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Abstract

In this note we shall construct a finite group G which has an auto-
morphism α, which is not inner; however, the induced automorphism
on SG is inner, where S is the ring of algebraic intgers in a suitably
chosen algebraic number field. A consequence of our arguments is,
that α is inner in KG for every field K.

1 Introduction

It follows from from a result of Coleman [1] that the natural map

Φ : Out(G) −→ Out(SG)

is injective for p–groups. Here S is the ring of integers in a global or a local
number field K, in which p is not invertible. It is a question of Jackowski
and Marciniak ([4, 3.7]) whether this happens for all finite groups G and
coefficient ring ZZ = S.

However, there is not yet known an example of a finite group G, where
this map is not injective for the algebraic integers of a global field K of
characteristic 0. If one wants to construct α ∈ Aut(G) with Φ(α) inner on
SG, then

1. α must be the identity on the conjugacy classes of G,

2. α must be inner in G on the Sylow p–subgroups, combining Sylow
theorems and the result of Coleman (cf. [1] and [7, I.II § 2]).
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To construct such an α is is a purely group theoretical problem. However,
in order to show that α becomes inner on SG we have to use the following
ingredients from integral representation theory:

1. We show that α is inner on ZZG semilocally. From this one cannot
automatically conclude that α is inner on ZZG. The obstruction is an
element in the class group of ZZG. We use class field theory – this is
where K enters – to kill this obstruction.

2. The passage from the local to the semilocal situation becomes possi-
ble by interpreting automorphisms as invertible bimodules and using
Fröhlich’s exact sequence of Picard groups [3].

3. Finally we are in the local respectively complete situation. Here we use
Clifford theory 1 to show, that α acts as inner automorphism on the
inertia groups, after having applied the theorem of Noether Deuring, to
pass to a splitting field. The key point in our construction is to involve
quaternion groups in order to keep the inertia groups small.

4. Let now K be a field, then there exists a rational prime p, such that
KG ' K ⊗ZZp

ZZpG. Thus α induces an inner automorphism on KG.

2 A short review of Clifford theory

Since Clifford theory is essential to our arguments we give a brief summary
of it as developed in [7] as far as it is needed here.

1. Let N be a normal complemented subgroup of a finite group G with
(|G/N |, |N |) = 1.

2. Let, furthermore, R be a complete local Dedekind domain of character-
istic 0 with residue field k of characteristic p > 0 such that the quotient
field K of R is a splitting field for G and all of its subgroups.

3. We assume that p does not divide the order of N .

1The first author has learnt the way of using Clifford theory integrally from Leonard
Scott.
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4. We denote by I(M) the inertia group of an irreducible RN -lattice M
in G.

5. We assume that I(M) is normal in G.

6. Let α be a group automorphism of RG that becomes inner in KG.

7. Let eM be the central primitive idempotent of RN acting as the iden-
tity on M . For each t in I(M), the conjugate t · eM · t−1 is again a
central primitive idempotent of RN which acts as 1 on M , hence, eM

is centralized by I(M).

8. If α acts as the identity on N , we have α(eM) = eM .

9. If now I(M) < G, then let g1, ..., gs be a left transversal of I(M) in G
and let ei := gi · eM · g−1

i ; i = 1, ..., s be the conjugates of eM in RG.
Since the {gi} form a transversal with respect to the inertia group of M ,
the conjugates ei are pairwise orthogonal idempotents in RG. However,
∑s

i=1 ei =: e is a central idempotent in RG. Now RG · e is isomorphic
to an (s × s)-matrix ring, whose (i, j)-entry equals Bi,j := ei · RG · ej

for 1 ≤ i, j ≤ s, the usual Pierce decomposition.

