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GOLDIE’S THEOREM FOR DIFFERENTIAL GRADED ALGEBRAS

ALEXANDER ZIMMERMANN

Abstract. We study Ore localisation of differential graded algebras. Further we define dg-prime

rings, dg-semiprime rings, and study the dg-nil radical of dg-rings. Then, we define dg-essential
submodules, dg-uniform dimension, and apply all this to a dg-version of Goldie’s theorem on prime

dg-rings.

Introduction

Differential graded algebras first appeared in a paper by Cartan [3] and were then developed
mainly in the context of algebraic topology, algebraic geometry and differential geometry. For a
modern treatment we refer to Yekutieli [15]. For a commutative base ring K a differential graded
K-algebra is an associative unital Z-graded K-algebra together with a degree 1 endomorphism d of
square 0 satisfying Leibniz formula

d(a ⋅ b) = d(a) ⋅ b + (−1)∣a∣a ⋅ d(b)
for all a, b ∈ A such that a is homogeneous of degree ∣a∣. A differential graded left (resp. right)
module (M,δ) over a differential graded K-algebra (A,d) is a Z-graded left (resp. right) A-module
with a K-linear endomorphism δ ∶M →M of degree 1 such that

δ(a ⋅m) = d(a) ⋅m + (−1)∣a∣a ⋅ δ(m) (respectively δ(m ⋅ a) = δ(m) ⋅ a + (−1)∣m∣m ⋅ d(a))
for all homogeneous a ∈ A and m ∈ M . So, a differential graded algebra is an algebra at first,
and this fact remained largely unexplored until very recently. In a recent sequel of papers by the
author [16, 17], by Orlov [13, 14], by Aldrich and Garcia-Rozas [1], and by Goodbody [6] differential
graded rings are considered from a ring theoretic point of view. Still Orlov’s papers have an algebraic
geometric perspective in mind.

Orlov [13, 14], and later but independently [16], defined semisimple dg-algebras from an algebra
point of view, namely that in a dg-simple dg-algebra there is no non-trivial two-sided differential
graded ideal, and a dg-semisimple dg-algebra is a direct product of dg-simple dg-algebras. In contrast
to the classical case, this definition leads to a concept different from when we consider dg-algebras
whose dg-module category is semisimple. This latter point of view has been completely settled by
Aldrich and Garcia-Rozas [1]. Following Orlov’s approach, a definition of a dg-radical is given by
Goodbody [6] for finite-dimensional algebras with separable radical quotient, including a dg-version
of Nakayama’s lemma. In [16] there is a different definition of a dg-radical and Nakayama’s lemma,
avoiding hypotheses on finite dimensionality and separability. In [17] a dg-version of the Brauer
group is given. The present paper continues these investigations.

In classical non-commutative ring theory Ore localisation is a very important tool. Using it, an
important result is Goldie’s theorem for prime rings satisfying the ascending chain condition on right
annihilator ideals and satisfying that there is no infinite direct sum of ideals in the ring. The maximal
number of ideals in a direct sum is well-defined and is called the uniform dimension udim(R) of the
ring. The direct sum of udim(R) ideals is then an essential ideal. Rings that satisfy these conditions
are called Goldie rings. Goldie’s theorem [4, 5] states that the Ore localisation at the regular elements
of a prime Goldie rings is a simple Artinian ring. A group-graded version for an abelian group of
this theorem was given in its most accessible form by Goodearl and Stafford [7].
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In the present note, we first consider Ore localisation and show that the Ore localisation at ho-
mogeneous regular elements of a differential graded algebra still is a differential graded algebra,
extending the differential graded structure of the initial algebra. A different approach of Ore locali-
sation focusing on the homology of the dg-algebra was given by Braun, Chuang and Lazarev [2]. Our
extension of the differential provides an explicit definition (cf Proposition 2.7) but also generalises
Braun-Chuang-Lazarev’s result considerably.

Along the way we consider the dg-nil radical of an algebra and see that the dg-prime radical,
which is the intersection of dg-prime ideals, in general strictly includes the dg-nil radical. We show
that if (A,d) satisfies the artinian condition on twosided differential graded ideals, then the dg-nil
radical coincides with the dg-Jacobson radical in its twosided version and with the dg-prime radical.

Furthermore, we define and study elementary properties of dg-essential ideals, and the dg-uniform
dimension. In the classical theory the dg-right singular ideal is the set of left annihilators of essential
right ideals. In contrast to the classical or the graded case the differential graded version is not a
two-sided ideal in general, nor is it nilpotent. We study the relation with the classical and with the
graded case, in particular related to these concepts for the homology algebra and the cycles.

Finally, we prove a dg-version of Goldie’s theorem for a dg-algebra (A,d), basically under the
hypotheses that the cycles ker(d) satisfy the hypotheses of the graded version [7] of Goldie’s theorem,
where simplicity is defined as the absence of non-trivial two-sided dg-ideals. We show that this
hypothesis is stronger than asking the dg-version of the corresponding Goldie’s hypotheses. However,
since the dg-singular ideal is badly behaved, it is unlikely that a direct generalisation of Goldie’s
theorem to the dg-world is possible.

The paper is structured as follows. In Section 1 we recall the necessary definitions and concepts
of the classical and of the graded theory around Goldie’s theorem. In Section 2 we revise existing
results around Ore localisation.We also prove our first main result Theorem 2.5, which extends the
differential of a dg-algebra to the Ore localisation at homogeneous regular elements. Section 3 then
studies questions on a version of prime and semiprime dg-algebras in the differential graded sense,
including properties of the dg-nil radical and dg-prime radical. In Section 4 we define and study
elementary properties of a dg-version of a module, such as being dg-essential, used in Section 5 to
define and study dg-uniform dimension, and the dg-singular ideal. In Section 6 we consider differential
graded left or right annihilator ideals and study the connections with the dg-singular ideal and dg-
essential ideals. Finally, Section 7 we prove our second main result Theorem 7.4, namely a dg-version
of Goldie’s theorem.

Acknowledgement. I wish to thank the referee for careful reading, a detailed report and useful
suggestions.

1. The classical situation: Goldie’s theorem and its graded version

We refer to McConnell and Robson [10, Chapter 2] and Nastacescu-van Oystaen [11] for the
treatment of the present section.

We shall use a number of standard definitions in ring theory. We shall only give the graded
versions below, since they reduce to the standard versions by considering a trivial grading.

● For a group G we call a G-graded ring R is a ring R such that R = ⊕g∈GRg such that
Rg ⋅ Rh ⊆ Rgh for all g, h ∈ G. Then a G-graded module M is an R-module such that
M =⊕g∈GMg and such that Rg ⋅Mh ⊆Mgh for all g, h ∈ G. A G-graded module is gr-simple
if it does not have any G-graded submodule. It is gr-Artinian (resp. gr-Noetherian) if any
descending (resp. ascending) chain of G-graded submodules is finite.
● A G-graded ring is called gr-prime if for any two non zero G-graded two-sided ideals I and
J we have IJ ≠ 0.
● For a G-graded module M a G-graded submodule N is gr-essential if for any non zero G-
graded submodule X of M we have N ∩X ≠ 0. Further, M is called gr-uniform if it is non
zero and any G-graded submodule is gr-essential. M has finite gr-uniform dimension if it
does not contain an infinite direct sum of G-graded non zero submodules. The gr-singular
ideal of R is the set of homogeneous elements of R such that there is a gr-essential right ideal
I with aI = 0.
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● A G-graded ring is a right gr-Goldie ring if it has finite right gr-uniform dimension on G-
graded right ideals and it satisfies the ascending chain condition on right annihilators of
homogeneous elements.

For the trivial grading, a prime ring is gr-prime, an essential submodule is gr-essential submodule,
etc.

With these preparations Goldie’s celebrated theorem states as follows (cf e.g. [10, 2.3.6]).

Theorem 1.1. (Goldie) The following are equivalent.

● R is semiprime right Goldie.
● R is semiprime, ζ(R) = 0 and the right uniform dimension of R is finite.
● The Ore localisation Q of R at the regular elements of R is semisimple Artinian.

Further, in the last item R is prime if and only if Q is simple.

Goldie’s theorem was generalised to rings graded by an abelian group by Goodearl and Stafford
(see also [11, 8.4.5 Theorem]).

Theorem 1.2. [7, Lemma 2, Theorem 1] Let R be a G-graded ring, where G is an abelian group.
Suppose that R is a gr-prime right gr-Goldie ring.

(1) Then any non zero graded twosided ideal of R contains a non-nilpotent homogeneous element,
(2) the right gr-singular ideal of R is nilpotent, whence 0,
(3) and the localisation of R at homogeneous regular elements is a gr-simple, gr-Artinian ring.

Note that this is an almost faithful transposal of Goldie’s theorem to the graded situation, graded
by an abelian group.

Example 1.3. (cf [7]) The attentive reader may have observed that in Goldie’s Theorem 1.1 the
ring is assumed to be semiprime, whereas in Theorem 1.2 the graded ring R is assumed to be gr-
prime. Goodearl and Stafford mention in [7] the example R =K[X]⊕K[Y ] with X in degree 1, Y
in degree −1, and XY = 0. Then R is graded semiprime, is not gr-semisimple, but does not have
any homogeneous regular element other than in degree 0. Hence Theorem 1.2 does not generalise to
gr-semiprime rings.

2. Ore localisation and differential graded rings

2.1. Classical Ore localisation revisited. We recall the theory of Ore localisation from classical
ring theory.

Let S be a non empty multiplicatively closed subset of R and define (the right version)

ass(S) ∶= {r ∈ R ∣ ∃s ∈ S ∶ rs = 0}.
A right quotient ring of R with respect to S is a ringQ together with a ring homomorphism θ ∶ R Ð→ Q
such that

(1) θ(S) ⊆ Q×, the group of invertible elements in Q.
(2) ∀q ∈ Q ∃s ∈ S ∃r ∈ R ∶ q ⋅ θ(s) = θ(r)
(3) ker(θ) = ass(S).

Similarly one defines the left quotient ring by modifying the second condition and the definition of
ass(S) to the left version accordingly.

