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Université de Picardie; 33 rue St Leu; 80039 Amiens Cedex; France

electronic mail: Alexander.Zimmermann@u-picardie.fr

To Idun Reiten on the occasion of her 60th birthday

Abstract

Let A be a k-algebra which is projective as a k-module, let M be an A-module whose
endomorphisms are given by multiplication by central elements of A, and let TrP ick(A)
be the group of standard self-equivalences of the derived category of bounded complexes
of A-modules. Then we define an action of the stabilizer of M in TrP ick(A) on the
Ext-algebra of M . In case M is the trivial module for the group algebra kG = A, this
defines an action on the cohomology ring of G which extends the well-known action of
the automorphism group of G on the cohomology group.

Introduction

Let A and B be R-algebras over the commutative ring R so that A is projective as an
R-module. If there is an equivalence between the derived categories of bounded complexes
of A-modules Db(A) and the derived category Db(B), Rickard and Keller proved that there
is a complex X in Db(A ⊗R Bop) so that FX := X ⊗

�
B − induces such an equivalence. In

case B is projective as an R-module as well, there is also an object Y in Db(B ⊗R A
op) so

that FY := Y ⊗
�
B − is a quasi-inverse to FX . In case A = B, equivalences of this type form

a group which, in an earlier work with R. Rouquier [8], is called TrP icR(A).
Let M be an A-module. Then, it is reasonable to expect that the set HDM (A) of ele-

ments in TrP icR(A), which fix M up to isomorphism, acts on the Ext-algebra Ext∗A(M,M)
of M as ring automorphisms since ExtnA(M,M) = HomDb(A)(M,M [n]) for any integer n.
To get an actual action one has to be a bit more careful. We prove the above statement if any
automorphism of M is induced by multiplication by an invertible element of the centre of
A. For other modules with more complicated automorphism groups an extension H̃DM (A)
of HDM (A) by some quotient of the automorphism group of M acts on Ext∗A(M,M).

The above defined action is well behaved with respect to change of base rings. In case A
is the group ring RG of a group G, the action of HDR(RG) extends the well known action
of the outer automorphism group of G on the cohomology ring H ∗(G,R). This action of
HDR(RG) is functorial with respect to the second variable. In further work [10, 11] we study
the functoriality with respect to the first variable. There, the situation is more complicate
and we only have partial answers.
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1 Brief review on derived equivalences

We shall present briefly what we will need concerning Rickard’s tilting theory. Our notation
closely follows [4]. Let A and B be R-algebras over a commutative ring R and assume that
A and B are projective as modules over R.

Rickard [6], and under weaker hypotheses Keller [2], show that if there is an equivalence of
triangulated categories Db(A) ' Db(B) then there is a bounded complex X in Db(A⊗RB

op)
so that X ⊗

�
B − is an equivalence. Moreover, the inverse functor is given by the left derived

tensor product with a complex Y in Db(B ⊗R Aop). Equivalences given by (left derived)
tensor product by a bounded complex of bimodules are called of standard type. The complex
X is called a twosided tilting complex.

We define [8] the group

TrP icR(A) := { isomorphism classes of two-sided tilting complexes in Db(A⊗R A
op)}

It is clear by the definition that in case A and B are R-algebras which are projective as
R-modules and Db(A) ' Db(B), then TrP icR(A) ' TrP icR(B) .

2 Operation on Ext-algebras

We are interested in the action of TrP icR(A) on Ext-algebras and in particular on group
cohomology. Let us recall the definitions. For an R-algebra A and two A-modules M and N
let ⊕n∈ � Ext

n
A(M,N) =: Ext∗A(M,N). Then, Ext∗A(M,N) is a module over the R-algebra

Ext∗(M,M). This follows easily by the observation ExtnA(M,N) = HomDb(A)(M,N [n]) for
any n ∈ N. Then, the ring structure of Ext∗A(M,M) is given by composition of mappings and
the Ext∗A(M,M)-module structure of Ext∗A(M,N) as well is given by composing mappings.

In particular if G is a group and R is a commutative ring, then for any RG-module M
we have

Hn(G,M) ' ExtnRG(R,M) ' HomDb(RG)(R,M [n]) .

