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STRUCTURE OF BLOCKS WITH CYCLIC DEFECT GROUP

AND GREEN CORRESPONDENCE

ALEXANDER ZIMMERMANN

1. Introduction

This paper is a based on a course I gave at the Ovidius university of Constanta on
”Structure of blocks with cyclic defect group and Green correspondence”. However,
I added many details to the script of the course I have given there. We shall divide
the material into three parts.

• In the first part we will present a new way due to Auslander and Kleiner [1]
to get a form of Green correspondence. The classical Green correspondence
follows easily from that and this more general point of view might have some
impact to other fields of interest. The classical Green correspondence will be
used in the following sections with good success.

• In the second part we shall present the classical and very beautifully written
paper of Green [5]. Here, the Green correspondence in its classical form is used
intensively. We just cite from the classical paper of Dade the fundamental
properties of blocks with cyclic defect group. We also give results of Michler
[13, 14] on the structure of blocks with cyclic defect groups.

• The third part deals with K. W. Roggenkamp’s paper [16] on Green orders
in which he firstly defined Green orders, secondly used the results of Green
to prove that a block with cyclic defect group is a Green order, and thirdly
determines the structure of a Green order in great detail. As far as is known
to the author, this is the most far reaching result on the structure of blocks
with cyclic defect group. For the proof we follow [16].

The reader is assumed to know very basic facts on categories, not much more
than the definition of a category, functors and natural transformations. A good
reference is [15, 12]. Also the basic notions in noetherian ring theory are assumed
such as the notion of a radical of a ring and a module, a socle and a top. As a good
reference we give here [7]. Furthermore, some very basic algebraic number theory
is assumed such as the basic definitions of a Dedekind domain and the ramification
index for local fields. Certainly [6] covers more than what is enough as reference.
Besides the deep theory of Dade, all proofs are included. In this sense the paper is
self–contained.

The course, I gave in Constanta is contained, for the part dealing with the Green
correspondence in the Sections 2.1, 2.2, 2.3, 2.4.1, 2.4.2 and the beginning parts
of 2.4.4. The reader who is only interested in the classical Green correspondence
is adviced to read only Sections 2.1, 2.3 and 2.4.1. Of course, the proof is given,
as is done in [1], in the abstract terms. The nicest part of the abstract Green
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2 ALEXANDER ZIMMERMANN

correspondence is collected in the Section 2.4.2 and 2.4.3. For the classical theory
on blocks with cyclic defect groups, the material presented in Constanta is located in
the Sections 3.1, 3.2 and 3.3. Section 3.4 and 3.5 are devoted to prove Green’s walk
around the Brauer tree, in the way as Green did. For Roggenkamp’s description
of blocks with cyclic defect groups the parts which were presented in Constanta
are located in Section 4.1 and 4.2. The rest of the sections contain mainly proofs,
which especially in Section 2 are uncomfortly technical, and which are not needed
for the understanding of the other parts.

Acknowledgement. I want to thank the organizers of the “Workshop and Meeting on
the Theory of Groups, Algebras and Orders” for having given me the opportunity
to give this series of lectures. I also want to thank the Équipe des Groupes Finis de
l’Univérsité de Paris 7 for their hospitality during the time this paper is written.
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2. Green correspondence

2.1. Motivation. Let G be a finite group and let R be a complete discrete valu-
ation ring of characteristic 0 with residue field k of characteristic p. A large part
of modular representation theory of finite groups deals with trying to relate the
representation theory of G to the representation theory of the ”p–local structure“
of G. The first and perhaps most elementary attempt to do so is the Green corre-
spondence.

By RF −mod
◦

we denote for any finite group F the stable module category. The

objects of RFmod
◦

are the same as those of RG−mod◦, namely finitely generatedR–
projective RF−modules, called in the sequel RF−lattices. To define the morphism
set we have to put an equivalence relation onto the morphism sets of RF −mod◦.
Let M and N be two RF–lattices. Two morphisms f, g ∈ HomRF (M,N) are called
equivalent, f ∼= g, if and only if f − g factors through a projective RF–module.
Then,

HomRF−mod
◦(M,N) =: HomRF (M,N) := HomRF (M,N)/∼=.

Theorem 2.1. (Green) Let D be a Sylow p−subgroup of G and let H := NG(D) be
the normalizer of D in G. Assume that for all g ∈ G \H we get gDg−1 ∩D = {1}.
Then, induction

indG
H := RG⊗RH − : RH −mod

◦
−→ RG−mod

◦

and restriction

resG
H : RG−mod

◦
−→ RH −mod

◦

are mutually inverse equivalences of categories. These equivalences of categories
preserve the indecomposability of modules. More precisely, for every indecompos-
able non projective RG–module M there is an indecomposable non projective RH–
module f(M) such that f(M)|resG

H (M) and M/f(M) is a projective RH–module.
For every indecomposable non projective RH–module N there is an indecomposable
non projective RG–module g(N) such that g(N)|indG

H(N) and (indG
HN)/g(N) is a

projective RG–module.

Remark 2.2. • The situation described by the hypotheses of Theorem 2.1 is
commonly known and will be referred to as the TI–situation. Here TI stands
for ’trivial intersection’.

• One should note that even the classical Green correspondence is much more
general than expressed here. The theorem above is just a very special case
where the correspondence appears in the most illustrative way.

This theorem is a very special case of a much more general statement which
was proven by M. Auslander and M. Kleiner in [1]. They give a categorical and
much more general approach to the theory of J. A. Green [4] which establishes an
equivalence between certain quotient categories of finitely generated RG–modules
and finitely generated RH–modules where H is a subgroup of G containing the
normalizer in G of a certain p–subgroup D of G. The theorem above is the case for
which the categorical equivalence of Green is most easily formulated.

2.2. Adjoint functors. The method of Auslander and Kleiner intensively use ad-
joint functors. We shall give a very brief account on what this is about.



4 ALEXANDER ZIMMERMANN

We assume the reader to be familiar with the notion of a category, functors and
of natural transformations between functors. As basic reference one might see [15]
or [12].

Definition 2.3. Let A and B be two categories and let F : A −→ B and G : B −→
A be two functors. The category of sets is called E\∫ .

If there is an equivalence

B(F−,−) ' A(−, G−)

of bifunctors
A×B −→ E\∫

then the functor F is said to be left adjoint to the functor G and the functor G is
said to be right adjoint to F . The pair (F,G) is said to be an adjoint pair.

Let (F,G) be an adjoint pair. By the defining relation we get an isomorphism
of bifunctors

η′ : B(F−, F−) ' A(−, GF−)

and hence we get a natural transformation

η : 1A −→ GF

by just putting η(A) := η′(idFA). The natural transformation η is called the unit
of the adjointness. Of course, it depends not only on the two functors F and G but
also on the choice of the isomorphisms in the defining relation.

We give an example. Let R be a commutative ring and let G be a finite group with
subgroupH . We denote by ι : RH −→ RG the canonical embedding. Since an RG–
module M is nothing else than a R–module M together with a ring homomorphism
RG −→ EndR(M), one defines the restriction resG

H(M) just as RH −→ RG −→
EndR(M). The corresponding mapping is denoted by ι∗. One should observe that
this amounts to saying that the RH–module structure of resG

H(M) is just M as
R–module and now only H operates on M in the same way as G does.

One defines functors

indG
H := RG⊗RH − : RH −mod −→ RG−mod

and
resG

H := ι∗ : RG−mod −→ RH −mod

We claim that (indG
H , res

G
H) is an adjoint pair. This fact is commonly known as

Frobenius reciprocity.
We have to give for all RG–modules M and for all RH–modules N natural

isomorphisms

HomRG(indG
H(N),M) ' HomRH(N, resG

H (M)).

We define

HomRG(indG
H(N),M) ' HomRH(N, resG

H (M))

φ
Φ
−→ (n −→ φ(1⊗ n)) ∀n ∈ N

(g ⊗ n −→ g · ψ(n))
Ψ
←− ψ ∀n ∈ N, g ∈ G

and observe that the second mapping is well defined since ψ is RH–linear.
Now, one immediately checks that ΦΨ(ψ) = ψ and ΨΦ(φ) = φ for all φ ∈
HomRG(indG

H(N),M) and ψ ∈ HomRH(N, resG
H (M)). For the functoriality of Φ
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and Ψ we observe that for a homomorphism α : N −→ N ′ and for a homomorphism
β : M −→M ′ we get

β([Φ(φ)](α(n))) = [β ◦ φ](1⊗ α(n))

= [Φ(β ◦ φ ◦ (idRG ⊗ α))](n)

and

β[Ψ(ψ)](g ⊗ α(n)) = β(g · (ψ ◦ α)(n))

= (g · [β ◦ ψ ◦ α](n))

= [Ψ(β ◦ ψ ◦ α))](n) .

This proves the functoriality.

2.3. Some more background from modular representation theory. Though
we do not need to know of modular representation theory for formulating and prov-
ing the Green correspondence for adjoint functors we shall give some background
to see what the Green correspondence is about and to be able to give examples.

In this subsection we shall use the following notation.

• R is a commutative Noetherian ring.
• G is a finite group.
• For any subgroup S of G we set mod(G,S) := mod(RG,S) the full1, additive

subcategory of RG−mod whose objects are finitely generated RG−modules
M for which there is an RS–module L such that M is a direct summand of
RG⊗RS L.

With these notations we state the following results which also provide a brief
introduction into some of the elementary techniques in modular representation the-
ory.

1. We claim that choosing R a local complete discrete valuation ring of charac-
teristic 0 with pR 6= R or a field of characteristic p, for a prime number p,
and choosing D a Sylow p−subgroup of G, mod(G,D) = RG−mod.

Proof. Given M ∈ mod(G,D). Then, the mapping

RG⊗RD M −→ M

g ⊗m −→ gm

is split by

M −→ RG⊗RD M

m −→
1

|G : D|

∑

Dh∈D\G

h−1 ⊗ hm

The last is clearly well defined and is a G–linear map since

g ·
∑

Dh∈D\G

h−1 ⊗ hm =
∑

Dh∈D\G

(hg−1)−1 ⊗ (hg−1)gm

and to run over a coset {h} is the same as to run over the coset {hg−1} =
{h}g−1.

Given a finitely generated RG module M we call a D which is of minimal
order amongst all the subgroups D′ with M ∈ mod(G,D′) the vertex of M .

1A functor F : C′ −→ C is full, if it is surjective on the morphism sets.
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2. (D. Higman) Let M be a finitely generated RG–module and let S be a sub-
group of G. We claim that M is a direct summand of indG

S (L) for some
finitely generated RS–module L if and only if M is a direct summand of
indG

S res
G
S (M).

Proof. Clearly, if M |indG
Hres

G
S (M), then there is the RS–module L =

resG
HM such that M |indG

S (L).
Conversely, let L be a finitely generated RS−module such that M |indG

SL.
Then, by Mackey’s formula,

indG
S res

G
SM = indG

S res
G
S ind

G
SL

= indG
S (

⊕

HgH∈H\G/H

indH
H∩ gHres

H
H∩ gH

gL)

= indG
HL⊕ others

= M ⊕ others

How unique the vertices are is the subject of the following item.
3. We assume now that R is a complete discrete valuation ring of characteristic

0 with pR 6= R for a prime number p or a field of characteristic p. Given an
indecomposable RG−module M we claim that vertices of M are conjugate to
each other.

Proof. M |indG
DV and M |indG

D′W with V ∈ Ob(RD − mod) and W ∈
Ob(RD′ − mod), D and D′ being both vertices of M . But, using Mackey’s
formula,

resG
D′ indG

DV =
⊕

DgD′

indD′

gD∩D′res
gD
gD∩D′

gV

and

resG
D′ indG

D′W =
⊕

D′hD′

indD′

hD∩D′res
hD
hD′∩D′

hW = W ⊕ others .

resG
D′M is a direct summand of both modules. Direct summands X in the

above equation have vertices smaller than D′ or are isomorphic to W . If
X |resG

D′M for X 6' W then M |indG
D′′ for some smaller subgroup D′′ of D′

and we reach a contradiction. Hence there must be some g0 with

W |indD′

g0D∩D′res
g0D
g0D∩D′

g0V

Hence, M |indG
g0D∩D′res

g0D
g0D∩D′

g0V and by the minimality of D, we get g0D∩
D′ = D′.

4. An indecomposable ring direct factor B of RG is called a block of RG. Of
course, then B is an R(G×G)–module by putting (g, h) ·m = gmh−1 where
(g, h) ∈ G×G and m ∈ B.

