functor inducing this equivalence explicit.
In particular the perfect isometry induced by such a derived equivalences is determined.

Introduction

A well known process due to Grothendieck and Verdier [16] associates to any abelian category, e.g.
category of modules over a ring A, a bounded derived category which is a so-called triangulated
category. In case of the abelian category to be the category of modules over a ring A, the bounded
derived category is denoted by Db(A). For more details of this procedure we refer to [16] or [8]. The
question of when two rings A and B induce equivalent bounded derived module categories Db(A)
and Db(B) as triangulated categories is treated by Rickard in [10]. There he proves that Db(A) is
equivalent to Db(B) as triangulated categories if and only if there is a particular object in Db(A), a
so-called tilting complex T , such that

EndDb(A)(T ) ' B .

This description is completely general, but the functor between Db(A) and Db(B) inducing the
equivalence, called derived equivalence, remains nevertheless not at all easy to handle and is up to
some extent even not constructable just from the knowledge of T . Rickard proves in [11] for algebras
A and B over a commutative ring R which are flat as R-modules the existence of a complex X in
Db(A⊗R B

op) such that
X ⊗L

B − : Db(B) −→ Db(A)

is an equivalence of triangulated categories. The complex X is called two-sided tilting complex. One
obtains the tilting complex T as image of the rank one free B-module:

T ' X ⊗L

B B .

B. Keller gives a significantly simpler construction of X in terms of differential graded algebras and
without the hypothesis that B is flat over R in [6, 8]. To distinguish between tilting complexes and
two-sided tilting complexes we call T a one-sided tilting complex or just tilting complex. By this
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description, the equivalence between Db(A) and Db(B) is as explicit as the knowledge X . However,
a module theoretic construction of X out of a knowledge of T in general is not known so far, even
though Keller constructs X as a certain projective resolution of T as differential graded module over
a certain differential graded algebra [8].

In [7] a one-sided tilting complex T is constructed for a Gorenstein order Λ over a complete
discrete valuation domain R with residue field of characteristic p such that the endomorphism ring T
is a pullback of the endomorphism rings of the homology of the complex T over the endomorphism
ring of the homology in the stable category. Recall that an R-algebra Λ is called an R-order if Λ is
finitely generated projective as R-module such that K ⊗R Λ is semisimple for the field of fractions
K of R. An order Λ is Gorenstein if Ext1Λ(L,Λ) = 0 for any Λ-module L which is finitely generated
projective as R-module. Gorenstein orders are well suited for the above problem. In fact, a lot of
effort is undertaken in recent years to construct derived equivalences between blocks of group rings
RG and RH for two finite groups G and H . Recall that the principal block of a group ring RG is
the indecomposable ring direct factor of RG which acts on the trivial G-module. Broué conjectured
[1], see also [8], that if the two groups G and H have isomorphic abelian Sylow p-subgroups and
if moreover the normalizers of a Sylow p-subgroup of G and H are isomorphic, then the principal
blocks of G and of H should have equivalent derived categories. Broué explains many for a long
time conjectured and many known but not sufficiently explained phenomenons out of this derived
equivalence. Now, principal blocks of group rings of finite groups are Gorenstein orders, they are even
symmetric. Most of the complexes used so far in proving Broué’s conjecture satisfy the hypotheses
of [7].

What we do in the present paper is to give an explicit two-sided tilting complex X such that the
image of the rank one free EndDb(Λ)(T )-module is the tilting complex T discussed in [7]. To do this
we have to make an additional hypotheses which is not very restrictive if one is interested in Broué’s
conjecture.

Twosided tilting complexes do not only provide the explicit equivalence between the derived
categories but may be used also for other purposes. In fact, finding a one-sided tilting complex T
of the type discussed in [7] together with verification of some hypothesis implies by our paper the
explicit knowledge of a two-sided tilting complex X restriction of which to the left is isomorphic to
T . The work of Marcus [9] reduces Broué’s conjecture to its validity between the principal blocks of
finite simple groups with abelian Sylow p-subgroups and the principal block of the normalizer of a
Sylow p-subgroup together with a technical condition to be verified on the two-sided tilting complex
providing this derived equivalence. The two-sided tilting complex has to be known very explicitly for
to be tested if it verifies these technical condition. Hence, our construction gives a tool for verifying
these.

A perfect isometry [1] between two finite groups G and H is a special kind of isometry of the
character ring of the characters belonging to the principal block of G and the character ring of the
characters belonging to the principal block of H . As a further application we give explicitly the
perfect isometry induced by the two-sided tilting complex X . Moreover, we are able to control up
to a certain extent all perfect isometries who come from derived equivalences F : Db(Γ) −→ Db(Λ)
such that F (Γ) ' T for T as in [7].

Besides the interest coming from Broué’s conjecture we feel that the construction itself deserves
attention. The fact that two rings are derived equivalent gives many ring theoretic information, and
controlling the equivalence explicitly should give even more.

At the very end we give examples where the theorem applies. Amongst them are algebras of
semidihedral type in the sense of Erdmann [2].

Acknowledgement: I want to thank Lluis Puig for convincing me of the use of an abstract
formulation of [18] which finally led to the present paper and I want to thank Bernhard Keller for
numerous helpful remarks and discussions.

1 Recalling the one-sided situation

Our conventions composing mappings α : A −→ B and β : B −→ C are as follows. We write β ◦ α
when we look at images of particular elements of A. We write αβ when we write mappings on the
right, what we usually do when we discuss commutative diagrams.
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Throughout, we fix a complete discrete valuation domain R with field of fractions K and a
Gorenstein order Λ. We recall that an order Λ is an R-algebra which is finitely generated projective
as R-module and K ⊗R Λ is a semisimple K-algebra. A Λ-lattice is a Λ-module which is finitely
generated projective as R-module. An R-order Λ is called a Gorenstein R-order if Ext1Λ(L,Λ) = 0 for
any Λ-lattice L. A morphism U −→ V between two lattices U and V is called pure if its cokernel is a
lattice. A sublattice U of a lattice V is a pure sublattice if the embedding is a pure homomorphism.

When we regard complexes we mean chain complexes T with differential di : Ti −→ Ti−1 with
di ◦ di+1 = 0 for all i ∈ Z and we regard homology H∗(T ) unless otherwise stated. For further
conventions and definitions concerning derived categories we refer to Verdier [16] and to [8].

In [7] we constructed a one-sided tilting complex T with endomorphism ring Γ as follows. Take
a Λ-lattice L with projective cover

Q
λ
−→ L

and a projective cover
P

π
−→ ΩL

of ΩL := ker λ with C := ker π. Denote by ϕ the resulting homomorphism P −→ Q. We hence get
a four term exact sequence

0 −→ C
ι
−→ P

ϕ
−→ Q

λ
−→ L −→ 0.

We choose a finitely generated projective Λ-module P̃ such that Q⊕ P ⊕ P̃ is a progenerator for Λ.

Theorem 1 [7, 8] Let R, Λ, P , Q and P̃ be as above. Suppose that HomΛ(P ⊕ P̃ , L) = 0. Then,

the complex T

. . . −→ 0 −→ P ⊕ P ⊕ P̃
(ϕ,0,0)
−→ Q −→ 0 −→ . . .

with homology concentrated in degrees 0 and 1 is a tilting complex. Denoting by EndΛ(L) the quotient

of the ring of Λ-linear endomorphisms of L modulo those endomorphisms factoring over a projective

module, then EndDb(Λ)(T ) ' Γ occurs in the following pullback diagram.

Γ −→ EndΛ(H0(T ))
↓ ↓

EndΛ(H1(T )) −→ EndΛ(L)

2 Exploring Γ

We fix L, Q, P , P̃ , ϕ, π and ι as in Theorem 1.

Lemma 1 If HomΛ(P ⊕ P̃ , L) = 0, then there is an idempotent e2 = e in the centre Z(K ⊗R Λ) of

K ⊗R Λ such that L ' e ·Q and e · (P ⊕ P̃ ) = 0.

Proof. Set A := K ⊗R Λ. Since HomΛ(P ⊕ P̃ , L) = 0, for any primitive central idempotent f in
A with f · (P ⊕ P̃ ) 6= 0 one gets f · L = 0. In fact, take any α ∈ HomA(K ⊗R (P ⊕ P̃ ),K ⊗R L).
Then α(P ⊕ P̃ ) is a Λ-lattice in K ⊗R L, and hence there is a non zero element r in R, such that

r · α(P ⊕ P̃ ) ⊆ L.