Let X be a complex with isomorphism class in TrP icR(A) and let

FX := X ⊗
�
A − : Db(A) −→ Db(A)

be the corresponding self-equivalence. Then, FX induces a mapping

HomDb(A)(M,M [n]) −→ HomDb(A)(FX(M), FX (M [n])) = HomDb(A)(FX (M), FX (M)[n]) .

Assume now that we have an isomorphism FX(M)
αX−→M . Then, composing by αX and its

inverse from the left and from the right, the pair (αX , X) induces automorphisms F
(n)
X

F
(n)
X : HomDb(A)(M,M [n])

αX [n]
∗
(α−1

X
)∗FX

−→ HomDb(A)(M,M [n])

λ −→ αX [n] · FX(λ) · α−1
X

for any positive integer n.
We shall discuss what happens if we have two isomorphic functors FX and FY .

Lemma 2.1 Let FX and FY be two functors Db(A) −→ Db(A) and suppose that FY
η

−→ FX

is an isomorphism of functors. If there exists an isomorphism αX : FX(M) −→ M . Then,
the action of (αXηM , FY ) and the action of (αX , FX) on HomDb(RG)(M,M [n]) coincide.



Derived equivalences acting on cohomology 3

Proof. Let λ ∈ HomDb(A)(M,M [n]). Then, setting αY := αXηR we get a commutative
diagram

M [−n]
α−1

X
[−n]

−→ FX(M)[−n]
FX(λ)
−→ FX(M)

αX−→ M
‖ ↑ ηM [−n] ↑ ηM ‖

M [−n]
α−1

Y
[−n]

−→ FY (M)[−n]
FY (λ)
−→ FY (M)

αY−→ M

This proves the lemma.

Let FX1
: Db(A) −→ Db(A) and FX2

: Db(A) −→ Db(A) be equivalences of triangulated
categories and suppose there are isomorphisms αXi

: FXi
(M) −→M for i = 1, 2. We define

the composition of two objects (αX1
, FX1

) and (αX2
, FX2

) by:

(αX2
, FX2

) · (αX1
, FX1

) = (αX2
FX2

(αX1
), FX2

FX1
)

Definition 2.2 Let ĤDM (A) be the class of pairs (αX , X) where FX = X ⊗
�
A − is a self-

equivalence of Db(A) of standard type so that X ⊗
�
A M ' M and αX : X ⊗

�
A M −→ M is

an isomorphism of complexes of A-modules. Two of these pairs (αX , X) and (αY , Y ) are
called isomorphic if there is an isomorphism η : Y −→ X so that αY = αX ◦ (η⊗ idM ). Let

H̃DM (A) be the set of isomorphism classes in ĤDM (A).
In case A = RG is a group ring and M = R the trivial RG-module, then we denote

ĤDR(RG) =: ĤDR(G) and H̃DR(RG) =: H̃DR(G) for short.

With this definition we get

Lemma 2.3 For any λ ∈ HomDb(A)(M [−n],M) and (αX2
, X2) and (αX1

, X1) in ĤDM (A)
we get

(idR, IdDb(A)) (λ) = λ

((αX2
, X2) · (αX1

, X1)) (λ) = (αX2
, X2) ((αX1

, X1) (λ))

Proof. The first assertion is immediate. For the second assertion we compute

(αX2
, X2) ((αX1

, X1) (λ)) = (αX2
, X2) (αX1

FX1
(λ)α−1

X1
[−n])

= αX2
(FX2

(αX1
)FX2

FX1
(λ)FX2

(αX1
)−1[−n])α−1

X2
[−n]

= ((αX2
, X2) · (αX1

, X1)) (λ)

This proves the second assertion.

Lemma 2.4 The set H̃DM (A) is a group with the above defined multiplication. The identity
element is (nat,A) and the inverse of (αX , X) is (nat ◦ (ηX ⊗ idM )F−1

X (α−1
X ), F−1

X ) where
ηX : X−1 ⊗A X −→ A is an isomorphism in the derived category of A ⊗R Aop-bimodules,
and nat : A⊗A M −→M is the natural isomorphism.