We claim that there is always a vertex of B in {(g, g) ∈ G ×G|g ∈ G} =:
∆(G).

Proof. We view R(G×G) as RG–right–module by letting G act as ∆(G).

R(G×G)⊗R∆(G) R −→ RG

((g, h)⊗ r) −→ grh−1 = rgh−1
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for r ∈ R, (g, h) ∈ G×G, is split by

R(G×G)⊗R∆(G) R ←− RG

(
∑

g∈G

rg(g, 1))⊗ 1 ←−
∑

g∈G

rgg

The splitting is a module homomorphism as one immediately verifies using
that we tensor over R∆(G).

The vertex of a block as R(G ×G)–module is called a defect group of the
block.

We assume now that R is a complete discrete valuation ring of characteristic
0 with pR 6= R for a prime number p or a field of characteristic p, then the
defect groups D are p-groups and the integer logp(|D|) is called the defect of
the block.

5. Now we assume again that R is a complete discrete valuation ring of char-
acteristic 0 with pR 6= R for a prime number p or a field of characteristic
p. If B is a block of G with defect group D and if M is an indecomposable
B–module, then there is a vertex of M contained in D.

Proof2. Since B has defect group D, by 3. we see that

B|[R(G×G)⊗R∆(D) B].

Hence,

M = B ⊗RG M |R(G×G)⊗R∆(D) B ⊗RG M

= RG⊗RD M

With these preparations we shall illustrate the Green correspondence in the
situation of Theorem 2.1.

Example. We fix a prime number p and set G := SL2(p) the group of 2 by 2
matrices over the prime field of characteristic p with determinant 1.

We look at the modular representations of G over k being the prime field of
characteristic p.3

We set GL2(p) the group of invertible 2 by 2 matrices over the prime field of
characteristic p. Then we get an exact sequence

1 −→ SL2(p) −→ GL2(p)
det
−→ k∗ −→ 1.

Now, k∗ has order p− 1 and GL2(p) has order (p2− 1) · (p2− p) since an invertible
matrix is determined by its action on the 2-dimensional natural module and the
first basis vector can be mapped to all of k2 besides the zero element, the second
basis vector can be mapped to k2 besides the one dimensional space which is already
spanned by the image of the first basis vector.

Hence, |SL2(p)| = (p− 1) · p · (p+ 1).
The Sylow p–subgroup of G is hence cyclic of order p. In fact, it is easy to find

one explicitly:

D := {

(
1 y
0 1

)
|y ∈ k}

2This proof was pointed out to me by M.Linckelmann.
3This characteristic is commonly called the describing characteristic and in the theory of

algebraic groups the describing characteristic always provides a hughe framework of techniques
coming from algebraic geometry.
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The normalizer H of D in G is

H := {

(
x y
0 x−1

)
|x ∈ k∗ ; y ∈ k}

We shall illustrate the Green correspondence on the (natural) module

M =

(
k

k

)

on which G acts by matrix multiplication.
Clearly, M is indecomposable. By Theorem 2.1 we know that resG

H(M) '
f(M)⊕ PH where PH is a projective RH–module.

Claim 2.4. Let P be a p–group and let R be a complete discrete valuation ring
of characteristic 0 with residue field of characteristic p. Then, RP is a local ring.
Every projective RP–module is free.

Proof. We have to show that R/radR is the only simple RP–module. We proceed
by induction on |P |.

The statement is true for the group with 1 element.
Let P be arbitrary. Let 1 6= c be a central element of P of order p, which exists by

the cojugacy class number formula, just counting the size of the conjugacy classes
and observing that their order equals the index of the stabilizer of an element
which is a subgroup, and let V be a simple RP–module. Then, since c is central,
V1 := (c − 1) · V is also an RP–module. If V1 = 0, then V is an indecomposable
R(P/ < c >) module and V is isomorphic to R/radR by the induction hypothesis.
Else, V1 = V by the simplicity of V . Hence,

V = (c− 1) · V = (c− 1)2 · V = · · · = (c− 1)p · V = (cp − 1) · V = 0.

We reached a contradiction.

The above claim shows that a projective kG–module has k–rank at least order of
a Sylow p–subgroup. In fact, the restriction of a projective RG–module to a Sylow
p–subgroup is again projective, hence free.

This argument (or by elementary computations) shows, that the 2–dimensional
kH–module resG

H(M) is indecomposable.
Conversely, let N be the natural two dimensional kH–module. Then, N =

resG
H(M). We look for its Green correspondent in kG. As is done above,

indG
HN = indG

Hres
G
HM −→ M

g ⊗m −→ gm

is split and M |indG
HN . Hence, the Green correspondent of N in kG is M = g(N).

But, since the index of H in G is p + 1, dimk(indG
HN) = 2 · (p + 1) and

dimk(indG
H(N)/M) = 2p and indG

H(N)/M is a projective module of dimension
2p. Observe that this matches our observation in Claim 2.4.

2.4. The Green correspondence for adjoint pairs of functors. We shall
follow the paper [1].
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All categories we deal with are assumed to be additive 4. We start with three
(additive) categories D, H and G and functors

D
S′

−→ H
S
−→ G

as well as

D
T ′

←− H
T
←− G

where (S, T ) and (S′, T ′) will form adjoint pairs.
In our later application to group theory these categories and functors will be

specialized as follows.
Let k be a field of characteristic p ≥ 0, let G be a finite group, and assume for

simplicity that kG is indecomposable as ring, let D be the Sylow p–subgroup of G,
let H be a group with D ≤ H ≤ G. The results we get become non trivial only if
we assume that in this example H ≥ NG(D) := {g ∈ G|gD = Dg}. One should
think of

D = kD −mod,H = kH −mod,G = kG−mod

and

S′ = kH ⊗kD −; S = kG⊗kH −;

T = resG
H (−); T ′ := resH

D(−)

where resG
H and resH

D are the restriction functors of kG−modules to kH–modules or
of kH–modules to kD–modules respectively, and the adjointness is just Frobenius
reciprocity as explained earlier in Subsection 2.2.

For technical reasons in later applications we fix isomorphisms, natural in both
variables,

α(N,M) : G(SN,M) −→ H(N,TM); ∀N ∈ Ob(H),M ∈ Ob(G)

and

γ(L,N) : H(S′L,N) −→ D(L, T ′N); ∀N ∈ Ob(H), L ∈ Ob(D) .

Throughout Section 2.4 we assume that

TS = 1H ⊕ U

for an endofunctor U of H and that the induced natural transformation

ηI : 1H
η
−→ TS = 1H ⊕ U

proj
−→ 1H

is an isomorphism.

Notation 1. • All subcategories in Section 2.4 are meant to be full and addi-
tive. If A and B are full subcategories of the category C, then we say that A
divides B if for all M ∈ Ob(A) there is a X ∈ Ob(B) such that M |X, i.e. M
is a direct summand of X. If Ob(A) has only one element M , then we also
say that M divides B. We use the notation A|B.

4We remind the reader that a category is called additive if it has a zero object, there are
finite products and coproducts, finite products over a set of objects and finite coproducts over
this set are isomorphic by the natural map, and for every object A there is an endomorphism

sA of A such that, denoting by ∆A the diagonal mapping and by ∇A the codiagonal mapping,
∆A(1A ⊕sA)∇A = 0. In additive categories the set of morphisms carries a structure of an abelian
group by setting f + g = ∆A(f ⊕ g)∇B for f, g ∈ Mor(A,B)
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• Let C′ be a subcategory of the category C. We denote by C/C ′ the category
whose objects are the same as those of C and the morphisms are equivalence
classes of morphisms of C. Two morphisms are said to be equivalent if their
difference factors through an object of C ′.

• Let E and F be categories and let U : E −→ F be a functor. For any sub-
category Y of F let U−1(Y) be the full additive subcategory of E generated by
objects M ∈ Ob(E) with U(M)|Y.

2.4.1. The theorem in group theoretical terms. We shall give the Green correspon-
dence in the classical situation, before we turn to the more abstract setting.

Theorem 2.5. (Green) Let G be a finite group and let R be a complete discrete
valuation ring of characteristic 0 with residue field of characteristic p > 0 or let R
be a field of characteristic p. Let D be a p-subgroup of G and let H ≥ NG(D). Set

X := {X ≤ D ∩ gDg−1|g ∈ G \H}

Y := {Y ≤ H ∩ gDg−1|g ∈ G \H}

Z := {Z ≤ D}

Set mod(G,F) the category of finitely generated RG−modules with vertex in F for
F ∈ {X ,Y ,Z}.

Then,

indG
H : mod(H,Z)/mod(H,X ) −→ mod(G,Z)/mod(G,X )

is an equivalence of categories and

resG
H : mod(G,Z)/mod(G,X ) −→ mod(H,Z)/mod(H,Y)

is an equivalence of categories.
For every indecomposable object M in mod(H,Z) \mod(H,X ) there is an inde-

composable object g(M) in mod(G,Z) \mod(G,X ) which is a direct summand of
indG

H(M).
For every indecomposable object N in mod(G,Z) \mod(G,X ) there is an inde-

composable object f(N) in mod(H,Z) \mod(H,Y) which is a direct summand of
resG

H(N).

We shall prove the theorem in the sequel.

2.4.2. The general situation. We are ready to state the most important theorem of
this subsection. The remaining part deals with the particular situation of Krull–
Schmidt categories. But even without this assumptions we are able to prove an
equivalence of certain quotient categories. In the next subsection we shall explain
how one can derive the usual Green correspondence from this rather abstract set-
ting.

Theorem 2.6. [1](Green correspondence for adjoint functors) Let there be three
additive categories D, H and G and functors

D
S′

−→ H
S
−→ G

as well as

D
T ′

←− H
T
←− G
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where (S, T ) and (S′, T ′) will form adjoint pairs. Assume that TS = 1H ⊕ U and
that for the unit η : 1H −→ TS we get ηI := η · proj1 is an isomorphism. Let Y be
a full, additive subcategory of H such that

S′T ′Y|Y and S′T ′Y|U−1Y .

Then,

1. S, T induce functors

S : H/S′T ′Y −→ G/SS′T ′Y

T : G/SS′T ′Y −→ H/Y

2. For Z := (US′)−1Y, the restrictions of the functors S and T

S : (addS′Z)/S′T ′Y −→ (addSS′Z)/SS′T ′Y

T : (addSS′Z)/SS′T ′Y −→ (addS′Z)/Y

are equivalences of categories and

TS : (addS′Z)/S′T ′Y −→ (addS′Z)/Y

is isomorphic to the functor induced by the identity functor.

Before we prove Theorem 2.6 we shall see what this says for the group theoretical
situation.

The question if the assumptions of the theorem are satisfied in the group the-
oretical situation will cover subsection 2.4.5 and we postpone this question until
then.

Again let R be a complete discrete valuation ring of characteristic 0 with residue
field k of characteristic p > 0 or let R be a field of characteristic p. Let G be a
finite group and let D be a p− subgroup of G. Let H be a subgroup of G with
D ≤ NG(D) ≤ H ≤ G. We set

G := RG−mod0,H := RH −mod0,D := RD −mod0

and
S = indG

H , S
′ = indH

D , T = resG
H , T

′ = resH
D .

Furthermore, we set

S := {V ≤ G| ∃ g ∈ G \H : V ≤ g ·D · g−1 ∩H}

and let Y be the full additive subcategory of RH −mod0 whose objects are finite
direct sums of indecomposable finitely generated RH–lattices which have vertex in
S.

We compute S′T ′Y . Let V ∈ S and L ∈ Ob(RV −mod0). A generating object
of S′T ′Y is of the form

indH
Dres

H
D ind

H
V L = indH

D(
⊕

V hD∈V \H/D

indD
hV ∩Dres

hV
hV ∩D

hL)

=
⊕

V hD∈V \H/D

indH
hV ∩Dres

hV
hV ∩D

hL

If we now set

X := {V ≤ D| ∃ g ∈ G \H : V ≤ g ·D · g−1 ∩D}

we observe that the above generating modules are direct sums of modules which
have vertices in X . We set U the full additive subcategory of RH −mod0 whose
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objects are finite direct sums of indecomposable finitely generated RH–lattices
which have vertex in X . Clearly, H/(S ′T ′Y) = H/U since if a morphism factors
through a direct summand it also factors through the whole direct sum.