A multiplicatively closed subset S satisfies the right Ore condition if

∀r ∈ R∀s ∈ S∃r′ ∈ R∃s′ ∈ S ∶ rs′ = sr′

Dually one defines the left Ore condition. It is easy to see that if a right quotient ring exists, then S
satisfies the right Ore condition. Further, by e.g. [10, Chapter 2.1.12], if the mutiplicatively closed
set S satisfies the right Ore condition, then ass(S) is a two-sided ideal of R and the right quotient
ring RS with respect to S exists if and only if the image of S in R/ass(S) consists of regular elements.
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2.2. Extending the differential to the Ore localisation. Let S be a multiplicative system, and
suppose that the left (resp. right) quotient ring RS exists with respect to some multiplicative set S.

We shall see in the proof of Theorem 2.5 below that, if d̂ is an extension of d to RS d̂, if it exists, is
uniquely defined by the above formula.

We still need to show that this formula is well-defined. This is the subject of Theorem 2.5 below.

Example 2.1. Let K be a field. Consider the polynomial algebra K[X] in one variable and X in
degree −1. Then d(X) ∶= 1 extends to a dg-algebra structure on K[X]. By the Leibnitz formula we
get d(X2n) = 0 and d(X2n+1) =X2n for all n ∈ N. Further, this also gives a well-defined differential,
since if X2n =Xk ⋅Xℓ implies that k and ℓ are either both even or both odd, and likewise for X2n+1.
Then K[X] is Z-graded, integral, and hence all non zero elements are regular. Its field of fractions
is K(X), the field of rational functions, and the grading on K[X] does not extend to a grading on
K(X).

Proposition 2.2. Let (R,d) be a differential graded ring and let S be a multiplicative subset of
ker(d) satisfying the right Ore condition in R. Then ass(R) ∶= {r ∈ R ∣ ∃s ∈ S ∶ rs = 0} is a two-sided
dg-ideal of (R,d). Similar statements hold for the left version of ass(S) and the left Ore condition.

Proof. By McConnell and Robson [10, Section 2.1.9] we get that ass(S) is a two-sided ideal. We
need to show that it is a dg-ideal. For this, let r ∈ ass(S) and let rs = 0 for some s ∈ S. Then for all
homogeneous r ∈ R we get

0 = d(0) = d(rs) = d(r)s + (−1)∣r∣r ⋅ d(s) = d(r)s
since S ⊆ ker(d). Hence ass(S) is a two-sided dg ideal.

Remark 2.3. Let S be a multiplicative system of homogeneous regular elements of (R,d). Then
(R,d) is actually either unbounded or S is concentrated in degree 0. Indeed, the k-th power of an
element x in degree 2n is in degree 2nk. If x ≠ 0, then x regular implies that xk ≠ 0 and therefore
also the degree 2nk of R is non zero.

Remark 2.4. Recall from [10, end of 2.1.16] that in a left Ore localisation RS we have (a, s) = (b, t)
for homogeneous elements a, b, s, t if and only if there are c1 ∈ S and a2 ∈ R such that c1b = a2a ∈ R
and c1t = a2s ∈ S. Hence, if S only contains regular elements, then the natural ring homomorphism
R Ð→ RS is injective.

2.3. Localisation of dg-rings at homogeneous elements. We prove the first main result of the
paper.

Theorem 2.5. Let (R,d) be a dg-ring, and let S be a multiplicative set of homogeneous elements.
Assume that either S consists of regular elements, or else S ⊆ ker(d) is a left Ore set and the image
of S in R/ass(S) consists of regular elements of R/ass(S). Then

d(b, s) ∶= (−1)∣s∣+1(d(s), s) ⋅ (b, s) + (−1)∣s∣(d(b), s)
defines a differential graded structure on RS, and the natural homomorphism is a dg ring homomor-
phism λ ∶ (R,d) Ð→ (RS , dS) such that λ(S) ∈ R×S, the group of invertible elements of RS, and such
that for any q ∈ RS there exists s ∈ S with λ(s) ⋅ q ∈ im(λ). Similar statements hold for the right
version.

Proof. We deal with the left Ore case, the other being dual. We also deal with the left version of
ass(S). If ass(S) ≠ 0, then by the hypothesis, S ⊆ ker(d), and using Proposition 2.2 and Remark 2.4,
we may replace R by R/ass(S), and then assume that ass(S) = 0.

Let t ∈ S be homogeneous. Then by the left Ore condition there are g1 ∈ S and a1 ∈ R such that
g1a = a1t and for s, t ∈ S there is s1, t1 ∈ S with t1s = s1t. Define then

(a, s) ⋅ (b, t) = (a1b, g1s) and (a, s) + (b, t) = (t1a + s1b, t1s).
As we have seen in the proof of Proposition 2.2 we get that d(1) = 0. Assume that we may find a
dg-ring as in the statement of the theorem in which s is invertible. Then

0 = d(s ⋅ s−1) = d(s) ⋅ s−1 + (−1)∣s∣s ⋅ d(s−1)
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and hence we need to define
d(s−1) = (−1)∣s∣+1s−1 ⋅ d(s) ⋅ s−1.

Therefore, we can determine a general formula for the differential.

d(b, s) =d((1, s) ⋅ (b,1))

=d(1, s) ⋅ (b,1) + (−1)∣s∣(1, s) ⋅ d(b,1)

=(−1)∣s∣+1(1, s) ⋅ d(s,1) ⋅ (1, s) ⋅ (b,1) + (−1)∣s∣(1, s) ⋅ (d(b),1)

=(−1)∣s∣+1(d(s), s) ⋅ (b, s) + (−1)∣s∣(d(b), s)
Let b ∈ R and s ∈ S. Note that this is hence the unique possible extension of the differential d to the
quotient ring. Consider now an element (sb, s) = (b,1). Then, since d should extend the differential
on R, we get d(b,1) = (d(b),1). Then

d(sb, s) =(−1)∣s∣+1(d(s), s) ⋅ (sb, s) + (−1)∣s∣(d(sb), s))

=(−1)∣s∣+1(d(s), s) ⋅ (b,1) + (−1)∣s∣(d(s)b + (−1)∣s∣sd(b), s)

=(−1)∣s∣+1(d(s)b, s) + (−1)∣s∣(d(s)b, s) + (d(b),1)
=(d(b),1)

We assume that (a, s) = (b, t) for homogeneous elements a, b, s, t. Then there are c1 ∈ S and a2 ∈ R
such that c1b = a2a ∈ R and c1t = a2s ∈ S. Then for any t ∈ R with ts ∈ S we get

d(ta, ts)−d(a, s) =

=(−1)∣ts∣+1(d(ts), ts) ⋅ (ta, ts) + (−1)∣ts∣(d(ta), ts) − d(a, s)

=(−1)∣ts∣+1(d(t)s + (−1)∣t∣td(s), ts) ⋅ (ta, ts) + (−1)∣ts∣(d(t)a + (−1)∣t∣td(a), ts) − d(a, s)

=(−1)∣ts∣+1(d(t)s, ts) ⋅ (ta, ts)+

(−1)∣ts∣(d(t)a, ts) + (−1)∣s∣+1(d(s), s) ⋅ (a, s) + (−1)∣s∣(d(a), s) − d(a, s)

=(−1)∣ts∣+1(d(t)s, ts) ⋅ (ta, ts) + (−1)∣ts∣(d(t)a, ts)

=(−1)∣ts∣((d(t)a, ts) − ((d(t), ts) ⋅ (s,1) ⋅ (a, s)))

=(−1)∣ts∣((d(t)a, ts) − ((d(t), ts) ⋅ (a,1)))
=0

Hence
d(a, s) = d(a2a, a2s) = d(c1b, c1t) = d(b, t)

This shows that the above definition is well-defined.
We need to verify the Leibniz formula. We need to verify that

d((a, s) ⋅ (b, t)) = d(a, s) ⋅ (b, t) + (−1)∣a∣−∣s∣(a, s) ⋅ d(b, t)
for homogeneous elements a, b ∈ R and s, t ∈ S.

Let a1 ∈ R and g ∈ S such that a1t = ga. Let us compute the left hand term

d((a, s) ⋅ (b, t) =d((a1b, gs))

=(−1)∣gs∣+1(d(gs), gs)(a1b, gs) + (−1)∣gs∣(d(a1b), gs)

=(−1)∣gs∣+1 [(d(g)s, gs)(a1b, gs) + (−1)∣g∣(gd(s), gs)(a1b, gs)]

+ (−1)∣gs∣ [(d(a1)b, gs) + (−1)a1∣(a1d(b), gs)]

=(−1)∣gs∣+1(d(g)s, gs)(a1b, gs) + (−1)∣s∣+1(d(s), s)(a1b, gs)

+ (−1)∣gs∣(d(a1)b, gs) + (−1)∣gs∣+∣a1∣(a1d(b), gs)
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The right hand term reads as

d((a, s))(b, t) + (−1)∣(a,s)∣(a, s)d(b, t) =(−1)∣s∣+1(d(s), s)(a, s)(b, t) + (−1)∣s∣(d(a), s)(b, t)

+ (−1)∣(a,s)∣(a, s) [(−1)∣t∣+1(d(t), t)(b, t) + (−1)∣t∣(d(b), t)]

=(−1)∣s∣+1(d(s), s)(a1b, gs) + (−1)∣s∣(d(a), s)(b, t)

+ (−1)∣(a,s∣)+∣t∣+1(a1d(t), gs)(b, t) + (−1)∣(a,s)∣+∣t∣(a, s)(d(b), t)
The second term of the left hand side equals the first term of the right hand side. We hence need to
verify

(−1)∣gs∣+1(d(g)s, gs)(a1b, gs) + (−1)∣gs∣(d(a1)b, gs) + (−1)∣gs∣+∣a1∣(a1d(b), gs)
!=

!=(−1)∣s∣(d(a), s)(b, t) + (−1)∣(a,s∣)+∣t∣+1(a1d(t), gs)(b, t) + (−1)∣(a,s)∣+∣t∣(a, s)(d(b), t)
This is equivalent to

(−1)∣gs∣+1(d(g)s, gs)(a1b, gs) + (−1)∣gs∣(d(a1)b, gs) + (−1)∣gs∣+∣a1∣(a1d(b), gs)
!=

!=(−1)∣s∣(d(a), s)(b, t) + (−1)∣(a,s∣)+∣t∣+1(a1d(t), gs)(b, t) + (−1)∣(a,s)∣+∣t∣(a1d(b), gs).
However, by [11, 8.1.1 Lemma] we see that in the equation ga = a1t, we may assume that also a1
is homogeneous. Further we get ∣ga1∣ = ∣a1t∣ and therefore (−1)∣a1∣+∣g∣ = (−1)∣a∣+∣t∣ and hence the last
terms of the left hand side and the right hand side coincide. Therefore the equation we need to verify
is equivalent to

