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A. Weiss proved in [16] that for a p-group G and a finite subgroup U of the
units of augmentation 1 of the group ring ẐZpG over the p-adic integers there
exists a group basis containing U . In [12] K. W. Roggenkamp and L. L. Scott
proved that all group bases in ẐZpG are conjugate. We will be concerned with
the analogous question in ZZG, the integral group ring of a p-group G: Are

finite subgroups of the units of augmentation 1 of ZZG subgroups of group

bases?

I. Hughes and K. E. Pearson showed in [8] that in the group of units
of augmentation 1 of the integral group ring of the dihedral group of order
6 there is an involution not being part of any group basis. This involution
however is not even part of a group basis in the group ring over the 2-adic
integers. Therefore, they measure a local phenomenon rather than a global
one. Furthermore, the dihedral group of order 6 is not a p-group and A. Weiss’
theorem is not available. We investigate this problem for dihedral groups of
order a power of 2 such that A. Weiss’ theorem can be applied.

To go into details: Let D2n be the dihedral group of order 2n+1. We
denote by V (RG) the group of units of augmentation 1 in the group ring of
the finite group G over the integral domain R. The augmentation is the map
induced by the trivial representation. As announced in [18] we will show
that in ZZD2n the number of conjugacy classes of involutions in V (ZZD2n)
is equal to

1 + 2 · 2n−1 ·
n

∏

k=1

h+
2k

1
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where h+
2k is the class number of the maximal real subfield of Q(ζ2k), ζ2k being

a primitive 2k-th root of unity over Q. We will show that the number of
conjugacy classes of involutions in V (ZZD2n) consisting of elements that are
part of a group basis is

1 + 2 · 2n−1.

Therefore, for each involution x in V (ZZD2n) there is a group basis H such
that x ∈ H if and only if the class number of ZZ[ζ2k +ζ−1

2k ] is equal to 1 for all
k ≤ n. H. Cohn conjectured that this always happens (cf. [1]). The problem
is therefore reduced to a conjecture in number theory.

As proved by S. Endo, T. Miyata and K. Sekiguchi in [3] the number
of conjugacy classes of group bases is equal to 2n−1 · 2n−2. If we use this
result — it will follow independently and shorter from our arguments — we
are able to give generators for the group of outer central automorphisms of

ZZD2n in terms of conjugation with group ring elements. Here we call an
automorphism of a ring central if its restriction to the center is the identity.

In the integral group ring of the semidihedral group of order 16 there
exists an involution that is not part of any group basis as is shown by the
author in [19]. At the end of this paper we will give a sketch of the proof of
the analogous statement for the semidihedral groups of order 2n+1, n being
an integral number greater than 3.

Our method is an application of the theory of K. W. Roggenkamp and
L. L. Scott as reported in [11]. This theory is explained in detail in [13], so
we restrict ourselves to give only some of the ideas of the theory.

Let G be a finite p-group and let U be a subgroup of G. We assume that
ZZG satisfies the Eichler condition (cf. [2]) and that the centralizer of U in
ZZG is commutative. We have to examine monomorphisms of U in V (ZZG)
that are induced by conjugation with a unit x of QG. These give rise to
ZZ(U × G) bimodules where U operates as multiplication by xUx−1 on the
left and G acts as multiplication on the right, the so called twisted bimodule
by conjugation x (cf. [5]). The isomorphism classes of those modules which
are free ZZG modules of rank one at the right and that become trivial if they
are tensored up to Q parametrize the embeddings modulo conjugation with
a unit in ZZG. This is easily seen since the bimodule xZZG is isomorphic
to ZZG if and only if modulo elements of the centralizer of U in QG the
element x is a unit of ZZG. Each of those embeddings can be realized by
conjugation in ẐZqG for all primes q by the result of A. Weiss [16]. Similar
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calculations as in the proof of A. Fröhlich’s localization sequence (cf. [5]) give
us an element of the class group of CZZG(U) for each embedding modulo inner
automorphisms of ZZG. This element of the class group lies in the kernel
ClZZG(CZZG(U)) of the induction map to the class group of ZZG by the above.
Conversely, if an element of the class group maps to the neutral element of
the class group of ZZG then it gives us a bimodule inducing an embedding.
An element of ClZZG(CZZG(U)) is in the image of the induction map from the
class group of the center of ZZG to the class group of the centralizer of U in
ZZG if and only if the corresponding conjugacy class of subgroups rationally
conjugate to U consists of elements that are part of group bases. This is
most easily seen by the fact that one obtains the bimodule for ZZ(U × G)
from the bimodule for ZZ(G × G) by restricting the operation of G at the
left to the subgroup U . This, however, corresponds to forming the induced
module since also for Fröhlich’s localization sequence one gets the ZZ(G×G)
bimodule from the ideal of the class group by inducing it to ZZG. Then the
tensor product is associative and everything is done.

