
DG-SEPARABLE DG-EXTENSIONS

ALEXANDER ZIMMERMANN

Abstract. We define and characterise completely dg-separable dg-extensions φ ∶ (A,dA) → (B,dB).

We completely characterise the case of graded commutative dg-division algebras in characteristic

different from 2. We prove that for a dg-separable extension a short exact sequence of dg-modules
over (B,dB) splits if and only if the restriction to (A,dA) splits.

Introduction

Let K be a commutative ring. A differential graded K-algebra (A,d) is a Z-graded algebra A
together with a K-linear graded endomorphism d ∶ A→ A of degree 1 such that d2 = 0 and

d(a ⋅ b) = d(a) ⋅ b + (−1)∣a∣a ⋅ d(b)
for all homogeneous a, b ∈ A, where we denote by ∣a∣ the degree of a ∈ A. Differential graded algebras
(or dg-algebras for short) were defined by Cartan [2] in 1954 and proved to be highly successful in
many subjects, such as homological algebra, algebraic topology, differential and algebraic geometry,
and alike. However, the ring theory of differential graded algebras remained largely unexplored until
quite recently. The first of the results in this direction was a characterisation of Aldrich and Garcia
Rozas [1] of acyclic dg-algebras. [13] then studied general ring theoretic properties, such as a dg-
Nakayama lemma, and independently in a parallel development Orlov [8] studied finite dimensional
dg-K-algebras over a field K. Goodbody [4] proved a version of Nakayama’s lemma in the dg-setting
following Orlov’s approach. In the sequel [14] defined and studied a dg-Brauer group, and in [15]
Ore localisation and a Goldie theorem was studied in the context of dg-algebras. Further, in [16]
a concept of a dg-division algebra was developed, and a complete classification was given. In this
case we showed that a dg-division algebra is either acyclic or has differential d = 0. Note that in
[14] a technical hypothesis was imposed for the classification. We shall prove in this paper that the
technical assumption is superfluous.

In general, a K-algebra B is called separable over a K-subalgebra A if the multiplication map
B⊗AB Ð→ B is split as morphism of B−B-bimodules. A graded version was given by Năstăsescu-van
Oystaeyen [6] asking for a split in the category of graded bimodules.

We define in this paper a differential graded separability, asking simply that the splitting of the
multiplication map is a map of differential graded bimodules. We use the classification from [16] to
show that a field extension between two graded-commutative acyclic dg-division rings is dg-separable
if the extension of cycles is graded-separable. In characteristic different from 2, the converse also
holds. Further, we show that in characteristic different from 2 an extension of dg-division algebras
from an algebra with differential 0 to an acyclic algebra is never separable. We finally note that a
dg-extension (A,dA) → (B,dB) where (A,dA) is acyclic implies that (B,dB) is acyclic as well. This
gives a complete picture of separability of extensions of graded commutative dg-division algebras in
characteristic different from 2. The results are displayed in Theorem 3.5.

In general, we show that a dg-extension φ ∶ (A,dA) → (B,dB) is dg-separable if and only if there
is a homogeneous element ω ∈ ker(dB⊗AB) of degree 0 with bω = ωb for all b ∈ B and mapping to 1
under the multiplication map B ⊗A B → B. We show in Theorem 4.6 that this then implies that a
short exact sequence of dg-modules over (B,dB) if and only if the restriction to (A,dA) splits. We
further mention that our concept of dg-separability gives that the restriction functor is a separable
functor in the sense of Năstăsescu, van den Bergh and van Oystaeyen [7].
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The paper is organised as follows. In Section 1 we recall results from [16] concerning dg-division
rings as far as they are relevant for this work. Section 2 then gives the definition of a dg-separable
extension. In Section 3 we completely classify dg-separable dg-extension of graded-commutative dg-
division rings, which includes our first main result Theorem 3.5. Finally, Section 4 shows the second
main result Theorem 4.6.
Acknowledgement: I would like to thank Xiao-Wu Chen for his kind invitation to USTC. This
opportunity enabled me to improve the paper. I would also like to thank the referees for their time
and effort in reviewing the manuscript.