(−1)∣gs∣+1(d(g)s, gs)(a1b, gs)+(−1)∣gs∣(d(a1)b, gs)
!=

!=(−1)∣s∣(d(a), s)(b, t) + (−1)∣(a,s∣)+∣t∣+1(a1d(t), gs)(b, t).
Further, both sides are right multiples of (b,1), and hence we are done once we proved

(−1)∣gs∣+1(d(g)s, gs)(a1, gs) + (−1)∣gs∣(d(a1), gs)
!=

!=(−1)∣s∣(d(a), s)(1, t) + (−1)∣(a,s∣)+∣t∣+1(a1d(t), gs)(1, t).
Since we assumed that ass(S) = 0, we may multiply with (t,1) from the right and use ga = a1t so
that we need to show

(−1)∣gs∣+1(d(g)s, gs)(ga, gs)+(−1)∣gs∣(d(a1)t, gs)
!=

!=(−1)∣s∣(d(a), s) + (−1)∣(a,s∣)+∣t∣+1(a1d(t), gs).
which is equivalent to

(−1)∣gs∣+1(d(g)s, gs)(a, s) + (−1)∣gs∣(d(a1)t, gs)
!=

!=(−1)∣s∣(d(a), s) + (−1)∣(a,s∣)+∣t∣+1(a1d(t), gs).
Since in the multiplication rule for the left most product, gd(g)s = a1s, whence a1 = gd(g), the
multiplication rule gives (d(g)s, gs) ⋅ (a, s) = (gd(g)a, g2s) = (d(g)a, gs). The above equation in turn
is hence equivalent to

(−1)∣gs∣+1(d(g)a, gs) − (−1)∣s∣(gd(a), gs) !=
!=(−1)∣(a,s∣)+∣t∣+1(a1d(t), gs) − (−1)∣gs∣(d(a1)t, gs).

However, ga = a1t implies

d(g)a + (−1)∣g∣gd(a) = d(ga) = d(a1t) = d(a1)t + (−1)∣a1∣a1d(t).
Now, multiplying this by (1, gs) from the left, we obtain precisely what we need, signs are as they
should be, and the equation we need to verify is true.
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2.4. Application: Goldie’s theorem. We have seen that Goldie’s theorem 1.1 makes use of Ore
localisations. We want to find a version of Goldie’s theorem for differential graded rings and take a
few lines about some considerations in this direction. We consider the case of a differential graded
ring (R,d).

We have an easy first consequence of Theorem 2.5 and Theorem 1.2 in this direction.

Corollary 2.6. Let (R,d) be a differential graded ring. If R is a Z-graded Z-prime right Z-gr-Goldie
ring then the localisation of R at homogeneous regular elements is a differential graded dg-simple,
dg-Artinian ring.

Proof. Apply Theorem 1.2 to the case G = Z and use that by Theorem 2.5 the localisation at
regular homogeneous elements is differential graded.

2.5. Comparing homology localisation with Ore localisation. Let (R,d) be a differential
graded ring.

Let S be a multiplicative system of homogeneous elements of even degree in ker(d) such that the
image of S in R/ass(S) contains only regular elements, then, following Proposition 2.2 we may form

the Ore localisation RS at S. However, since S ⊆ ker(d), we may form the image S in H(R,d). Since
S is a multiplicative system, S is a multiplicative system in H(R,d). Suppose for the moment that
(R,d) is a differential graded k-algebra for a field k. Then, by [2, Theorem 3.10] we see that

R ∗L
k(S) k(S,S

−1)

is the universal ring inverting all elements of S. Here, ∗L
k(S)k(S,S

−1) denotes the derived coproduct

in the category of dg-rings. It can be computed by replacing the left hand argument with a cofibrant
dg-algebra under k(S). More precisely (cf [2, Definition 2.4]), consider the under category A ↓ dgAlg
formed by objects being dg-algebra homomorphisms A Ð→ C and morphisms being commutative
triangles. For any dg-algebra homomorphism AÐ→ B we obtain the restriction functor

B ↓ dgAlg Ð→ A ↓ dgAlg

and see that this has a left adjoint denoted by B ∗A −. The derived functor, replacing A and B by
cofibrant replacements, is then denoted by B ∗LA −. Hence, there is a unique homomorphism of dg
k-algebras

R ∗L
k(S) k(S,S

−1) λÐ→ RS

such that the diagram

R ∗L
k(S) k(S,S

−1) λ // RS

R

ff @@

is commutative. However, since R ∗L
k(S) k(S,S

−1) does not necessarily invert all elements of S, but

only those in S, we do not necessarily get that λ is invertible. An example of this kind occurs if
(R,d) is acyclic.

Proposition 2.7. We consider left Ore sets and the left version of ass(S). Suppose that S ⊆ ker(d)
is a multiplicative left Ore set of homogeneous elements, and the image of S in R/ass(S) consists
of regular elements in R/ass(R). Then H(λ) is an isomorphism and hence R ∗L

k(S) k(S,S
−1) is

quasi-isomorphic to RS. In particular, if S is the image of S in H(R), then
H(RS) ≃H(R)S .

Proof. We consider H(RS). By [2, Proposition 5.14] we get H(RS) = H(R)S . This then shows

that H(λ) is an isomorphism and hence λ is a quasi-isomorphism since both H(R ∗L
k(S) k(S,S

−1))
and H(R)S have the same universal property being initial with respect to inverting S.
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Remark 2.8. Note that the authors of [2] mention that their construction of R ∗L
k(S) k(S,S

−1) is
hard to perform explicitly. Our Proposition 2.7 provides such a construction up to quasi-isomorphism
and our localisation is a lot more general.

3. Semiprime differential graded rings

We want to prove a dg-version of the results of Section 1.

3.1. dg-prime, dg-semiprime.

Definition 3.1. Let (R,d) be a differential graded ring. We define dgnil(R,d) to be the sum of all
nilpotent differential graded two-sided ideals.

Definition 3.2. A dg-ring (R,d) is called dg-Noetherian if any ascending chain of dg-ideals of (R,d)
is finite. A dg-ring (R,d) is dg-Artinian if any descending chain of dg-ideals of (R,d) is finite.

Lemma 3.3. If (R,d) is a dg-ring, then dgnil(R,d) is a twosided dg-ideal of (R,d), which we call
the differential graded nil radical. If (R,d) is dg-Noetherian, then dgnil(R,d) is nilpotent.

Proof. Since the sum of ideals is an ideal, and since the differential is additive, and elements of a
sum of ideals is a finite sum of elements of the constituents, the sum of dg-ideals is a dg-ideal.

Since the sum of two nilpotent ideals is a nilpotent ideal, since the sum of two differential graded
ideals is a differential graded ideal, at least if (R,d) is dg-Noetherian, using the ascending chain
condition, the sum of all nilpotent differential graded two-sided ideals is actually a finite sum of
nilpotent differential graded two-sided ideals. Hence if (R,d) is dg-Noetherian, then dgnil(R,d) is a
nilpotent differential graded ideal.

Lemma 3.4. Let (R,d) be a dg-Noetherian differential graded ring. Then dgnil(R/dgnil(R,d)) = 0.

Proof. Since Lemma 3.3 shows that dgnil(R,d) is a dg-ideal, and since any quotient R/I of a
differential graded algebra by a differential graded ideal (I, d) is again a differential graded ring, d

induces a differential d on R/dgnil(R). Also, since preimages of dg-ideals under dg-homomorphisms

are dg-ideals, (R/dgnil(R,d), d) is dg-Noetherian. Hence, if (I, d) is a nilpotent differential graded

ideal of (R/dgnil(R,d), d), its preimage I is a differential graded ideal (I, d). Since there is an integer

n such that I
n = 0, and hence (I, d)n ⊆ dgnil(R,d). Now, dgnil(R,d)m = 0 for some m, since (R,d)

is dg-Noetherian, and therefore In+m = 0. This then shows I ⊆ dgnil(R,d) and hence I = 0.

Definition 3.5. Let (R,d) be a differential graded ring.

● A two-sided differential graded ideal (P, d) is called dg-prime if whenever (S, d) and (T, d)
are two-sided differential graded ideals with ST ⊆ P , then S ⊆ P or T ⊆ P .
● (R,d) is called dg-semiprime if dgnil(R) = 0.
● (R,d) is called dg-prime if for all non zero two-sided dg-ideals (I, d) and (J, d) we get IJ ≠ 0.

Again, if R is concentrated in degree 0 (and d = 0), then the concept of dg-(semi-)prime coincides
with the concept of (semi-)prime.

Lemma 3.6. dg-prime rings (R,d) are dg-semiprime.

Proof. Indeed, let (I, d) be a nilpotent dg-ideal. say Ik = 0. Then
I ⋅ Ik−1 = 0.

Since (R,d) is assumed to be dg-prime, we get Ik−1 = 0 (or I = 0 which implies the former) and by
induction on k we get I = 0. Therefore dgnil(R,d) = 0, whence (R,d) is dg-semiprime.

Let R be a Noetherian ring. Recall that the nil radical Nil(R) of a ring R is the sum of all
nilpotent two-sided ideals of R. It is, by definition, the largest nilpotent ideal of R. Further, it is a
classical result that for Noetherian rings Nil(R) is the intersection of all prime ideals of R.

Example 3.7. Let K be a field and let A = K[X]/X2. Then A is graded when we declare X to
be in degree −1. Further, d(X) = 1 and d(1) = 0 gives a structure of differential graded algebra on
A. The only ideals are 0, XK[X]/X2, and A. The ideal XK[X]/X2 is not differential graded and
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hence the intersection of dg-prime ideals of A is 0, as well as dgnil(A,d) = 0. Note that the classical
prime radical is XA, hence larger. Recall (cf e.g. [8, Chapter VIII]) the classical result that for
Noetherian rings Nil(R) is the intersection of all prime ideals.

Definition 3.8. Let (R,d) be a differential graded ring. Then the dg-prime radical Prad(R,d) is
the intersection of all dg-prime ideals of (R,d).

In classical ring theory the analog of dg-Prad(R) is sometimes called the Baer radical and the
analog of dgNil(R) is occasionally called the Levitzky radical. We believe that our notion is more
suggestive.

Lemma 3.9. Let (R,d) be a differential graded ring. Then dg-Prad((R/dg-Prad(R,d), d)) = 0.