The major tool in calculating the class groups is Reiner-Ullom’s version
of Milnor’s Mayer-Vietoris-sequence. For this purpose we write the vari-
ous orders as pullbacks corresponding to the Wedderburn decomposition of
ZZD2n . Afterwards we calculate the images of the global unit groups in sev-
eral quotients to obtain the order of the class groups inductively. The group
structure and the homomorphisms among the class groups are obtained by
idèle theoretic arguments. The automorphism group of ZZD2n is then easily
obtained in a very explicit way by the previous results.

Acknowledgment: I want to express my thanks towards my academical
teacher Professor Dr. K. W. Roggenkamp not only for his patient help but
also for his encouragement and steady interest towards the progress of my
thesis.

1. Preparations

We have to calculate some class groups and use several pullback diagrams
for this topic. In general, a central idempotent e in the Q-algebra A induces
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a pullback diagram for the ZZ-order Λ as follows:

Λ −→ Λ · e
↓ ↓

Λ · (1 − e) −→ (Λ · e) /(Λ ∩ (Λ · e))
Since e ∈ QΛ, we can form Λ · e ⊂ QΛ and intersect it with Λ ⊂ QΛ.
The intersection is a twosided ideal of Λ · e. The quotient is denoted by
(Λ · e) /(Λ ∩ (Λ · e)). For D2n :=< a, b | a2n

, b2, baba > we let

en
n−1 :=

1

2
(1 + a2n−1

)

and if we define

C(n) := CZZD2n (b) := {x ∈ ZZD2n |xb = bx}
= < 1, b, ai + a−i, b(ai + a−i), a2n−1

, a2n−1

b|i = 1, ..., 2n−1 − 1 >ZZ

we get pullback diagrams for C(n), ZZD2n and B(n−1) := C(n) ·en
n−1. Since

ZZD2n · e ' ZZD2n−1

we may identify B(n − 1) with a subring of ZZD2n−1 :

B(n − 1) =< 1, b, ai + a−i, b(ai + a−i), 2a2n−1

, 2a2n−1

b|i = 1, ..., 2n−2 − 1 >ZZ .

Throughout the whole paper we abbreviate ω+
n := ζ2n + ζ−1

2n and ω+
n (i) :=

ζ i
2n + ζ−i

2n .
Since ZZD2n · (1− en

n−1) is a suborder of the 2× 2 matix ring over ZZ[ω+
n ]

(cf. [10]), we may identify C(n) · (1 − en
n−1) with ZZ[ω+

n ] < b >' ZZ[ω+
n ]C2

while denoting the cyclic group of order m by Cm. We observe that

B(n) · (1 − en
n−1) = C(n) · (1 − en

n−1)

with the above identification. We see that

C(n) · (1 − en
n−1) ∩ C(n) = 2ZZ[ω+

n ] < b >

and the quotient ZZ[ω+
n ] < b > /(2ZZ[ω+

n ] < b >) is denoted by B(n − 1).
Analogously,

B(n) · (1 − en
n−1) ∩ B(n) = 2ω+

n ZZ[ω+
n ] < b >
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and the quotient ZZ[ω+
n ] < b > /(2ω+

n ZZ[ω+
n ] < b >) is denoted by B̃(n − 1).

Furthermore, we observe that B(n) · en
n−1 ' B(n − 1).

We have now written the above defined orders B(n) and C(n) as pullbacks
over smaller orders. It is now possible to apply Mayer-Vietoris sequences for
the determination of the class groups of those orders.