Then,
r · α ∈ HomΛ(P ⊕ P̃ , L) = 0

and therefore rα = 0, which yields α = 0.
Let

E := {ε ∈ A | ε is a central primitive idempotent in A with ε · L 6= 0}

Set e :=
∑

ε∈E ε. Then, by the above, e · (P ⊕ P̃ ) = 0. We look at the short exact sequence

0 −→ ΩL −→ Q −→ L −→ 0

and we apply eΛ⊗Λ − to it. We get the exact sequence

. . . −→ eΩL −→ eQ −→ eL −→ 0

where eΩL = 0 by the above and eL = L by the definition of E. This concludes the proof of the
lemma.
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Lemma 2 L is free of rank 1 as EndΛ(L)-module.

Proof.
The following sequence is exact:

0 −→ ΩL −→ Q −→ L −→ 0

We apply HomΛ(−, L) to it and see

L ' HomΛ(Λ, L) '




HomΛ(Q,L)
HomΛ(P,L)

HomΛ(P̃ , L)


 =




HomΛ(Q,L)
0
0


 =




HomΛ(L,L)
0
0


 ' EndΛ(L)

as EndΛ(L)-module.

Assume that HomΛ(C,ΩL) = 0.
Since from the very beginning we assumed that HomΛ(P ⊕ P̃ , L) = 0, Lemma 1 provides us with

a central idempotent e in A = K ⊗R Λ with e · Q = L and e · (P ⊕ P̃ ) = 0. Moreover, if we define
eΩL the sum of all central primitive idempotents ei of A with ei · ΩL 6= 0, and define

eC := 1− e− eΩL.

The above hypotheses ensure that

e · eΩL = e · eC = eΩL · eC = 0 .

We define P̃ (c) by the following exact sequence.

0 −→ P̃ (c) −→ P̃ −→ eΩLP̃ −→ 0

Analogously to Lemma 1 we have

Lemma 3 Assume that HomΛ(C,ΩL) = 0. Then, we have natural isomorphisms

• eΩL · P ' ΩL

• EndΛ(C) = HomΛ(C,P )

• HomΛ(P,Q) ' HomΛ(ΩL,ΩL)

• HomΛ(P̃ , Q) ' HomΛ(eΩLP̃ ,ΩL)

• HomΛ(C, P̃ (c)) ' HomΛ(C, P̃ )

Proof.
0 −→ C −→ P −→ ΩL −→ 0

is exact. Multiplying this short exact sequence by eΩL, i.e. applying eΩLΛ ⊗Λ −, proves the first
statement.

Applying HomΛ(C,−) to
0 −→ C −→ P −→ ΩL −→ 0

yields the second isomorphism.
Applying HomΛ(P,−) to

0 −→ ΩL −→ Q −→ L −→ 0

yields HomΛ(P,Q) ' HomΛ(P,ΩL). Applying HomΛ(−,ΩL) to

0 −→ C −→ P −→ ΩL −→ 0

proves the third statement.
Applying HomΛ(−,ΩL) to

0 −→ P̃ (c) −→ P̃ −→ eΩLP̃ −→ 0
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proves HomΛ(eΩLP̃ ,ΩL) ' HomΛ(P̃ ,ΩL). Applying HomΛ(P̃ ,−) to

0 −→ ΩL −→ Q −→ L −→ 0

gives the fourth statement.
Applying HomΛ(C,−) to

0 −→ P̃ (c) −→ P̃ −→ eΩLP̃ −→ 0

proves the fifth statement.

3 Inverting T

We recall from [8, Lemma 5.2.5].

Lemma 4 Let S be a ring and let M and X be S-modules. Assume that X is a direct summand of

M . Then, the functor

HomS(M,−) : S −Mod −→ EndS(M)−Mod

induces for any S-module Y an isomorphism

HomS(X,Y ) −→ HomEndS(M)(HomS(M,X), HomS(M,Y ))

Likewise, the functor

HomS(−,M) : S −Mod −→ EndS(M)−Mod

induces for any S-module Y an isomorphism

HomS(Y,X) −→ HomEndS(M)(HomS(X,M), HomS(Y,M))

Proof. The first part is proven in [8, Lemma 5.2.5].
We give a different proof due to B. Keller for the reader’s convenience.
The first statement follows from the counit of the following pair of adjunctions. The functors

HomΛ(M,−) : Λ−mod −→ EndΛ(M)−mod

and
M ⊗EndΛ(M) − : EndΛ(M)−mod −→ Λ−mod

form an adjoint pair. The counit of this adjunction

η : M ⊗EndΛ(M) HomΛ(M,−) −→ Id

has the property that its evaluation ηM on M is an isomorphism:

M ⊗EndΛ(M) HomΛ(M,M) 'M

Since the two functors HomΛ(M,−) and M ⊗EndΛ(M)− are additive, the same is true for any direct
summand X . Hence,

HomEndS(M)(HomS(M,X), HomS(M,Y )) ' HomΛ(M ⊗EndΛ(M) HomΛ(M,X), Y )

' HomΛ(X,Y )

For the second isomorphism we proceed as follows. Clearly, the functor HomS(−,M) induces a
mapping

Θ : HomS(Y,X) −→ HomEndS(M)(HomS(X,M), HomS(Y,M))

α −→ (χ −→ αχ)
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Take π ∈ HomΛ(M,X) the natural projection and denote by ι : X −→ M the natural embedding.
Define

Ψ : HomEndS(M)(HomS(X,M), HomS(Y,M)) −→ HomS(Y,X)

ρ −→ ρ(ι)π

Now, for any α ∈ HomS(Y,X),

Ψ(Θ(α)) = Ψ(χ −→ αχ)

= αιπ

= α

Moreover,

ΘΨ(ρ)) = Θ(ρ(ι)π)

= (χ −→ ρ(ι)πχ)

= (χ −→ ρ(ιπχ))

= (χ −→ ρ(χ))

= ρ

This proves the lemma completely.

Take a Gorenstein order Λ and a Λ-module L as in Theorem 1. Then, choose a projective module
P̃ to form a tilting complex T as in Theorem 1.

We are now able to prove that under certain circumstances there is an ’inverse’ to T which again
is of the form described in Theorem 1.

A first step to this direction is in fact the observation that L has a natural structure of an
EndΛ(L)-module. Moreover, EndΛ(L) is an epimorphic image of Γ as rings, as follows by the
description of Γ as pullback and by the observation that H0(T ) ' L.

The projective cover of EndΛ(L) as Γ-module is computed as follows. Set C := kerφ. Then,

EndΛ(H1(T )) '




EndΛ(C) HomΛ(C,P ) HomΛ(C, P̃ )

HomΛ(P,C) EndΛ(P ) HomΛ(P, P̃ )

HomΛ(P̃ , C) HomΛ(P̃ , P ) EndΛ(P̃ )




The pullback diagram
Γ −→ EndΛ(H0(T ))
↓ ↓

EndΛ(H1(T )) −→ EndΛ(L)

gives us a morphism of the rank one free Γ-right module to EndΛ(L). We can even determine the
projective cover of EndΛ(L) as Γ-module. Observe that

(
HomΛ(P,C) EndΛ(P ) HomΛ(P, P̃ )

HomΛ(P̃ , C) HomΛ(P̃ , P ) EndΛ(P̃ )

)

maps as 0 to EndΛ(L). In fact, only the component EndΛ(C) gives a contribution to the homomor-
phism, the mapping to EndΛ(L) being induced by the exact sequence

0 −→ C −→ P −→ Q −→ L −→ 0.

Hence, since the above short exact sequence is the projective cover sequence for L as Λ-module, the
projective cover of EndΛ(L) as Γ-module is Q∗ defined as pullback as follows:

Q∗ −→ EndΛ(L)
↓ ↓

HomΛ(C,C ⊕ P ⊕ P̃ ) −→ EndΛ(L)
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The kernel of Q∗ −→ EndΛ(L) is isomorphic to the kernel of HomΛ(C,C ⊕ P ⊕ P̃ ) −→ EndΛ(L)
using that Q∗ is defined as a pullback. Since again the latter is defined by pulling mappings along
the exact sequence

0 −→ C −→ P −→ Q −→ L −→ 0,

already HomΛ(C, 0 ⊕ P ⊕ P̃ ) is in the kernel of the mapping in question. Moreover, using the fact
that Λ is a Gorenstein order, we see that

EndΛ(L) ' EndΛ(C).