Proof. Let I ∶= dg-Prad((R/dg-Prad(R,d), d)) and denote by I the preimage of I in R. Then
clearly dg-Prad(R,d) ⊆ I. We show that the inclusion in the opposite sense also holds.

To do so, we need to show that I is contained in every dg-prime ideal P of R. Let Q be such a dg-
prime ideal. Then the image Q of Q in R/dg-Prad(R,d) is again a dg-prime ideal of R/dg-Prad(R,d).
Hence I ⊆ Q, and therefore I ⊆ Q. This shows the lemma.

Lemma 3.10. Let (R,d) be a differential graded ring. Then dgnil(R,d) ⊆ dg-Prad(R,d).

Proof. Indeed, let L be a nilpotent differential graded ideal of R. Then Lk = 0 for some k.
Let Q be a dg-prime ideal of (R,d). Then L ⋅ Lk−1 = Lk = 0 ⊆ Q and hence, since Q is dg-
prime, Lk−1 ⊆ Q. By induction on k we get that L ⊆ Q. Hence L ⊆ dg-Prad(R,d) since Q is
arbitrary dg-prime. Since dgnil(R,d) is the sum of all nilpotent differential graded ideals, we also
get dgnil(R,d) ⊆ dg-Prad(R,d). This shows the lemma.

Lemma 3.11. Let (R,d) be a dg-Noetherian differential graded ring. Then (R/dgnil(R,d), d) is
dg-semiprime.

Proof. This is an immediate consequence of Lemma 3.4.

Lemma 3.12. Let (R,d) be a dg-Noetherian differential graded ring. Then (R/dg-Prad(R,d), d) is
dg-semiprime.

Proof. By Lemma 3.10 we get a surjective homomorphism of differential graded rings

(R/dgnil(R,d), d1)Ð→ (R/dg-Prad(R,d), d2)
given by the natural inclusion from Lemma 3.10.

Let I ∶= dgnil(R/dg-Prad(R,d), d2), and let I be the preimage of I in R/dgnil(R,d). Since R is

dg-Noetherian, also R/dg-Prad(R,d) is dg-Noetherian, and hence I is nilpotent. Therefore there is
k ∈ N such that Ik ⊆ dg-Prad(R,d)/dgnil(R,d). But this implies that I ⊆ dg-Prad(R,d)/dgnil(R,d)
by the defining property of a dg-prime ideal, and a standard induction on k. Hence I = 0 and we
proved the lemma.

Definition 3.13. Let (R,d) be a differential graded ring. We say that (R,d) is strongly dg-semiprime
if dg-Prad(R,d) = 0.

Proposition 3.14. Let (A,d) be a differential graded algebra and suppose that (A,d) is left dg-
artinian and dg-Noetherian. Then dg-Prad((A,d) = dgnil(A,d) = dgrad2(A,d).

Proof. In a first step we show that (A,d) only contains a finite number of maximal twosided
differential graded ideals. Indeed, if I1, I2, . . . is a sequence of maximal twosided differential graded
ideals, then

I1 ⊋ I1 ∩ I2 ⊋ . . .
is a strictly descending sequence of twosided differential graded ideals of (A,d). Hence this has to
stop, by the dg-artinian property on twosided dg-ideals. This is a first step.

In a second step we show that dgrad2(A,d) is nilpotent. Indeed, this is a direct consequence of
the dg-Nakayama Lemma [16, Lemma 4.28] and the dg-Artinianity on twosided dg-ideals.
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The third step shows that any dg-prime ideal is twosided maximal. Indeed, if ℘ is a dg-prime
ideal, then since dgrad2(A,d) is nilpotent, also dgrad2(A,d) ⊆ ℘. But if I1, . . . , In are the (finite
number!) maximal twosided differential graded ideals, then

I1 ⋅ I2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ In ⊆ dgrad2(A,d) ⊆ ℘
and since ℘ is dg-prime, there is j such that IJ ⊆ ℘. Since Ij is maximal, we have equality.

We proved the proposition.

4. dg-essential dg-submodules

Recall from Section 1 the notion of a gr-essential submodule.

Definition 4.1. A non zero submodule M of a differential graded module (X,δ) over a differential
graded ring (R,d) is called dg-essential if for any differential graded submodule (N, δ) of (X,δ) one
has M ∩N ≠ 0. A dg-essential ideal is a dg-essential submodule of the regular module (R,d). A
dg-essential two-sided ideal is a dg-essential submodule of the (R⊗Z Rop, d⊗ dop)-module (R,d).

Note that for a submodule M of (X,δ) we did not assume that M is differential graded. We shall
need this subtlety later. However, most of the time we shall assume that M is differential graded.

If X is ungraded and δ = 0, we get back the usual concept of an essential submodule. Similarly, if
the grading is non zero, but the differential is zero, we get the concept of a gr-essential submodule.

Lemma 4.2. Let (R,d) be a dg-ring, and let (M,δ) be a differential graded (R,d)-module. If (N, δ)
is a dg-submodule, and if the Z-graded submodule N is gr-essential in M , then (N, δ) is dg-essential.

Proof. Indeed, if (X,δ) is a dg-submodule of (M,δ), then forgetting the differential, X is a
Z-graded submodule, and hence X ∩N ≠ 0. Hence (N, δ) is dg-essential in (M,δ).

Lemma 4.3. Let (R,d) be a differential graded ring.

(1) If (R,d) is dg-prime, then any non zero two-sided dg-ideal is dg-essential.
(2) The relation of being a dg-essential submodule is transitive.
(3) The intersection of two dg-essential submodules is dg-essential.
(4) If U is a dg-module, and if N is a dg-essential dg-module in the dg-module M , then U ⊕N

is dg-essential in U ⊕M .
(5) If (Ni, δi) is a dg-essential submodule of (Mi, δi) for all i ∈ {1, . . . , n}, then (⊕Ni,⊕ δi) is a

dg-essential submodule of (⊕Mi,⊕ δi).
(6) If (N, δ) is a differential graded submodule of (M,δ). Then there is a differential graded

submodule (X,δ) of M with N ∩X = 0 and N ⊕X is dg-essential in M .

Proof. The proof of the first three items are trivial.

(4) If N is dg-essential in M , then U ⊕ N is dg-essential in U ⊕M . Indeed, We denote by
π ∶ U ⊕M Ð→M the canonical projection. Let X be a dg-submodule of U ⊕M . Then π(X)
is a submodule of π(U ⊕M) =M . Either, π(X) = 0 or, using that N is essential in M , we
get π(X) ∩ π(U ⊕N) ≠ 0. If π(X) = 0, then X ⊆ U and hence X ∩ (U ⊕N) = X ⊕ 0 ≠ 0. If
π(X) ∩ π(U ⊕N) ≠ 0, let 0 ≠ x ∈ π(X) ∩ π(U ⊕N). Then there is u ∈ U such that (u,x) ∈X
But then (u,x) ∈ U ⊕N , and therefore (U ⊕N) ∩X ≠ 0.

(5) We proceed by induction on n. Since N1 is dg-essential in M1, by the previous statement
we have N1 ⊕N2 is dg-essential in M1 ⊕N2. Again by the previous statement M1 ⊕N2 is
dg-essential in M1 ⊕M2. By the second statement N1 ⊕N2 is dg-essential in M1 ⊕M2. We
may assume that N1⊕⋅ ⋅ ⋅⊕Nn−1 is dg-essential in M1⊕⋅ ⋅ ⋅⊕Mn−1. By the case of two factors
we see that (N1 ⊕ ⋅ ⋅ ⋅ ⊕Nn−1)⊕Nn is dg-essential in (M1 ⊕ ⋅ ⋅ ⋅ ⊕Mn−1)⊕Mn.

(6) Let X be the set of dg-submodules (Z, δ) of (M,δ) such that (N ∩Z) = 0. Since (0, δ) is in
X , we get that X ≠ ∅. Clearly X is partially ordered by inclusion. If Y is a totally ordered
subset of X , we get

Ŷ ∶= ⋃
Y ∈Y

Y

is a dg-submodule of (M,δ). Further, Ŷ ∩N = 0, since else there is 0 ≠ y ∈ Ŷ ∩N . Then

y ∈ Ŷ implies that there is Y ∈ Y with y ∈ Y . But this contradicts Y ∩N = 0. Hence, by
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Zorn’s lemma there is a maximal element (X,δ) of X . By definition N ∩X = 0. Let Y be a
differential graded submodule of M with Y ∩ (N ⊕X) = 0. Then X ⊕ Y still is a differential
graded submodule satisfying N ∩ (X ⊕ Y ) = 0. By maximality of X we get Y = 0. Therefore
N ⊕X is dg-essential in M .

This proves the lemma.

Lemma 4.3.(6) suggests the following definition.

Definition 4.4. Let (R,d) be a differential graded ring and let (M,δ) be a differential graded
(R,d)-module. For a differential graded (R,d)-submodule (N, δ) of (M,δ) we say that a differential
graded (R,d)-submodule (L, δ) is a dg-complement to (N, δ) if the following two conditions hold:
N ∩L = 0, and (L, δ) is maximal with respect to this property.

Remark 4.5. As a consequence, if (N, δ) is a dg-submodule of (M,δ), and if (L, δ) is a dg-
complement to (N, δ) in (M,δ), then N ⊕ L is dg-essential. By Lemma 4.3.(6) such a complement
always exists.

Remark 4.6. Note that a dg-complement need not be a gr-complement. Moreover, a dg-essential
submodule need not be a gr-essential submodule.

Analogous to the classical case we get

Corollary 4.7. Let (R,d) be a differential graded ring. Then a differential graded (R,d)-module
(M,δ) is a direct sum of simple differential graded (R,d)-modules if and only if 0 and M are the
only dg-essential submodule of (M,δ).

Proof. If (M,δ) is a direct sum of dg-simple submodules, say M = ⊕i∈I Mi, and let (N, δ) be a
dg-essential submodule of M . Then N ∩Mi ≠ 0 for all i ∈ I since N is dg-essential and (Mi, δ) is a dg
submodule of M . Since Mi is dg-simple, and since N ∩Mi ≤Mi, we get that N ∩Mi =Mi, whence
Mi ⊆ N . This holds for all i, and therefore N =M .