2. Calculating the class number

We now give an upper bound for the class number of C(n). This will be
done by discussing the index of the image of the unit group of ZZ[ω+

n ] < b >
in B(n − 1) and B̃(n − 1).

In [7] Gustafson and Roggenkamp gave generators for the image of the
unit group of Z[ω+

n ] modulo 2.

Proposition 1 Let π2 be the natural epimorphism obtained by factoring the

ideal of ZZ[ω+
n ] < b > generated by 2 and let π2ω+

n
be the natural epimorphism

obtained by factoring the ideal generated by 2ω+
n . Then

1. π2(U(ZZ[ω+
n ] < b >)) = U(B(n − 1))

2. |U(B̃(n − 1)) : π2ω+
n
(U(ZZ[ω+

n ] < b >))| = 2.
2 − b is not an element of π2ω+

n
(U(ZZ[ω+

n ] < b >)).

Before proving Proposition 1 we establish two little lemmas:

Lemma 1 1 + ω+
n (i) and b + ω+

n (i) are units in ZZ[ω+
n ] < b > for all i =

1, ..., 2n−1 − 1.

Proof: The elements in the first series are Galois conjugates of cyclotomic
units of ZZ[ω+

n ] and the second series can be mapped to elements of the first
by the fact that

(b + ω+
n (i)) · (b − ω+

n (i)) = −(1 + ω+
n (2i)).

Lemma 2 Let n ≥ 2 and k ≥ 2 be natural numbers. If (1+2kx) ∈ U(ZZ[ω+
n ])

for an x ∈ ZZ[ω+
n ] then x ∈ ω+

n ZZ[ω+
n ].
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Proof: We use induction over n. For n = 2 the statement is clear.
The field extension Q[ω+

n ] : Q[ω+
n−1] is quadratic. Let

x = α +
∑

i

αi · ω+
n (2i) +

∑

j

βj · ω+
n (2j + 1) ∈ ZZ[ω+

n ]

be a generic element with integral coefficients. Then the nontrivial element
σ of the Galois group of Q[ω+

n ] : Q[ω+
n−1] acts on x as

xσ = α +
∑

i

αi · ω+
n (2i) −

∑

j

βj · ω+
n (2j + 1) ∈ ZZ[ω+

n ]

and the norm nr down to Q[ω+
n−1] of 1 + 2kx calculates as

nr(1 + 2kx) = 1 + 2ktr(x) + 22knr(x)

= 1 + 2k+1(α +
∑

i

αi · ω+
n (2i) + 2k−1nr(x))

∈ U(ZZ[ω+
n−1]) = U(ZZ[ω+

n (2)])

tr being the trace. By induction we have

α +
∑

i

αi · ω+
n (2i) + 2k−1nr(x) ∈ ω+

n (2)ZZ[ω+
n (2)],

If n = 3 all summands following α are even integers. The sum has to be
even, and therefore, α is even, proving the assertion. If n ≥ 4 then, since
2 and ω+

n (2i) are multiples of ω+
n (2), we conclude that α ∈ ω+

n ZZ[ω+
n ]. This

proves the lemma.

Now we are able to prove that 2 − b ∈ U(B̃(n − 1)) is not an image of a
unit of ZZ[ω+

n ] < b > modulo 2ω+
n .

The preimage of 2 − b is

2 − b + 2ω+
n ZZ[ω+

n ] < b > .

This is in the Wedderburn components of the rational group algebra equal
to

P2−b := {(1 + 2ω+
n (x + y), 3 + 2ω+

n (x − y))|x, y ∈ ZZ[ω+
n ]}.
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Let
ε : ZZ[ω+

n ] < b >−→ ZZ[ω+
n ]

and
ε : B̃(n − 1) −→ B̃(n − 1)/(b − 1)B̃(n − 1)

be the usual augmentation maps. Now ε(2 − b) = 1 and ε together with ε
fit in a commutative square with respect to the projections modulo 2ω+