1. Dg-division algebras revisited

First recall some notations. As a reference one may take [11] or [13, 15, 16]. Let (A,d) be
a dg-K-algebra. Then a left dg-module over (A,d) is a Z-graded A-module M together with an

endomorphism δ ∶ M → M of degree 1 with δ2 = 0 and δ(a ⋅m) = d(a) ⋅m + (−1)∣a∣a ⋅ δ(m) for all
homogeneous a ∈ A and m ∈M . If (A,d) is a dg-algebra, then (Aop, d) is a dg-algebra as well, where

Aop coincides with A as K-module, and where a ⋅op b ∶= (−1)∣a∣∣b∣b ⋅ a for all homogeneous a, b ∈ A.
Further, a right dg-module over (A,d) is a left dg-module over (Aop, d). For two dg-modules (M,δM)
and (N, δN) over (A,d) we set

Homk
A((M,δM), (N, δN)) ∶= {f ∈ HomK, graded(M,N) ∣ f(am) = (−1)∣a∣kaf(m)}

and put dHom(f) ∶= δM ○ f − (−1)∣f ∣ ○ δM .
We abbreviate

Hom●A((M,δM), (N, δN)) ∶= ⊕
k∈Z

Homk
A((M,δM), (N, δN)).

and
End●A((M,δM)) ∶= Hom●A((M,δM), (M,δM)).

Then End●A((M,δM)), dHom) is a dg-algebra, and Hom●A((M,δM), (N, δN)), dHom) is a dg-bimodule
over End●A((N, δN)), dHom)- End●A((M,δM)), dHom).

Recall from [16] the definition of a differential graded division algebra.

Definition 1.1. [16] A dg-division algebra is a dg-algebra (A,d) such that the only dg-left ideals
are 0 and A and the only dg-right ideals are 0 and A.

Differential graded division algebras (A,d) were completely classified in [16] (cf Remark 1.3 below).
The corresponding result is the following.

Theorem 1.2. [16] Let (A,d) be a dg-algebra. Then

● (A,d) is a dg-division algebra if and only if ker(d) is a Z-gr-division algebra (cf [6]).
● If (A,d) is a dg-division algebra,

– then,
∗ either d = 0 and (A,d) is a graded-skew field
∗ or H(A,d) = 0 and

⋅ either ker(d) is a skew-field concentrated in degree 0
⋅ or there is a skew field R0 such that ker(d) ≃ R0[X,X−1;ϕ] for an automor-
phism ϕ of R0 and Xr = ϕ(r)X for any r ∈ R0.

– If H(A,d) = 0, then there is a homogeneous element y with d(y) = 1 and y2 ∈ ker(d),
and there is a map D ∶ ker(d) Ð→ ker(d) of degree 1 defined by

D(a) = −(−1)∣a∣d(yay) = ya − (−1)∣a∣ay
for any homogeneous a ∈ ker(d), such that A is isomorphic with the quotient of the
twisted polynomial ring

A ≃ ker(d)[T ;D]/(T 2 − y2).
Moreover, the algebra structure on the twisted group ring is given by D(a) = Ta −
(−1)∣a∣aT for any homogeneous a ∈ ker(d). Furthermore, A = ker(d) ⊕ y ker(d), and the



DG-SEPARABLE DG-EXTENSIONS 3

isomorphism is

Φ ∶ ker(d)[T ;D] Ð→ A

b + Ta ↦ b + ya
for any homogeneous a, b ∈ ker(d). Further, for any homogeneous a, b ∈ ker(d) we get
d(b + ya) = a.

Remark 1.3. Recall that a Z-graded ring is a Z-graded-division ring if every homogeneous element is
invertible. In [16] an additional hypothesis on (A,d) was imposed in the formulation of Theorem 1.2.
Namely we asked that the set of left regular homogeneous elements of ker(d) coincides with the set
of right regular homogeneous elements of ker(d). This was used in order to show that ker(d) is a
graded-division ring. We shall show here that this hypothesis is unnecessary.

Lemma 1.4. A dg-algebra A is a dg-division ring if and only if ker(d) is a Z-graded-division ring.

Proof. If ker(d) is a Z-graded-division ring, then (A,d) is a dg-division algebra by [16, Lemma
2.1].