Conversely, suppose that 0 andM are the only dg-essential submodules ofM . Then, Lemma 4.3.(6)
implies that any differential graded submodule is complemented by a differential graded submodule,
and therefore, by [16, Lemma 4.17], which is formulated for finite sums only, but which can be gen-
eralised to arbitrary sums by the usual application of Zorn’s lemma, (M,δ) is a direct sum of simple
dg-submodules as differential graded module.

5. dg-uniform dimension, the dg-singular ideal

Recall from Section 1 the notions of uniform modules and uniform dimension. We can easily
transpose this concept to the differential graded situation.

Definition 5.1. Let (A,d) be a differential graded algebra.

● A non zero differential graded (A,d)-module (M,δ) is called dg-uniform if all non zero
differential graded (A,d)-submodules (N, δ) of (M,δ) are dg-essential.
● A dg-module (M,δ) is said to have finite dg-uniform dimension if (M,δ) does not contain
an infinite direct sum of differential graded submodules.
● If (M,δ) contains a dg-essential dg-submodule (N, δ) which is the direct sum of dg-uniform
submodules N1, . . . ,Nn, then we say that n is the dg-uniform dimension of (M,δ) and write
dg-udim(M,δ) for the dg-uniform dimension, or dg-udim(A,d)(M,δ) in case we need to make
precise the dg-ring which operates.

As for the classical case we shall need to show that the dg-uniform dimension is well-defined. But
the proof of the classical case [10, 2.2.7, 2.2.8, 2.2.9] carries through verbatim. In particular,

Proposition 5.2. Let (M,δ) be a differential graded (R,d)module with finite uniform dimension.
Suppose that ⊕n

i=1(Ui, δ) be a dg-essential submodule of (M,δ) such that each (Ui, δ) is uniform for
each i, then any direct sum of dg-submodules of (M,δ) has at most n non zero terms, and a direct
sum of non zero dg-uniform submodules of (M,δ) is dg-essential if and only if the sum has n terms.

Proof. Indeed, the proof of [10, 2.2.9] carries through verbatim.

Analogous to [10, 2.2.10] we get for the dg-situation
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Lemma 5.3. Let (R,d) be a differential graded ring and let (M,δ), (M1, δ1), (M2, δ2) be differential
graded (R,d)-modules. Then

(1) dg-udim(M,δ) = 1 if and only if (M,δ) is dg-uniform.
(2) If (N, δ) is a dg-submodule of (M,δ) and dg-udim(M,δ) = n, then dg-udim(N, δ) ≤ n and

dg-udim(N, δ) = n⇔ N is dg-essential in M

(3) dg-udim(M1 ⊕M2, δ1 ⊕ δ2) = dg-udim(M1, δ1) + dg-udim(M1, δ2)

Proof. The first item is simply the definition. For the second item let N1, . . . ,Nt be dg-submodules
of (N, δ) such that N1 + ⋅ ⋅ ⋅ +Nt = N1 ⊕⋯⊕Nt. Since (N, δ) ≤ (M,δ), this direct sum N1 ⊕⋯⊕Nt

of dg-submodules of N is also a direct sum of dg-submodules of M . Hence

dg-udim(N, δ) ≤ dg-udim(M,δ).
If

dg-udim(N, δ) = dg-udim(M,δ),
then by definition N1⊕⋯⊕Nt is dg-essential in (M,δ), but then also (N, δ) is dg-essential in (M,δ)
since it contains the direct sum. If (N, δ) is dg-essential in (M,δ), and let N1 ⊕ ⋯ ⊕ Nt be dg-
essential, and each Ni uniform. Then by Lemma 4.3 the direct sum is dg-essential in (M,δ), and
hence dg-udim(N, δ) = t = dg-udim(M,δ) = n. The third item is trivial and follows by the definition.
This proves the Lemma.

Remark 5.4. Since any dg-submodule is a submodule, it is clear that dg-udim(M,δ) ≤ udim(M) for
any differential graded module (M,δ). In case M is concentrated in degree 0 (and as a consequence
δ = 0), then dg-udim(M,δ) = udim(M). The inequality may be strict for general δ ≠ 0. We shall see
an instance in Example 5.8.(1). There, dg-udim(A,d) = 1 whereas udim(A) = 2 for the 2 × 2 matrix
algebra A with the differential as given there.

Recall from e.g. [9, Chapter 3, §7] the classical notion of a singular module.

Definition 5.5. (cf e.g. [9, Chapter 3, §7]) Let M be an R-right module. Then

● m ∈M is singular if ann(m) = {r ∈ R ∣mr = 0} is essential in R.
● The singular submodule of M is the set of singular elements in M .
● A module is called singular it all elements are singular. It is not difficult to show that this is
indeed a submodule.
● The right singular ideal is the singular submodule of RR, and the left singular ideal is the
singular submodule of RR.
● Accordingly, for a subset I of (R,d) we denote rannR(I) ∶= {r ∈ R ∣ Ir = 0} and lannR(I) ∶=
{r ∈ R ∣ rI = 0}.

When R is clear from the context we write rann(I) for rannR(I), and likewise for lannR(I).

Definition 5.6. Let (R,d) be a differential graded ring. Then the right singular dg-ideal ζdg(R,d)
is formed by those a ∈ R such that there is a dg-essential differential graded right ideal (E,d) of
(R,d) with a ⋅E = 0.

As we see, we need to deal with annihilators in the dg-context. Let us give some elementary
observations.

Lemma 5.7. Let (R,d) be a differential graded ring and I a subset of R.

(1) Then rann(I) is a right ideal and lann(I) is a left ideal.
(2) If I is a left ideal, then lann(I) is a two-sided ideal.
(3) If I is a right ideal, then rann(I) is a two-sided ideal.
(4) If I ⊆ ker(d), and I is graded, then rann(I) is a dg-right ideal and lann(I) is a dg-left ideal.
(5) If (I, d) is a dg-left ideal, then lann(I, d) is a two-sided dg-ideal.
(6) If I is a dg-right ideal, then rann(I, d) is a two-sided dg-ideal.

Proof. The proofs of the first three items are classical, and actually trivial. Item (5) and item (6)
are dual. We hence only need to prove items (4) and (5).



ORE LOCALISATION AND GOLDIE’S THEOREM OF DG-ALGEBRAS 13

(4) Since I is supposed to be graded, also rann(I) and lann(I) are graded. Let x ∈ rann(I) be
homogeneous and z ∈ I. Then

0 = d(0) = d(zx) = d(z)x + (−1)∣z∣zd(x) = (−1)∣z∣zd(x)
and hence d(x) ∈ rann(I) as well. Therefore rann(I) is a dg-right ideal. The case of lann(I)
is analogous.

(5) If (I, d) is a dg-right ideal, then, by the previous rann(I) is a two-sided ideal. Further, for
all homogeneous x ∈ I and r ∈ R we get

d(xr) = d(x)r + (−1)∣x∣xd(r)
which implies that d(x)r ∈ I for all x ∈ I and r ∈ R. Hence rann(I, d) is a two-sided dg-ideal.

This proves the lemma.

Example 5.8. (1) We recall from [16] the following differential graded ring. For any two dif-
ferential graded (A,d)-modules (M,δM) and (N, δN) we let Homn(M,N) be the abelian

group of degree n homogeneous maps f ∶ M → N such that f(am) = (−1)∣a∣na ⋅ f(m) for
all homogeneous a ∈ A and m ∈ M . The space Hom●(M,N) ∶= ⊕n∈ZHomn(M,N) allows a

differential dHom(f) ∶= δN ○ f − (−1)∣f ∣f ○ δM . This way, for M = N , we obtain a differential
graded ring (Hom●(M,M), dHom), denoted in the sequel (End●(M), dHom). Let R be any

integral domain, considered as a trivial dg-ring concentrated in degree 0, let R
λÐ→ R be the

complex of R-modules concentrated in degree −1 and 0, and let

A = End●(R λÐ→ R).
Then

A = ( R R
R R

)

where the main diagonal is the set of degree 0 elements, the lower diagonal is in degree −1
and the upper diagonal is in degree 1. The differential is

d(( 0 0
1 0

)) ∶= ( λ 0
0 λ

) , d(( x 0
0 y

)) ∶= ( 0 λ(y − x)
0 0

) and d(( 0 1
0 0

)) = 0.

Then ker(d) = R[X]/X2 where X is in degree 1. If R =K is a field, then

ζ(ker(d)) = ζ(K[X]/X2) = soc(K[X]/X2) =XK[X]/X2).
Suppose from now on that R =K is a field. Then the algebra A is semisimple. Right ideals
correspond to rows of the matrix ring and the only non trivial differential graded ideal is

( K K
0 0

) =∶ I

since it needs to be stable by the differential and if the right lower coefficient is non zero,
then also the left lower coefficient (since it is a right ideal) and by the differential also the
upper two coefficients. Hence I is dg-essential, and it is the only dg-essential right ideal.
Note that

rann(( 0 0
0 1

)) = rann(( 0 1
0 0

)) = I

and linear combinations of these two elements are the only ones with right annihilator I.
Hence

ζdg(A,d) = (
0 K
0 K

) .

This ideal is a left ideal only, and in particular is not a twosided ideal. Further,

ζdg(A) ⋅ ζdg(A) = (
K K
0 0

) ⋅ ( 0 K
0 K

) = ( 0 K
0 K

) = ζdg(A).

Hence, ζdg(A) is not nilpotent, unlike [10, Lemma 3.4] in the classical case. Since the algebra
A is semisimple as an algebra, ζ(A) = 0.
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(2) Let K be a field. Then A = K[X]/X2 is a dg-algebra with d(X) = 1. Then there is no
non trivial dg-ideal of A. Hence, ζdg(A) = 0. However, XA = soc(A) and hence any ideal
intersects non trivially with soc(A). Furthermore rann(X) = soc(A). Therefore ζ(A) =
soc(A).

Proposition 5.9. Let (R,d) be a dg-ring. Then

ζ(R) ∩ ker(d) ⊆ ζdg(R,d) ∩ ker(d) and ζ(ker(d)) ⊆ ζdg(R,d) ∩ ker(d).