n . Of
course ε as well as ε are split by x −→ x · 1. Therefore, if u ∈ P2−b also
u · ε(u)−1 ∈ P2−b and u · ε(u)−1 has augmentation 1. Assuming this to be
done then in the set P2−b the element x + y = 0 and the second component
turns out to be 3 + 4ω+

n y with y ∈ ZZ[ω+
n ]. Since

3 + 4ω+
n y = −1 + 4(1 + ω+

n y)

we are in the situation of the lemma. In fact 1 + ω+
n y cannot belong to the

prime ideal above 2 as requested and u cannot be a unit.
Now we come to the proof of Proposition 1: If part 1 is proved part 2 also

follows: In fact, π2ω+
n

factors through π2 by the natural projection

π2,2ω+
n

: B̃(n − 1) −→ B(n − 1)

so that π2,2ω+
n
◦π2ω+

n
= π2. The kernel of π2,2ω+

n
is equal to {1, 1+2b,−1,−1+

2b} and has order 4 and therefore, the group index above is either 1, 2 or 4.
But −1 is in the kernel of π2 and not in the kernel of π2ω+

n
and hence the

index is at most 2. This index is not equal to 1 because 2− b is not an image
of a unit.

Therefore, we turn to the proof of part 1: We define the ring Xn to be
equal to B(n)/((b + 1)B(n)) and then we have, fixing the natural splitting
Xn −→ B(n) obtained by x −→ x · 1 and identifying the image with Xn,

U(B(n)) = U(Xn) + (1 + b) · Xn

by the nilpotence of (1 + b)Xn. For each x, y ∈ Xn we multiply:

(1 + (1 + b)x) · (1 + (1 + b)y) = 1 + (1 + b)(x + y).

We will prove that

Ỹn := {1, ω+
n (i) · (1 + ω+

n (i))−1|i = 1, ..., 2n−1 − 1} ⊂ B(n)
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gives a ZZ/2ZZ basis for Xn. This fact will then prove Proposition 1 since
{1+(b+1)x|x ∈ Ỹn} consists of images of global units and since by Gustafson
and Roggenkamp (cf. [7]) U(Xn) is generated by global units.

Set X := Xn/Xn−1 and let Yn be the subvector space generated by Ỹn.
Then let Y be the image of Yn in X. Xn is a subring of the group ring of the
cyclic group of order 2n by the identification ζ2n −→ a with a being a fixed
generating element of C2n . Therefore, Xn is a module over the automorphism
group of C2n . This automorphism group is isomorphic to C2 × C2n−2 . How-
ever, the first factor, it sends a to a−1, acts trivially on Xn and therefore,
Xn is an IF2C2n−2-module. The projection Xn −→ X is split as module ho-
momorphism and we want to show that Yn = Xn. For this purpose we show
that Y = X. Since only the elements in

{ω+
n (i) · (1 + ω+

n (i))−1|i = 1, ..., 2n−1 − 1, i odd }

are nonzero in Y , we have by induction that the set Ỹn is linearly independent
and therefore generates Xn as a vector space.

If Y < X we have that Y ≤ radIF2C
2n−2

X is annihilated by
∑

σ∈C
2n−2

σ =

∆. But
ω+

n · (1 + ω+
n )−1 = (ω+

n ) + (ω+
n )3 + (ω+

n )5 + ...

in X. The powers greater than 1 come in even number of summands in the
natural basis of X and vanish if one multiplies by ∆. Therefore, multiplica-
tion by ∆ yields ∆ · ω+

n in the result, which is obviously not equal to zero.
Hence, Y = X and by induction Yn = Xn. This proves Proposition 1.

If we now use the Mayer-Vietoris-sequences for the above pullback dia-
grams the following estimates can be given for the class groups of B(n) and
C(n).

Cl(C(n)) = Cl(B(n − 1)) ⊕ Cl(ZZ[ω+
n ]C2)

and

|Cl(B(n))| ∈ {λ · |Cl(B(n − 1)) ⊕ Cl(ZZ[ω+
n ]C2)| : λ ∈ {1, 2}}.