We shall need also for later use the following.

Lemma 5 Let Λ be a Gorenstein order, let U be a pure sublattice of a projective module V and

denote by α the embedding. Then, for any lattice W the set of Λ-homomorphisms from U to W
factoring through any projective module is α ·HomΛ(V,W ).

Proof. Let U −→ W be a homomorphism which factors through a projective module X . We
form the pushout diagram as below:

0 −→ U −→ V −→ V/U −→ 0
↓ ↓ ‖

0 −→ X −→ PO −→ V/U −→ 0

Since U is pure in V , also X is pure in PO. Since X is projective, the Gorenstein property gives
us that the lower short exact sequence splits. Hence there is a mapping PO −→ X such that
X −→ PO −→ X is the identity on X . Hence,

(U −→ W ) = (U −→ X −→W )

= (U −→ X −→ PO −→ X −→W )

= (U −→ V −→ PO −→ X −→ W )

= (U −→ V ) −→ (PO −→ X −→W )

and U −→W already factors through the embedding of U into V .

We apply Lemma 5 to compute the kernel of the projective cover mapping. The endomorphisms
of C factoring over any projective module are those factoring over the embedding C

ι
−→ P . Hence,

0 −→ ( ι ·HomΛ(P,C), HomΛ(C,P ), HomΛ(C, P̃ ) ) −→ Q∗ −→ EndΛ(L) −→ 0

is an exact sequence of Γ-modules.
We look for a projective Γ-module mapping onto this kernel. We have the short exact sequence

0 −→ C −→ P −→ ΩL −→ 0

of Λ-modules. We apply HomΛ(−, C ⊕ P ⊕ P̃ ) to it and get the exact sequence

0 −→ HomΛ(ΩL,C⊕P ⊕ P̃ ) −→ HomΛ(P,C ⊕P ⊕ P̃ ) −→ HomΛ(C,C ⊕P ⊕ P̃ ) −→ Ext1Λ(ΩL,C)

of Γ-modules where

im( HomΛ(P,C ⊕ P ⊕ P̃ ) −→ HomΛ(C,C ⊕ P ⊕ P̃ ) ) = ι ·HomΛ(P,C) ⊕HomΛ(C,P ⊕ P̃ ).

Hence, the projective EndΛ(C ⊕P ⊕ P̃ )-module HomΛ(P,C ⊕P ⊕ P̃ ) maps onto our kernel. In fact
it is not only a projective EndΛ(C ⊕ P ⊕ P̃ )-module but also a projective Γ-module: In fact, the
pullback construction does only affect the EndΛ(C) entry in EndΛ(C ⊕ P ⊕ P̃ ).

We hence get a projective resolution of EndΛ(L) as Γ-module out of the following diagram.

0
↓

HomΛ(ΩL,C ⊕ P ⊕ P̃ )
↓

HomΛ(P,C ⊕ P ⊕ P̃ ) → Q∗ → EndΛ(L)→ 0
↓ ↓ p.b. ↓

0→ ι ·HomΛ(P,C) ⊕HomΛ(C,P ⊕ P̃ ) → HomΛ(C,C ⊕ P ⊕ P̃ ) → EndΛ(L)→ 0
↓
0
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We regard the complex T ∗

0 −→ HomΛ(P,C ⊕ P ⊕ P̃ ) −→ Q∗ −→ 0
⊕ ⊕

0 −→ HomΛ(P,C ⊕ P ⊕ P̃ ) −→ 0
⊕ ⊕

0 −→ HomΛ(P̃ , C ⊕ P ⊕ P̃ ) −→ 0

of Γ-right modules with homology concentrated in degree 0 and 1.

We are ready to prove that T ∗ verifies the hypotheses of Theorem 1.

Lemma 6 1. H0(T
∗) ' EndΛ(L) and H1(T

∗) ' HomΛ(ΩL⊕ P ⊕ P̃ , C ⊕ P ⊕ P̃ )

2. Q∗ ⊕HomΛ(P ⊕ P̃ , C ⊕ P ⊕ P̃ ) is a progenerator of Γ.

3. HomΓ( HomΛ(P ⊕ P̃ , C ⊕ P ⊕ P̃ ), EndΛ(L) ) = 0.

Proof. Part 1 of the proposition is clear from the construction of T ∗.
Since the module in question is in fact free of rank 1, the second part follows also.
It is clear that Γ again is an order. We apply K ⊗R − to HomΛ(P ⊕ P̃ , C ⊕ P ⊕ P̃ ) and to

EndΛ(L). Now, as a general fact, EndΛ(L) is an R-torsion module and hence K ⊗R EndΛ(L) = 0.
The idempotent e reappears in Γ as identity endomorphism on L. Since K ⊗R EndΛ(L) = 0,

K ⊗R Γ ' ( K ⊗R EndΛ(L) )⊕ ( K ⊗R HomΛ(P ⊕ P̃ , C ⊕ P ⊕ P̃ ) )

is a decomposition into two-sided ideals. Hence, also 3. follows.

Corollary 1 If Γ is again a Gorenstein order, then Λop ' EndDb(Γ)(T
∗).

Remark If Λ is symmetric, then also Γ is symmetric and symmetric orders are Gorenstein.

For the proof we use Lemma 4.

HomΓ( HomΛ(P ⊕ P̃ , C ⊕ P ⊕ P̃ ), HomΛ(P ⊕ P̃ , C ⊕ P ⊕ P̃ ) ) ' HomΛ(P ⊕ P̃ , P ⊕ P̃ )op

and

HomΓ( HomΛ(P ⊕ P̃ , C⊕P ⊕ P̃ ), HomΛ(ΩL,C⊕P ⊕ P̃ ) ) ' HomΛ(ΩL, P ⊕ P̃ ) ' HomΛ(Q,P ⊕ P̃ )

Those Γ-linear mappings from HomΛ(P,C ⊕ P ⊕ P̃ ) to HomΛ(P ⊕ P̃ , C ⊕ P ⊕ P̃ ) which factor
through Q∗ are precisely those which factor through HomΛ(C,C ⊕ P ⊕ P̃ ) since EndΛ(L) lies in
another component. Lemma 4 then gives us that

HomΓ(HomΛ(P,C ⊕ P ⊕ P̃ ), HomΛ(P ⊕ P̃ , C ⊕ P ⊕ P̃ ) ' HomΛ(P ⊕ P̃ , P )

and that

HomΓ(HomΛ(C,C ⊕ P ⊕ P̃ ), HomΛ(P ⊕ P̃ , C ⊕ P ⊕ P̃ ) ' HomΛ(P ⊕ P̃ , C).

Applying HomΛ(P ⊕ P̃ ,−) to the short exact sequence

0 −→ C −→ P −→ ΩL −→ 0

gives us that

0 −→ HomΛ(P ⊕ P̃ , C) −→ HomΛ(P ⊕ P̃ , P ) −→ HomΛ(P ⊕ P̃ ,ΩL) −→ 0

is exact. But,
HomΛ(P ⊕ P̃ ,ΩL) ' HomΛ(P ⊕ P̃ , Q).
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We have to compute the endomorphism ring over Γ of HomΛ(ΩL,C⊕P ⊕ P̃ ). But, by Lemma 3,
we get eΩLP ' ΩL. Hence,

EndΓ(HomΛ(ΩL,C ⊕ P ⊕ P̃ )) ' EndΓ(HomΛ(eΩLP,C ⊕ P ⊕ P̃ ))

' EndΓ(eΩLHomΛ(P,C ⊕ P ⊕ P̃ ))

' EndΛ(eΩLP )op

' EndΛ(ΩL)op

applying Lemma 4. Even more,

EndΓ(EndΛ(L)) ' EndEndΛ(L)(EndΛ(L)) ' EndΛ(L)op .