In a similar vein, with somewhat more effort but still simply using Mackey’s
formula one proves that Z is the full additive subcategory of RH − mod0 whose
indecomposable objects are modules with vertex being a subgroup of D.

2.4.3. The proof. The proof of Theorem 2.6 will proceed in several steps. This
will cover this subsubsection. The next subsubsection will deal with the special
situation when we are given a Krull–Schmidt category.

The proof of Theorem 2.6 relies mainly on the following observation.

Proposition 2.7. Let Y ′ be a subcategory of H and let X ′ be a subcategory of G
such that SY ′|X ′ and TX ′|Y ′. Then, S, T extend naturally to functors between
H/Y ′ and G/X ′ and (S, T ) form again an adjoint pair as functors between these
quotient categories. The adjointness homomorphism α for the adjoint pair (S, T )
of functors between H and G induces an adjointness homomorphism for the adjoint
pair (S, T ) of functors between H/Y ′ and G/X ′.

Proof. First we prove that S extends to the quotient categories. Let there be
given two objects M and N in H and a morphism f ∈ H(M,N) which factors
through an object Y of Y ′. Then, there are f1 ∈ H(M,Y ) and f2 ∈ H(Y,N) such
that f = f1f2. Therefore, Sf = (Sf1)(Sf2) and Sf factors through SY . But,
SY ′|X ′ and therefore, there is an X ∈ Ob(X ′) such that SY |X . Hence, Sf factors
through an object in X ′.

The argument that T extends to the quotient categories is absolutely analogous.
We show that for any N ∈ Ob(H),M ∈ Ob(G) the mapping α(N,M) :

G/X ′(SN,M) −→ H/Y ′(N,TM) is an isomorphism. Let f : N −→ TM be
a morphism factoring through Y ∈ Y . Then, there are f1 ∈ H(M,Y ) and
f2 ∈ H(Y,N) such that f = f1f2. Now, α−1(f) = α−1(f1)α

−1(f2) with
Sf1 = α−1(f1) ∈ G(SN, SY ) and α−1(f2) ∈ G(SY,M). However, SY |X for an
object X ∈ X ′. Hence, α−1(f) factors through an object of X ′. Therefore, α−1

is defined over the quotient categories. Analogously, also α is defined over the
quotient categories. It is clear that then α(N,M) is a natural isomorphism.

This proves the proposition.

Corollary 2.8. Let Y be a subcategory of H.
If S′T ′Y|Y, then

1. (S′, T ′) is an adjoint pair as functors between H/Y and D/T ′Y. The isomor-
phisms γ induce adjunctions also in the quotient categories.

2. (S′, T ′) is an adjoint pair as functors between H/S ′T ′Y and D/T ′Y. The
isomorphisms γ induce adjunctions also in the quotient categories.

3. The functor 1H induces a functor 1H : H/S′T ′Y −→ H/Y and gives rise to
an isomorphisms of bifunctors (H/S ′T ′Y)(S′−,−) ' (H/Y)(S′−,−)

If T ′TSS′T ′Y|T ′Y, then

4. (SS′, T ′T ) is an adjoint pair between the categories G/SS ′T ′Y and D/T ′Y
with adjunction induced by γα.

5. If moreover S′T ′Y|Y, then the inverse of α induce isomorphisms functorial
in both variables L ∈ Ob(D), M ∈ Ob(G),

H/S′T ′Y(S′L, TM) −→ G/SS′T ′Y(SS′L,M).
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Proof:
Part 1. follows from Proposition 2.7 by just setting X ′ := T ′Y and Y ′ := Y .
Part 2. Set X ′ := S′T ′Y and Y ′ := T ′Y . Then, S′T ′Y|Y =⇒ T ′S′(T ′Y)|(T ′Y)

and Proposition 2.7 applies.
Part 3. We apply first 2. and then 1. to get the isomorphisms

H/S′T ′Y(S′−,−)
γ(−,−)

−̃→ D/T ′Y(−, T ′−)
γ−1(−,−)

−̃→ H/Y(S′−,−)

Part 4. This is just an application of Proposition 2.7 with X ′ := SS′T ′Y and
Y ′ := T ′Y and as functors one takes just T ′T .

Part 5. We have

G/SS′T ′Y(SS′−,−)
γα(−,−)

−̃→ D/T ′Y(−, T ′T−)
γ−1(−,−)

−̃→ H/S′T ′Y(S′−, T−)

where the last part is due to 2. and the first is due to 4.

We come to the actual proof of Theorem 2.6. We need a lemma.

Lemma 2.9. Under the assumptions of Theorem 2.6 we get the following.

(S′T ′Y|Y and S′T ′Y|U−1(Y)) ⇐⇒ TSS′T ′Y|Y

Proof. TS = 1H⊕U =⇒ TSS′T ′ = S′T ′⊕US′T ′ and inserting Y ∈ Y gives the
result.

We can now prove Part 1 of Theorem 2.6. In fact, for S the statement is clear and
for T it follows from Lemma 2.9.

Lemma 2.10. Under the assumptions of Theorem 2.6 we get the following.

1. For all L ∈ Ob(D), B ∈ Ob(U−1Y),

S : (H/S′T ′Y)(S′L,B)−̃→(G/SS′T ′Y)(SS′L, SB)

gives an isomorphism.
2. For all L ∈ Ob((US ′)−1(D)), A ∈ G,

T : (G/SS′T ′Y)(SS′L,A)−̃→(H/Y)(TSS′L, TA)

gives an isomorphism.

Remark 2.11. We notice at once that if S ′T ′(US′D)|(US′D), then Y := (US′D)
satisfies each of the equivalent conditions in part 1.

Proof of Lemma 2.10.
The conditions to apply Corollary 2.8 1.–5. are satisfied. We have η : 1H −→ TS

and ηB ∈ H(B, TSB). The following diagram is commutative.

H
S′T ′Y (S′L,B)

ηB∗−→ H
S′T ′Y (S′L, TSB)

α−1

−→ G
SS′T ′Y (SS′L, SB)

↓ 1H '↓ 1H
H
Y (S′L,B)

ηB∗−→ H
Y (S′L, TSB) = H

Y (S′L,B)

where the very left hand side vertical 1H is an isomorphism by Corollary 2.8. 3.
α−1 is an isomorphism by Corollary 2.8. 5. The equality in the lower right corner
follows from the fact that TS = 1H ⊕ U and UB|Y . But, ηB∗ · pro1 = ηI is an
isomorphism. Therefore, going down, right, up we conclude that the upper ηB∗ is
an isomorphism.
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Furthermore, ∀h ∈ H(S′L,B), we get

α−1(ηB ◦ h) = α−1(ηB) ◦ S(h) = 1SB ◦ S(h) = S(h)

where the first equation is just the functoriality, the second is the definition of η by
ηN = α(N,TSN)−1(1SN ). This shows the statement for S.

The statement for the functor T is shown analogously.

We can now also prove Part 2 of Theorem 2.6. By Lemma 2.10 we see that
the restriction of S to add S ′Z/S′T ′Y and of T to add SS′Z/SS′T ′Y is full and
faithful.

The restrictions of S and of T are dense to the image of a functor. This is
precisely what we did.

Since TSS′Z = S′Z ⊕US′Z and since by the definition of Z for all Z ∈ Ob(Z)
we get US′(Z)|Y , we see that add TSS ′Z/Y = add S′Z/Y .

Moreover, U makes all the occuring terms vanishing and henceforth by our as-
sumption that ηI is an isomorphism, TS is just the natural projection.

This finishes the proof of the theorem.

2.4.4. The Krull–Schmidt situation.

Notation 2. If E and F are subcategories of a common Krull–Schmidt category 5

G, then FE denotes the full additive subcategory of F generated by objects M ∈
Ob(F) such that no non zero direct summand of M divides E. One should think of
FE as the part of F which has nothing to do with E.

Lemma 2.12. Let E be a subcategory of a Krull–Schmidt category F . Then, the
identity functor induces a functor FE −→ FE/E which is full6, dense7 and reflects
isomorphisms8.

Proof. 1F is clearly full and dense. Take an isomorphism X
f
−→ Y in FE/E .

Then, there is a Y
g
−→ X with gf = 1X and fg = 1Y in FE/E . Take preimages f0

and g0 of f and g in F . Then, f0g0 = 1X + kX where kX is an endomorphism of X
which factors through an object of E . No summand of X divides E and therefore,
kX ∈ radEnd(X). But, the Jacobson radical radEnd(X) has the property that
1+radEnd(X) is a subgroup of the unit group. Similarly, g0f0 is invertible. Hence,
f0 is an isomorphism.

Proposition 2.13. Let Y be a subcategory of H. Then TS : H −→ H/Y satisfies

TS(U−1Y) ≤ (U−1Y)/Y

and
TS : U−1Y −→ (U−1Y)/Y is isomorphic to 1H.

If H is a Krull–Schmidt category, then TS : (U−1Y)Y −→ (U−1Y)Y/Y is full,
dense and reflects isomorphisms.

5A Krull–Schmidt category is an additive category such that every object is a finite direct
sum of indecomposable objects and endomorphism rings of indecomposable objects are local. It
follows then that the decomposition into direct summands is unique up to isomorphisms.

6F : C′ −→ C is full, if it is surjective on the morphism sets.
7F : C′ −→ C is dense, if every object in C is of the form FC ′ for a C ∈ Ob(C′).
8F : C′ −→ C is reflects isomorphisms, if

F (f) ∈ MorC(FC1, FC2) is an isomorphism iff f ∈ Mor(C1, C2) is an isomorphism.
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Proof. We know that ηI is an isomorphism.

B ∈ U−1Y ⇔ U(B)|Y

⇔ U(B) ' 0 ∈ Ob(H/Y)

⇒ η : 1H|U−1Y → TS|U−1Y really is ηI which is an isomorphism.

The second statement follows immediately from Lemma 2.12.

Proposition 2.14. Let Y be a full additive subcategory of the Krull–Schmidt cat-
egory H.

1.

S : U−1(Y)Y −→ S(U−1(Y)Y )/T−1Y

is dense, reflects isomorphisms, and N is indecomposable in U−1(Y)Y if and
only if SN is indecomposable in G/T−1Y.

2.

T : S(U−1(Y)Y )/T−1Y −→ U−1(Y)Y/Y

is full, dense, reflects isomorphisms and M is indecomposable in
S(U−1(Y)Y )/T−1Y if and only if TM is indecomposable in H/Y.

Proof.
S is dense by definition.
SN1 ' SN2⇒ TSN1 ' TSN2 ⇒ N1 ' N2 since TS reflects isomorphisms by
Proposition 2.14.
T is dense since TS is dense.

T is full since given TX
f
−→ TY , then there is a X ′, Y ′ mapping to X,Y by S such

that given TSX ′ f
−→ TSY ′. But, TS is full, again using Proposition 2.14, hence,

f = TSf ′ for X ′ f ′

−→ Y ′ and T (Sf ′) = f and Sf is a preimage.
TM1 ' TM2⇒ ∃N1,N2Mi = SNi ⇒ TSN1 ' TSN2 ⇒ N1 ' N2 ⇒ M1 ' SN1 '
SN2 'M2.
N is decomposable in U−1(Y)Y ⇒ take N1|N ⇒ SN1|SN . But, SN1 = 0⇒ N1 =
0. Therefore, SN is decomposable.
Let M be decomposable in S(U−1(Y)Y )/T−1Y . Take 0 6= M1|M ⇒ TM1|TM.

But, TM1 = 0 ∈ U−1(Y)Y/Y ⇒ TM1|Y ⇒ M1 ∈ T−1Y ⇒ M1 = 0 ∈
S(U−1(Y)Y )/T−1Y . Hence, TM is decomposable.
SN decomposable⇒ TSN decomposable in U−1(Y)Y/T

−1Y ⇒ N is decomposable
since TS is full, dense and reflects isomorphisms.
TM is decomposable with M ∈ S(U−1(Y)Y )/T−1Y ⇒ ∃NM ' SN ⇒ TSN '
TM is decomposable ⇒ N is decomposable since TS is full, dense, and reflects
isomorphisms ⇒M = SN is decomposable.

Putting all the pieces together, we have proved the proposition.

Corollary 2.15. Let H and G be Krull–Schmidt categories and let Y be a full
additive subcategory of H.

1. For all indecomposable objects N ∈ U−1(Y)Y the object SN has exactly one
indecomposable summand g(N) which is not contained in T−1Y.