We observe that C(n) and also B(n) are subrings of ZZ(C2n × C2) since
both rings are commutative. Therefore, f := 1

2
(1 + b) induces pullback

diagrams as introduced above. For abbreviation we write:

Ĉ(n) := C(n) · f ' C(n) · (1 − f), B̂(n) := B(n) · f ' B(n) · (1 − f),
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Ĉ(n) := C(n) · f/((C(n) · f) ∩ C(n)) = Ĉ(n)/2Ĉ(n),

B̂(n) := B(n) · f/((B(n) · f) ∩ B(n)) = B̂(n)/2B̂(n).

We also, as usual, identify B̂(n) and Ĉ(n) with suitably chosen subrings of
ZZC2n.

We apply a result of M. J. Taylor [14, 7.(2.10)] and Mayer-Vietoris-
sequences of the pullback diagrams for B̂(n) and Ĉ(n) induced by f to obtain
Cl(B̂(n)) = Cl(Ĉ(n)). Since C(n) resp. Ĉ(n) are overorders of B(n) rsp.
B̂(n) in QC(n) rsp. Q Ĉ(n), we have induced epimorphisms of class groups
of the smaller order to the larger one. Therefore, we have the following com-
mutative (since Mayer Vietoris sequences are functorial) diagram with exact
rows:

U(Ĉ(n))
πC−→ U(Ĉ(n)) −→ Cl(C(n)) −→ (Cl(Ĉ(n))2 −→ 0

↑ ↑ α ‖
U(B̂(n))

πB−→ U(B̂(n)) −→ Cl(B(n)) −→ (Cl(B̂(n))2 −→ 0.

By the above, α is surjective. We are interested in the kernel. This is
isomorphic to the kernel of

U(B̂(n))/πB(U(B̂(n)) −→ U(Ĉ(n))/πC(U(Ĉ(n)).

We observe that

U(B̂(n)) = 1 + 2ZZ/4ZZa2n−1

+
∑

i

ZZ/2ZZ(ai + a−i)

and that

U(Ĉ(n)) = 1 +
∑

i

ZZ/2ZZ(ai + a−i) ∪ a2n−1

+
∑

i

ZZ/2ZZ(ai + a−i).

Since a2n−1

is a unit in Ĉ(n) the kernel of the epimorphism

β : U(B̂(n)) −→−→ U(Ĉ(n))/ < a2n−1

>

is cyclic of order 2. The sum of the coefficient of 1 and that of a2n−1

is
odd since a unit has to have odd augmentation. Therefore, we immediately
obtain that U(Ĉ(n))/ < a2n−1

>= U(B̂(n)). We now show
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Lemma 3 No unit of B̂(n) maps onto the generating element of ker(β).

Proof: We even show that there is no unit of B̂(n) that maps modulo 2lB̂(n)
onto 1+2la2n−1

for l ≥ 1. The crucial point is that the ring automorphism of
ZZC2n induced by σ : a −→ −a induces a ring automorphism of B̂(n). Note
that σ is the Galois automorphism from Lemma 2.

We prove the above by induction. For n = 2 the statement is trivial.
Let x = 1 + 2la2n−1

+ 2ly ∈ U(B̂(n)) with y ∈ B̂(n). Since y + σ(y) ∈
2B̂(n), x · σ(x) = 1 + 2l+1a2n−1

+ 2l+1z for a z ∈ B̂(n). But

H0(< σ >, B̂(n)) = B̂(n − 1) ⊂ B̂(n)

and therefore, since σ(x · σ(x)) = x · σ(x) the element x · σ(x) is a preimage
of 1 + a2n−1

modulo 2l+1. By induction x · σ(x) cannot be a unit, however,
it is a unit by construction. We reached a contradiction and the lemma is
proven.

Now we see that
|Cl(B(n))| = 2|Cl(C(n))|

and therefore, |Cl(C(n))| = 2n−1
∏

k≤n |Cl(ZZ[ω+
k ] < b >)|. Since

ZZ[ω+
k ] < b > ·(1 + b)

2
' ZZ[ω+

k ] ' ZZ[ω+
k ] < b > ·(1 − b)

2

a result of Taylor ([14, 7.(2.10)]) implies that

|Cl(ZZ[ω+
k ] < b >)| = |(Cl(ZZ[ω+

k ]))|2 =: (h+
2k)

2.