Now, Γ is Gorenstein and hence the first three parts of Proposition 6 together justify that we may
apply Theorem 1. Lemma 5 gives us that those Γ-linear endomorphisms of HomΛ(ΩL,C ⊕ P ⊕ P̃ )
factoring over a projective module are those factoring over HomΛ(P,C ⊕P ⊕ P̃ ). These correspond
then to those endomorphisms of ΩL factoring over a projective module and hence, the endomorphism
ring of

Tr : 0 −→ HomΓ(P,C ⊕ P ⊕ P̃ ) −→ Q∗ −→ 0.

is isomorphic to the opposite of the endomorphism ring of Q.
Hence,

EndDb(Γ)(T
∗) '

(
EndΛ(Q)op HomΛ(P ⊕ P̃ , Q)

HomΛ(Q,P ⊕ P̃ ) EndΛ(P ⊕ P̃ )op

)
' Λop

We recall a lemma of Rickard from [8, 18].

Lemma 7 (J. Rickard) Let R be a complete discrete valuation ring and let Λ and Γ be R-orders.

Assume that we have a complex X in Db(Λ⊗RΓop) such that X ' T in Db(Λ) and X ' T ∗ ∈ Db(Γop)
where T is a tilting complex with endomorphism ring isomorphic to Γ and T ∗ is a tilting complex

with endomorphism ring isomorphic to Λop. Then, X is a two-sided tilting complex.

By Lemma 7 we are done if we have constructed a complex X in Db(Λ⊗RΓop) which is isomorphic
to T in Db(Λ) and to T ∗ in Db(Γop).

4 How to construct the two-sided tilting complex

We shall construct a complex X in Db(Λ⊗R Γop) such that X ' T in Db(Λ) and X ' T ∗ in Db(Γop)
for our complexes T and T ∗ from section 3. Lemma 7 then tells us that X is indeed a two-sided
tilting complex.

The complex will be constructed by the following commutative diagram.

Ω̂L ↪→ X0 −→−→ EndΛ(L)
‖ ↓ P.B. ↓

H1(X) ↪→ X1 −→−→ Ω̂L ↪→ X0 −→−→ EndΛ(L)
‖ ↓ P.B. ↓ α

H1(X) ↪→ X1 −→−→ Ω

Here all sequences • ↪→ • −→−→ • are assumed to be exact. Ω̂L denotes the kernel of this map
X0 −→ L as Λ⊗R Γop-module.

Remark 1 In general X0 is not projective neither as Λ nor as Γop-module.

What we have to do, is to define α, the Λ⊗R Γop-module Ω, the module X1 and its projection
onto Ω.

Our complex X will then be

. . . −→ 0 −→ X1 −→ X0 −→ 0 −→ . . .
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where the non zero differential is induced by the mapping

Ω̂L ↪→ X0

‖

X1 −→−→ Ω̂L

We begin with the parts which are easy to describe.

X0 =




EndΛ(Q)⊗R EndΛ(C) EndΛ(Q)⊗R HomΛ(C, P ) EndΛ(Q)⊗R HomΛ(C, P̃ )

HomΛ(P, Q)⊗R EndΛ(C) HomΛ(P, Q)⊗R HomΛ(C, P ) HomΛ(P, Q)⊗R HomΛ(C, P̃ )

HomΛ(P̃ , Q)⊗R EndΛ(C) HomΛ(P̃ , Q)⊗R HomΛ(C, P ) HomΛ(P̃ , Q)⊗R HomΛ(C, P̃ )




The mapping to EndΛ(L) is defined as follows. Since there is a central idempotent e in K ⊗R Λ
with e ·Q = L, each endomorphism φ of Q induces an endomorphism eφ of L and hence the mapping
X0 −→ EndΛ(L) is defined as 


φ⊗ ψ ? ?

? ? ?
? ? ?


 −→ φ · ψ

denoting by the residue class in EndΛ(L).

We see immediately that Ω̂L is

Ω̂L =




Ỹ EndΛ(Q)⊗R HomΛ(C, P ) EndΛ(Q)⊗R HomΛ(C, P̃ )

HomΛ(P, Q)⊗R EndΛ(C) HomΛ(P, Q)⊗R HomΛ(C, P ) HomΛ(P, Q)⊗R HomΛ(C, P̃ )

HomΛ(P̃ , Q)⊗R EndΛ(C) HomΛ(P̃ , Q)⊗R HomΛ(C, P ) HomΛ(P̃ , Q)⊗R HomΛ(C, P̃ )




for Ỹ is defined via the exact sequence

0 −→ Ỹ −→ EndΛ(Q)⊗R EndΛ(C) −→ EndΛ(L) −→ 0

We define

H1(X) :=




HomΛ(ΩL,C) HomΛ(ΩL, P ) HomΛ(ΩL, P̃ )

HomΛ(P,C) EndΛ(P ) HomΛ(P, P̃ )

HomΛ(P̃ , C) HomΛ(P̃ , P ) EndΛ(P̃ )




Lemma 8 H1(X) ' H1(T ) in Λ−mod and H1(X) ' H1(T
∗) in mod− Γ

Proof. Using that HomΛ(ΩL,C ⊕ P ⊕ P̃ ) ' HomΛ(Q,C ⊕ P ⊕ P̃ ) by Lemma 1, we recognize
readily the direct summands.

5 Defining the remaining components

We shall assume from now on throughout that HomΛ(C,ΩL) = 0
Let P̃ (c) := eCP̃ ∩ P̃ .

5.1 Defining X1 and Ω as R-modules

We define
X1 := X1

ΩL
⊕X1

C

with

X1
ΩL

:=




0 HomΛ(P,ΩL) HomΛ(P, eΩLP̃ )

0 HomΛ(P,ΩL) HomΛ(P, eΩLP̃ )

0 HomΛ(P̃ ,ΩL) HomΛ((P̃ , eΩLP̃ )




and

X1
C

:=




0 0 0

HomΛ(C,P ) HomΛ(C,P ) HomΛ(C, P̃ )

HomΛ(P̃ (c), P ) HomΛ(P̃ (c), P ) HomΛ(P̃ (c), P̃ )




We shall discover a Λ⊗R Γop-module structure on X1 in the sequel. However, want first define Ω.
To be able to define Ω we discuss various pushout diagrams.
First, we state a surely well known lemma.
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Lemma 9 Let X
χ
−→ Z

η
←− Y be the pushout of X

α
←− W

β
−→ Y . Assume that kerα ∩ kerβ = 0.

Then, α induces an isomorphism kerχ ' kerβ.

Proof. Z ' (X ⊕ Y )/{(α(w),−β(w))|w ∈W}. And

kerχ = {x ∈ X |χ(x) ∈ {(α(w),−β(w))|w ∈ W}} = {x ∈ X |x = α(w) and w ∈ kerβ} = α(kerβ)

Hence, α is surjective as mapping kerβ −→ kerχ. Since kerα ∩ kerβ = 0, we get the statement.

We apply HomΛ(P,−) and HomΛ(−, P ) to

0 −→ C −→ P −→ ΩL −→ 0.

Since HomΛ(ΩL,C) = 0, the hypothesis of Lemma 9 are fulfilled and we obtain a commutative
diagram, which is completed to a pushout diagram in form of Ω, as follows.

0 0
↓ ↓

HomΛ(P,C) = HomΛ(P,C)
↓ ↓

0 −→ HomΛ(ΩL, P ) −→ HomΛ(P, P ) −→ HomΛ(C,P ) −→ 0
‖ ↓ ↓ σ

0 −→ HomΛ(ΩL, P ) −→ HomΛ(P,ΩL)
τ
−→ Ω −→ 0

↓ ↓
0 0

Observe that by Lemma 9 this diagram is at once a pullback and a pushout diagram!
In the same way we introduce a commutative diagram associated to HomΛ(P̃ , P̃ ) with respect

to eC and eΩL and complete it to a pushout diagram.

HomΛ(P̃ , P̃ ) −→ HomΛ(P̃ (c), P̃ ) −→ 0
↓ ↓

HomΛ(P̃ , eΩLP̃ ) −→ Ω̃ −→ 0
↓ ↓
0 0

We shall do the same with the commutative diagram associated to HomΛ(P, P̃ ) with respect to
eC and eΩL as well as with HomΛ(P̃ , P ) with respect to the same central idempotents eC and eΩL

of A. Observe that e acts as 0 on each of these homomorphism sets.