10. If, furthermore, x−1 · α(x) ∈ I(M) for all x ∈ G, then

α(ei) = α(gi · eM · g−1
i ) = α(gi) · α(eM) · α(gi)

−1 = ei

For the rest of the section we assume that 1.– 10. hold.
We look at Bi,j more closely:
An element g ∈ G can be written as n·h with n ∈ N and h ∈ G/N . Then,

h = gk · t with t ∈ I(M) and a certain k. We denote by χi the character of
N afforded by ei. Using the normality of I(M) we calculate

ei · n · h · ej = χi(n) · ei · gk · t · ej

= χi(n) · gi · eM · g−1
i · gk · gj · eM · g−1

j · t.

If gk · gj 6∈ gi · I(M), which is equivalent to gk 6∈ gi · g
−1
j · I(M), again by the

normality of I(M), then the above equals 0. Hence,

Bi,i = gi · eMRI(M) · eM · g−1
i .
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More precisely, the above calculations show

ei · RG · ej = gi · eM · RI(M) · eM · g−1
j .

This allows us to describe explicitely the action of α on Bi,j:

α : gi · eM · x · eM · g−1
j −→ α(gi) · eM ·α(x) · eM ·α(g−1

j ) for x ∈ RI(M). (1)

A central2 automorphism α of RG fixes the Bi,j as set for all i, j if and
only if it is conjugation by
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with elements {ui ∈ (RI(M) · eM) ∩ U(KI(M) · eM)|i = 1, .., s}.3

If α acts as the identity on I(M) and if moreover α(gi) ∈ gi · Z(I(M)),
then it acts as identity on gi · eM · RI(M) · eM · g−1

i , and furthermore ui ∈
Z(RI(M) · eM ) for all i = 1, ..., s. Since R is local,

Outcent(RI(M) · eM) ' Outcent(Matn(RI(M) · eM)).

Consequently, there is an inner automorphism γ of Matn(RI(M) · eM) =
RG · e such that

α = γ ◦ δ

with a central automorphism δ acting via the identification

Bi,j = ei · RG · ej = gi · eM · RI(M) · eM · g−1
j

on each of the entries Bi,j. Since δ is then just conjugation by

v ∈ (RI(M) · eM) ∩ U(KI(M) · eM),

2An automorphism of a ring acting as the identity on the centre of the ring is called
central.

3Note that this can always be achieved by multiplication with a central element.
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the unit γ has to have the diagonal form analogous to that of α. Hence,
there is an element v ∈ (RI(M) · eM) ∩ U(KI(M) · eM) and elements γi ∈
U(RI(M) · eM) such that

ui = γi · v ∈ Z(RI(M) · eM).

Therefore,
ui · u

−1
j ∈ U(RI(M) · eM) for all 1 ≤ i, j ≤ s.

We summarize these observations, which we shall apply in the next sec-
tion, as

Proposition 1 With the above notation, assume that one of the elements ui

can be chosen to be a unit in RI(M) · eM , then the automorphism α is inner.

3 The construction of the group and the

automorphism

Let H be the semidirect product of the cyclic group of order 8, generated
by a, with its automorphism group C2 × C2, generated by b and c such that
b inverts a and c raises a to the third power. H has a non inner central
automorphism σ sending c to a4c and fixing b and a (cf. [4]). Let

H0 := (C8 ×(C2 × C2))×< σ > .

Factoring the centre of a quaternion group Q8 of order 8, the group Q8

generated by b and c maps onto C2 × C2, the image of b being b and that of
c being c, the natural projection is called πQ. We form the pullback

1 −→ C8 −→ H0 −→ C2 × C2× < σ > −→ 1
‖ ↑ ↑ πQ × id<σ>

1 −→ C8 −→ H −→ Q8 × C2 −→ 1.