2. For all indecomposable objects M ∈ (add S(U−1(Y)Y ))T−1Y the object TM
has exactly one indecomposable summand f(M) that does not divide Y.
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3. f(g(N)) ' N
4. g(f(M)) 'M

Remark 2.16. One should note that this establishes one part of the Green corre-
spondence, namely, the bijective correspondence between parts of the two module
categories of the group rings.

However, one should read this carefully. If we wanted to apply this to our group
theoretic situation, one does not need for the statement that H ≥ NG(D). It will
become clear that if this is not the case, then there is no indecomposable object as
required.

Proof of Corollary 2.15.

1. SN = M1⊕· · ·⊕Ms for indecomposables Mi in G with i = 1, ..., s and s ∈ N.
By Lemma 2.12, Mj is indecomposable or zero in G/T−1Y .
By Proposition 2.14 SN is indecomposable in G/T−1Y .
Hence, there is exactly one j0 with Mj0 not being contained in T−1Y .

2. There is an indecomposable N ∈ U−1(Y)Y and some M ∈ G with SN =
M ⊕M ′. Since M is not contained in T−1Y we get SN 'M in G/T−1Y .
Let TSN = TM = N1 ⊕ · · · ⊕ Nt for indecomposable objects Ni in H and
i = 1, ..., t and t ∈ N. But we know that TSN is indecomposable in H/Y by
Proposition 2.14.
Hence there is exactly one i0 where Ni0 does not divide Y .

3. g(N) = SN in G/T−1Y . f(g(N)) ' TSN ' N in H/Y since TS ' 1 as
functor U−1Y −→ (U−1Y)/Y .

4.

fgf(M) ' f(M) by 3. ⇒ Tgf(M) ' TM in H/Y
Prop.2.14.2

=⇒ gf(M) 'M in G/T−1Y
Lemma2.12

=⇒ gf(M) 'M in G.

Now we combine Theorem 2.6 and Corollary 2.15 to state the result.

Corollary 2.17. Assume we are in the situation of Theorem 2.6 and let in addition
be G and H Krull–Schmidt categories. Then9 ,

1. ∀N ∈ ind(add S′Z)S′T ′Y , the object SN has precisely one indecomposable
summand g(N) not dividing SS ′T ′Y.

2. ∀M ∈ ind(add SS′Z)SS′T ′Y , the object TM has precisely one indecompos-
able summand f(M) not dividing Y.

3. f(g(N)) ' N
4. g(f(M)) 'M

2.4.5. The situation for group rings. Again we shall follow [1] closely.
We shall apply Theorem 2.6 to the case mentioned at the beginning of Subsection

2.4. We fix the following setting.

1. Let R be a commutative Noetherian ring.
2. Let G be a finite group and let D ≤ H < G. 10

3.
∀ F≤G indG

F := RG⊗RF − : RF −mod −→ RG−mod ;
resG

F : RG−mod −→ RF −mod is the restriction functor.

9indC means the class of indecomposable objects in the category C.
10To avoid technical difficulties we assume that H 6= G. Otherwise we shall have to deal with

unpleasant exceptions arising from empty set discussions in our formulas.
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4.

mod(G,F ) = add(indG
F (RF −mod))

= ’direct summands of RG–modules induced from F ’.

The objects are called relatively F–projective modules.
5. If F is a set of subgroups of G, then indG

F is the least full additive subcategory
of RG−mod containing all modules of the form indG

F (V ) with V ∈ Ob(RF −
mod) and F ∈ F . mod(G,F) is the least full additive subcategory of RG −
mod containing mod(G,F ) with F ∈ F .

6. If g ∈ G and F ≤ G. Then, gF = gFg−1 and for M ∈ RF −mod one forms
the R gF–module gM by f ·m =: gfg−1m for all m ∈M, f ∈ F .

7. We take a disjoint union

G =

s⋃

i=1

HgiH for gi ∈ G; g1 = 1

Then, as RH–RH–bimodule,

RG =

s⊕

i=1

RHgiH.

8. p : RG −→ RH · 1 · RH is RH −RH–linear and an epimorphism.
9. i : RH −→ RH · 1 ·RH is RH −RH–linear and a monomorphism.

10. Set G := RG−mod, H := RH −mod, D := RD−mod.
S := indG

H , S′ := indH
D , T := resG

H , T ′ := resH
D .

11. For all N ∈ Ob(RH −mod),M ∈ Ob(RG−mod) set

α(N,M) : HomRG(indG
H(N),M) −̃→ HomRH (N, resG

HM)

by Frobenius’ reciprocity, as explained in Section 2.2.
12.

η : 1RH−mod −→ resG
H ◦ ind

G
H

by means of

ηN = α(N, indG
HN)(1indG

H
(N)) = (n −→ 1⊗ n)).

with N ∈ RH −mod, n ∈ N .
13. U :=

⊕s
i=2 RHgiRH ⊗RH −.

14. Since pi = 1RH , we get TS = 1RH ⊕ U .
15. ηI is the identity, hence an isomorphism.

To apply the theorem, one has to try to produce a subcategory Y of RH −mod
such that

S′T ′Y|Y and S′T ′Y|U−1Y .

Notation 3. We fix for any set S of subgroups of H

X := {D ∩ Y |Y ∈ S} and Y := indH
S .

Remark 2.18. Since ind and res result to isomorphic modules when passing to
conjugate subgroups, one may assume that S is closed under conjugation. Since
res and ind are transitive, one may furthermore assume that S is closed under
subgroups.

Proposition 2.19. 1. S′T ′Y is a subcategory of indH
X . Furthermore,

indH
X |S

′T ′Y.
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2. RH −mod/S′T ′Y = RH −mod/indH
X

3. S′T ′Y is a subcategory of Y.

Proof.
Part 1. Let N ∈ Y . Then, N ' indH

V W with W ∈ Ob(RV −mod);V ∈ S. We
apply Mackey’s formula to obtain

T ′N = resH
D ind

H
V W =

⊕

V gD∈V \G/D;g1=1

indD
D∩ gY res

gY
D∩ gY

gW ∈ Ob(indD
X )

Since indH
D ind

D
X = indH

X , we get the first statement.
Let W ∈ Ob(D ∩ Y −mod), Y ∈ Y , then again using Mackey’s formula,

resH
D ind

H
D∩YW = indD

D∩YW ⊕
⊕

D 6=DgD∈D\H/D

indH
g(D∩Y )∩Hres

g(D∩Y )
g(D∩Y )∩H

gW

Therefore,

indD
D∩YW |res

H
D ind

H
D∩YW = resH

D ind
D
D∩YW = T ′(indD

D∩YW )

and with the transitivity of ind, one gets that

indH
D∩YW |S

′T ′(indH
D∩YW ).

Part 2. follows from 1. since by the first inclusion, every morphism factoring
through an object of S′T ′Y factors also through an object of indH

X . On the other
hand side, by the second statement, a morphism factoring through an object of
indH

X factors also through an object of S ′T ′Y , this having the object from before
as direct summand.

Part 3. follows from the transitivity of the induction and part 1.

Just to be able to write the result in a more concise form we introduce a new

Notation 4. Let F be a set of subgroups of H. We set

F ′ := {H ∩ gF |g ∈ G \H and F ∈ F}

Lemma 2.20. ∀F ∈ F with F ≤ H is

U(indH
F ) ⊆ indH

F ′ |U(indH
F )

Proof. The ’source’ of the lemma is entirely Mackey’s formula. This fact makes
the proof somewhat unpleasantly technical.

Of course, it is sufficient to prove the statements for F = {F}, a set with
cardinality 1. We start with proving this statement and hence assuming that we
are given a V ∈ RF −mod and set N := indH

F V .
By definition,

U(N) =
s⊕

i=2

RHgiH ⊗RH N.

It is hence enough to prove that

RHgH ⊗RH N ∈ indH
F ′ for any g ∈ G \H.

We first discuss what is meant by RHgH . We see that gRH is isomorphic to the
R( gH)− RH−bimodule gRH which is RH as R−module and on which from the
left gh ∈ gH acts by multiplication by gh on RH . Now, precisely those objects
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hgh′ ∈ HgH belong to {1}gH for which h ∈ H ∩ gH . Therefore, RHgH =
RH ⊗R(H∩ gH) gRH as bimodule. We compute

RHgH ⊗RH N = RH ⊗R(H∩ gH) gRH ⊗RH N

= RH ⊗R(H∩ gH)
gN

= indH
H∩ gHres

gH
H∩ gH

gN

= indH
H∩ gHres

gH
H∩ gH ind

gH
gF

gV

= indH
H∩ gH

⊕

(H∩ gH)t gF

ind
[gH∩H]
[tgF∩H∩ gH]res

[tgF ]
[tgF∩H∩ gH]

tgV

Furthermore, for n := g−1tg,

H ∩ gH ∩ tgF = H ∩ gnF

since x ∈ H ∩ gnF ⇒ x ∈ H and x ∈ gnF and gnF = {gn · f · n−1g−1} ⊆ gH ,
taking into account that t ∈ gH ⇒ n ∈ H . Hence,

RHgH ⊗RH N =
⊕

n

indH
H∩ gnF (res

gnF
[H∩ gnF ]

gnV )

∈ indH
F ′

We hence proved the first statement.
We have to prove the second statement. Let g ∈ G and n ∈ H , let V ∈

Ob(RF −mod) and N := indH
F V . Then, by the above calculation,

ind
[gH∩H]
[tgF∩H∩ gH]res

[tgF ]
[tgF∩H∩ gH]

tgV | RHgH ⊗RH N.

We just have to show that a W = indH
H∩ gFQ for Q ∈ R(H ∩ gF )−mod is a direct

summand of a module of the above form.
Set indF

g−1H∩ F
g−1

Q =: V ∈ Ob(RF −mod). Then again, applying Mackey’s

formula,

indH
H∩ gF res

gF
H∩ gF (ind

gF
H∩ gFQ) = indH

H∩ gF (Q⊕modules from lower subgroups)

= W ⊕modules from lower subgroups

We hence have shown that W is a direct summand of a module of the above type
which in turn divides U(indH

F ). We have shown the lemma.

We remind the reader that we are given the set of subgroups S and we have set
Y := indH

S and X := {V ∩D|V ∈ S}.

Corollary 2.21. If X ′ ⊆ S, then S′T ′Y|Y and S′T ′Y|U−1Y.

Proof.

• We have just to show that U(indH
X )|indH

S , since by Proposition 2.19,
S′T ′Y is a subcategory of Y and hence obviously S ′T ′Y|Y automatically.
Also, S′T ′Y|indH

X . Hence, U(S′T ′Y)|U(indH
X ) and if we could show that

U(indH
X )|indH

S = Y , then we also had the second condition.
• But, U(indH

X ) ⊆ indH
X ′ by Lemma 2.20.

• indH
X ′ |U(indH

X ) by Lemma 2.20.
• indH

X ′ ⊆ indH
S since X ′ ⊆ S.

• Hence, indH
X ′ |indH

S and even U(indH
X )|indH

S .
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Remark 2.22. We immediately check two situations where we may verify the
condition in Corollary 2.21.

1. If S = {V | there is a g ∈ G \H : V ≤ H ∩ gD},
then X = {X | there is a g ∈ G \H : X ≤ D ∩ gD} and X ′ ⊆ S.

2. If E is a normal subgroup of H and D ∩ E is a normal subgroup of G, set
S = {V |V ≤ E}. Then, X = {X |X ≤ D ∩ E} and X ′ ≤ S.

The first situation leads to the classical Green correspondence contrary to the sec-
ond which is a new application and leads to a theorem due to Auslander–Kleiner
[1].

Summarizing the results we just apply Theorem 2.6 to the above situation with
the knowledge we have obtained for it up to now.

Theorem 2.23. Let Z be the largest set of subgroups of D such that Z ′ ⊆ S. If
X ′ ⊆ Y, then

1.

indG
H :

mod(H,Z)

mod(H,X )
−̃→

mod(G,Z)

mod(G,X )

is an equivalence of categories.
2.

resG
H :

mod(G,Z)

mod(G,X )
−̃→

mod(H,Z)

mod(H,S)

is an equivalence of categories.
3. resG

H ◦ ind
G
H is induced by the identity functor on RH −mod.

Corollary 2.17 now translates to

Corollary 2.24. Assume we are in the situation of Theorem 2.23 and further-
more assume that RG−mod and RH −mod are Krull–Schmidt categories. Given
M ∈ mod(G,Z) \ mod(G,X ) indecomposable and N ∈ mod(H,Z) \ mod(H,X )
indecomposable.
Then,

1. indG
H(N) has a unique indecomposable direct summand g(N) in mod(G,Z) \

mod(G,X ).
2. resG

H (M) has a unique indecomposable direct summand f(M) in mod(H,Z)\
mod(H,S).