HomΛ(P, P̃ ) −→ HomΛ(C, P̃ ) −→ 0
↓ ↓

HomΛ(P, eΩLP̃ ) −→ Ω̃P −→ 0
↓ ↓
0 0

and
HomΛ(P̃ , P ) −→ HomΛ(P̃ (c), P ) −→ 0

↓ ↓

HomΛ(P̃ , eΩLP ) −→ Ω̃P −→ 0
↓ ↓
0 0

are the corresponding pullback/pushout diagrams.
The same procedure applied to HomΛ(P̃ , C) yields the following. The sequence

0 −→ P̃ (c) −→ P̃ −→ eΩLP̃ −→ 0

is exact. We apply HomΛ(−, C) to it and, using that HomΛ(eΩLP̃ , C) = 0, we obtain

0 −→ HomΛ(P̃ , C) −→ HomΛ(P̃ (c), C) −→ Ext1Λ(eΩLP̃ , C) −→ 0

is exact. Since HomΛ(P̃ (c),ΩL) = 0, we have

HomΛ(P̃ (c), C) ' HomΛ(P̃ (c), P ) .
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Lemma 10 Let A be a ring and let

M : 0 −→M1 −→M2 −→M3 −→ 0

as well as

N : 0 −→ N1 −→ N2 −→ N3 −→ 0

be short exact sequences of A-modules. Assume that

Ext1A(N2,M1) = Ext1A(N3,M2) = 0 and that HomA(N3,M1) = HomA(N1,M3) = 0.

Then, there is a short exact sequence

0 −→ HomA(N2,M2) −→ HomA(N1,M2)⊕HomA(N2,M3) −→ Ext1A(N3,M1) −→ 0

induced by the natural maps.

Proof. We apply HomA(−,M1) to N and obtain, using that HomA(N3,M1) = 0 and that
Ext1(N2,M1) = 0, a short exact sequence

0 −→ HomA(N2,M1) −→ HomA(N1,M1) −→ Ext1A(N3,M1) −→ 0

whence applying Hom(N2,−) to M we get, using that Ext1A(N2,M1) = 0 a short exact sequence

0 −→ HomA(N2,M1) −→ HomA(N2,M2) −→ HomA(N2,M3) −→ 0

Since HomA(N1,M3) = 0, we get HomA(N1,M1) ' HomA(N1,M2). We hence get a commutative
diagrams with exact rows and columns.

0 0
↓ ↓

0 −→ HomA(N2,M1) −→ HomA(N1,M1) −→ Ext1A(N3,M1) −→ 0
↓ ↓

HomA(N2,M2) −→ HomA(N1,M2) −→ 0
↓ ↓

HomA(N2,M3) 0
↓
0

The sequence

0 −→ HomA(N3,M2) ∩HomA(N2,M1) −→ HomA(N2,M2) −→ HomA(N1,M2)⊕HomA(N2,M3)

is exact; where the left term is identified with its image in HomA(N2,M2). An element in χ ∈
HomA(N3,M2)∩HomA(N2,M1) is a mapping N2 −→M2 which factorizes via M1 and via N3. The
factorizing property via M1 implies that im χ ⊆ M1. Since by the surjectivity of N2 −→ N3 the
mapping χ : N2 −→ N3 −→M2 hence is in fact a mapping N2 −→ N3 −→M1. The last part is zero
since HomA(N3,M1) = 0. We get that HomA(N2,M2) −→ HomA(N1,M2) ⊕HomA(N2,M3) is a
monomorphism.

This induces a commutative diagram

0
↓

0 0 −→ ker
↓ ↓ ↓

0 −→ HomA(N2,M1) −→ HomA(N1,M1) −→ Ext1A(N3,M1) −→ 0
↓ ↓ ↓

0 −→ HomA(N2,M2) −→ HomA(N1,M2)⊕HomA(N2,M3) −→ coker −→ 0
↓ ↓ ↓

HomA(N2,M3)
ϕ
−→ HomA(N2,M3) −→ cocoker −→ 0

↓ ↓ ↓
0 0 0
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with exact rows and columns. Since ϕ = id makes the diagram commutative, the snake lemma
implies that cocoker = ker = 0 and that coker ' Ext1A(N3,M1). This proves the lemma.

We apply lemma 10 to determine Ω̃P , Ω̃
P and Ω̃.

We shall use the sequences

P̃ : 0 −→ P̃ (c) −→ P̃ −→ eΩLP̃ −→ 0

and
P : 0 −→ C −→ P −→ ΩL −→ 0

The following identifications give the results below.

M = P N = P̃ Ω̃P = Ext1Λ(eΩL
P̃ , C)

M = P̃ N = P Ω̃P = Ext1Λ(ΩL, P̃ (c))

M = P̃ N = P̃ Ω̃ = Ext1Λ(eΩL
P̃ , P̃ (c))

M = P N = P Ω = Ext1Λ(ΩL, C)

Summarizing, the sequences

0 −→ HomΛ(P̃ , P̃ ) −→ HomΛ(P̃ (c), P̃ )⊕HomΛ(P̃ , eΩLP̃ ) −→ Ext1Λ(eΩLP̃ , P̃ (c)) −→ 0

0 −→ HomΛ(P̃ , P ) −→ HomΛ(P̃ (c), P )⊕HomΛ(P̃ ,ΩL) −→ Ext1Λ(eΩLP̃ , C) −→ 0

0 −→ HomΛ(P, P̃ ) −→ HomΛ(C, P̃ )⊕HomΛ(P, eΩLP̃ ) −→ Ext1Λ(ΩL, P̃ (c)) −→ 0

0 −→ HomΛ(P, P ) −→ HomΛ(C,P )⊕HomΛ(P,ΩL) −→ Ext1Λ(ΩL,C) −→ 0

are exact. These give the entries (3, 3), (2, 3), (3, 2) and (2, 2) of Ω. Moreover, by the pullback
property of the pushout diagrams we get that

0 −→ HomΛ(P̃ , C) −→ HomΛ(P̃ (c), P ) −→ Ext1Λ(eΩLP̃ , C) −→ 0

0 −→ HomΛ(ΩL, P̃ ) −→ HomΛ(P, eΩLP̃ ) −→ Ext1(ΩL, P̃ (c)) −→ 0

0 −→ HomΛ(ΩL, P ) −→ HomΛ(P,ΩL) −→ Ext1Λ(ΩL,C) −→ 0

0 −→ HomΛ(P,C) −→ HomΛ(C,P ) −→ Ext1Λ(ΩL,C) −→ 0

are exact. These sequences give the (1, 3), (3, 1), (2, 1) and (1, 2) entry of Ω.
We see that

Ω =




0 Ext1Λ(ΩL,C) Ext1Λ(ΩL, P̃ (c))

Ext1Λ(ΩL,C) Ext1Λ(ΩL,C) Ext1Λ(ΩL, P̃ (c))

Ext1Λ(eΩLP̃ , C) Ext1Λ(eΩLP̃ , C) Ext1Λ(eΩLP̃ , P̃ (c))




What we have to define is the module structure of X1 and to verify that the mapping H1(X) −→

X1 and the mapping Ω̂L −→ Ω are Λ⊗R Γop-module homomorphisms.

5.2 Defining the Λ⊗R Γop-module structure on X1 and Ω

For defining a left Λ-module structure onX1, we define the structure onX1
ΩL

and onX1
C

separately.
Observe that

Λ = EndΛ(Λ) =




HomΛ(Q,Q) HomΛ(Q,P ) HomΛ(Q, P̃ )

HomΛ(P,Q) HomΛ(P, P ) HomΛ(P, P̃ )

HomΛ(P̃ , Q) HomΛ(P̃ , P ) HomΛ(P̃ , P̃ )




We begin with X1
ΩL

.
Since

HomΛ(C,ΩL) = HomΛ(ΩL,L) = HomΛ(C,L) = 0,



14 Alexander Zimmermann

any endomorphism of Q induces an endomorphism of ΩL which in turn induces an endomorphism
of P . Two endomorphisms of P induced this way differ by an element in ι ·HomΛ(P,C).