For H we form two irreducible modules M1 and M2 such that for each
i ∈ {1, 2} the element a acts as 1 on Mi and restricted to the quaternion
group Q8 the modules Mi are the two dimensional irreducible representation
of Q8 over a finite prime field IFi of odd characteristic pi. It is well known
that there are irreducible two dimensional representations of the quaternion
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group of order 8 over every field of odd characteristic (see e.g. [2, (27.1) and
(74.11)]). We choose p1 6= p2. On M1 the element σ operates as 1 and on M2

it acts as −1. Let G be the semidirect product of M with H:

G := (M1 × M2) ×H

Since a acts trivially on M := M1×M2 the automorphism α, conjugation
by σ on H, can be extended to G as (idM , α), also denoted by α. The
extension is central since on H the elements h and α(h) are conjugate by
either a or a2 or 1. All of these elements centralize M , and therefore, α as
automorphism of G is central. In fact, for every integers i and j the elements
aibcσj and aib3cσj are centralized by aσ, the elements aicσj and aib2cσj are
centralized by a2σ and the rest of H is centralized by σ itself.

4 The automorphism is semilocally inner

We claim that α is inner in RG with a suitable semilocal ring of integers R,
containing a p1 ·p2·8-th root of unity, and neither p1 nor p2 nor 2 are invertible
in R. Note that the Noether Deuring theorem ([6]) implies that there is no
loss of generality if we assume that the quotient field of R is a splitting field
for G. This can be applied since the outer central automorphism group of
RG can be mapped into Picent(RG) (cf. [3]) by means of mapping the
automorphism φ to the invertible bimodule φRG1 where the left module
action is twisted by φ. For details see [3, Theorem 1].

Using Fröhlich’s result ([3, Theorem 6]) for semilocal domains R

Outcent(RG) '
∏

℘∈Spec(R)

Outcent(R℘G)

and interpreting α as an invertible bimodule as above it is enough to show
that α is inner for all completions of R at finite primes ℘: We extend α to a
central automorphism α℘ of R℘G and map the bimodule corresponding to α
to the finite direct product of bimodules corresponding to α℘.

For non semilocal Dedekind domains R the obstruction to globalize local
automorphisms is a certain subgroup of the class group of the centre of the
group ring. In fact, denoting by Cl(centre(Λ)) the locally free class group of
the order Λ, the sequence
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1 −→ Cl(centre(RG)) −→ Picent(RG) −→
∏

℘∈Spec(R)

Picent(R℘G) −→ 1

Using class field theory (cf. [5, Satz 7]) this implies that there exists a
ring of algebraic integers S in an algebraic number field L, L being finite
over the quotient field of R, such that α becomes inner as an automorphism
of SG.

4.1 The crucial calculation

We now come to the central point in the proof:
We shall show in the next subsection that the following three groups will

occur as inertia groups at various primes ℘:

1. I1 :=< M, a, σ > is normal in G.

2. I2 :=< M, a, σ · b2 > is normal in G.

3. I3 :=< M, a >= I1 ∩ I2.

We take this as guaranteed for the moment. At the prime ℘ the group
ring has a ring direct factor of the form (gi · eM · R℘I · eM · g−1

j )1≤i,j≤s with
I ∈ {I1, I2, I3}. Recall that ei = gieM for gi ∈ Hk and Hk suitably chosen
according to the inertia groups Ik.

We now consider the three cases I1 , I2 and I3.
In case I = I1 we can choose the transversal

H1 := {1, b, b2, b3, c, cb, cb2, cb3} = H0
1

·

∪ c · H0
1 .

In case I = I2 we can choose the transversal

H2 := {1, b, b2, b3, c, cb, cb2, cb3} = H0
2

·

∪ c · H0
2 .

In case I = I3 we can choose the transversal

H3 := {1, b, b2, b3, σ, bσ, b2σ, b3σ, c, cb, cb2, cb3, cσ, cbσ, cb2σ, cb3σ} = H0
3

·

∪ c·H0
3 .
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We have seen that

ei · R℘G · ej = gi · eM · R℘I · eM · g−1
j

Thus, by Equation (1), in case I = I1 and in case I = I2 the action of α
on (ei · R℘G · ej)1≤i,j≤s is multiplication by a4 if 4 ≤ |i − j| and the identity
otherwise, hence, conjugation by the matrix

(

14×4 0
0 a4 · 14×4

)

.