Proof. Let us compare ζ(R) and ζdg(R,d). For a ∈ ζ(R) we need to have that rannR(a) is essential
in R. For a ∈ ζdg(R,d) we need to have that rannR(a) is a dg-essential dg-ideal. If a ∈ ker(d), then
rannR(a) is a dg-ideal, and essential ideals are trivially dg-essential. Hence

ζ(R) ∩ ker(d) ⊆ ζdg(R,d) ∩ ker(d).
Further, if I is a right ideal of R, then I ∩ ker(d) is a right ideal of ker(d). Hence, if a ∈ ζ(ker(d)),
then rannker(d)(a) intersects non trivially any non zero ideal of ker(d). Therefore, if a ∈ ζ(ker(d)),
then rannR(a) intersects non trivially all ideals I of R with I ∩ ker(d) ≠ 0. However, all dg-ideals
(I, d) of (R,d) do intersect with ker(d). Indeed, if y ∈ I ≠ 0, then d(y) ∈ I as well, and hence either
y ∈ ker(d) or d(y) ∈ ker(d). Hence

ζ(ker(d)) ⊆ ζdg(R,d) ∩ ker(d).
This shows the statement.

In Proposition 5.9 we considered the (right) singular ideal of the subalgebra ker(d) of the dg-ring
(R,d). Since we have a surjective ring homomorphism ker(d)Ð→H(R,d), we can also consider the
singular ideal of the ring H(R,d), and the singular ideal of the ker(d)-module H(R,d).

Proposition 5.10. Let (R,d) be a differential graded ring. Let π ∶ ker(d)Ð→H(R,d) be the natural
homomorphism. Then

(1) ζ(H(R,d)) coincides with the singular submodule of the ker(d)-module H(R,d).
(2) π(ζ(ker(d))) ⊆ ζ(H(R,d)).

Proof. Since π is surjective, π induces a bijection between the ideals of H(R,d) and the ideals of
ker(d) containing ker(π) = im(d). Hence,

h ∈ ζ(H(R,d)) ⇔ rannH(R,d)(h) is essential in H(R,d)
⇔ ∀0≠I≤rH(R,d) ∶ I ∩ rannH(R,d)(h) ≠ 0

Moreover, the annihilator rannH(R,d)(h) of h in H(R,d) coincides with the image under π of the
annihilator of h as a ker(d)-module. Since ker(π) certainly annihilates h, we get that ζ(H(R,d))
coincides with the singular submodule of the ker(d)-module H(R,d).

Let a ∈ ζ(ker(d)). This is equivalent to a ∈ ker(d) and rannker(d)(a) essential in ker(d). But if
an element b in ker(d) annihilates a, then π(0) = π(ab) = π(a)π(b), and hence π(rannker(d)(a)) ⊆
rannH(R,d)(π(a)). Therefore if rannker(d)(a) is essential in ker(d), then π(rannker(d)(a)) is essential
in H(R,d).

Remark 5.11. The proof of Proposition 5.10 shows that whenever π ∶ R Ð→ S is a surjective ring
homomorphism, then ζ(S) coincides with the singular R-submodule of the R-module S.

Lemma 5.12. Let (R,d) be a differential graded ring. Then ζdg(R,d) is a differential graded left
ideal of (R,d).

Proof. Let a, b ∈ ζdg(R,d). Then there are dg-essential dg-right ideals Ea and Eb such that
aEa = 0 = bEb. By Lemma 4.3.1 also Ea ∩ Eb is an essential dg-right ideal of R. Then a and b
annihilate Ea ∩ Eb, and hence also a − b. Let x ∈ R. Then xa annihilates Ea as well, and hence
ζdg(R,d) is stable by left multiplication with elements in R. Now, for any homogeneous x ∈ Ea,
supposing that a ∈ ζdg(R) is homogeneous, we have

d(a) ⋅ x = d(ax) − (−1)∣a∣a ⋅ d(x)
and since x ∈ Ea, we have ax = 0, whence also d(ax) = 0. Since Ea is a dg-ideal, also d(x) ∈ Ea and
hence a ⋅ d(x) = 0. Therefore d(a) annihilates Ea as well, and hence d(a) ∈ ζdg(R,d).
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Remark 5.13. We cannot show in general that ζdg(R,d) ⊆ ζ(R). Indeed, if a ∈ ζdg(R,d), then there
is a dg-essential dg-ideal (E,d) of (R,d) such that aE = 0. However, a dg-essential dg-ideal does not
need to be essential (cf Example 5.15). Since an essential ideal does not need to be a dg-ideal, we
cannot show ζdg(R,d) ⊇ ζ(R) neither (Example 5.8.(2) provides an example).

Remark 5.14. Since ζdg(R,d) is a dg-left ideal of (R,d), it is tempting to consider its homology
H(ζdg(R,d), d). An element in H(ζdg(R,d), d) is represented by y ∈ ker(d) such that rann(y) is
dg-essential in (R,d). Since by Proposition 5.9 we have

ζ(ker(d)) ⊆ ζdg(R,d) ∩ ker(d)
and since H(ζdg(R,d), d) is a quotient of ζdg(R,d) ∩ ker(d), there is a natural map

ζ(ker(d))Ð→H(ζdg(R,d), d)
induced by the natural map

ker(d∣ζdg(R,d))Ð→H(ζdg(R,d), d).
Likewise, since by Proposition 5.9 we have

ζ(R) ∩ ker(d) ⊆ ζdg(R,d) ∩ ker(d)
we also get a natural map

ζ(R) ∩ ker(d)Ð→H(ζdg(R,d), d).
However, since for an element a ∈ ker(d) the property for the dg-right ideal rann(a) to be essential
is a lot more restrictive than to be dg-essential, there is no hope to have surjectivity of either one of
these maps. An example is given below in Example 5.15.

Example 5.15. Recall Example 5.8. For a field K we defined a structure of a dg-algebra on
A =Mat2(K). Then, ζ(A) = 0 and

ker(d) =K ⋅ ( 0 1
0 0

) +K ⋅ ( 1 0
0 1

) .

Moreover,

ζdg(A) = (
0 K
0 K

) and H(ζdg(A,d), d) =K ⋅ ( 0 0
0 1

) ≃K.

Therefore in this case the map

ζ(A) ∩ ker(d)Ð→H(ζdg(A,d), d).
is not surjective.

Further, in this case the only non trivial ideal of ker(d) is J ∶= K ⋅ ( 0 1
0 0

). Hence, this ideal is

essential. Its right annihilator ideal is J itself, and hence ζ(ker(d)) = J . This shows that the map

ζ(ker(d))Ð→H(ζdg(R,d), d)
is the zero map, which is neither surjective nor injective.

6. dg-Goldie rings; left and right dg-annihilators

Definition 6.1. A differential graded ring (R,d) is called dg-left (resp. dg-right) Goldie if (R,d)
satisfies

● the ascending chain condition on dg-left (resp. dg-right) annihilators, and
● has finite left (resp. right) dg-uniform dimension.

The statements of [10, Proposition 2.14] are formal, except the last statement, and can be trans-
posed to the differential graded situation. We shall detail the parts which do not follow from the
classical arguments.

Proposition 6.2. Let (R,d) be dg-semiprime and let (I, d) be a two-sided dg-ideal. Suppose R ≠ I.
Then

(1) We have lann(I, d) = rann(I, d) =∶ ann(I, d) and this is a two-sided dg-ideal.
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(2) ann(I, d) is a two-sided dg-ideal with I ∩ ann(I, d) = 0, and it is the unique one which is
maximal with respect to this property. In particular, I ⊕ ann(I, d) is dg-essential in R.

(3) If (R,d)/ann(I, d) is strongly dg-semiprime, then ann(I, d) is the intersection of those min-
imal dg-prime ideals which do not contain I.

(4) If the (R,d) − (R,d)-bimodule (I, d) is dg-uniform then ann(I, d) is a minimal dg-prime
ideal. If R/ann(I) is strongly dg-semiprime, then the converse holds as well.

(5) (I, d) is a dg-essential two-sided dg-ideal if and only if ann(I, d) = 0.
(6) Suppose that R/ann(I) is strongly dg-semiprime. If (I, d) is not contained in any minimal dg-

prime ideal, then ann(I, d) = dg-Prad(I, d). In particular, if (R,d) is strongly dg-semprime,
then (I, d) is dg-essential if and only if (I, d) is not contained in any dg-prime ideal.

Proof. In order to prove (1), observe that X ∶= {r ∈ R ∣ rI = 0} is a two-sided dg-ideal by
Lemma 5.7. The rest of the argument is a literal repetition of the argument in [10, Proposition 2.14].

(2): again follows the classical counterpart, except that we have that the algebra is dg-semiprime.
But this is enough since our ideals are all dg-ideals. Lemma 4.3.(6) implies that I ⊕ ann(I) is
dg-essential.

(3): If (P, d) is a minimal dg-prime ideal which does not contain I, then

I ⋅ ann(I, d) = 0 ⊆ P.
Since P is dg-prime, either I ⊆ P or ann(I, d) ⊆ (P, d). The first case was excluded, and so the
intersection D of all (minimal) dg-prime ideals not containing I contains ann(I, d). Since R/ann(I)
is strongly dg-semiprime, the intersection of all dg-primes of R/ann(I) is 0. Taking preimages under
R Ð→ R/ann(I) we get that the intersection of all dg-primes containing ann(I) is ann(I). Since
I ∩ ann(I) = 0, we have that D equals the intersection of all dg-primes containing ann(I). Hence we
get I ∩D = 0. Therefore, D = ann(I, d) by (2), whence the statement of (3).

(4): Suppose that (I, d) is dg-uniform. Let S and T be two-sided dg-ideals with ST ⊆ ann(I, d).
Then IST = 0 = STI. If IS = 0, then S ⊆ annr(I, d) = ann(I, d) and we are done. Likewise, if TI = 0,
then T ∈ annℓ(I, d) = ann(I, d), and we are done as well. If IS ≠ 0 ≠ TI, then T ⊆ annr(IS) = ann(IS)
and S ⊆ annℓ(TI) = ann(TI). Further, 0 ≠ IS ⊆ I ∩ S and 0 ≠ TI ⊆ T ∩ I. By item (2) ann(J, d) is
a two-sided ideal with J ∩ ann(J, d) = 0, and it is maximal with this property, and furthermore the
unique maximal one.