Moreover, projection onto the second component gives a group homomorphism

H̃DM (A) −→ TrP icR(A)

whose image is the fix point stabilizer of the trivial module

HDM (A) := {[X] ∈ TrP icR(A) | X ⊗
�
A M 'M}
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Proof. Let (αX , X), (αY , Y ) and (αZ , Z) be elements of ĤDM (A). It is clear that

(nat,A) · (αX , X) = (αX , X) in H̃DM (A). Now,

(nat ◦ (ηX ⊗ idM ) ◦ F−1
X (α−1

X ), F−1
X ) · (αX , FX )

= (nat ◦ (ηX ⊗ idM ) ◦ F−1
X (α−1

X ) ◦ F−1
X (αX), F−1

X FX)

= (nat ◦ (ηX ⊗ idM ) ◦ F−1
X (id), F−1

X FX)

= (nat,A)

Associativity is the following computation:

((αX , X)(αY , Y ))(αZ , Z) = (αXFX(αY ), X ⊗A Y )(αZ , Z)

= (αXFX(αY )FX⊗AY (αZ), X ⊗A Y ⊗A Z)

= (αXFX(αY FY (αZ)), X ⊗A Y ⊗A Z)

= (αX , X)(αY FY (αZ), Y ⊗A Z)

= (αX , X)((αY , Y )(αZ , Z))

The fact that the projection onto the second component is a group homomorphism with
image HDR(G) described above is immediate.

Observe that ĤDM (A) is not a group in general. Moreover, we use the fact that we
deal with standard equivalences and we use the fact that we work in algebras, which are
projective as a module over the base ring. So, composition of functors is associative since
we may replace a complex by its projective resolution and there we may use the ordinary
tensor product which is associative.

Lemma 2.5 Let A be an R-algebra and let M be an A-module so that any A-linear auto-
morphism of M is induced by multiplication by an invertible element of the centre Z(A) of

A. Then, H̃DM (A) ' HDM (A). In particular, for any group G and any commutative ring

R we have H̃DR(G) ' HDR(G).

Proof. The kernel of the canonical surjection H̃DM (A) −→ HDM (A) is formed by
the set of A-linear automorphisms of M modulo the group of automorphisms nat ◦ (η ⊗
idM ) ◦nat−1 for automorphisms η of A as bimodule. Automorphisms of A as bimodules are
precisely the multiplications by central invertible elements of A. Now, Aut(M) is generated
by multiplication by invertible elements of Z(A). Therefore, the kernel of the surjection

H̃DM (A) −→ HDM (A) is trivial and this surjection induces the isomorphism as stated.
For a group ring RG, any automorphism of the trivial module is multiplication by a unit

in R. It is clear that the group of units R∗ of R is in Z(RG).

Remark 2.6 Bass observed that there is a monomorphism of the outer automorphism
group OutR(A) of the R-algebra A to PicR(A). This monomorphism maps an automorphism
f of the R-algebra A to the bimodule fA1 on which a ∈ A acts by multiplication by a on the
right and by multiplication by f(a) on the left. PicR(A) in turn is a subgroup of TrP icR(A)
and we get a group homomorphism

{φ ∈ AutR(A) | φM 'M} −→ HDM (A).

In particular, define HAR(G) as the image of the automorphism group of G in HDR(G)
by mapping an automorphism f of G to the bimodule fRG1 which is RG from the right
and on which g ∈ G operates by multiplication by f(g) from the left.

Note that the question when an automorphism becomes inner in the group ring (and
hence induces the identity in HDR(G)) is far from trivial. The reader may consult for
example M. Mazur [5] or Roggenkamp-Zimmermann [7].
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We have obtained the following result.

Theorem 1 Let R be a commutative ring and let A be an R-algebra, projective as an R-
module and let M be an A-module. Then, for any integer n the group ExtnA(M,M) is an

R H̃DM (A)-module.
If in addition any automorphism of M is induced by multiplication by an invertible

element in Z(A), then for any integer n the group ExtnA(M,M) is an R HDM (A)-module.
In particular, for any commutative ring R and any group G the cohomology group

Hn(G,R) is an R HDR(G)-module.

Proof. The results in Lemma 2.3, Lemma 2.4 and Lemma 2.5 imply the statement
immediately.

Remark 2.7 The action of HDR(G) extends the well known and well studied action of
Out(G) on Hn(G,R). Our interest into the above defined action partly comes from this
fact.