Therefore,

|Cl(C(n))| = 2n−1 ·
∏

k≤n

(h+
2k)

2.

The main achievement of the above section is the determination of the
size of the class group of C(n) as well as the knowledge of 2−b as generator of
the non trivial coset in the Mayer-Vietoris sequence corresponding to B(n).

3. Embedding involutions into the unit group

We are interested in Kn := ker(Cl(C(n)) −→ Cl(ZZD2n)), the kernel of the
induction homomorphism.
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By Fröhlich, Keating and Wilson (cf. [6]) we have the following isomor-
phism:

Cl(ZZD2n) = Cl(ZZD2n−1) ⊕ Cl(ZZ[ω+
n ])2×2.

Fröhlich proved in [4] that Cl(ZZD2) = 1. Induction behaves well with taking
summands and so the kernel Kn is equal to a direct sum K ′

n ⊕K ′′
n according

to the summation above.
For the moment we define Rn := ZZ[ω+

n ]. The following diagram has
exact rows and columns:

0 0 0
↓ ↓ ↓

0 → C2 → K ′
n → K ′

n−1 ⊕ K ′′
n−1 → 0

↓ ↓ ↓
0 → C2 → Cl(B(n − 1)) → Cl(B(n − 2)) ⊕ Cl(Rn−1 < b >) → 0

↓ ↓ ↓
0 → 0 → Cl(ZZD2n−1) → Cl(ZZD2n−2) ⊕ Cl((Rn−1)2×2) → 0

The surjectivity at the top row follows by the serpent lemma. Therefore, we
essentially have to calculate K ′′

n to get the order of Kn. For this we use the
representation given by K. W. Roggenkamp in [10]:

a −→
(

−1 −1
2 + ω+

n 1 + ω+
n

)

, b −→
(

−1 0
2 + ω+

n 1

)

.

By [2, Exercise 53.1] we see that an element of Cl(ZZ[ω+
n ] < b >) is mapped

to an element of Cl((ZZ[ω+
n ])2×2) according to the following rule: If we

have a pair of ideals (A,B) in Cl((ZZ[ω+
n ])2), it is represented by the idèle

∏

℘∈Spec(ZZ[ω+
n ])(2α℘, 2β℘), say, which is mapped to the idèle

(γ) :=
∏

℘

(

2α℘ 0
(2 + ω+

n )(β℘ − α℘) 2β℘

)

of (ZZ[ω+
n ])2×2. Since we may calculate the norm locally (cf. [9, (24.2)] in

connection with [9, (8.5)]) and intersect the local results afterwards we see
that the reduced norm of the induced ideal is isomorphic to AB. There-
fore, we have that K ′′

n ' Cl(ZZ[ω+
n ]) via the codiagonal in the direct sum

of two copies of the class group of Cl(ZZ[ω+
n ]). Using now a theorem of
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H. Weber ([15, p. 244, Satz C]) the 2′-Hall subgroup of Kn is isomorphic to
∏n

k=1 Cl(ZZ[ω+
k ]).

On the whole we have

|Kn| = 2n−1 ·
n

∏

k=1

h+
2k .

This formula presents the main achievement of the above section.

4. Connections to group bases

As we already did in the introduction we use for a suborder Γ of ZZD2n the
notation

ClZZD2n (Γ) := ker(Cl(Γ) −→ Cl(ZZD2n))

Remind that in the previous sections we used the notation

ClZZD2n (CZZD2n (b)) = ClZZD2n (C(n)) = Kn.

We calculate the kernel and the image of the natural homomorphism

ClZZD2n (Z(ZZD2n)) −→ ClZZD2n (CZZD2n (b)).

By S. Endo, T. Miyata and K. Sekiguchi ([3]) the first group is isomorphic
to the outer central automorphism group and is furthermore the 2-Sylow
subgroup of Cl(Z(ZZD2n)) by Weber’s theorem. Hence, we have to deal
with the 2-Sylow subgroup of Cl(Z(ZZD2n)).