Here we denote by 1m×m the m by m unit matrix. Therefore, α acts as inner
automorphism on the ring direct factor corresponding to eM .

In case I = I3 a similar observation yields that α acts as conjugation by
(

18×8 0
0 a4 · 18×8

)

Hence, by Proposition 1, α acts as inner automorphism on the ring direct
factor corresponding to eM as well.4

4.2 Determination of the inertia groups

We choose a prime ℘ ∈ Spec(R) and discuss various cases for ℘.
Case 1: 2 ∈ ℘.

Then the group ring decomposes as

R℘G = IR℘
(M)G

∏

R℘H.

On R℘H the automorphism α is conjugation by σ . For IR℘
(M)G we apply

Clifford theory. Let χ be an irreducible nontrivial character of M as abelian
groups (the quotient field of R is a splitting field for M) with kernel K ⊆
M1 × M2.

For χ there are three cases which have to be considered separately:

1. If M2 ⊂ K then the inertia group Iχ contains M , σ and a. If h ∈ H
lies in Iχ we observe that the sequence

1 −→< a, σ >−→ H −→ Q8 −→ 1

4Note how sensitive this construction is with respect to the group G.
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splits. Hence, we may assume that h ∈ Q8, but there are fixed points
on neither M1 nor M2, a contradiction. Thus

Iχ =< M, a, σ >= I1,

and α is seen to be inner.

2. M1 ⊂ K then obviously Iχ ⊇< M, a, b2 · σ >. Similar arguments show
that

Iχ =< M, a, b2 · σ >= I2.

Now, here α is also inner.

3. If neither M1 nor M2 belongs completely to K the inertia group

Iχ =< M, a >= I3

is the intersection of the two inertia groups of the previous cases since
M = M1 × M2 and (℘, |M |) = 1. Again we see that α acts as inner
automorphism on the factor corresponding to that character of N .

Our automorphism now acts as inner automorphism on each of the factors
and α℘ is inner in R℘G provided 2 ∈ ℘.

Case 2: p1 ∈ ℘.
Then the group ring decomposes to

R℘G = IR℘
(M2)G

∏

R℘G/M2.

On the second factor the automorphism α is conjugation by σ and for the
first factor we take an irreducible non trivial character χ of M2. Then the
inertia group is

Iχ =< M, a, b2 · σ >= I2

as before. As above, α℘ is inner.
Case 3: p2 ∈ ℘.

Then the group ring decomposes to

R℘G = IR℘
(M1)G

∏

R℘G/M1.
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On the second factor the automorphism α is conjugation by b2 ·σ and for the
first factor we take an irreducible non trivial character χ of M1. Then the
inertia group is

Iχ =< M, a, σ >= I1

as before. Again, as above, Clifford theory tells us that α℘ is inner.
Case 4: |G|R℘ = R℘

Then the group ring R℘G is separable and every central automorphism is
inner.

We have shown that α is an inner automorphism of RG.

Now we show that α is not inner as group automorphism. On G/M the
automorphism is conjugation by σ. The conjugating elements on G/M are,
therefore, contained in σ· < a4, b2 >. Since a4 is central in G, we may assume
that the conjugating element maps onto an element in σ· < b2 >. Therefore,
the conjugating element in G is m · b2j · σ for some m ∈ M and j ∈ ZZ. But
on M1 this operates trivial if and only if j is even and on M2 it operates
trivial if and only if j is odd. Thus it cannot exist and α is not inner in G.5

Now, the invertible bimodule 6
α(RG)1 is isomorphic to 1(RG)1, and

therefore, by [6], we have α(ZZπG)1 ' 1(ZZπG)1 with π being any finite set
of primes.