Suppose that ker(d) is not a Z-graded-division ring, and that (A,d) is a dg-division ring. Then
there is an in ker(d) non invertible homogeneous element 0 ≠ x ∈ ker(d). Hence, x is not left
invertible, or not right invertible in ker(d), or both, since else x would be invertible, contradicting
the hypothesis.

Suppose first that x ⋅ ker(d) ≠ ker(d). If xA ≠ A, then, since x ∈ ker(d), the ideal xA would be a
non trivial dg-right ideal of A. This is impossible since (A,d) is assumed to be a dg-division algebra.
Hence xA = A, and therefore there is a homogeneous y ∈ A with xy = 1. But then

0 = d(1) = d(xy) = d(x) ⋅ y + (−1)∣x∣x ⋅ d(y) = (−1)∣x∣x ⋅ d(y).
Since x ∈ ker(d), the left ideal Ax is a dg-left ideal of A. Hence, since (A,d) is a dg-division ring,
Ax = A. But then

A ⋅ d(y) = A ⋅ x ⋅ d(y) = A ⋅ 0 = 0,
which implies d(y) = 0. Hence y ∈ ker(d), which implies in turn

ker(d) ⊇ x ⋅ ker(d) ⊇ x ⋅ y ⋅ ker(d) = ker(d).
This was excluded.

If ker(d) ⋅ x ≠ ker(d), the analogous argument gives a contradiction as well. Hence ker(d) is a
Z − gr-division ring.

Corollary 1.5. Let (A,d) be a dg-algebra. Suppose that (A,d) is a graded commutative dg-division
algebra. Then either ker(d) is a field concentrated in degree 0, or else ker(d) =K[X,X−1] for some
field K and X in non zero degree, and, in case K is of characteristic different from 2, then X is in
even degree.

We shall need to recall the definition of a differential graded structure on a tensor product of
algebras. Let (A,dA) be a dg-algebra and let (B,dB) de a dg-algebra. Consider a dg-homomorphism
(A,dA) Ð→ (B,dB). Then for

dB⊗AB = dB ⊗ idB + idB ⊗ dB ,

respecting the Koszul sign rule, defines a dg-B − B-bimodule structure on (B ⊗A B). If A is a
subalgebra of the graded centre of B, then (B ⊗A B,dB⊗AB) is a dg-algebra again.

2. Dg-separability

Recall that an algebra A is separable if A is a projective object in the category of A−A-bimodules.
This is equivalent with the fact that the multiplication map is split as morphism of A−A-bimodules.
Similarly, a graded algebra A is graded separable if the graded bimodule A is projective in the
category of graded bimodules.

Proposition 2.1. [3, Example 2.5] The extension of graded rings R[Tn, T −n] ⊆ S[T,T −1] is graded-
separable if and only if the extension R ⊆ S is separable and n is invertible in R.
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Recall (cf e.g. [12]) that an algebra extension β ∶ A Ð→ B of K-algebras is separable if the
multiplication map

µ ∶ B ⊗A B Ð→ B

splits as a homomorphism of B ⊗K B-bimodules.
We shall use the analogous concept.

Definition 2.2. Let K be a commutative ring and let (A,dA) and (B,dB) be differential graded
algebras. A dg-extension of dg-algebras is a homomorphism β ∶ (A,dA) Ð→ (B,dB) dg-algebras.

An extension of dg-algebras β ∶ (A,dA) Ð→ (B,dB) is called dg-separable if the multiplication
map

µ ∶ (B,dB) ⊗A (B,dB) Ð→ (B,dB)
is split as morphism of differential graded B −B-bimodules.

Note however, for

B ⊗A B
µÐ→ B

one has dB⊗AB = dB⊗1+1⊗dB and then, by the Leibniz formula and the Koszul sign rule on graded
rings, we always have

µ ○ dB⊗AB = dB ○ µ.

Proposition 2.3. Let (A,dA) Ð→ (B,dB) be a dg-extension of dg-algebras. This extension is dg-
separable if and only if there is ω ∈ ker(dB⊗AB) homogeneous of degree 0 with bω = ωb for all b ∈ B
and µ(ω) = 1.