3. fg(N) ' N .
4. gf(M) 'M .

An application is the definition of a Brauer correspondent. Assume that we are
in the situation of Corollary 2.24.

1. The syzygy-operator ΩG on the stable category of RG−mod and the syzygy-
operator ΩH on the stable category of RH − mod commutes with g and
commutes with f . More precisely:

ΩGg ' gΩH and ΩHf ' fΩG.

This follows since indG
H and resG

H are exact and send projective modules to
projective modules, hence a projective resolution to a projective resolution.
Then, applying Schanuel’s Lemma, we realize that syzygies are well defined
up to projective direct summands. This gives the result.
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2. In the situation of the first part of Corollary 2.21 we look at the various sets
of subgroups of G more closely.

S = {V | ∃ g ∈ G \H : V ≤ H ∩ gD}

X = {X | ∃ g ∈ G \H : X ≤ D ∩ gD}

Z = {Z ≤ D| ∃ g, g′ ∈ G \H : g′

Z ∩H ≤ H ∩ gD}

Since D ≤ H , we always get D ∈ Z choosing g = g′. If NG(D) \ H 6= ∅,
then there is a g ∈ NG(D) \ H . Taking this g, we conclude that D ∈ X .
But then Z = X = S and Theorem 2.23 establishes a bijection between the
empty sets and in Corollary 2.24 there is no indecomposable module satisfying
the assumptions. If H ≥ NG(D), then trivially this never happens and the
theorem is non trivial.

3. Let B be a block of RG with defect group D. Let H ≥ NG(D). There
is a Green correspondence for G = R(G × G) and H = R(H × H) and
D = R(D × D) since NG×G(D × D) = NG(D) × NG(D). Furthermore, as
usual the functors S, S′ are the induction functors. T, T ′ are the corresponding
restriction functors. Now,

resG×G
H×H : RG −→ [

⊕

HgH∈H\G/H

RHgH ] = [RH ⊕
⊕

HgH∈H\G/H; g 6∈H

RHgH ]

and so a block B of RG with defect group D has a Green correspondent b
which is a direct summand of the right hand side. It is now easy to see that
the Green correspondent of B is a direct summand of RH . The Green corre-
spondent f(B) of B is a block of RH and is called the Brauer correspondent
of B.
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3. Classical theory of blocks with cyclic defect groups and Green’s

walk around the Brauer tree

In this section we shall present the results of Green [5], Dade [2] and Michler
[13, 14].

Throughout this section we use the following notations.

1. R is a complete discrete valuation ring of characteristic 0 with residue field k
of characteristic p. The field of fractions of R is K.

2. G is a finite group.
3. B is a block of RG with defect d.
4. D is a defect group of B with order q = pd.
5. D1 is the subgroup of D of order p.
6. H = NG(D1) ≥ NG(D).
7. B′ is the Brauer correspondent of B in RH .
8. CG(D1) =: C.

3.1. The theory of Dade on blocks with cyclic defect group.

Definition 3.1. (Michler [13, 14]; Feit [3])

• The number e of isomorphism classes of simple B′–modules is called the in-
ertial index of G.

• There is a finite Galois extension K̂ of K such that for the ring of integers R̂ in
K̂ over R all the primitive |G|th roots of unity are contained in R̂/rad R̂. Let

B̂ be one indecomopsable factor of R̂⊗RB
′. (The others are Galois conjugate

to this.) The number ê is defined to be the number of isomorphism classes of

simple B̂–modules.

Michler shows [13, 14] that e divides p− 1.
Set I := {0, 1, . . . , (e− 1)}.
The main theorem of Dade describes the structure of the composition series of

projective k ⊗R B–modules in terms of combinatorial data, a Brauer tree. Janusz
and independently Kupisch [8], [10, 11] prove that not only the composition se-
ries of the indecomposable projective modules are determined but also those of
all indecomposable modules. We do not need this description for Roggenkamp’s
description of blocks of cyclic defect group and so we refrain from presenting this
theory as well.

The theory of Dade on the structure of blocks with cyclic defect groups is one of
the most beautiful in the theory of blocks. It is a complete answer to the questions
on the module structure of blocks with cyclic defect groups in terms of a very inge-
nious combinatorial description. One of the key tools is the Green correspondence.

Theorem 3.2. (Dade [2]) We assume that k contains all |G|–th roots of unity.
There is a set Λ of simple KG–modules, called the exceptional k ⊗R B–modules
with the following properties.

1. The graph which consists of the following data is a tree:
• The vertices of the graph are the isomorphism classes of the non excep-

tional simple K⊗RB−modules and an additional vertex; representing the
set of exceptional modules, called the exceptional vertex.

• There is an edge between two vertices v, w if and only if there is an in-
decomposable projective B–module P such that K ⊗R P has the modules
which correspond to the vertices v and w as direct summands.
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The graph is called a Brauer tree and in case frac R is a splitting field for
B, the cardinality of Λ is called the multiplicity of the exceptional vertex and
equals µ = (|D| − 1)/e.

2. Let P be a projective indecomposable k ⊗R B–module. Then, rad P/soc P is
a direct sum of two uniserial modules SP and TP .

3. There is an embedding of the Brauer tree in the plane11 such that one can
get the composition series of SP and TP by the following algorithm. SP (and
TP ) correspond to a vertex v (and w), say. By symmetry we describe the
algorithm just for SP . Since the tree is embedded into the plane, one has an
ordering of the nP projective RG−modules Q such that KQ has composition
factor KSP by a counterclockwise numeration of the edges adjacent to v. Now,
radi(SP )/radi+1(SP ) ' Qi/rad(Qi) for i = 1, 2, . . . , n(P ) · e(P )−1 where Qi

is the projective indecomposable module which is i positions after P in the
counterclockwise ordering. If v is the exceptional vertex, then e(P ) = e and
if v is not the exceptional vertex then e(P ) = 1.

We describe the algorithm by a simple example.
We are given the following Brauer tree

•
|1

• −2 • −3 • 2 −4 •
|5
•

We impose to the second right vertex a multiplicity 2, as indicated in by a box. We
shall give the composition series of the projective indecomposable modules for this
example.

P1 =




1
2
5
3
1




;P2 =




2
5
3
1
2




;P5 =




5
3
1
2
5




;P4 =




4
3
4
3
4




;P3 =




3
1 4
2 3
5 4

3



.

3.2. Green’s walk around the Brauer tree. After Dade’s paper, Green proved
the following theorem. This theorem is of fundamental importance not only for the
proof of Roggenkamp’s theory of Green orders.

Let Wi; i = 0, . . . , (e− 1) be the projective indecomposable B–modules.

Theorem 3.3. (Green [5]) We assume that k contains all |G|–th roots of unity.
Let G be a finite group, let B be an RG− block, let D be a cyclic defect group of B
and let Γ be the Brauer tree of B.

1. There is a family (An)n∈Z of RG–lattices and a permutation δ of I =
{0, . . . , (e− 1)} such that there exist short exact sequences of RG–modules

E2i : 0 −→ A2i+1 −→ Wδ(i) −→ A2i −→ 0

11This is just another way of saying that one imposes to each vertex v of the tree a cyclic

ordering of the edges v
e
− w which are incident to the vertex v.
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E2i+1 : 0 −→ A2i+2 −→Wi −→ A2i+1 −→ 0

with Wi 'Wi+e and Ai ' Ai+2e for all i ∈ Z.
2. The A0, A1, . . . , A2e−1 are mutually non isomorphic.
3. KAn is a vertex of Γ.

We should remind the reader that it is possible to reconstruct the Brauer tree
from the permutation δ. One forms a path

•
1
−→ •

δ(1)
−→ •

2
−→ · · ·

δ(e−1)
−→ •

e
−→ •

δ(e)
−→ •

which closes to an oriented circle. Then, one glues •
i
−→ • with •

δ(j)
←− • if i = δ(j)

and the result is the Brauer tree. Obviously it is a graph but by Dade’s theorem,
this is in fact a tree and looking at the isomorphism classes of the vertices even the
Brauer tree.

One may define conversely a permutation δ of the set of edges for every embedded
tree out of which it is possible to reconstruct the tree in the above way. This
permutation depends not only on the tree but also on a starting point:

1. One starts at a certain edge e and declares this edge to be 1.
2. Take a vertex v which is adjacent to the edge taken. The edge following e in

the circular ordering at v is defined to be δ(1).
3. The other extremity (not the vertex v) of δ(1) is w.
4. The edge following δ(1) in the circular ordering at w is 2.
5. To find δ(2) one proceeds as in 2.
6. One stops after having determined δ(e).

In our example

•
|

• − • − • − •
|
•

starting with the upper vertical edge one gets the assignment

•

1|δ(5)

• δ(1)−2 • 5−δ(3) • δ(4)−4 •

δ(2)|
3

•

and the permutation (1 2 3 5).
If one starts with the right most edge, one gets the assignment

•

δ(2)|
2

• 3−δ(3) • δ(1)−5 • 1−δ(5) •

4|δ(4)

•

and the permutation (1 5).
Michler generalized Theorem 3.3 to the case where there is a ring R as in the

introduction, without assuming that the residue field is large enough.



STRUCTURE OF BLOCKS WITH CYCLIC DEFECT GROUPAND GREEN CORRESPONDENCE25

Theorem 3.4. (Michler [13, 14]) Let R be as in the introduction to this section.
Let G be a finite group, let B be an RG− block and let D be a cyclic defect group
of B.

1. There are precisely e pairwise non isomorphic indecomposable k⊗RB–modules
Mi with source k, the trivial kD–module.

2. Let, for all i = 1, . . . e, P i be the k ⊗R B–projective cover of Mi and let

0 −→ ΩMi −→ P i −→Mi −→ 0

be exact. Then, (1− α)kD is the source of ΩMi.
3. Let, for all i = 1, . . . e, Qi be the k ⊗R B–projective cover of ΩMi and let

0 −→ Ω
2
Mi −→ Qi −→ ΩMi −→ 0

be exact. Then, one can find a numbering for the Mi such that Ω
2
Mi 'Mi+1.

4. There are e pairwise non isomorphic indecomposable B–lattices Wi with
source R, the trivial RD–lattice and k ⊗R Wi = Mi. For each i there is,
up to isomorphism, only one B–lattice with these properties.

5. Let, for all i = 1, . . . e, Pi be the projective cover of Wi and let

0 −→ ΩWi −→ Pi −→Wi −→ 0

be exact. Then, (1− α)RD is the source of ΩWi.
6. Let, for all i = 1, . . . e, Qi be the projective cover of ΩWi and let

0 −→ Ω2Wi −→ Qi −→ ΩWi −→ 0

be exact. Then, one can find a numbering for the Wi such that Ω2Wi = Wi+1

where the indices are taken modulo e, and k ⊗R ΩWi = ΩMi.
7. In the set {ΩkW1|k ∈ N} a maximal subset of pairwise non isomorphic mod-

ules has cardinality 2e.

Following Feit [3, Chapter VII Remark after Theorem 2.11] we define the prop-
erty

(∗) The number of characters of the group H which are afforded
by irreducible frac(R)⊗R B–modules is equal to (q − 1)/ê.

As is proved in Feit [3, Chapter VII, Corollary 6.8], the definition for a Brauer
tree as in Theorem 3.2 works also for a more general R satisfying condition (∗).
Feit gives also an example that it is in general not enough to adjoin all qth roots of
unity.

As is proved in Feit [3, Chapter VII Theorem 10.6] one can prove a theorem which
is analogous to Theorem 3.3 also for more general R satisfying the assumption (∗)
from above.

Green shows Theorem 3.3 by first showing Theorem 3.5 below. He applies Green
correspondence with G = kG−mod,H = kH −mod and D = kD −mod. Clearly,
D1 is the only minimal subgroup of D and one chooses H such that each g ∈ G\H
satisfies gD1 ∩ D1 = {1}, hence, X = {1}. The block B′ of kH is the Brauer
correspondent of B. The simple B′–modules are called S1, . . . , Se.

Theorem 3.5. 1. B contains e simple kG-modules Vi; i ∈ I such that every
simple kG–module in B is isomorphic to exactly one Vi. Let W i be the pro-
jective cover of Vi as kG–module for all i ∈ I.