Proposition 2 For the group G of order 27 ·p2
1 ·p

2
2 as above the natural map

Outcent(G) −→ Outcent(ZZπG)

is not injective. For p1 = 5, p2 = 3 the group G has generators and relations7

G =< a, b, c, σ, x1, x2, y1, y2 > subject to the relations {a8 = 1, b4 = 1, c4 =
1, (bc)2 = b2 = c2, (σ, a) = 1, (σ, b) = 1, σc = a4c, ba = a7, ca = a3, x5

1 =
1, x5

2 = 1, y3
1 = 1, y3

2 = 1, (a, x1) = 1, (a, x2) = 1, (a, y1) = 1, (a, y2) =
1, (σ, x1) = 1, (σ, x2) = 1, σy1 = y−1

1 , σy2 = y−1
2 , bx1 = x2,

bx2 = x−1
1 , cx1 =

x2
1,

cx2 = x3
2,

by1 = y2,
b y2 = y2

1,
cy1 = y2

1 · y2,
cy2 = y1 · y2, (x1, x2), (y1, y2),

(x1, y1), (x2, y2)}

5These arguments are also checked by GAP.
6We adopt the notation of [3]
7The commutator of g and h is denoted by (g, h)
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Remark 1 J. Krempa proved that there can at most be an elementary
abelian two group in the kernel of the group homomorphism from Outcent(G)
to Outcent(ZZG) (cf. [4, 3.2 Theorem]).

Claim 1 Outcent(G) is of order 2.

Proof. Let β be a central automorphism of G. The Schur-Zassenhaus
theorem assures that we may vary β by conjugation with an element in M
such that H :=< a, b, c, σ > is fixed under β. Therefore, we assume that β
itself fixes H and we may calculate in H modulo M .

Let β be a central automorphism of H. Since the conjugacy class of
a consists of the elements {a, a3, a5, a7} the normal subgroup A :=< a >
of G is fixed under β. Since β is central and elements are conjugate to
their image we may assume that β(b) = b (if not we modify β by an
inner automorphism). The conjugacy class of c consists of the elements
{c, a2c, a4c, a6c, c3, a2c3, a4c3, a6c3}. If we vary by conjugation by σ and (or)
b, centralizing b, we may assume that β(c) ∈ {c, a2c}. The conjugacy class of
bc is equal to {bc, a4bc}, and therefore, c cannot be mapped to a2c under β if
b is fixed. We may assume that b and c are fixed. The conjugacy class of σ
is equal to {σ, a4σ}. The conjugacy class of aσ is equal to {aσ, a7σ}. There-
fore, from β(a) ∈ {a3, a5} it follows β(σ) = a4σ and from β(a) ∈ {a, a7} we
conclude β(σ) = σ.

We, have only 4 candidates left: These are generated by the two automor-
phisms of order 2: λ1 and λ2 with λ1(a) = a7 and the rest of the generators
stay fixed and λ2(a) = a3, λ2(σ) = a4σ and the rest of the generators stay
fixed. The conjugacy class of abc is equal to {abc, a5bc, a7b3c, a3b3c}. Hence,
neither λ1 nor λ2 are central automorphisms.

For the automorphism λ1 ·λ2 we look at the conjugacy class of ay2 which
has length 8. An automorphism has to map y2 to either y2 or to y−1

2 since the
H–modules λ1λ2M and M are equal and an automorphism extending λ1λ2

differs on M from the identity by an automorphism of M which preserves the
orbits of H on M . But all of the elements in bc · CH(a) moves y2 to neither
y2 nor to y−1

2 . We see that also λ1λ2 cannot be central 8.
Assuming β to be the identity on G/M the automorphism is a module

endomorphism of M as G/M -module. The endomorphism ring, however, is
the prime field on each of M1 and M2 and only the element −1 is realizable by

8These statements are also checked by GAP.
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the operation of a group element. It may hence be realized by the operation of
elements in the subgroup < b2, σ > which causes to be α modulo conjugation
by b2.

We conclude: Up to inner automorphisms of G there is only one non
trivial central automorphism of G inducing the identity on H.

Acknowledgement: We would like to thank the referee for pointing out
a gap in the proof in an earlier version of the paper.
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