Therefore, the second column of X1
ΩL

is isomorphic to




EndΛ(ΩL)
HomΛ(P,ΩL)

HomΛ(P̃ ,ΩL)




which is certainly a Λ-module. It is an extension of ΩL and Ext1(ΩL⊕ P ⊕ P̃ ,ΩL).
The third column is as Λ left-module isomorphic to




HomΛ(Q, eΩLP̃ )

HomΛ(P, eΩLP̃ )

HomΛ(P̃ , eΩLP̃ )


 ' eΩLP̃

which as well is a Λ-left module.
The right module structure is seen as follows. We use again Lemma 3. Then,

(
0 HomΛ(P,ΩL) HomΛ(P, eΩLP̃ )

)
' HomΛ(P,C ⊕ P ⊕ P̃ ) · eΩL

which is clearly a Γ-right module. Moreover,

(
0 HomΛ(P̃ , eΩLP ) HomΛ(P̃ , eΩLP̃ )

)
' HomΛ(P̃ , C ⊕ P ⊕ P̃ ) · eΩL

which also is a Γ-right module.
We postpone for the moment the question if these left- and right module structure fit together

to a bimodule structure.

We shall define the module structure on X1
C

. The left Λ-structure on X1
C

is defined by the
following.

Lemma 3 gives us that HomΛ(C,P ) is an EndΛ(P )-left module in a natural way. Also,

HomΛ(P, P̃ ) ·HomΛ(P̃ (c), P ) ⊆ HomΛ(C,P ).

Moreover, since C = eCP ∩ P and P̃ (c) = eC P̃ ∩ P̃ ,

HomΛ(P̃ , P )HomΛ(C,P ) +EndΛ(P̃ )HomΛ(P̃ (c), P ) ⊆ HomΛ(P̃ (c), P )

This makes the matrix multiplication of

Λ = EndΛ(Λ) =




HomΛ(Q,Q) HomΛ(Q,P ) HomΛ(Q, P̃ )

HomΛ(P,Q) HomΛ(P, P ) HomΛ(P, P̃ )

HomΛ(P̃ , Q) HomΛ(P̃ , P ) HomΛ(P̃ , P̃ )




from the left on X1
C

well defined.

The Γ right module structure on X1
C

is defined as follows. By Lemma 3 one has HomΛ(C,P ) '

HomΛ(C,C). Hence, for the second line in X1
C

we get therefore

(
HomΛ(C,P ) HomΛ(C,P ) HomΛ(C, P̃ )

)
' HomΛ(C,C ⊕ P ⊕ P̃ ).

The third line in the matrix representation of X1
C

is a Γ-right module in the following way. A
Λ-linear mapping from P̃ (c) −→ P has image in P and in eCP as well. Therefore, it has image in
C. this proves that

HomΛ(P̃ (c), P ) = HomΛ(P̃ (c), C).

The third line of X1
C

is therefore isomorphic to

HomΛ(P̃ (c), C ⊕ P ⊕ P̃ ).
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We shall now discuss why these left and right action are compatible. For proving this we form
the module K ⊗R X1 and prove that this is now by extension of scalars a K ⊗R Λ ⊗ Γop module.
When we have proved this, again restriction to Λ⊗Γop of K ⊗RX1 gives us that the submodule X1

is already a Λ⊗ Γop module.
But,

K ⊗R X1
ΩL
' K ⊗R HomΛ(eΩLΛ, eΩLC ⊕ P ⊕ P̃ )

and the operation of Λ⊗R Γop is the regular one. Analogously,

K ⊗R X1
C
' K ⊗R HomΛ(eCΛ, eCC ⊕ P ⊕ P̃ )

with regular operation of Λ⊗R Γop.
This observation proves at the same time that the embedding

H1(X) ↪→ X1

is a Λ⊗R Γop-module homomorphism.

The Λ⊗R Γop-module structure is defined via the mapping X1 −→−→ Ω1.

5.3 Defining the mapping Ω̂L −→ Ω

We shall have to define a homomorphism Ω̂L −→ Ω.
Lemma 3 gives canonical isomorphisms

EndΛ(C) ' HomΛ(C,P )

HomΛ(P,Q) ' EndΛ(ΩL)

HomΛ(P̃ , Q) ' HomΛ(eΩLP̃ ,ΩL)

HomΛ(C, P̃ (c)) ' HomΛ(C, P̃ )

Moreover, any endomorphism of Q induces a unique endomorphism of ΩL.
The following is the well known Baer construction.

Lemma 11 Let G and D be two Λ-modules. Then, there is a mapping

HomΛ(D,ΩL)⊗R Ext1Λ(ΩL,C)⊗R HomΛ(C,G) −→ Ext1Λ(D,G)

Proof. Let 0 −→ C −→ X −→ ΩL −→ 0 be an element in Ext1Λ(ΩL,C). Then, forming a pushout
via an element γ ∈ HomΛ(C,G) and a pullback via δ ∈ HomΛ(D,ΩL) we get a commutative diagram

0 −→ C −→ X −→ ΩL −→ 0
↓ γ ↓ ‖

0 −→ G −→ Xγ −→ ΩL −→ 0
‖ ↑ ↑ δ

0 −→ G −→ Xγ
δ −→ D −→ 0

The lower sequence is the image in Ext1Λ(D,G). The diagram defines the mapping as stated and has
the appropriate properties.

To define the mapping Ω̂L −→ Ω we just apply lemma 11 and lemma 3. The image of the short
exact sequence

0 −→ C −→ P −→ ΩL −→ 0

under the homomorphism set actions gives the desired mapping. The fact that the so defined mapping
is Λ⊗R Γop-linear is then clear.
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6 Looking at X one-sided

Recall the construction of X . The complex X is defined to be the composite of the mapping

X1 −→−→ Ω̂L ↪→ X0

regarded as complex. Moreover, the second and the third line in the matrix

Ω̂L =




Ỹ EndΛ(Q)⊗R HomΛ(C, P ) EndΛ(Q)⊗R HomΛ(C, P̃ )

HomΛ(P, Q)⊗R EndΛ(C) HomΛ(P, Q)⊗R HomΛ(C, P ) HomΛ(P, Q)⊗R HomΛ(C, P̃ )

HomΛ(P̃ , Q)⊗R EndΛ(C) HomΛ(P̃ , Q)⊗R HomΛ(C, P ) HomΛ(P̃ , Q)⊗R HomΛ(C, P̃ )




are mapped isomorphically to X0. In fact, this was our observation that the pullback construction
yielding Ω̂L as kernel, does only affect the position (1, 1) in the corresponding matrix rings. Since

X1 maps surjectively to Ω̂L, the differential restricted to the second and third line of the matrix X1

are mapped surjectively to the lower lines of X0, the two lower matrix lines of which are projective
right Γ-modules. Hence, regarded as complex with two non zero entries, the complex restricted to
the two lower lines is quasi-isomorphic to its homology. This is isomorphic to

HomΛ(P ⊕ P̃ , C ⊕ P ⊕ P̃ ).

Completely analogously to the above, X restricted to the right has as direct summands P ⊕ P̃ as
left Λ-modules.

Lemma 12 • HomΛ(P ⊕ P̃ , C ⊕ P ⊕ P̃ )[1] is a direct summand of X regarded as complex of

right Γ-modules.

• (P ⊕ P̃ )[1] is a direct summand of X regarded as complex of left Λ-modules.

We shall prove the following lemma.

Lemma 13 • X/(P ⊕ P̃ )[1] is isomorphic to 0 −→ P −→ Q −→ 0 as complex of left Λ-modules.

• X/HomΛ(P ⊕ P̃ , C⊕P ⊕ P̃ )[1] is isomorphic to Tr : 0 −→ HomΛ(P,C⊕P ⊕ P̃ ) −→ Q∗ −→ 0
as complex of right Γ-modules.

Proof. We shall give a morphism of complexes of Γ-right modules

Tr −→ X/HomΛ(P ⊕ P̃ , C ⊕ P ⊕ P̃ )[1]

which we shall prove to be a quasi-isomorphism. Set

Xr := X/HomΛ(P ⊕ P̃ , C ⊕ P ⊕ P̃ )[1].

Set
Tl := T/(P ⊕ P̃ )[1]

and
Xl := X/(P ⊕ P̃ )[1]

as complexes of left Λ-modules. We will, analogously to the situation for Γ-right modules, give a
quasi-isomorphism of complexes of left Λ-modules

Tl −→ Xl

Let us prove first the statement for the left Λ-structure.