3 Properties of the action

We recall the trivial cases.

Proposition 3.1 [8] Let A be a commutative indecomposable R-algebra, or let A be a local
algebra. Then TrP icR(A) = PicR(A)× < [1] > .

We shall study change of rings properties and functoriality with respect to the coefficient
ring R.

Remark 3.2 What happens in the case of a group ring RG for a finite group G ? Since
H0(G,R) ' R is the trivial HDR(G)-module, we may restrict our attention to Hn(G,R) for
n ≥ 1. Moreover, assume that R is finitely generated over Z. Then, the universal coefficient
theorem gives an exact sequence

0 −→ Hn(G,Z) ⊗ � R −→ Hn(G,R) −→ Tor
�
1 (Hn+1(G,Z), R) −→ 0

So, for certain coefficient rings R and for certain questions we may restrict attention to the
coefficient ring Z. Moreover, for n ≥ 1, we get Hn(G,Z) '

∏
p∈Spec � Hn(G, Ẑp). If p does

not divide the order of the finite group G, one gets Hn(G, Ẑp) = 0.

So, part of the problem is reduced to the case Hn(G, Ẑp) for all prime numbers dividing
the order of G.

Let S be a commutative R-algebra. Since we assumed that A is projective as an R-
module, [6] proves that

S ⊗R − : TrP icR(A) −→ TrP icS(S ⊗R A)

is a homomorphism of groups. It is not true in general that this homomorphism is surjective
or injective as the following example shows.
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Example: Since ZC3 is commutative indecomposable, Proposition 3.1 shows that
TrP ic � (ZC3) =< [1] > while TrP icˆ�

7
(Ẑ7C3) ' TrP icˆ�

7
(Ẑ7 × Ẑ7 × Ẑ7) ' C∞ o S3 is a

wreath product since Ẑ7 contains a primitive third root of unity. So, the above mapping
S ⊗R − : TrP icR(A) −→ TrP icS(S ⊗R A) is not surjective in general. We should remark
that HDˆ�

7
(C3) = C∞ oC2 while HD � (C3) = Gal(Z[ζ3] : Z) = C2 is generated by the Galois

automorphism of Z[ζ3] over Z.
As is shown in [9] the kernel TrIˆ�

3
(Ẑ3S3) of the homomorphism TrP icˆ�

3
(Ẑ3S3) −→

TrP icˆ�
3
(Q̂3S3) is a non abelian free group. So, the above mapping is not injective in

general neither.

Theorem 2 Let φ : R −→ S be a homomorphism of commutative rings, let A be an R-
algebra which is projective as an R-module and let M be an A-module. Then, S ⊗R − :
TrP icR(A) −→ TrP icS(S ⊗R A) lifts to a homomorphism

Hφ : H̃DM (A) −→ H̃DS⊗RM (S ⊗R A) .

Moreover,
S ⊗R − : Ext∗A(M,M) −→ Ext∗S⊗RA(S ⊗R M,S ⊗R M)

is R H̃DM (A)-linear.

Proof. Let X be a complex with isomorphism class in HDM (A). Since A is assumed to
be projective as an R-module, we may and will assume that the homogeneous components
of X are projective as A-modules and projective as Aop-modules. Then, we can replace the
left derived tensor product by the ordinary tensor product.

First we observe that there is an isomorphism

νX : (S ⊗R X) ⊗S⊗RA (S ⊗R M)−̃→S ⊗R (X ⊗A M)

given by
(s⊗ x) ⊗ (t⊗m) = (st⊗ x) ⊗ (1 ⊗m) 7→ st⊗ (x⊗m)

in each homogeneous component of X. We define

αS⊗RX : (S ⊗R X) ⊗S⊗RA (S ⊗R M)−̃→S ⊗R M

by αS⊗RX := (idS ⊗ αX) ◦ νX .
In order to prove the first statement we define

H̃DM (A)
Hφ
−→ H̃DS⊗RM (S ⊗R A)

(αX , X) 7→ (αS⊗RX , (S ⊗R X))

If η : X −→ Y is an isomorphism, then idS ⊗R η : S⊗RX −→ S⊗R Y is an isomorphism as
well. It follows that Hφ does not depend on the chosen representative in the isomorphism
class in H̃DM (A). Moreover, the above shows that

(αS⊗RX , (S ⊗R X)) ∈ ĤDS⊗RM (S ⊗R A) .