26 ALEXANDER ZIMMERMANN

2. There is a numbering of the Vi such that

HomkH (fVj , Si) ' HomkG(Vj , gSi) =

{
k if i = j
0 if i 6= j

and there is a permutation δ of I such that

HomkH (Si, fVj) ' HomkG(gSi, Vj) =

{
k if δ(i) = j
0 if δ(i) 6= j

3. For all i ∈ I there are non split exact sequences

F2i : 0 −→ ΩG(gSi) −→W δ(i) −→ gSi −→ 0

and
F2i+1 : 0 −→ gSi+1 −→W i −→ ΩG(gSi) −→ 0

We should take some few lines to interpret Theorem 3.5. The theorem says in
other words that the permutation δ can be read off from the Green correspondents
of the simple B′–modules. In fact, the Green correspondent g(Si) has the property

top(g(Si)) = Vδ(i) and soc(g(Si)) = Vi for all i = 1, . . . e

of course after a renumeration. By the discussion of the permutation δ one gets
the tree back from the permutation. Therefore, the Brauer tree as abstract tree is
determined by the Green correspondence.

We shall prove Theorem 3.3 in detail in the following subsections.

3.3. Dade’s description for blocks with normal cyclic defect groups. As
illustration on the degree of completeness of the description of the module structure
as well as preparation for the proof of Theorem 3.3 we give Dade’s results for the
special case of a normal cyclic defect group D of of the block B in this subsection.

Then, the Brauer tree is a star and the exceptional vertex is in the centre. This
is the subject of the following Lemma.

We introduce some notation before. As above, the Brauer correspondent of B
in kH is called B′.

Lemma 3.6. (Dade) We assume that k contains all |G|–th roots of unity. B ′

contains e simple modules S0, . . . , Se−1 with projective covers T0, . . . , Te−1.

1. There is a multiplicative isomorphism : D −→ Centre(kC) such that taking
a generator α of D and defining a := α−1 the only composition series, which
is also the radical series of each Ti with i = 1, . . . e is

Ti > Ti · a > Ti · a
2 > · · · > Tia

q = 0 .

2. Every indecomposable kH−module is isomorphic to one of the Ti,ν =
Ti/(Tia

ν) ; i = 0, 1, . . . , (e− 1); ν = 0, 1, . . . , (q − 1).
3. There is a kCG(D1)–block b such that kH ⊗kCG(D1) b = B′ and all such

blocks are conjugate in H. Moreover, the stabilizer of b in H is of the form
CG(D1) ×E for a subgroup E of NG(D). The group E operates on D1 by
conjugation and is E-linear.

We take α1 = αpd−1

.
Then, D1 =< α1 >. Since H = NG(D1) for all h ∈ H there is a number n(h)

defined uniquely modulo p such that,

h−1 · α1h = α
n(h)
1 .
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ψ : H −→ (k \ {0}, ·)

h −→ n(h)

is a homomorphism and gives rise to one dimensional module. Since C = CG(D1),
we have C ∈ ker(ψ) and hence ψ|H:C| = 1.

We do similar computations with E and D. We define ∀ z∈Ez
−1αz = αn(z). We

use the same symbols for D1 as well as for D since we used a compatible choice for
the generators of D and D1.

We compute

αz by 3.
= αz by Def.

= αn(z) by 3.
= αn(z).

Lemma 3.7. (Green)

1. Si,ν := Ti,ν/Ti,(ν+1) ' ψ
ν ⊗k Si

2. For all n ∈ Z set Sn := S0,n and then {S0, S1, . . . , Se−1} is a complete set of
representators of isomorphism classes of simple kH−modules.

3. The composition factors of Ti are Si, Si+1, . . . , Si+q−1 ' Si.

Proof.
Part 1. ∀ t∈Ti;z∈E : t·aν ·z = t·z·(αn(z)−1)ν = t·z·aν ·(1+α+α2+· · ·+αn(z)−1)ν ≡

t · z · aν · n(z)ν since (1 + α+ α2 + · · ·+ αn(z)−1) ≡ n(z) modulo T1 · a.
Part 2. Since ψ|H:C| = 1⇒ Sm ' Sn ifm ≡ nmod |H : C|. But, |H : C| | (p−1),

then follows by part 1 that all Sn are composition factors of T0. Hence, Sn all belong
to B′.

Let S be a simple B′−module. Then, there is a sequence i0, i1, . . . , ir ∈ I such
that Si0 ' S0 and Sir

' S and Si,j is a composition factor of Tij−1 .
12 We know

that Sij
' ψνj ⊗ Sij−1 for all j. Hence, there is an integral number x such that

S ' ψx⊗S0. We know, that there are precisely e simple modules and therefore we
found all of them.

Part 3. follows from Part 1, Part 2. and Lemma 3.6.

Corollary 3.8. (Green) Let i ∈ I ; ν ∈ {1, . . . , q}.

1. Ti,ν is projective if and only if ν = q.
2. There are non split exact sequences

0 −→ Ti+1,q−ν −→ Ti,q −→ Ti,ν −→ 0

3. ∀ 1≤ν≤q−1ΩH(Ti,ν) ' Ti+ν,q−ν .
4. ΩH(ΩHSi) ' Si+1

The proof is clear.

3.4. Definition of the ’walk’ δ. In this subsection we follow closely Green [5].
We shall prove in this subsection Theorem 3.5.

In the following we first examine the situation over k and pass then, in the next
subsection, over to R.

For the proof of Theorem 3.5 we proceed in several lemmata.
Let {Vj} be a complete set of simple kG–modules. For proving Part 1 of the

theorem we have to show that there is a bijection between I and J .

12This is an alternative method of describing blocks. In fact, we need only the necessity. If
there was not such a sequence, then we can divide the projective indecomposables into two disjoint
sets P1 and P2 such that for all P1 ∈ P1 and all P2 ∈ P2 Hom(P1, P2) = Hom(P2 , P1) = 0 and
hence B′ = End(⊕P1∈P1

P1 ⊕⊕P2∈P2
P2) = End(⊕P1∈P1

P1) ⊕ End(⊕P2∈P2
P2) decomposes.
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Claim 3.9. fVj is indecomposable and non projective and belongs to B ′.
gSi is indecomposable and non projective and belongs to B.

Proof. The only thing one has to show is that fVj and gSi belong to the blocks
as claimed. Since fg(N) = N and gf(M) = M for all N and M , we just have to
show one of the statements.

We have the Green correspondence with G = kG − mod and H = kH − mod
and D = kD −mod on the level of the modules. The Brauer correspondence is a
Green correspondence with G = k(G × G) −mod and H = k(H ×H) −mod and
D = k(D×D)−mod. Since G×G −→ G× 1 ' G is an epimorphism, we can view
each kG–module as k(G × G)–module. The analogous holds for H and D. The
Green correspondent for a kG–module V is the same as the Green correspondent
of V as k(G × G)−module. This proves the statement since belonging to a block
means for a module that the corresponding idempotent of the block acts as identity
on the module. Then using the functoriality gives the statement.

We now turn to prove Part 2 of the theorem.
For this purpose we prove that

HomkH(Si, fVj) = (HomkH/mod(H, 1))(Si, fVj)

and similarly

HomkG(gSi, Vj) = (HomkG/mod(G, 1))(gSi, Vj) .

More generally, let X be a non projective indecomposable module, then

HomkH (Si, X) = (HomkH/mod(H, 1))(Si, X)

Let φ : Si −→ X be a map which is zero on the right side of the equation.
Then, φ factors through a projective module. However, group rings are selfinjec-
tive algebras13. Since Si is simple, the projective module over which the mapping
factors has as direct summand the injective hull P of Si and the mapping actually
factors over P . But, soc(P ) = Si and therefore, if the mapping is not zero, it is
injective. However, then the injective module P is a submodule and hence even a
direct summand of X . This gives a contradiction.

We proved the

13An R–algebra A is called selfinjective if each projective A–module is injective. Group rings
are selfinjective since there is a linear map λ : A −→ R such that kerλ contains no non zero left
nor right ideal and ∀ a,b∈Aλ(ab) = λ(ba). Such algebras are called symmetric, which is a slightly

stronger condition. A group algebra RG is symmetric since we put λ(
�

g∈G rgg) := r1. Since

λ((
�

g∈G rgg)g−1) = rg there is no ideal in kerλ. Taking

AA −→ HomR(AA, R)

a −→ b −→ λ(ab))

we realize that this mapping is injective since an element in the kernel would induce an ideal in the

kernel of λ generated by this element. Going to the residue field of R we see that this mapping is
also surjective, hence an isomorphism. Injective modules are hence also projective and vice versa.
Projective modules for symmetric artinian algebras over a field have the property that the socle
and the head are isomorphic.
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Lemma 3.10.

HomRH (Si, fVj)
above
= (HomRH/mod(H, 1))(Si, fVj)

Greencorr.
= (HomRG/mod(G, 1))(gSi, Vj)

above
= HomRG(gSi, Vj)

and analogously
HomRH(fVj , Si) = HomRG(Vj , gSi).

Lemma 3.11. There is a bijection h : J −→ I such that

∀ i∈I,j∈Jh(j) = i⇐⇒ HomRH(fVj , Si) 6= 0

Proof. fVj ' Th(j),ν(j) for h(j) ∈ I, ν(j) ∈ {1, . . . , q − 1} by its indecomposabil-
ity. But then, it is even uniserial and

HomkH(fVj , Si) =

{
k if h(j) = i
0 if h(j) 6= i

by Schur’s Lemma.14

Given i ∈ I and S|soc(gSi). Since S is a B–module, there is a j ∈ J such
that Vj ' S. Hence, HomkG(Vj , gSi) 6= 0 and therefore, HomkH (fVj , Si) 6= 0 by
Lemma 3.10. This proves that h(i) = j and h is surjective.

Given j, j′ ∈ J with h(j) = h(j′) = i. Then, we may assume without loss of
generality, interchanging j and j ′ if necessary that f(Vj) = Ti,ν and f(Vj′ ) = Ti,ν′

for some 1 ≤ ν′ ≤ ν ≤ q − 1. Hence, there is an epimorphism

Ti,ν −→−→ Ti,ν′

If this mapping would factor through a projective module it would factor through Ti

which is the projective cover of Ti,ν′ . Hence,15 top(Ti,ν) is mapped to a subquotient
of rad(Ti,ν) unless ν = 0 what we excluded. Therefore, the mapping was not
surjective and this gives a contradiction. We conclude

0 6= (HomkH/mod(H, 1))(fVj , fVj′)
Green corr.

= (HomkG/mod(G, 1))(Vj , Vj′)

Schur
= HomkG(Vj , Vj′ )

⇒ j = j′.

Hence, h is also injective which finishes the proof of Lemma 3.11.

From now on, we take I = J and h = idI and have fVj = Tj,ν(j) for all j ∈ I
and certain ν(j) ∈ {1, . . . , q − 1}.

Now we use the same proof as in the lemma in the situation HomkH(Si, fVj)
instead ofHomkH (fVj , Si) to obtain a bijection δ : I −→ I , which is a permutation,
such that HomkH(Si, fVj) = k if and only if δ(i) = j and 0 else.

This completes the proof of Part 2. of the theorem.

We are going to show Part 3.

14Schur’s Lemma says that given a ring A and simple A–modules S and T , then

HomA(S, T ) =

�
a skewfield if S ' T

0 else
.

The proof is easy since a kernel and an image under an A–isomorphism are ideals which are either
0 or the whole module by the simplicity of S and T .

15We use the terminus ’top’ synonymous to ’head’.
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By Part 2. we get soc(gSi) ' Vi and top(gSi) ' Vδ(i). Therefore, there is a short
exact sequence

0 −→ ΩgSi −→ W δ(i) −→ gSi −→ 0.

Since W i+1 is also injective and since soc(gSi) ' Vi there is a short exact sequence

0 −→ gSi+1 −→W i −→ V −→ 0

with some kG–module V . But,

gSi+1 ' gΩ
2Si ' Ω2gSi

and we see that there is a non split exact sequence

0 −→ gSi+1 −→W −→ ΩgSi −→ 0

with a projective kG–module W . Applying Schanuel’s Lemma gives V ' ΩgSi.
We have also proven Part 3. of the theorem.

Remark 3.12. The same proof, and statement, works for a stable equivalence
between two selfinjective k–algebras A and B such that A is serial.

3.5. Turning to characteristic 0. We now prove the main result of this section.
For the reader’s convenience we state it here again.