Proof. Let ρ ∶ B Ð→ B ⊗A B be a retract with µ ○ ρ = 1B . Then
ρ ○ dB = dB⊗AB ○ ρ

is equivalent with
dB⊗AB(ω) = 0

for bω = ωb and µ(ω) = 1. Hence, ω has to be a cycle in B ⊗A B. Even better, this is equivalent.
Suppose ω ∈ ker(dB⊗AB) with bω = ωb for all b and µ(ω) = 1. Then

dB⊗AB(ρ(b)) = dB⊗AB(bρ(1))
= dB⊗AB(bω)
= ((dB ⊗ 1)(b⊗ 1) + (1⊗ dB)(b⊗ 1))ω + (−1)∣b∣bdB⊗B(ω))
= dB(b)ω
= dB(b)ρ(1)
= ρ(dB(b))

where the last equation holds since ρ is a morphism of bimodules.

Lemma 2.4. Let (A,dA) and (B,dB) be dg-algebras and let φ ∶ (A,dA) Ð→ (B,dB) be a dg-extension
of dg-algebras. Then φ∣ker(dA)

is an extension of graded rings ker(dA) Ð→ ker(dB).

Proof. Suppose that φ ∶ (A,dA) Ð→ (B,dB) is a dg-extension of dg-algebras. Then φ induces a
graded-extension φ∣ker(dA)

∶ ker(dA) Ð→ ker(dB) by restriction. Indeed, if dA(x) = 0, then
0 = φ(dA(x)) = dB(φ(x))

and hence φ(x) ∈ ker(dB) as well.

3. Characterisation of dg-separable dg-field extensions

Proposition 3.1. Suppose that (A,dA) and (B,dB) are graded commutative dg-division algebras,
suppose that (A,dA) is acyclic, and suppose that φ ∶ (A,dA) Ð→ (B,dB) is a dg-extension of dg-
algebras. If the restriction φ∣ker(dA)

is a graded-separable extension, then φ is a dg-separable exten-
sion. If the characteristic of A is different from 2, then the converse also holds.
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Proof. The algebra (B,dB) is a left dg-module over (A,dA) via φ. Therefore, by [1] we get
that (B,dB) is acyclic as well. We may hence suppose that (A,dA) and (B,dB) are both acyclic
dg-division algebras. Then

A = ker(dA)[T ;DA]/(T 2 − y2A)
and

B = ker(dB)[T,DB]/(T 2 − y2B)
for dA(yA) = 1 and dB(yB) = 1. Suppose that φ ∶ (A,dA) Ð→ (B,dB) is a dg-homomorphism.
Further, φ(1A) = 1B implies that we may assume that φ(yA) = yB .

By Lemma 2.4 the restriction of φ to ker(dA) is an extension of graded rings ker(dA) Ð→ ker(dB).
Suppose now that φ∣ker(dA)

is a graded-separable extension. Let ωker be the element from Propo-
sition 2.3 with µ(ωker) = 1 and b ⋅ ωker = ωker ⋅ b for all homogeneous b ∈ ker(dB). Recall

A = ker(dA)[T ;DA]/(T 2 − y2A).
But, φ(T ) can be used as T in the isomorphism

B = ker(dB)[T,DB]/(T 2 − y2B)
since we can put φ(yA) = yB . But than we only need to show

Tωker = ωkerT.

If (B,dB) is graded commutative, then for all homogeneous b1, b2 ∈ ker(dB) we have that either the
characteristic is 2, or else all bi are of even degree. Hence

T (b1 ⊗A b2) = b1T ⊗A b2 = b1 ⊗A Tb2 = b1 ⊗A b2T = (b1 ⊗A b2)T.
Moreover, trivially, T commutes with T , and hence T commutes with any (b1 ⊗A b2) ∈ B ⊗A B.

As for the converse, suppose that (A,dA) Ð→ (B,dB) be a dg-separable dg-extension. Therefore,
by Proposition 2.3 there is an element ω ∈ B ⊗A B of degree 0. with bω = ωb for all homogeneous
b ∈ B, and the image of ω under the multiplication map B ⊗A B → B is 1. Further, ω ∈ ker(dB⊗AB).
If B is a graded commutative dg-division ring of characteristic different from 2, then ker(dB) has to
be concentrated in even degrees, since any homogeneous element is invertible, whence not nilpotent
(x2 = −x2 for elements of odd degree), and by consequence in even degrees.