P =




HomΛ(Q,P )
HomΛ(P, P )

HomΛ(P̃ , P )


 −→




0
HomΛ(C,P )

HomΛ(P̃ (c), P )






Twosided tilting complexes for Gorenstein orders 17

in the obvious way. Moreover,




HomΛ(Q,ϕ)
HomΛ(P, ϕ)

HomΛ(P̃ , ϕ)


⊗R idC : P =




HomΛ(Q,P )
HomΛ(P, P )

HomΛ(P̃ , P )


 −→




HomΛ(Q,Q)⊗R HomΛ(C,C)
HomΛ(P,Q)⊗R HomΛ(C,C)

HomΛ(P̃ , Q)⊗R HomΛ(C,C)




is Λ-linear from the left. Since

im(




HomΛ(Q,ϕ)
HomΛ(P, ϕ)

HomΛ(P̃ , ϕ)


⊗R idC ) ⊆ ker(X0 −→ L),

we get a mapping
P −→ Ω̂L .

Moreover, the two mappings P −→ Ω̂L . and P −→ X1 coincide in Ω, and hence the pullback
property ensures a unique morphism P −→ X1 which makes the corresponding diagrams

P −→ X1

‖ ↓
P −→ X1

and

P −→ X1

‖ ↓

P −→ Ω̂L

commutative. Define a homomorphism Q −→ X0 by means of

1Q ⊗R idC :




HomΛ(Q,Q)
HomΛ(P,Q)

HomΛ(P̃ , Q)


 −→




HomΛ(Q,Q)⊗R HomΛ(C,C)
HomΛ(P,Q)⊗R HomΛ(C,C)

HomΛ(P̃ , Q)⊗R HomΛ(C,C)




φ −→ φ⊗ idC

and Q −→ L = EndΛ(L) in the obvious way. Since the two mappings coincide in EndΛ(L), this

defines a mapping Q −→ X0. The mapping P −→ Ω̂L yields the diagram

P
ϕ
−→ Q

↓ χ ↓
X1 −→ X0

commutative. Hence, we get a morphism of complexes of left Λ-modules. By construction this
mapping of complexes induces an isomorphism on the level of the degree 0 homology, namely the
identity on L.

We shall prove that χ|C is an isomorphism. This also is almost already done by the construction.
In fact, χ|C has image in ker(X1 −→ X0) which is H1(X). In turn, the first column there is C.

χ|C :




HomΛ(Q,C)
HomΛ(P,C)

HomΛ(P̃ , C)


 −→




0
HomΛ(P,C)

HomΛ(P̃ , C)




which is the identity mapping.
This completes the proof of the first part of the Lemma.

We come to the statement on the right Γ structure. We shall define first a complex morphism

Tr −→ Xr

which we then prove to be a quasi-isomorphism.
Multiplying by eΩL gives a morphism

HomΛ(P,C ⊕ P ⊕ P̃ ) −→ (0 HomΛ(P,ΩL) HomΛ(P, eΩLP̃ ) ) ⊆ X1.

Moreover

idQ ⊗HomΛ(ι, C ⊕ P ⊕ P̃ ) : HomΛ(P,C ⊕ P ⊕ P̃ ) −→ EndΛ(Q)⊗R HomΛ(C,C ⊕ P ⊕ P̃ )
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gives a morphism to X0. Since

HomΛ(P,C ⊕ P ⊕ P̃ ) −→ HomΛ(C,C ⊕ P ⊕ P̃ ) −→ Ext1Λ(L,C)

is exact,
im( idQ ⊗HomΛ(ι, C ⊕ P ⊕ P̃ ) ) ⊆ Ω̂L .

Since the two morphisms coincide in Ω, we define this way a morphism

HomΛ(P,C ⊕ P ⊕ P̃ ) −→ X1 .

Moreover, idQ⊗HomΛ(ι, C⊕P ⊕ P̃ ) factorizes via Q∗ in the following way. We define the morphism

Q∗ −→




HomΛ(Q,Q)
HomΛ(P,Q)

HomΛ(P̃ , Q)


⊗R HomΛ(C,C ⊕ P ⊕ P̃ )

q −→




idQ

0
0


⊗ q̂

where Q∗ 3 q −→ q̂ ∈ HomΛ(C,C ⊕ P ⊕ P̃ ) is the mapping given by the defining property of Q∗ as
pullback. We have a natural map Q∗ −→ EndΛ(L) also by the defining property of Q∗ as pullback.
Since these two mappings coincide in EndΛ(L), this defines a mapping Q∗ −→ X0.

which makes the diagram

HomΛ(P,C ⊕ P ⊕ P̃ ) −→ Q∗

↓ ξ ↓
X1 −→ X0

commutative. By construction this mapping induces an isomorphism on the level of the degree 0
homology. Again, we shall show that ξ|HomΛ(ΩL,C⊕P⊕P̃ ) is an isomorphism. The argument there is
completely analogous to the one we discussed for the Λ-structure.

This completes the proof of Lemma 13.

7 The main theorem

We are now ready to formulate the principal theorem.

Theorem 2 Under the hypotheses of Theorem 1 suppose in addition that HomΛ(C,ΩL) = 0 and

that Γ is a Gorenstein order. Then the complex

. . . −→ 0 −→ X1 −→ X0 −→ 0 −→ . . .

is a two-sided tilting complex in Db(Λ ⊗ Γop). The restrictions of X to Λ and to Γop are both one

sided tilting complexes of the type described in Theorem 1.

Proof. By Lemma 13 and Lemma 12 the complex X restricts as complex of Λ-modules to T and
as complex of Γ-modules to T ∗. Lemma 6 assures that T ∗ is a tilting complex over Γop and Corollary
1 proves that it has endomorphism ring Λop. Theorem 1 assures that T is a tilting complex over Λ
with endomorphism ring Γ. Lemma 7 proves that X then is a two-sided tilting complex as claimed.

As a corollary it is possible to compute the perfect isometry ([1, 8]) induced by the complex X .
In fact, the only thing we have to do is to separate K ⊗R P ' K ⊗R ΩL⊕K ⊗R C. To simplify the
notation we write KΛ instead of K ⊗R Λ etc. Then,

K ⊗R Γ ' EndKΛ(KL⊕KC ⊕KΩL⊕ C ⊕KP̃ )

' EndKΛ(KL⊕ (KC)2 ⊕KΩL⊕KP̃ )
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and

K ⊗R Λ ' EndKΛ(KL⊕KC ⊕ (KΩL)2 ⊕KP̃ )

Both expressions simplify considerably using that

HomΛ(L,ΩL⊕ C ⊕ P̃ ) = HomΛ(C,ΩL) = 0.

Corollary 2 The perfect isometry induced by the complex X in theorem 2 is up to a global sign

change

−[KL] +






HomKΛ((KΩL)2,KΩL) 0 HomKΛ((KΩL)2,KP̃ )

0 HomKΛ(KC,KC2) HomKΛ(KC,KP̃ )

HomKΛ(KP̃ ,KΩL) HomKΛ(KP̃ ,KC2) EndKΛ(KP̃ )







where the rings KΛ and KΓ act via the above matrices. Moreover, any perfect isometry induced by

a derived equivalence whose one-sided tilting complex equals T of theorem 1 differs from the above

only by an automorphism of Γ.

In fact, the perfect isometry is just the character induced by −[H0(X)]+[H1(X)] in the Grothen-
dieck group of K ⊗R Λ ⊗R Γop. The second part of the corollary follows from joint work with R.
Rouquier [14] (see also [17, Theorem 4])

Remark The perfect isometry changes the characters coming from the Λ-module ΩL to those
coming from the Γ-module HomΛ(C ⊕ P ⊕ P̃ ,ΩL), the characters coming from the Λ-module C
to the Γ-module HomΛ(C ⊕ P ⊕ P̃ , C), associates to the character coming from L to the virtual
character associated to the Γ-module −(EndΛ(L)) and leaves the rest of the characters unchanged.

8 Examples

8.1 Blocs with cyclic defect groups:

A block B of a group ring RG for a finite group G over a complete discrete valuation ring R with
cyclic defect group is a Green order. A construction which is very similar to the above was carried
out by the author in this special case in [18] (see also [8, section 6.4]). The complex carried out there
is isomorphic to the one constructed above if one specializes to this special case.