This proves the first statement.

We have to show that

S ⊗R − : HomDb(A)(M,M [n]) −→ HomDb(S⊗RA)(S ⊗R M,S ⊗R M [n])
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is linear under the action of H̃DM (A). This is equivalent to proving that the diagram

HomDb(A)(M,M [n]) −→ HomDb(S⊗RA)(S ⊗R M,S ⊗R M [n])
↓ ↓

HomDb(A)(X ⊗A M,X ⊗A M [n]) HomDb(S⊗RA)((SX) ⊗SA (SM), ((SX) ⊗SA (SM [n]))

↓ αX [n]
∗
· (α−1

X
)∗ ↓ αS⊗RX [n]

∗
· (α−1

S⊗RX
)∗

HomDb(A)(M,M [n]) −→ HomDb(S⊗RA)(S ⊗R M,S ⊗R M [n])

is commutative. (We wrote SM for S ⊗R M and likewise SX for S ⊗R X.) The diagram
is commutative if and only if

αS⊗RX [n] ◦ ((S ⊗R X) ⊗ f) ◦ α−1
S⊗RX = idS ⊗ (αX [n] ◦ (X ⊗ f) ◦ α−1

X ) .

But,

αS⊗RX [n] ◦ ((S ⊗R X) ⊗ f)◦α−1
S⊗RX

= (idS ⊗R αX [n]) ◦ ν ◦ ((S ⊗R X) ⊗ f) ◦ ν−1 ◦ (α−1
X ⊗ idS)

= (idS ⊗R αX [n]) ◦ ((S ⊗R X) ⊗ f) ◦ (α−1
X ⊗ idS)

since conjugation by ν acts trivially on the morphism (S ⊗R X) ⊗A f . Now, since (S ⊗R

X) ⊗A f ' S ⊗R (X ⊗A f), we see that under this isomorphism we obtain

(idS ⊗R αX [n]) ◦ ((S ⊗R X) ⊗ f) ◦ (α−1
X ⊗ idS) = idS ⊗ (αX [n] ◦ (X ⊗ f) ◦ α−1

X ) .

This proves the second statement.

As a consequence, one might get a rather different group acting on H ∗(G,S) than on
H∗(G,R) even though it might happen that H≥1(G,S) ' H≥1(G,R). For example Ẑp

contains a primitive p − 1-th root of unity but Zp does not. Nevertheless, H≥1(G, Ẑp) '
H≥1(G,Zp) for a finite group G.

Lemma 3.3 Let φ : R −→ S and ψ : S −→ T be homomorphisms of commutative rings and
let A be an R-algebra which is projective as an R-module. Let M be an A-module. Then,
Hψ ◦Hφ = H(ψ ◦ φ).

Proof. It is clear that there is an isomorphism T ⊗S (S ⊗R X) ' T ⊗R X and so, the
only thing to prove is that under this isomorphism (αT⊗S(S⊗RX), T ⊗S (S ⊗R X)) becomes
equivalent to (αT⊗RX , T ⊗R X). But, this is immediate.

Remark 3.4 Let R be any commutative ring, let A and B be R-algebras which are projec-
tive as R-modules and let M be an A-module. Assume now that we have an equivalence of
triangulated categories Db(A) ' Db(B). Then, by [6], there is a complex Y in Db(B⊗RA

op)
so that the left derived tensor product Y ⊗

�
A− is an equivalence and a (quasi-)inverse equiv-

alence is given by left derived tensor product with a complex X in Db(A⊗RB
op). Therefore,

the group Y ⊗A HDM (A) ⊗B X ⊆ TrP icR(B) fixes Y ⊗A M . It is now immediate that

H̃DM (A) ' H̃DY ⊗AM (B) We should note however that one has to enlarge the definition

of H̃DM (A) in the obvious way in case Y ⊗A M is not necessarily isomorphic to a module.