Consider the map
Υ ∶ ker(dB) ⊗ker(dA)

ker(dB) Ð→ B ⊗A B

given by the natural inclusion. But then, as B = ker(dB)⊕T ker(dB) = ker(dB)⊕ker(dB)T , and since
T is of degree −1, we see that the direct summand ker(dB) ⊗A T ker(dB) and T ker(dB) ⊗A ker(dB)
are in odd degrees. Hence the image of Υ is in the subspace of even degree of B ⊗A B. Further, all
b1 ⊗ b2 with b1, b2 ∈ ker(dB) are in the image of Υ. Also, for all b1, b2 ∈ ker(dB) the elements

Tb1 ⊗ Tb2 = T 2b1 ⊗ b2 = y2Bb1 ⊗ b2

are in the image of Υ. Further, y2B is homogeneous of degree −2, satisfying dB(yB) = 1, and since

dB(y2B) = dB(yB)yB − yBdB(yB) = yB − yB = 0
we have in y2B ∈ ker(dB). We have two cases. If y2B = 0, then

T ker(dB) ⊗A T ker(dB) = y2B ker(dB) ⊗A ker(dB) = 0.
Else, y2B ∈ ker(dB)× since (B,dB) is an acyclic dg-division algebra (cf Lemma 1.4). Hence, the image
of Υ is precisely the subspace of even degree elements of B ⊗A B.

Since ω has to be homogeneous of degree 0, which is even, ω ∈ im(Υ). Let ω′ ∈ ker(dB)⊗Aker(dB)
with Υ(ω′) = ω. Note that Υ is injective. Therefore ω′ ∈ ker(dB)⊗A ker(dB) can be used as required
element to show that ker(dA) Ð→ ker(dB) is graded separable.

Remark 3.2. The case of differential 0 is trivial. A dg-extension (A,0) Ð→ (B,0) is precisely a
graded extension. Note that if (A,dA) is acyclic, then any extension (B,dB) of (A,dA) is acylic as
well. The only case left is when dA = 0 and (B,dB) is acyclic.
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Proposition 3.3. Let (A,0) be a gr-field and let (B,d) be a graded commutative acyclic dg-division
algebra. Suppose that AÐ→ B is a dg-extension. If B is of characteristic different from 2, then this
extension is not dg-separable.

Proof. We need to find an element ω ∈ B ⊗A B, homogeneous of degree 0 and mapping to 1
under the multiplication map B ⊗A B Ð→ B, such that dB⊗BA(ω) = 0 and such that bω = ωb for all
homogeneous b ∈ B.

If B is a graded commutative dg-division ring over k, then ker(d) has to be concentrated in
even degrees, since any homogeneous element is invertible, whence not nilpotent (x2 = −x2 for
elements of odd degree), and by consequence in even degrees. But then, as B = ker(d) ⊕ T ker(d) =
ker(d) ⊕ ker(d)T , and since T is of degree −1, we see that for the element ω we have

ω ∈ (ker(d) ⊗ ker(d)) ⊕ (T ker(d) ⊗ T ker(d)).
However, ω ∈ ker(dB⊗AB). Clearly,

(ker(d) ⊗ ker(d)) ⊆ ker(dB⊗AB).
Now, for x = ∑n

i=1 Tbi ⊗ Tb′i ∈ (T ker(d) ⊗ T ker(d)) we get

0 = dB⊗AB(x) =
n

∑
i=1

bi ⊗ Tb′i + (−1)∣bi∣+1Tbi ⊗ b′i =
n

∑
i=1

bi ⊗ Tb′i − Tbi ⊗ b′i

since all bi are of even degree. Since,

B ⊗A B = (ker(d) ⊗ ker(d)) ⊕ (T ker(d) ⊗ ker(d)) ⊕ (ker(d) ⊗ T ker(d)) ⊕ (T ker(d) ⊗ T ker(d))
we get

(T ker(d) ⊗ ker(d)) ∩ (ker(d) ⊗ T ker(d)) = 0
and hence

n

∑
i=1

bi ⊗ Tb′i = 0 =
n

∑
i=1

Tbi ⊗ b′i = T ⋅ (
n

∑
i=1

bi ⊗ b′i)

which shows that
n

∑
i=1

bi ⊗ b′i = 0.