8.2 Graph orders:

M. Kauer informed the author that a suitable generalization of the concept of Green orders, so called
’Graph orders’ [13], are discussed in his doctoral dissertation [5] and the classification of the derived
equivalence classes of these is done by tilting complexes satisfying our hypotheses.

8.3 Algebras of semidihedral type:

We shall illustrate now, how one can apply theorem 2 even in case of finite dimensional algebras.
Let R be a complete discrete valuation ring with field of fractions K of characteristic 0 and with
algebraically closed residue field k of characteristic 2.

Type SD(3H)s is equivalent to SD(3C2,I)
s: Th. Holm gave a tilting complex T over a finite

dimensional k-algebra, named A := SD(3H)s in [4] with endomorphism ring being a k-algebra
B := SD(3C2,I)

s. The algebra A has three projective indecomposable modules P0, P1 and P2 and
K. Erdmann shows [2, 3] that a block with semidihedral defect group has a restricted structure as
algebra and two of the possible algebras are A and B for certain parameters s.

Suppose that A is the image of a symmetric Gorenstein order, e.g. a block of a group ring kG.
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Then, in this case, there is a symmetric R-order Λ, e.g. the block of RG, with R/rad R = k,
such that Λ⊗R k ' A. In [2] it is proved that then, the decomposition matrix of A is of the form

D =




1 0 0
0 1 0
0 0 1
1 1 1
0 1 1
1 1 0




(∗)

where (∗) means that the second lowest line of the matrix has to be taken 2n−2 − 1 times; where
the parameter s equals 2n−2 which is one fourth the order of the defect group. Let K be the field of
fractions of R. Following [4] we have

T : . . . −→ P0 ⊕ P1 ⊕ P1
(0,0,δ)
−→ P2 −→ 0 −→ . . .

for a certain mapping δ. This is a complex as discussed in [7]. Then, by the composition series of
the module P2 as described in [3] or directly by the quiver in [2], one gets coker δ ' S2 is a simple
module.

Let T̂ be the unique lifting of T to Λ (the existence and unicity is proved in [12]); i.e. the unique
tilting complex T̂ in Db(Λ) with T̂ ⊗R k ' T . Set L := H0(T̂ ). Since K ⊗R T is again a tilting
complex over K⊗R Λ, expressing the images of the projective indecomposable Λ-modules in K⊗R Λ
by means of their columns in the decomposition matrix, one gets that the complex is spliced together
from the two exact sequences of K ⊗R Λ-modules

0 −→




0
0
0
1
1
0




(∗)

−→




0
0
1
1
1
0




(∗)

−→




0
0
1
0
0
0




(∗)

−→ 0

and

0 −→




0
1
0
0
0
1




(∗)

−→




0
1
0
1
1
1




(∗)

−→




0
0
0
1
1
0




(∗)

−→ 0 .

One sees that

K ⊗R C '




0
1
0
0
0
1




(∗)

and K ⊗R ΩL '




0
0
0
1
1
0




(∗)

which obviously do not have any common simple direct summand. Hence,

HomΛ(C,ΩL) = 0.

We have to prove that H0(T ) is torsion free. We have seen that coker δ is simple. Let Lt be the
torsion submodule of L. Then, by vanishing of TorR

1 (k,RdimK(K⊗RL)), we get that k⊗R Lt is a non
zero submodule of k ⊗R L. Now, k ⊗R H0(T ) ' coker δ. Therefore, either Lt = L or Lt = 0. Since

K ⊗R L '




0
0
1
0
0
0




(∗)



Twosided tilting complexes for Gorenstein orders 21

which is non zero, hence, Lt = 0 and L is torsion free. Therefore, the hypotheses of theorem 2
are satisfied. Theorem 2 gives us a two-sided tilting complex X in Db(Λ ⊗R Γop) with Γ being the
endomorphism ring of T̂ . Moreover, one knows by [12] that k ⊗R Γ ' B. By [11], one gets that
k ⊗R X is a two-sided tilting complex in Db(A⊗R B

op).

Type SD(3H)k is equivalent to SD(3C2,II)
k: The very same argument applies to the tilting

complex T given by TH. Holm between the forenamed types of algebras. The tilting complex he
uses is

T : . . . −→ 0 −→ P1 ⊕ P0 ⊕ P0 −→ P2 −→ 0 −→ . . .

with simple homology in degree 0 over the algebra C := SD(3C2,II)
k. For the decomposition matrix

Erdmann give two possibilities depending on the parameters, namely:

D =




1 1 0
0 1 0
1 0 1
0 0 1
1 1 1
1 0 0




(∗)

or D =




0 0 1
0 1 1
1 0 0
1 0 1
0 1 0
1 1 1




(∗)

If there is a symmetric order Λ with k ⊗R Λ ' C, then our theorem applies. In fact, then there is a
unique tilting complex T̂ with k⊗R T̂ ' T and endomorphism ring being an R-order reducing to B.
Tensored with K the tilting complex is a splicing of the short exact sequences

0 −→




1
0
0
0
0
1




(∗)

−→




1
0
1
0
1
1




(∗)

−→




0
0
1
0
1
0




(∗)

−→ 0

and

0 −→




0
0
1
0
1
0




(∗)

−→




0
0
1
1
1
0




(∗)

−→




0
0
0
1
0
0




(∗)

−→ 0

or in the second case

0 −→




0
0
1
0
0
0




(∗)

−→




0
0
1
1
0
1




(∗)

−→




0
0
0
1
0
1




(∗)

−→ 0

and

0 −→




0
0
0
1
0
1




(∗)

−→




1
1
0
1
0
1




(∗)

−→




1
1
0
0
0
0




(∗)

−→ 0

One observes that the second case does not produce a tilting complex. Hence, the second decomposi-
tion matrix does not occur in the case SD(3C2,II). The rest of the argument is completely analogous
to the afore discussed case.



22 Alexander Zimmermann

Existence of a lifting to an order: The question if there is an order Λ such that Λ ⊗R k is
Morita equivalent to A can be treated using theorem 1.

The algebras A = SD(3H)s and E := SD(3D)s of Erdmann’s list in [2] are derived equivalent,
choosing parameters for E such that blocks theoretically could occur, as shown in [4] by giving
a tilting complex over A with endomorphism ring E. We know, that the algebra E is Morita
equivalent to a principal block of a group ring, namely B0(PSL3(q)) over an algebraically closed
field of characteristic 2, the principal block of the projective special linear group of degree 3 over Fq,
the field with q elements with q ≡ 3 (mod 4) (see the remark at the end of [3]). Then, s = 2n−2

where the Sylow-2 subgroup of PSL3(q) is semidihedral and has order 4s.
We can give a tilting complex T over E with endomorphism ring being isomorphic to A.
Let P0, P1, P2 be the three projective indecomposable modules of D. We apply theorem 1 to

L being the top of P0. Identify P1 with the projective indecomposable corresponding to the vertex
2 in A and P2 with the projective indecomposable corresponding to the vertex 1 in A. Then, the
main result in [7] gives that EndDb(E)(T ) ' A. Moreover L is simple. Using that the decomposition
matrix is, according to [2]

D =




1 0 0
1 1 0
1 0 1
1 1 1
0 0 1
0 1 0




(∗)

and hence the lifting T̂ of T to the corresponding order has a non torsion part in the degree 0
homology, we see that H0(T̂ ) is a lattice. The hypothesis of theorem 2 is not satisfied. Nevertheless,
theorem 1 shows that there is an order Λ with Λ⊗R k ' A for s = 2n.

We even do not have to verify that EndDb(E)(T ) ' A. The complex Th. Holm gives is a two
term complex S with H0(S) being simple. We may assume that A and E are basic. Then, the
k-dimension of H0(S) is one. Hence, the existence of a twosided tilting complex X being isomorphic
to S if restricted to the left implies the existence of a two term tilting complex T over E with
endomorphism ring being A and simple homology in degree 0. Since homology being the simple
with projective cover P1 or P2 do not lead to a T with sufficiently big k-dimension in degree 1, the
complex we give above is the correct one.

Remark It is not clear to the author if there is always an R-order Λ reducing to A. As mentioned
in [15] this seems to be an open problem in general.
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