Proposition 3.5 Let R be a commutative ring, let A and B be R-algebras which are pro-
jective as R-modules and let M be an A-module. Let FU := U ⊗

�
A − : Db(A) −→ Db(B) be

an equivalence of standard type of triangulated categories.
Then, FU induces an isomorphism

HU : H̃DM (A)
'

−→ H̃DU⊗AM (B)
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and an isomorphism

Ext∗A(M,M)
'

−→ HUExt∗B(U ⊗A M,U ⊗A M)

as H̃DM (A)-modules.

Proof. We note by U−1 a complex of A⊗R B
op-modules so that U ⊗

�
A U

−1 ' B and
U−1 ⊗

�
B U ' A. Since A and B are projective as R-modules, we may and will assume that

the homogeneous components of U are projective as Aop-modules and as B-modules and
that the homogeneous components of U−1 are projective as Bop-modules and as A-modules.
Let ρT : T ⊗A M −→ M be an isomorphism fixed for each T which has isomorphism class
in HDM (A). Set

ρUTU−1 : U ⊗A T ⊗A U
−1 ⊗B U ⊗A M ' U ⊗A T ⊗A M

idU⊗ρT−→ U ⊗A M

Then, define a mapping

HU : H̃DM (A) −→ H̃DU⊗AM (B)

(ρT , T ) −→ (ρUTU−1 , UTU−1)

The above is well defined since if there is an isomorphism η : T −→ T ′, then η induces
ρT ′ = ρT ◦ (η ⊗ idM ) and so ρUT ′U−1 = ρUTU−1 ◦ (idU ⊗ η ⊗ idM ) which gives

HU(ρT , T ) = (ρUTU−1 , UTU−1) = (ρUTU−1 ◦ (idU ⊗ η ⊗ idM ), UT ′U−1) = HU(ρT ′ , T ′) .

It is clear that the mapping HU is bijective since the inverse is given in the very same
way, replacing U by U−1. Moreover, for any (ρT , T ) and (ρS , S) in H̃DM (A), we get

HU(ρT ◦ FT (ρS), TS) = (FU (ρT ◦ FT (ρS)), UTSU−1)

= (FU (ρT ), UTU−1)(FU (ρS), USU−1)

= HU(ρT , T ) ·HU(ρS , S)

and this proves that HU is multiplicative. We obtained the first statement.

Recall that the action of (ρT , T ) with equivalence class in HDM (A) on ExtnA(M,M) is
given by the following construction. An α ∈ HomDb(A)(M [−n],M) is mapped by (ρT , T )

to ρT [−n]T (α)ρ−1
T .

Take β ∈ HomDb(B)(U ⊗A M [−n], U ⊗A M).

(HU(ρT , T )) · β = (FU (ρT ), UTU−1) · β

= FU (ρT ) · FUTU−1(β) · FU (ρT )[−n]

= FU (ρT · FTFU−1(β) · ρT [−n])

= FU ((ρT , T ) · FU−1(β))

This proves the second statement.

Now, we shall study the case of a group ring in more detail. In modular representation
theory of finite groups it has proved useful to look at the stable module category. Most
of what follows works equally well for a selfinjective R-algebra, which is projective as an
R-module. We will not go into these details.

Let R be a Dedekind domain. Then, the R-stable module category mod(RG) is the
quotient category of RG−mod by the subcategory of R-projective modules.
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Let StP ic(RG) be the group of isomorphism classes of RG ⊗R RG
op-modules X up to

isomorphism in mod(RG⊗R RG
op) so that X ⊗RG − induces an equivalence mod(RG) −→

mod(RG). Set

HStR(G) := {[X] ∈ StP ic(RG) | X ⊗RG R ' R in mod(RG)}

Analogously to H̃DR(G) and ĤDR(G) we define H̃StR(G) and ĤStR(G).
Following [8] we have a group homomorphism

TrP icR(RG)
σ

−→ StP icR(RG) .

This is defined as follows: Take a two-sided tilting complex X with isomorphism class in
TrP icR(RG). Then, choose any projective resolution (X ′, d′) of X as complex of RG ⊗R

RGop bimodules. Let n be the highest degree (differentials are of degree −1) so that X has
non zero homology in degree n. Then, X∞ := ker d′n+1. Since RG is a Gorenstein order
(that is Ext1RG(M,RG) = 0 for any RG-lattice M), the functor Ω : mod(RG) −→ mod(RG)
is a self-equivalence.