Therefore x = 0. But for ω ∈ ker(d) ⊗A ker(d) we get that Tω ≠ ωT since the left hand side is in
T ker(d) ⊗A ker(d) and the right hand side lies in ker(d) ⊗A ker(d)T , whose intersection is 0.

We illustrate the argument by a simple

Example 3.4. ● We illustrate the proof of Proposition 3.3 with an example. LetA =K[X]/X2

for d(X) = 1, and X in degree −1. Here, ker(d) =K ⋅ 1. Then we need to see if the multipli-
cation map

A⊗K A Ð→ A

(a + bX) ⊗ (c + dX) ↦ ac + (ad + bc)X
is split as A −A-dg-bimodules. As we have a K-basis {1,X} of A, we also have a K-basis
{1 ⊗ 1,1 ⊗ X,X ⊗ 1,X ⊗ X} of A ⊗K A. The multiplication map splits as dg-map if and
only if there is an element ω of degree 0 with vω = ωv for all v ∈ A and mapping to 1 under
the multiplication map. As ker(d) is commutative and central, we only need to verify this
property for v =X. The degree 0 component of A⊗KA is of dimension 1, generated by 1⊗1.
An element λ ⋅ (1⊗ 1) maps to 1 under the multiplication if and only if λ = 1. However,

X ⋅ (1⊗ 1) = (X ⊗ 1) ≠ (1⊗X) = (1⊗ 1) ⋅X
Hence the extension is not separable.
● Suppose that the characteristic of the field K is different from 2. Consider the dg-extension
(A,dA) Ð→ (B,dB) of dg-division K-algebras, where (A,dA) is acyclic, whence also (B,dB),
and where ker(dA) is a skew-field concentrated in degree 0, and where ker(dB) = D[T,T −1]
for some T in non zero even degree and a skew field D. Then this dg-extension is not dg-
separable. This follows from the fact that ker(dB) is of infinite dimension over ker(dA), by
degree considerations, and [3, Lemma 2.1] shows that graded-separable extensions are finite
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dimensional. Hence, the graded-extension ker(dA) Ð→ ker(dB) is not graded-separable, and
then Proposition 3.1 gives the result.

We summarise the results in the following

Theorem 3.5. Let K be a field, let (A,dA) and let (B,dB) be graded commutative dg-division rings
over K. Let φ ∶ (B,dB) → (A,dA) be a dg-extension.

● Then ker(dA) and ker(dB) are graded-commutative graded-division rings.
● If (B,dB) is acyclic, then also (A,dA) is acyclic and

– the dg-extension is dg-separable if the induced graded-extension ker(dB) → ker(dA) is
graded separable.

– If the characteristic of K is different from 2, then the dg-extension is dg-separable if
and only if the induced graded-extension ker(dB) → ker(dA) is graded-separable.

Suppose now that the characteristic of K is different from 2.

● If dB = 0 and (A,dA) is acyclic, then the dg-extension is not dg-separable.
● If (B,dB) is acyclic and ker(dB) is concentrated in degree 0, and if ker(dA) is not concen-
trated in degree 0, then the dg-extension is not dg-separable.
● If (C,dC) is a graded-commutative acyclic gr-division ring such that ker(dC) is not concen-
trated in degree 0, then there is a field D such that C ≃ D[T,T −1] for some T in non zero
even degree. An extension D1[Tn, T −n] → D2[T,T −1] is graded-separable if and only if the
field extension D1 Ð→D2 is separable and n is invertible in D1.

4. General consequences of dg-separability

Remark 4.1. Recall that we have two concepts of semisimplicity. An abelian category A is semisim-
ple if every short exact sequence of objects in A is split. An (graded) algebra A is J-semisimple
(Jacobson-semisimple) if every graded A-module is a direct sum of simple (graded) A-modules. It is
well-known that if A is artinian, then the two concepts coincide for A being the category of finitely
generated (graded) A-modules. Similar concepts hold for dg-modules instead of graded modules.

Remark 4.2. Let C be an abelian category in which every object is projective. Then C is semisimple
in the sense that every short exact sequence of objects in C splits.

Theorem 4.3. Let (A,d) be a dg-algebra.