Further, IS ⊆ I and TI ⊆ I. If 0 ≠ (J, d) ⊆ (I, d), then ann(I, d) ⊆ ann(J, d) by definition. We claim
that ann(I, d) = ann(J, d). Indeed, (I, d) is dg-uniform, hence (J, d) is a dg-essential submodule of
(I, d). Now, if ann(I, d) ⊊ ann(J, d), then I ∩ ann(J, d) ≠ 0, since else this would contradict item (2),
namely the maximality of ann(I, d) as being maximal with I ∩ ann(I, d) = 0. But then I ∩ ann(J, d)
is a non zero dg-submodule of I, and since (J, d) is dg-essential, J ∩ (I ∩ ann(J, d)) ≠ 0. However,
ann(J, d) satisfies J ∩ ann(J, d) = 0 by item (2). This contradiction shows that ann(I, d) = ann(J, d).
We can now consider J = IS and this then implies T ⊆ ann(IS) = ann(I). Hence ann(I, d) is
dg-prime.

Suppose that ann(I, d) is dg-prime. We shall need to see that (I, d) is dg-uniform. Let (J, d) be
a two-sided dg-ideal in (I, d). We shall need to see that (J, d) is dg-essential in (I, d). Let (K,d)
be a dg-ideal in (I, d). Then J ⋅K ⊆ J ∩K. If J ⋅K = 0, then J ⋅K ⊆ ann(I, d). Since ann(I, d)
is dg-prime, either J ⊆ ann(I, d) or K ⊆ ann(I, d). However, J ⊆ I and K ⊆ I implies J = 0 or
K = 0 by item (2). Now, ann(J, d) is an intersection of minimal dg-prime ideals, by item (3). By
definition ann(I, d) ⊆ ann(J, d) as J ⊆ I. But ann(I, d) is a minimal dg-prime, which contributes to
the intersection of minimal dg-primes giving ann(J, d). Therefore ann(J, d) ⊆ ann(I, d), and hence
ann(J, d) = ann(I, d) since the other inclusion was seen above. If now (I, d) contains a direct sum
of two two-sided dg-ideals (I1, d) ⊕ (I2, d) ⊆ (I, d), then I1 ⋅ I2 ⊆ I1 ∩ I2 = 0, and hence ann(I1, d)
contains (I2, d). Therefore ann(I1, d) ⊋ ann(I, d). Taking J = I1 in the discussion above, we get
ann(I1, d) = ann(I, d). This contradiction shows that the dg-uniform dimension is 1, and hence, by
Proposition 5.2, (I, d) is dg-uniform. We proved item (4).

(5): If (I, d) is dg-essential, by item (2) we need to have ann(I, d) = 0. Let us prove the other
direction. Suppose that ann(I, d) = 0. Let (J, d) be a two-sided dg-ideal of (R,d). Then I ⋅J ⊆ I ∩J .
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If (I, d) is not dg-essential, then there is a non zero two-sided dg-ideal (J, d) with I ∩ J = 0. Hence,
by item (2) we have that J ⊆ ann(I, d) = 0, and this contradiction gives item (5).

(6): By item (3) and the hypothesis, we get that ann(I, d) is the intersection of all dg-prime
ideals, which is dg-Prad(R,d). In case (R,d) is strongly dg-semiprime, then dg-Prad(R,d) = 0.
Hence (I, d) is not contained in any dg-prime ideal if and only if ann(I, d) = 0 if and only if (I, d) is
dg-essential.

Remark 6.3. Recall that in the non dg-situation the intersection of all prime ideals is the nil radical,
which is 0 for semiprime rings. Hence I is essential in the situation of item (6). In the dg-situation
we do not have this property (cf Example 3.7) and we need the stronger hypothesis of strongly
dg-semiprime rings.

Let (R,d) be a dg ring. Let (I, d) be a two-sided dg-ideal. Trivially, if I is essential, then (I, d)
is also dg-essential. The converse sometimes holds as well in a very specific situation.

Corollary 6.4. If (R,d) is a differential graded algebra, and suppose that R is semiprime as a ring.
Then a two-sided dg-ideal (I, d) is dg-essential if and only if ann(I, d) = 0, if and only if ann(I) = 0,
if and only if I is essential.

Proof. R is assumed to be semiprime, and hence R does not contain a non zero two-sided nilpotent
ideal, whence neither a two-sided nilpotent dg-ideal. Hence (R,d) is dg-semiprime as well. We may
now apply Proposition 6.2 item (5) and its classical counterpart [10, Proposition 2.14 item (5)]. If
(I, d) is dg-essential, then ann(I, d) = 0 and since by definition ann(I, d) = ann(I), we have that [10,
Proposition 2.14 item (5)] implies that I is essential.

As in the classical situation [10, 2.2.3 and 2.2.10] we may prove

Lemma 6.5. Let (A,d) be a differential graded ring and let (M,δ) be a differential graded (A,d)-
module.

● If (N, δ) is a dg-complement dg-submodule of (M,δ), then for all dg-submodules (L, δ) of
(M,δ) with N ⊊ L there is a non zero dg-submodule (S, δ) of (L, δ) with S ∩N = 0.
● Then the following are equivalent:

– dg-udim(M,δ) <∞
– (M,δ) satisfies the ascending chain condition on dg-complement submodules. The dg-

uniform dimension of (M,δ) is the maximal length of an ascending chain of dg-complement
dg-submodules.

Proof. As for the first item, suppose that (X,δ) is a dg-submodule of M , such that N is a
dg-complement to X. Then S ∶= L ∩X is a dg-submodule of (M,δ). Further,

S ∩N = N ∩L ∩X = N ∩X = 0
since N ⊆ L and since X is a dg-complement to N . If S = 0, then L would be the dg-complement to
X, which is excluded since by hypothesis the dg-complement N of X is strictly smaller than L.

As for the second item, let n = dg-udim(M,δ). Let
0 < S1 < S2 < S3 < ⋅ ⋅ ⋅ < St

be a maximal chain of dg-complement dg-submodules of (M,δ). We claim that t ≤ n. Indeed,
applying the statement of the first item to S1 < S2, we obtain a dg-submodule S′2 of S2 with
S1 +S2 = S1⊕S′2. Similarly, S2 < S3 gives a dg-submodule S′3 < S3 such that S2 +S′3 = S2⊕S′3. Since
S2 contains S1 ⊕ S′2, we obtain a direct sum S1 ⊕ S′2 ⊕ S′3 of three dg-submodules. By induction we
get a direct sum of t non zero dg-submodules S′i ≤ Si for all i ∈ {1, . . . , t} such that S1 ⊕ S′2 ⊕ ⋅ ⋅ ⋅ ⊕ S′t
is a direct sum of dg-submodules of (M,δ). Since dg-udim(M,δ) = n, we get t ≤ n.

If we have a direct sum ⊕t
i=1Mi of dg-submodules of (M,δ), then, for s < t the dg-complement of

⊕s
i=1Mi contains ⊕t

i=s+1Mi but does not contain Mi for any i ≤ s. This direct sum hence induces a
chain of dg-complement dg-submodules of length at least t. This then proves the second item.

Recall from Theorem 2.5 that a differential graded structure on a ring R can be extended to the
Ore localisation at a set of homogeneous and regular Ore set. Moreover, since the Ore set is formed by
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regular elements, the natural homomorphism to the localisation is injective. Compare the following
lemma with [10, 2.12]. We identify R with its image in RS under the canonical dg-homomorphism

R
λÐ→ RS .

Lemma 6.6. Let (R,d) be a differential graded ring and let S be an Ore set of homogeneous regular
elements of R. Let (I, d) be a dg-right ideal of (R,d), and let (J, d) be a dg-right ideal of (RS , d).

(1) Then (I, d) is dg-essential in (R,d) if and only if (I ⋅RS , dS) is dg-essential in (RS , dS).
(2) Then (J, dS) is dg-essential in (RS , dS) if and only if (J ∩R,d) is dg-essential in (R,d).
(3) dg-udim(R,d)(I) = dg-udim(RS ,dS)(I ⋅RS)
(4) dg-udim(R,d)(J ∩R) = dg-udim(RS ,dS)(J)

Proof. (1). Suppose that (I, d) is dg-essential in (R,d). Let (L(S), dS) be a dg-ideal of RS . Then
(L(S) ∩R,d) is a dg-ideal of (R,d) and hence L(S) ∩R ∩ I = L(S) ∩ I ≠ 0. Then (L(S) ∩ I) ⋅RS ⊆
L(S) ∩ I ⋅ RS , and since S is formed by regular elements, λ is injective, whence L(S) ∩ I ⋅ RS ≠ 0.
This shows that I ⋅RS is dg-essential.

Suppose now that I ⋅RS is dg-essential and let L be a dg-ideal of R. If I ∩L = 0, then I +L = I⊕L
is a dg-right ideal of R, and hence, using flatness of the localisation,

(I +L)RS = (I ⊕L)RS = (I ⋅RS)⊕ (L ⋅RS)
is a dg-right ideal of RS . Since L ⋅RS is a dg-ideal of RS , and since the intersection with I ⋅RS in
0, this contradicts the fact that I ⋅RS is dg-essential.

(2). Suppose that (J, dS) is dg-essential in (RS , dS) and let (L,d) be a dg-ideal of (R,d). Then
J∩R is a dg-ideal of R and if (J∩R)∩L = 0, then since (J∩R)∩L = J∩L, we also get J∩(L ⋅RS) = 0.
This implies L ⋅RS = 0 since L ⋅RS is a dg-ideal of RS and J is dg-essential. However, L ⋅RS = 0
implies L = 0. Hence J ∩R is dg-essential.

Suppose that J ∩ R is dg-essential in R and let L be a dg-ideal of RS . If J ∩ L = 0, then
J ∩L ∩R = (J ∩R) ∩ (L ∩R). Since J ∩R is dg-essential in R, we get L ∩R = 0. This implies L = 0
and we showed that J is dg-essential.

(3). The additive functor −⊗RRS ∶ (R,d)−dg-modÐ→ (RS , dS)−dg-mod preserves direct sums,
and hence dg-udim(R,d)(I) ≤ dg-udim(RS ,dS)(I ⋅RS). If (I, d) is a dg-uniform ideal of (R,d), then
(I ⋅RS , dS) is dg-uniform. This follows from [10, (2.1.16) Proposition]. Using item (1) we have that
a direct sum ⊕ Ii of uniform dg-ideals of (R,d) is dg-essential if and only if the direct sum ⊕ Ii ⋅RS

is dg-essential. Hence we proved the statement.