Let en
k be the central idempotent that maps ZZD2n onto ZZD2k induced

by the epimorphism D2n −→ D2k . Then the idèle

(αk(n)) := (((1 − en
k) + en

k · (1 + 2b)) ×
∏

p6=2

1)

defines an element of Cl(C(n)). For k = 1 and k = 0 the idèle αk(n) is
central and hence defines an ideal of C(n) isomorphic to one induced by an
ideal of Z(ZZD2n).

Lemma 4 Let J and J ′ be ideals of B(n) with en
k ·J ' en

k ·J ′ in B(k). Then

there is an element u ∈< (αn−1(n)), ..., (αk(n)) > with corresponding ideal U
such that J · U ' J ′ as B(n)-modules.
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Proof: This is trivial for k = n−1 and if it is true for all k ∈ {n−1, ..., k0+1},
then by [2, Exercise 53.1] and Proposition 1.2. it is also true for k = k0 and
the lemma is proven.

Lemma 5 The 2-Sylow subgroup of Cl(CZZD2n (b)) is cyclic, it is generated

by (α0(n)) and it lies in the image of Cl(Z(ZZD2n)) under the induction map.

Proof: We show that (αk(n)) has order 2n−k in Cl(B(n)). One calcu-
lates easily, using [2, Exercise 53.1], that en

k+2 · (αk(n))2 is equivalent to
en

k+2(αk+1(n)) in Cl(B(k + 2)) and therefore has order 2n−k−1 by induction.
The remark following the definition of (αk(n)) completes the proof of the
lemma.

We reached now the goal of the present section, namely to determine the
structure of the class group of CZZD2n (b), the kernel of the homomorphism
of that class group to the class group of ZZD2n as well as the image of the
natural homomorphism of the class group of the centre of the integral group
ring in the class group of the centralizer of b in the integral group ring.

If we use that by [16] every involution in V (ZZG) is 2-adically conjugate
to either a2n−1

, b or to ab and those can be distingished in the commutative
quotient ZZD2 we may summarize the above results in

Theorem 1 Let D2n =< a, b|a2n

, b2, baba > be the dihedral group of order

2n+1. Let h+
2k be the class number of the maximal real subfield of the field of

2k-th roots of unity. Then

1. Cl(CZZD2n (b)) ' C2n−1 ×
∏n

k=1(Cl(ZZ[ω+
k ]))2,

2. ClZZD2n (CZZD2n (b)) ' C2n−1 ×
∏n

k=1 Cl(ZZ[ω+
k ]).

3. In V (ZZD2n) there are 2n−1 ·
∏n

k=1 h2k conjugacy classes of involutions

that are rationally conjugate to b.

4. In V (ZZD2n) there are 2n−1 conjugacy classes of involutions that are

rationally conjugate to b and that are part of group bases.

5. Every involution in V (ZZD2n) is part of a group basis if and only if

h+
2k = 1 for every k ≤ n.

Remark 1 One of the crucial points in [3] is to prove that there are elements
of order 2n−1 in Cl(Z(ZZD2n)), an immediate consequence of our theorem.
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5. Application to the automorphism group

We may use our result to give an explicit description of the outer automor-
phism group as conjugations with given group ring elements.

We first note that if a unit u of QD2n normalizes a maximal order Λ
of QD2n containing ZZD2n and if furthermore u normalizes ẐZ2D2n , then u
normalizes ZZD2n. This follows by the fact that we have to show it only
locally and there it is obvious.

1 + b · (a + a−1) is a unit in ẐZ2D2n . It normalizes the maximal order

Γn := ZZ × ZZ × ZZ × ZZ ×
n

∏

k=2

(ZZ[ω+
k ])2×2.

This is seen most easily if one looks at its representation in Γn as given
above. A. Whitcomb showed in [17] that conjugation by the rational unit
u2 = 1 + a + ba yields a non inner automorphism of ZZD4.

This result combined with our main theorem implies

Theorem 2 The automorphism group of ZZD2n is generated by the inner

automorphisms, conjugation by un = 1 + a + ba and conjugation by vn =
1 + b · (a + a−1).