● [1, Proposition 3.3] If a dg-module (M,δ) over (A,d) is a projective object in the category of
dg-modules, then (M,δ) is acyclic.
● [1, Theorem 4.7] If (A,d) is acyclic, then every dg-module over (A,d) is acyclic and the
functor

A⊗ker(d) − ∶ gr − ker(d) −modÐ→ dg − (A,d) −mod

is an equivalence with quasi-inverse being the functor taking cycles.
● [1, Definition 5.1 and Theorem 5.3] The category of dg-modules over (A,d) is J-semisimple
if and only if (A,d) is acyclic and ker(d) is graded-J-semisimple.

We consider consequences which can be derived for dg-separable dg-extensions of dg-algebras.

Theorem 4.4. Let (A,dA) is a dg-algebras over some graded commutative acyclic dg-division ring
(K,dK) and suppose that φ ∶ (K,d) → (A,dA) is a dg-separable dg-extension. Let (L,dL) be a graded
commutative dg-division ring being a dg-extension of (K,dK).

Then, any dg-module (M,δM) over (A ⊗K L,dA⊗KL) is a direct summand of (A ⊗K L,dA⊗KL)I
for some index set I. More precisely, I is a ker(dL)-basis of ker(δM).

Proof.
µ ∶ A⊗K AÐ→ A

is split as dg-morphism by ρ ∶ AÐ→ A⊗K A, satisfying µ ○ ρ = idA. Then ρ⊗ idL is a split of

µL ∶ (A⊗K L) ⊗L (A⊗K L) Ð→ (A⊗K L).
Indeed,

(A⊗K L) ⊗L (A⊗K L) = (A⊗K A) ⊗K L
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and with this identification we get

(ρ⊗ idL) ○ (µ⊗ idL) = (ρ ○ µ) ⊗ idL = idA ⊗ idL = idA⊗KL.

We therefore may assume that K = L from the beginning.
Doing so

µ⊗A id ∶ A⊗K M = A⊗K A⊗A M Ð→ A⊗A M =M
is split by ρ⊗ id. Hence (M,δM) is a direct factor of (A⊗K M,δA⊗KM).

We need to analyze (A⊗K M,δA⊗KM).
Since (K,dK) is an acyclic dg-division algebra, since (A,dA) is a dg-module over (K,dK), as well

as (M,δ), we get that (A,dA) and (M,δM) are acyclic (cf Theorem 4.3). Then

ΦK ∶K ⊗ker(dK)
− ∶ ker(dK) − gr −modÐ→ (K,dK) − dg −mod

is an equivalence of categories with inverse the functor given by taking cycles. Hence, the unit
idÐ→ ΦK ○Φ−1K is an isomorphism of functors. Moreover,

ΦA ∶ A⊗ker(dA)
− ∶ ker(dA) − gr −modÐ→ (A,dA) − dg −mod

is an equivalence of categories. Then

A⊗K M ≃ A⊗K (ΦK ○Φ−1K M)
= A⊗K (K ⊗ker(dK)

ker(δM))
= A⊗ker(dK)

ker(δM)
Since ker(dK) is a gr-field, by [9, Lemma 1.7] ker(δM) has a ker(dK)-basis I of homogeneous elements.
Hence, A⊗K M = AI .

Corollary 4.5. Let (A,dA) be an acyclic dg-algebras over some graded commutative acyclic dg-
division ring (K,dK) and suppose that φ ∶ (K,d) → (A,dA) is a dg-separable dg-extension. Then any
dg-module over (A,dA) is a projective object in the category of dg-modules over (A,dA). Moreover,
if (A,dA) is dg-artinian, then the category of dg-modules over (A,d) is semisimple and ker(dA) is
graded-semisimple.

Proof. Indeed, by Theorem 4.4 every dg-module over (A,dA) is a direct factor of (A,dA)I for some
index set I. By Theorem 4.3, since (A,dA) is assumed to be acyclic, (A,dA) is a projective object
in the category of dg-modules over (A,dA). Remark 4.2 shows that this implies that the category
of dg-modules over (A,dA) is semisimple. By [17, Theorem 2.1] a dg-artinian acyclic dg-algebra is
dg-Noetherian. For dg-artinian and dg-Noetherian algebras the concepts of semisimplicity and of
J-semisimplicity coincides for finitely generated dg-modules. But by Theorem 4.3 we get that this
implies that ker(dA) is graded-semisimple.