(4). Let ⊕n
i=1 Ji ⊆ J be a direct sum of dg-uniform ideals of RS . Then the dg-ideal ∑n

i=1(Ji∩R) of
R in J ∩R is a direct sum, and hence dg-udim(R,d)(J ∩R) ≥ dg-udim(RS ,dS)(J). Using [10, (2.1.16)

Proposition] again we see that if Ji is dg-uniform, then also Ji ∩R is dg-uniform. Further, by item
(2) we have that ⊕n

i=1 Ji is dg-essential in J if and only if ∑n
i=1(Ji ∩R) is essential in J ∩R. Hence

we proved the statement.

Remark 6.7. The fact that [10, (2.2.12) Lemma] follows from [10, (2.1.16) Proposition], and that
these statements are independent of the presence of a dg-structure, also the generalisation of [10,
(2.2.12) Lemma] to the differential graded situation follows from [10, (2.1.16) Proposition].

Remark 6.8. If I is a dg-ideal such that lann(I) is maximal within the set of left annihilators, then
I = Ra for some a ∈ ker(d). Indeed, let 0 ≠ a ∈ I, and if d(a) ≠ 0, then replace a by d(a), which
is again in I since I is a dg-ideal. Hence, we may find a ∈ I ∩ ker(d). Then Ra is a dg-ideal and
Ra ⊆ I. This implies lann(I) ⊆ lann(Ra). Maximality of lann(I) shows that left annihilators which
are maximal within the set of let annihilators are annihilators of dg-principal ideals.

Recall that in the classical ungraded case and differential 0 we have the following lemma.

Lemma 6.9. [10, Lemma 2.3.2] Let R be a ring and suppose that R satisfies the ascending chain
condition on left annihilators. Then

(1) Each maximal left annihilator has the form lann(a) for some a ∈ R.
(2) For any b ∈ R there is an integer m such that lann(bn) = lann(bm) for any n ≥m. Then, for

these n ≥m we have lann(bn) ∩Rbn = 0
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We consider the differential graded case.

Corollary 6.10. Let (R,d) be a differential graded left Goldie ring, and suppose that R satisfies the
ascending chain condition on left annihilators. Let b ∈ R. Then if lann(bn) = lann(bm) for any n ≥m,
and if bn ∈ ker(d), then Rbn ⊕ lann(bn) is an essential dg-ideal, whence in particular dg-essential.

Proof. By [10, Lemma 2.3.3] we have that Rbn⊕lann(bn) is an essential left ideal. Since bn ∈ ker(d),
Rbn is a dg-left ideal, and lann(bn) is a dg-left ideal by Lemma 5.7. This shows the statement.

We generalise [10, Proposition 2.3.4] to the dg-situation.

Lemma 6.11. Let (R,d) be a dg-ring

● If c ∈ ker(d) is right regular in R, then the dg-right ideal (cR, d) is dg-essential in (R,d)
● Suppose that (R,d) is dg-semiprime, suppose that it has finite left dg-uniform dimension,
and suppose that ζdg(R,d) = 0. Then if c ∈ ker(d) is right regular, c is regular.

Proof. Since c ∈ ker(d) is right regular, we get cx = 0 implies x = 0, and also cR is a dg-ideal. Hence
R ∋ x ↦ cx ∈ R is an isomorphism of (R,d)-right dg-modules. Using the differential graded uniform
dimension of right ideals, we get dg-udim(R) = dg-udim(cR), and therefore using Lemma 5.3.(2)
(transposed to right modules) we get (cR, d) is dg-essential in (R,d).

We need to see that c is left regular. Since ζdg(R,d) = 0, there is no non zero element c and a
dg-right ideal E such that cE = 0. Since cR is dg-essential, we need to have lann(cR) = 0. Since
lann(c) ⊆ lann(cR), we also obtain lann(c) = 0. But this shows that there is no non zero element
y ∈ R such that yc = 0. This is tantamount to saying that c is left regular.

7. Differential graded Goldie-theorem

Recall from Section 1 the notions of dg-prime rings and gr-prime rings.

Lemma 7.1. Let (A,d) be a dg-algebra. Then if ker(d) is gr-prime, we have that (A,d) is dg-prime.

Proof. Let (A,d) be a dg-algebra and let S ∶= ker(d). Let (I, d) and (J, d) be two two-sided
dg-ideals. Then IJ = 0 implies (I ∩ S) ⋅ (J ∩ S) = 0 in S, and since S is gr-prime, we get I ∩ S = 0
or J ∩ S = 0. However, for any x ∈ I we get if x /∈ ker(d), then 0 ≠ d(x) ∈ ker(d) ∩ I. Likewise for J .
Hence (I, d) = 0 or (J, d) = 0. This shows the statement.

Lemma 7.2. Let (A,d) be a differential graded algebra. If ker(d) has finite gr-uniform dimension,
then (A,d) has finite dg-uniform dimension.

Proof. Put S ∶= ker(d). If I1 ⊕ I2 ⊕ ⋅ ⋅ ⋅ ⊕ In is a direct sum of two-sided dg-ideals of (A,d), then
(I1 ∩ S) ⊕ (I2 ∩ S) ⊕ ⋅ ⋅ ⋅ ⊕ (In ∩ S) is a direct sum of two-sided graded ideals in S. Again, as in
Lemma 7.1 we see that I ∩ S = 0 implies I = 0. This shows the lemma.

Corollary 7.3. Let (A,d) be a differential graded algebra and suppose that (A,d) is dg-Noetherian
as (A,d) −A,d)-bimodule. If ker(d) is left gr-Goldie, then (A,d) is left dg-Goldie.

Proof. Lemma 7.2 and the hypothesis on the Noetherianity show the statement.

Theorem 7.4. Let R be a commutative ring and let (A,d) be a differential graded R-algebra. Suppose
that ker(d) is a gr-prime ring and suppose that ker(d) is right gr-Goldie.

● If (A,d) is dg-Noetherian as bimodule, then the localisation of A at the homogeneous regular
elements SA of A exists and is dg-simple (in the sense that there is no non zero non trivial
two-sided dg-ideal).
● If the homogeneous regular elements Sker(d) of ker(d) form a right Ore set in A,

– then the localisation of (A,d) at Sker(d) is a dg-simple differential graded R-algebra (in
the sense that there is no non zero non trivial two-sided dg-ideal).

– Further, Sker(d) ⊆ SA and hence in case SA is right Ore as well, ASA
and ASker(d) both

exist, are dg-simple rings, and the natural homomorphism ASker(d) Ð→ ASA
is injective.
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Proof. Let (I, d) be a differential graded two-sided ideal of (A,d). Then by Lemma 4.3 and the
fact that (A,d) is dg-prime (cf Lemma 7.1) we get that (I, d) is dg-essential. Further, since ker(d)
is left gr-Goldie, and (A,d) is twosided dg-Noetherian, also (A,d) is dg-left Goldie (cf Lemma 7.3).
By Theorem 1.2, referring to [12, Theorem C.1.1.6]) the homogeneous regular elements of A form a
left Ore set.

Further, by Theorem 1.2 we know that I ∶= I ∩ ker(d) is either 0 or, since ker(d) is gr-prime, I is

gr-essential, and contains a homogeneous regular element. I cannot be 0 since for any x ∈ I ∖ {0} we
either have x ∈ ker(d), or else d(x) ∈ I ∩ker(d). Hence I ⊆ I contains a homogeneous regular element
y. We claim that y is regular in A as well. Indeed, if xy = 0 for some x ∈ A ∖ ker(d). Considering
each homogeneous component of x separately, using that y is homogeneous, we may assume that x
is homogeneous as well. Given hence a homogeneous x ∈ A with xy = 0, then

0 = d(x ⋅ y) = d(x) ⋅ y + (−1)∣x∣x ⋅ d(y) = d(x) ⋅ y
since y ∈ ker(d). But then d(x) ∈ ker(d), and y regular in ker(d) implies that d(x) = 0. Since
x /∈ ker(d) by hypothesis we reach a contradiction. Likewise, y is right regular as well. By the above,
in any of the two cases, S ∈ {SA, Sker(d)} the set S is a left Ore set, either by hypothesis, or else by
the above considerations. Using Theorem 2.5 we may localise at the set S and then AS ⋅ I = AS .
Let now (L,d) be a two-sided dg-ideal of (AS , d). Then I ∶= L ∩A is a two-sided dg-ideal of (A,d).
By the above, it contains a regular element, and hence L ⊇ AS ⋅ I = AS . Therefore (AS , d) does not
contain any proper non zero two-sided dg-ideal. We showed that (AS , d) is dg-simple.

By symmetry (or using the opposite algebra) we have the analogous statements for left localisation
of left Goldie rings.

Example 7.5. (1) Recall Example 5.8, where A = Mat2(K) with an appropriate non trivial
differential d. There ker(d) = K[X]/X2 with X in degree 1 is not gr-prime. However, A is
simple, and hence (A,d) is dg-simple.

(2) Recall Example 2.1, the polynomial ring in 1 variable X over some field K. There ker(d) =
K[X2], this ring is graded Goldie, it is Noetherian. The localisation of K[X] at the homo-
geneous regular elements of ker(d) is the Laurent polynomial ring, such as the localisation
at the homogeneous regular elements of A.

We close with a lemma which is an analogue of the ’lying over property’ in commutative algebra.
A graded ring is graded hereditary if any graded ideal is graded projective.

Lemma 7.6. Let (A,d) be a differential graded algebra and let S ∶= ker(d). Suppose that S is graded
hereditary. Then for any graded ideal I of S we have that A ⋅ I =∶ J is a differential graded ideal of
(A,d), and S ∩ J = I.

Proof. Since A, S and I are graded, and since A is a graded left S module, it is clear that A ⋅I =∶ J
is a graded ideal of A. Further, for any homogeneous a ∈ A and y ∈ I ⊆ ker(d), we get

d(a ⋅ y) = d(a) ⋅ y + (−1)∣a∣a ⋅ d(y) = d(a) ⋅ y.
Hence J is a dg-ideal of (A,d). Since S is supposed to be graded hereditary, I is projective, and we
may suppose that Y ∶= {yi ∣ i ∈ F} is an S-basis of I ⊕X for some graded S-module X.

Recall that the differential of A ⊗S (I ⊕X) is d ⊗S idI⊕X . Then let y = ∑n
i=1 ai ⊗S yi ∈ J ∩ S for

elements ai ∈ A. Hence

0 = d(y) =
n

∑
i=1

d(ai)⊗ yi

and since the set Y is S-free, we infer d(ai) ∈ ker(d). Therefore we get that d(ai) = 0 for every
i ∈ {1, . . . , n} and hence ai ∈ S. This shows that y ∈ I.
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