The proof of Theorem 2 will fill the rest of section 5. We assume that
conjugation with vn is inner. Then there is a unit v′ of ZZD2n such that
v′−1 · vn is contained in the center of ZZD2n and is also a unit in QD2n. First
we examine the case n = 3. Then in Γ3 we have

v3 = 3 ⊕−1 ⊕−1 ⊕ 3 ⊕
(

1 0
0 1

)

⊕
(

1 −
√

2 0

2 +
√

2 1 +
√

2

)

.

v2 is central and therefore since the center of ZZD4 contains only the units
±1 and ±a2 (it is a subring of ZZ(C4 × C2)) we immediately see that no
central element of ZZD8 carries v3 to a unit v′.

Similar arguments can also be applied to conclude that conjugation by
u2 is not inner.

Since Outcent(ZZD2n) ' ClZZD2n (Z(ZZD2n)) we see by an application of
Mayer-Vietoris sequences and the fact that induction to overorders in the
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same algebra yields epimorphisms of the class groups that the natural map
ZZD2n −→−→ ZZD2n−1 induces an epimorphism

Outcent(ZZD2n) −→−→ Outcent(ZZD2n−1).

Now S. Endo, T. Miyata and K. Sekiguchi show ([3]) that

Outcent(ZZD2n) ' C2n−1 × C2n−2 =:< αn > × < βn > .

Theorem 1 tells us that we may assume that βn centralizes b for all n.
This is the point where we use the theorem!

Under this assumption (αn)j does not map b to a conjugate for all j =
1, ..., 2n−1− 1. Let β ′

n be a preimage of βn−1 such that β ′
n centralizes b. Since

βn−1 has no square root, β ′
n has also none. Therefore, β ′

n is an odd power of
βn.

Let α′
n be a preimage of αn−1. Since βn is in the kernel of the epimorphism

Outcent(ZZD2n) −→ Outcent(ZZD4), αn−1, and hence also α′
n maps to α2.

Therefore, α′
n has order 2n−1. This proves Theorem 2 since we may choose

αn(x) = unxu−1
n and βn(x) = vnxv−1

n for all x ∈ ZZD2n .

6. The semidihedral groups

Let Sn be the semidihedral group of order 2n+1 with the presentation

Sn =< a, b|a2n

= b2 = 1, bab = a2n−1−1 > .

Factoring its center Sn maps onto D2n−1 and if one chooses e := (1+a2n−1

)/2
then ZZSn · (1 − e) embeds into the 2 × 2 matrix ring over Rn, the ring of
algebraic integers in the fixed field of Q[ζn] under the Galois automorphism
sending ζ to −ζ−1. We observe that CZZSn

(b)·e = B(n−1) and that CZZSn
(b)·

(1 − e) = Rn < b >. The quotient (CZZSn
(b) · e)/(CZZSn

(b) · e ∩ CZZSn
(b)) is

isomorphic to Rn < b > /2Rn < b >. Since 2ZZ is totally ramified in ZZ[ζn]
and hence also in Rn and since every unit besides −1 in Rn is a real unit, we
can prove that

1 −→ C2 −→ Cl(Rn < b >) −→ (Cl(Rn))2 −→ 1

is exact. Let A be the nontrivial ideal in the kernel. Then we shall show
that there is an ideal of CZZSn

(b) that, firstly, maps multiplied by e to an
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ideal isomorphic to B(n − 1), secondly, maps multiplied by 1− e to an ideal
isomorphic to A. This yields an ideal that, thirdly, maps, induced to an
element of Cl(ZZSn), to the identity in Cl(ZZSn) and, fourth, that is not
induced by an ideal of Z(ZZSn). Let A be an arbitrary ideal satisfying the
first two conditions. The techniques for the dihedral groups may be applied to
prove that A maps to a principal ideal of the 2×2 matrix ring over Rn. Now
A is not induced by an ideal of Z(ZZSn) · (1− e) as is easily seen. Therefore,
by a theorem of Endo as quoted in [14, 3. 2.5] A maps either to 1 or to a Swan
module which itself is induced by an ideal of Z(ZZSn). Elementary diagram
chasing gives us the ideal satisfying the last two conditions and hence proving

Theorem 3 In the group of units of augmentation 1 of the integral group

ring of the semidihedral group Sn of order 2n+1 greater than 16 there is an

involution that is not contained in any group basis of ZZSn.
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