Theorem 3.13. (Green) Let G be a finite group, let B be an RG− block, let D be
a cyclic defect group of B and let Γ be the Brauer tree of B.

1. There is a family (An)n∈Z of RG–lattices and a permutation δ of I =
{0, . . . , (e− 1)} such that there exist short exact sequences of RG–modules

E2i : 0 −→ A2i+1 −→ Wδ(i) −→ A2i −→ 0

E2i+1 : 0 −→ A2i+2 −→Wi −→ A2i+1 −→ 0

with Wi ' Wi+e are projective indecomposable B–modules and Ai ' Ai+2e

for all i ∈ Z.
2. The A0, A1, . . . , A2e−1 are mutually non isomorphic.
3. KAn is a vertex of Γ.

Proof. We can lift the projective indecomposable modules W i to projective
indecomposable RG–modules Wi such that k ⊗R Wi ' W i for all i ∈ I . We may
extend this definition to i ∈ Z by requiring that Wi 'Wi+e.

In the situation of Theorem 3.5 we define,

B2i := gSi and B2i+1 := ΩgSi.

Lemma 3.14. Let m ∈ Z and M be an RG−lattice such that k⊗RM ' Bm. Then
there are RG−lattices An with Am ' M and short exact sequences En such that
k ⊗R En ' Fn for all n ∈ Z.

En : 0 −→ An+1 −→Wn −→ An −→ 0

Proof. Start with Am = M .

0 −→ Am+1 −→ Wm −→ Am −→ 0
↓ φ ↓ k ⊗R − ↓ k ⊗R −

0 −→ Bm+1 −→ Wm −→ Bm −→ 0

with Am+1 is just defined to be the kernel of Wm −→ Am. φ is defined by the
universal property of the kernel. Hence, there is an Am+1 which lifts Bm+1 and
inductively one gets all An for n ≥ m.
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For n ≤ m one uses the following strategy. We apply HomR(−, R) to the first
row and Homk(−, k) to the second. We get

0 −→ A∗
m−1 −→ HomR(Wm−1, R) −→ HomR(Am, R) −→ 0
↓ φ ↓ k ⊗R − ↓ k ⊗R −

0 −→ Homk(Bm−1, k) −→ Homk(Wm−1, k) −→ Homk(Bm, k) −→ 0

with A∗
m−1 is just defined to be the kernel of HomR(Wm−1, R) −→ HomR(Am, R)

and φ is defined by the universal property of the kernel. Dualizing again,

0 −→ A∗
m−1 −→ HomR(Wm−1, R) −→ HomR(Am, R) −→ 0

we get that

0 −→ Am −→Wm−1 −→ HomR(Am−1, R) −→ 0

is exact and inductively we get the statement.

Lemma 3.15. If KM is a vertex of Γ, then all KAn are vertices and KAn '
KAn+2e for all n ∈ Z and KAn ' KAn+2e.

Proof. We get that

KWn = KAn ⊕KAn+1 ∀n ∈ Z

Hence, all KAn are vertices. In the Grothendieck group K0(KG) we take

n+2e∑

i=n

(−1)i[KWi] = 0 = (−1)n · ([KAn]− [KAn+2e]).

Lemma 3.16. Let An and M be as above, then An ' An+2e.

Proof. Given n ∈ Z. We have a unique decomposition KWn = Yn(1) ⊕ Yn(2)
where Yn(1) and Yn(2) are both vertices of Γ. Define

Xn(i) := Wn ∩ Yn(i) ; i = {1, 2}.

These are R-pure submodules of Wn since

Wn/(Wn ∩ Yn(i)) ' (W (n) + Yn(i))/Yn(i) ≤ KW (n)/Yn(i)

the latter of which is R–torsion free. Furthermore, they are the only two R–pure
submodules X̃ of Wn with KX̃ is a vertex in Γ. In fact, let X̃ be a counterex-
ample with KX̃ = Yn(i). Then surely X̃ ≤ Xn(i). The following diagram is then
commutative with exact rows:

0 −→ X̃ −→ Wn −→ Qn −→ 0
↓ ‖ ↓

0 −→ Xn(i) −→ Wn −→ Rn −→ 0

where by the serpent lemma the right most vertical map is surjective. Also, we
assumed Qn to be R–free and again by serpent lemma also the cokernel of X̃ −→
Xn(i) is torsion free. But then, KX̃ 6= Xn(i) and we reached a contradiction.

This proves the lemma.
Now the problem is just reduced to trying to find an M to start with. For the

principal block we just take M = R, the trivial module.
The general case is more involved and uses a construction of Dade.
It remains to prove Part 2.
We have:

k ⊗R A2n+1 ' ΩgSn
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k ⊗R A2n ' gSn

If q = |D| ≥ 2 then Si = Ti,1 6' Ti,q−1 = ΩSi and clearly Si 6' Sj for i 6= j mod e.
If q = 2 then A0 ' A1 and since e|(q− 1) we get e = 1. But, KW0 ' Y0(1)⊕ Y0(2)
which are non isomorphic and also KW0 ' KA0⊕KA1 where both are vertices of
Γ. This gives a contradiction.

Hence, we proved now the whole theorem.
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4. Blocks with cyclic defect groups are Green orders

We maintain the notation of Section 3.
In this section we shall define ’Green orders’ due to Roggenkamp and prove that

a block of the group ring RG with cyclic defect groupD is a Green order. Moreover,
we shall describe the structure of Green orders in great detail.

We follow the exposition in [16] and mention that all the material is contained
in [16].

4.1. A small example. Let p be a rational prime number. We shall discuss the
integral group ring of the dihedral group Dp of order 2p. We remark that Dp fits
well in Green’s framework at the prime p, where we mean that ZpDp is a group
ring which satisfies all the assumptions of Theorem 3.3.

Let Dp =< a, b|ap = b2 = baba = 1 > be a presentation of Dp. Then, < a >
is a cyclic normal subgroup of index 2 in Dp. Hence, we get a surjective ring
homomorphism

ZDp −→ ZC2.

This is induced by multiplication by the central idempotent

e =
1

p

p∑

i=1

ai ∈ QDp.

Hence, one gets a pullback diagram

ZDp
e·
−→ ZDpe

↓ ·(1− e) ↓
ZDp(1− e) −→ ZDpe/(ZDpe ∩ ZDp)

which becomes
ZDp

e·
−→ ZC2

↓ ·(1− e) ↓
Λ −→ IFpC2

where IFp is the prime field of characteristic p and the right hand vertical mapping
is just reduction modulo p. In fact, pe ∈ ZDp and ZDpe ∩ ZDp = pZDpe.

We have to determine Λ. Multiplication of ZDp by (1 − e) amounts to saying
that a acts on Z[ζp] as multiplication by ζp, where ζp is a primitive pth root of unity.
In fact, 1 + a + a2 + · · · + ap−1 acts as 0 and this is the only relation among the
elements of Z < a >. The b however, it inverts the a and acts therefore as Galois
automorphism ζp −→ ζ−1

p . The element a acts as ζp and this means that over the

fixed ring Z[ζp + ζ−1
p ] the element a satisfies the minimal polynomial

X2 − (ζp + ζ−1
p )X + 1

and with basis {1, ζp} the representation can be described by the accompanying
matrices

a −→

(
0 −1
1 ζp + ζ−1

p

)
and b −→

(
1 ζp + ζ−1

p

0 −1

)
.

Conjugating by

(
0 1
1 1

)
from the left one gets the representations

a −→

(
ζp + ζ−1

p − 1 1
ζp + ζ−1

p − 2 1

)
and b −→

(
−1 0

ζp + ζ−1
p − 2 1

)
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where πp := ζp + ζ−1
p − 2 generates the unique prime ideal above p in Z[ζp + ζ−1

p ]
(see [6]).

After constructing the standard idempotents in the matrix ring, one gets

Λ =

(
Z[πp] Z[πp]
πpZ[πp] Z[πp]

)

and the mapping to IFpC2 equals reduction modulo

J =

(
πpZ[πp] Z[πp]
πpZ[πp] πpZ[πp]

)

We write down

ZDp = {(u,

(
x y
z w

)
, v) ∈ Z×

(
Z[πp] Z[πp]
πpZ[πp] Z[πp]

)
× Z | x− u ∈ πpZ[πp] and

u− w ∈ πpZ[πp] and

u− v ∈ 2Z}

Localizing at the prime p this gives the Brauer tree

•−

p−1
2

• −•

with exceptional vertex with multiplicity (p − 1)/2 in the centre. We shall show
that this structure has a feature which is common for all blocks of finite groups
with cyclic defect groups.

4.2. Defining Green orders. We shall define a class of orders with a structure
like in the above example. These orders are introduced by Roggenkamp [16] and
who called them Green orders.

Throughout this subsection let R be a local Dedekind domain.

• Let Γ be a tree16 embedded in the plane17.
• Choose a local R–torsion R–algebra k finitely generated as R–module.
• Associate to each vertex v of Γ a pair (Ωv, fv) where Ωv is a local R–order

in a semisimple algebra Av , and where fv is a surjective ring homomorphism
fv : Ωv −→ k with kernel being a principal ideal avΩv.

• If v
e
− w is an edge, then put νe(v) := w and νe(w) := v the mapping giving

the other extremity of the edge e. Of course, νe is an involution.
• If e is an edge incident to a vertex v of the graph Γ, then set αv(e) the

edge which follows e in the cyclic ordering at the vertex v. We set αi
v(e) =

αi−1
v (αv(e)) and α1

v = αv .
• nv := #{αi

v(e)|i ∈ N; e is an edge incident to v} for any vertex v of the graph
Γ.

A leaf of Γ is a vertex v with nv = 1.

16A tree is understood to be a finite, connected, undirected graph without cycles.
17This is equivalent to saying that one imposes to each vertex a cyclic ordering of the edges

incident to the vertex.
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• Attach to each vertex v of Γ the order

Λv :=




Ωv . . . . . . . . . Ωv

(av) Ωv

...
... (av)

. . .
...

...
. . .

. . .
...

(av) . . . . . . (av) Ωv




nv×nv

• We denote the pullback

(∗)

Ωv − Ωw −→ Ωv

↓ ↓ fw

Ωw
fv
−→ k

.

• We form the iterated pullback of the orders Λv for each vertex v under the
following iterative procedure. Set Λg :=

⊕
v∈Γvertex

Λv

1. Fix a leaf18 v. The edge leaving v is e and w := νe(v). Form the pullback
(∗) between19 (Λw)(1,1) and Ωv. Set Λg the subring of the old Λg given
by this pullback.

2. For each i = 2, . . . , nw form the subring of Λg by the pullback (∗) between
(Λw)(i,i) and (Λν

α
i−1
w (e)

(w))(1,1). Put Λg the new subring formed by these

pullbacks. Call the vertices ναi−1
w (e)(w) reached. Call w saturated.

3. If there is no vertex which is not yet saturated, then we define the generic
Green order to the tree Γ with data (Ωv , fv) to be Λg. Stop the algorithm!

4. Else there is a vertex v which is reached and not saturated. Since v is
reached, Λg contains a pullback between (Λv)(1,1) and a Ωw. Set e to be
the edge v − w. Proceed with 2.

Definition 4.1. The resulting order Λg which occurs after the algorithm executed
point 3 in the algorithm is called generic Green order to the tree Γ with data
(Ωv, fv)v∈Γvertex

.

The reader might like to construct the generic Green order to the tree in Section
3.1.

We remark that the isomorphism type of the generic Green order depends only
on the embedded graph and the data. This can be proved since Λv contains an
automorphism conjugation by




0 1 0 . . . 0
... 0 1

. . .
...

...
. . .

. . . 0

0
. . . 1

av 0 . . . . . . 0




n×n

This induces a cyclic permutation of the diagonal entries, the last becoming the
first.

In the following section we shall elaborate on the orders Λv.

18A leaf of a graph is a vertex v ith nv = 1.
19The notation M(i,i) means the (i, i)−entry of the matrix M .
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Definition 4.2. (Roggenkamp [16]) Let R be a Dedekind domain with field of
fractions K. An R–order Λ in a separable K–algebra A is called a Green order if
there is a finite connected tree with vertices {vi}ni=0 and edges {ek}nk=1.