Define σ(X) := Ω−n(X∞). It can be shown that this does not depend on the chosen
projective resolution of X.

Lemma 3.6 σ(HDR(G)) ⊆ HStR(G).

Proof. Let X be a two-sided tilting complex with isomorphism class in HDR(G).
Replace X by an isomorphic copy which has projective homogeneous components, also
denoted by X. Since now all components are projective as right-RG-modules, one can
replace the left derived tensor product by the ordinary tensor product. Now, X is isomorphic
to the complex Y whose homogeneous components of degree higher than n + 2 are 0, the
component in degree n + 1 is X∞ = ker dn+1 and all the other homogeneous components
of Y are identical to those of X. The differentials of Y are the obvious ones. The image
of X in StP icR(RG) is Ω−n(X∞) where Ω is the syzygy operator. We have to prove that
X∞ ⊗RG R ' Ωn(R) in mod(RG).

If M is a projective RG⊗RRG
op-module, then M ⊗RGR is a projective RG-module. In

fact, this is true for free RG ⊗R RGop-modules, and hence it holds for projective modules
as well. Since, X ⊗RG R ' R, the complex X ⊗RG R gives the first n terms of a projective
resolution of the trivial module R. Since X ⊗RG R ' Y ⊗RG R ' R we get a commutative
diagram with exact rows

0 → X∞ ⊗RG R → Xn ⊗RG R → . . . → Xm ⊗RG R → R → 0
↑ ↑ ‖ ‖ ‖

Xn+2 ⊗RG R → Xn+1 ⊗RG R → Xn ⊗RG R → . . . → Xm ⊗RG R → R → 0

This means X∞ ⊗RG R ' Ωn(R).

Lemma 3.7 If RG has the Krull-Schmidt property on lattices, then H̃St(RG) acts on

H∗(G,R) and the action of HDR(G) on H∗(G,R) factors through the action of H̃StR(G).

Proof. If RG has the Krull-Schmidt property on lattices one gets

Hn(G,R) = ExtnRG(R,R) = Hommod(RG)(Ω
n(R), R)

It is now clear that HStR(G) acts on H∗(G,R) and that the action of HDR(G) factors
through the action of HStR(G).

It should be noted that the question when RG has the Krull Schmidt property on lattices
is a delicate one if R is only local and not complete. We refer to [1, § 36].
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Let R be a complete discrete valuation ring of characteristic 0 with residue field of
characteristic p and let G be a finite group with cyclic p-Sylow subgroup so that the principal
block has no exceptional vertex. Lemma 3.7 enables us to prove that the action of HDR(G)
on H∗(G,R) is trivial.

In fact, Linckelmann computed StP icR(B0(RG)) for groups with cyclic p-Sylow sub-
group P . He obtained in [4, Theorem 11.4.9] and the preceding remarks that in this case
StP icR(B0(RG)) ' C2e × Aut(P )/E where E is the inertia quotient and e = |E| is the
number of simple modules. In our case, in the absence of an exceptional vertex one gets
StP icR(B0(RG)) ' C2(p−1) and this cyclic group correspond to the 2(p− 1) syzygies of the
trivial module. So, HStR(G) = {1} . We note that in [9], using a deep result of Khovanov
and Seidel [3], we prove that HDR(G) contains a braid group on e = p− 1 strings.

Moreover, Linckelmann obtained in [4, Theorem 11.4.10] for R being a complete discrete
valuation domain with residue field of characteristic 2 and A4 be the alternating group of
order 12 that StP ic(RA4) ' C∞ × PicR(RA4). Here C∞ is the group consisting of taking
syzygies, which is the image of the subgroup of TrP icR(RA4) generated by shift in degrees.
Hence, the action of HDR(A4) on H∗(A4, R) is the action of AutR(RA4) on H∗(A4, R).
Again, HDR(A4) contains a braid group on 3 strings as is shown in [12].

The above proof uses the functor TrP icR(RG) −→ StP icR(RG). The existence of this
functor needs some hypotheses on the coefficient domain R. It should be noted that it is
actually possible to compute the action of a self-equivalence on the cohomology explicitly
without passing through the stable category. The result is hence valid in a more general
context.
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