We can prove an analogue to [5, Proposition 1.3]. Recall that for B ⊗A B-bimodules M1 and M2

we denote by MB
1 the subset of elements x in M1 with bx = xb for all b ∈ B, and likewise for M2.

Then for a homomorphism α ∶M1 Ð→M2 of B ⊗A B-bimodules we get that α(MB
1 ) ⊆MB

2 . Indeed,

bα(x) = α(bx) = α(xb) = α(x)b
for all x ∈MB

1 and b ∈ B.

Theorem 4.6. Let (A,dA) and (B,dB) be dg-algebras over some graded-commutative dg-division
ring (K,dK) and suppose that φ ∶ (A,dA) Ð→ (B,dB) is a dg-separable dg-extension. Then any
short exact sequence of dg-modules

0Ð→ (L, δL)
fÐ→ (M,δM)

gÐ→ (N, δN) Ð→ 0

over (B,dB) is split if and only if it is split considered as a sequence of dg-modules over (A,dA).

Proof. The space Hom●
(K,dK)

((N, δN), (M,δM)) is a dg-bimodule over (B,dB) − (B,dB)op given

by b1 ⊗ b2 acts on Φ ∈ Hom●
(K,dK)

((N, δN), (M,δM)) by ((b1 ⊗ b2) ⋅Φ)(n) = b1Φ(b2n).
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Suppose that the sequence is split as dg-modules over (A,dA). Let ρ be an (A,dA)-splitting of
the epimorphism g on the right. Then

B ⊗A B
σÐ→ Hom●

(K,dK)
((N, δN), (M,δM))

b1 ⊗ b2 ↦ b1ρb2

is a dg-B ⊗A B-module homomorphism since ρ is A-linear. Let ω ∈ ker(dB⊗AB) mapping to 1 under
the multiplication µ, such that bω = ωb for all b ∈ B from Proposition 2.3. But then we claim that

τ ∶= σ(ω) ∈ Hom●
(B,dB)

((N, δN), (M,δM)).
Indeed, σ is a homomorphism of B −B-bimodules, and hence

τ ∈ (Hom●
(K,dK)

((N, δN), (M,δM)))
B

by the remarks preceding the statement of Proposition 4.6. But

(Hom●
(K,dK)

((N, δN), (M,δM)))
B = Hom●

(B,dB)
((N, δN), (M,δM)).

Further, for all n ∈ N we get

(g ○ τ)(n) = (g ○ σ(ω))(n) = ((g ○ σ)(ω))(n) = µ(ω) ⋅ n = 1 ⋅ n = n

If the short exact sequence is split as sequence of dg-(B,dB)- modules, then trivially it is split as
sequence of (A,dA)-modules as well. This proves the statement.

Remark 4.7. Note that by Proposition 3.3 ifK is a graded commutative Z-graded-division ring, and
(A,d) is a dg-division algebra, such that (K,0) Ð→ (A,d) is a dg-separable dg-extension, then.the
characteristic of K is 2 or A cannot be graded commutative.

Recall the concept of a separable functor introduced by Năstăsescu, van den Bergh, and van
Oystaeyen [7].

Definition 4.8. [7] A covariant functor F ∶ C Ð→ D between categories C and D is called separable
if the canonical map ΦF

A,B ∶ C(A,B) Ð→ D(FA,FB) is a naturally split monomorphism.

Proposition 4.9. Let (A,dA) and (B,dB) be dg-algebras and let φ ∶ (A,dA) → (B,dB) be a dg-
extension. Then φ is dg-separable if and only if the restriction dg−(B,dB)−mod→ dg−(A,dA)−mod
is a separable functor.

Proof. Suppose that the multiplication B ⊗A B → B is split. Then the restriction is right adjoint
to the induction B ⊗A − as is well-known (cf Yekutieli [11, 12.6.5]). The counit of the adjoint pair
is the multiplication map B ⊗A B → B. By [10, 2.2.(ii)] this is equivalent with the fact that the
restriction functor is separable.
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