1. The vertices {vi}
n
i=0 correspond to (not necessarily primitive) central idem-

potents {ηi}ni=1 of A with 1 =
∑n

i=0 ηi.
2. The edges {ek}nk=1 correspond to a full set of indecomposable projective Λ–

lattices {Pk}nk=1.
3. The tree and a starting vertex determines20 a permutation δ of {1, . . . , e} and

there is a set of Λ–lattices {Ai}ni=1 such that
(a) KAi ' Aηi for all i = 0, 1, . . . , n
(b) for all i = 0, . . . , n there are short exact sequences

E2i : 0 −→ A2i+1 −→ Pδ(i)

ηδ(i) ·
−→ A2i −→ 0

E2i+1 : 0 −→ A2i+2 −→ Pi
ηi·
−→ A2i+1 −→ 0 .

The term generic Green order is used since in Theorem 4.3 (see also the proof
of Lemma 3.16) it will be proven that all Green orders are Morita equivalent to
generic Green orders.

Example. Let G be a finite group and let R be a complete discrete valuation ring of
characteristic 0 with residue field of characteristic p containing all the |G|th roots
of unity. Let B be a block of RG with cyclic defect group D. By Theorem 3.3 B
is a Green order.

Theorem 4.3. (Roggenkamp) [16] Let Λ be a Green order with tree Γ. Then Λ is
Morita equivalent to a generic Green order with tree Γ.

We shall give Roggenkamp’s proof of Theorem 4.3 in the sequel. For this purpose
we shall introduce in the next section another type of orders, which Roggenkamp
calls in [17] isotypic orders. These are the orders Λv in the definition for a generic
Green order.

4.3. The rational components; isotypic orders. Throughout this subsection
let R be a Dedekind domain with field of fractions K. Let Λ be an R–order in a
separable K–algebra A.

Definition 4.4. (Roggenkamp) [16] The order Λ is called isotypic order provided
there is a twosided Λ–ideal J such that

1. K · J = A
2. J is projective as left Λ–module.
3. Λ/J is a direct product of local R–algebras.
4. Λ is nilpotent modulo the Higman ideal H(Λ).21

Then, J is called associated to Λ or defining ideal of the isotypic order.

One first property is almost immediate:
Λ is isotypic if and only if R̂℘ ⊗ Λ is isotypic for all prime ideals ℘ of R. Here

we denote by R̂℘ the completion of R at ℘.

20in the sense described in the discussion in Section 3.2.
21The Higman ideal of an R–order Λ is the R–annihilator of Ext1Λ⊗RΛop(Λ,−). For orders Λ

in a separable algebra we have K · H(Λ) = 0 . [18, V. 3.5]
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Proof. If Λ is isotypic, then R̂℘ ⊗ Λ is isotypic. In fact, 1. and 3. are clear. 2.
and 4. are consequences of the ’change of rings’ theorem.

If R̂℘⊗Λ is isotypic for all prime ideals ℘ of R, then we use the following general
property for orders Λ in a separable algebra A over a Dedekind domain R.

If M and L are full R–lattices in the K–vector space V , then M℘ = L℘ almost
everywhere. Furthermore, for each ℘ let there be given for each ℘ a full R℘–lattice
X(℘) such that X(℘) = M℘. Then N :=

⋂
X(℘) has the property that N℘ = X(℘)

for all ℘ ∈ Spec(R).
We apply this to J . We have ideals J(℘) for all ℘ by the definition of iso-

typic orders. Set J(℘) = Λ̂℘ whenever Λ℘ is a maximal order. We form
J :=

⋂
℘∈Spec(R) J(℘). Now, J is projective since J(℘) = J℘ is projective for

all ℘. (This is observed most easily by seeing that HomΛ(J,−) is exact. This in
turn is seen by the ’change of rings theorem’. KJ = A since this holds locally and
Λ℘/J℘ is R℘–torsion since KΛ℘ = KJ℘. Hence,

Λ/J '
∏

℘

R℘ ⊗ Λ/J '
∏

℘

(R℘ ⊗ Λ)/(R℘ ⊗ J) '
∏

℘

Λ℘/J℘

the latter of which was assumed to be a direct product of local algebras.
This finishes the proof of the observation.

We may assume by this observation, in clarifying the structure of isotypic orders,
that R is a complete discrete valuation domain with residue field IF and radical πR.

Assuming this, the Higman ideal of Λ is a power of πR. By a general property
of Jacobson radicals for artinian algebras gives us that J is nilpotent modulo πR,
if and only if J ≤ rad Λ. However, J is nilpotent modulo πR if and only if J
is nilpotent modulo a certain power of πR. (Just multiply the nilpotency degree
by the power which was fixed at the beginning.) So Condition 4. translates to
J ≤ rad Λ.

Theorem 4.5. (Roggenkamp [16]) Let R be a complete discrete valuation domain.
Assume that Λ is a basic22 isotypic R–order with associated ideal J . Let furthermore
Λ be indecomposable as ring.

Then, there is a local R–order Ω and a regular non unit a ∈ Ω such that aΩ =
Ωa =: (a) and Ω/(aΩ) is a local algebra, and a natural number n such that

Λ ' Λ0 = Λ0(Ω, a, n) :=




Ω . . . . . . . . . Ω

(a) Ω
...

... (a)
. . .

...
...

. . .
. . .

...
(a) . . . . . . (a) Ω




n×n

Conversely, every such order is isotypic.

22A Noetherian ring is basic if under each decomposition into a direct sum of indecomposable
left projective modules Λ = ⊕i∈IPi, no two projective summands Pi and Pj with i 6= j; i, j ∈ I

are isomorphic.



38 ALEXANDER ZIMMERMANN

Remark 4.6. 1. For Λ0 one can take the associated ideal

J =




0 1 0 . . . 0
... 0 1

. . .
...

...
. . .

. . . 0

0
. . . 1

a 0 . . . . . . 0




n×n

·




Ω . . . . . . . . . Ω

(a) Ω
...

... (a)
. . .

...
...

. . .
. . .

...
(a) . . . . . . (a) Ω




n×n

which is principal. We call the generating element above ω.
2. The product of local algebras as in 3. in the definition of ’isotypic order’

ranges over a set of pairwise isomorphic local algebras Ω/(a).

Proof.
Λ0 is isotypic. In fact,

• a is regular, hence Part 1. of the Definition of an isotypic order.
• J is principal, generated by a regular element, hence free and Part 2. follows.
• Λ/J =

∏n
i=1 Ω/(a) is a direct product of local orders, hence we get also Part

3.

a is not a unit. Since Ω is local, J is contained in the radical of Λ. The radical of
Λ is the ideal with radΩ in the main diagonal and in the lower triangular matrix,
Ω in the rest of the entries.

We have to prove the converse. We may order a complete set of projective
indecomposable modules P1, P2, . . . , Pn such that rankRPi ≤ rankRPi+1 for all
i = 1, 2, . . . , n− 1.

Since for any i the module Pi is projective, there is a Qi and an integer m(i)
such that Pi ⊕Qi ' Λm(i). But then, J ⊗Λ Pi ⊕ J ⊗Λ Qi ' Jm which is projective
since J is projective. Hence, J ⊗Λ Pi is projective. Then, for any i the set

Pi := { isomorphism classes of the modules J j ⊗Λ Pi|j ∈ N}

consists of projective modules. The cardinality of this set is k(i).

Claim 4.7. Jk(1) ⊗Λ P1 ' P1. Furthermore, k(1) = n and hence P1 is a complete
set of isomorphism classes of projective modules.

Proof. Since KJ = A, we get rankRP1 = rankRJ
j ⊗Λ P1 and we may or-

der the projective indecomposable modules such that J j ⊗Λ P1 = P1+j . Let
Q = {Q1, Q2, . . . , Qs} be a set of representatives of isomorphism classes of in-
decomposable projective modules such that the isomorphism class of no element of
Q is contained in P1.

Since Λ is indecomposable, there is a Qi with HomΛ(Qi, P1+j) 6= 0. If not, the
endomorphism ring of Λ would be the direct product of the endomorphism rings of

the direct sum of modules in Q and that of ⊕
k(1)
i=0 P1+i.

We now reduce to artinian algebras. Take 0 6= φ ∈ HomΛ(Qi, P1+j). Then, there
is a ν ∈ N such that the composition

Qi
φ
−→ P1+j −→ (P1+j)/(π

νP1+j)

is non zero. Since J ≤ rad Λ, there is a µ such that Jµ ≤ πνΛ. But, for all k,
Jk/Jk+1 is a projective Λ/J module. However, this is a direct product of local
algebras. Hence,

Jk · P1+j/J
k+1 · P1+j
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is a local Λ/J–module and has all composition factors isomorphic to P1+j/rad P1+j .
Hence, P1+j/π

νP1+j has composition factors all isomorphic to Pk/rad Pk for k =
1, . . . , k(1). But, the top of Qi is isomorphic to one of them, hence the isomorphism
class of Qi is in P1, a contradiction and Q is empty.

It remains to prove that Jk(1) ⊗Λ P1 ' P1.
If Jk(1) ⊗Λ P1 ' Pk for some k, then one forms the set Pk instead of P1 and

{P1, . . . , Pk−1} would be in Q. The analogous arguments as above give a contra-
diction and we are done.

By Morita theory, ⊕n
i=1Pi gives a Morita bimodule inducing a Morita equivalence

between Λ and EndΛ(⊕n
i=1Pi). Since we have the Krull–Schmidt theorem for Λ and

since Λ is basic, Λ ' EndΛ(⊕n
i=1Pi).

Claim 4.8. EndΛ(⊕n
i=1Pi) ' Λ0 for Ω := EndΛ(P1) and (a) := HomΛ(P1, J

n ⊗Λ

P1).

Proof. Since KP1 is simple by construction, the isomorphism P1 −→ JnP1 is
multiplication by a regular element a ∈ Ω. Hence,

HomΛ(P1, J
n ⊗Λ P1) = Ω · a.

Any endomorphism φ ∈ Ω can be extended to an endomorphism of J i ⊗Λ P1 by
idJi ⊗ φ. Hence,

Ω ≤ EndΛ(P2) ≤ · · · ≤ EndΛ(Pn−1) ≤ EndΛ(Pn) ≤ EndΛ(Jn ⊗Λ P1) = a−1 ·Ω · a.

But then, all of the endomorphism rings are equal, Ω being noetherian.
Since when tensored by K over R, all the Pi are isomorphic and simple, any non

zero mapping φ : Pi −→ Pi+j for i = 1, . . . , n and j = 1− i, . . . , n − i is injective.
Looking at the tops of the modules Pi+j/J

kPi+j by the arguments given in the
proof of the preceding claim, HomΛ(Pi, Pj) = Ω if j ≤ i and HomΛ(Pi, Pj) = Ω · a
if j > i.

This proves the claim and also the theorem.

4.4. Structure theorem for Green orders. Proof of Theorem 4.3. We assume
that Λ is basic. The proof will be done in several steps.

Lemma 4.9. Let Λ be a basic Green order with connected tree Γ and let v be a
leaf. Let e be the edge joining v with some vertex w. The projective indecomposable
module associated with e is P0. Then, EndΛ(Λ/P0) is a Green order with tree Γ′

where Γ′
vertex = Γvertex \ {v} and Γ′

edge = Γedge \ {e}.

Proof. Without loss of generality we may set A0 = Λη0. Set P := Λ/P0. Apply
F := HomΛ(P,−) to En for all n = 0, . . . 2n−1. Since P is projective, this functor is
exact. However, since there is only one projective indecomposable module, namely
P0, F (A0) = 0. But then F (E2i) for i = 1, . . . , n and F (E2i+1) for i = 0, . . . , n− 1
are the required exact sequences.

This finishes the proof of the lemma.

Lemma 4.10. Let Λ be a basic R–order in the separable algebra A. Let e be a
central idempotent of A and let P |Λ with P · e = 0. Put EndΛ(Λ/P ) =: Λ0 as a
subring of Λ (not with the same unit!). Then,

Λ · e = Λ0 · e and Λ0 · e ∩ Λ = Λ0 · e ∩ Λ0.
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Proof. To prove the first statement one observes that

Λe = eΛe

= eEndΛ((Λ/P )⊕ P )e

= e

(
EndΛ(Λ/P ) HomΛ((Λ/P ), P )

HomΛ(P,Λ/P ) EndΛ(P )

)
e

=

(
eEndΛ(Λ/P )e 0

0 0

)

= Λ0e

The second statement is proved as follows:
By the first statement,

Λ0 ∩ (Λ0e) = Λ0 ∩ (Λe)

and clearly

Λ ∩ (Λe) ⊇ Λ0 ∩ (Λe)

Hence we have to show that

Λ ∩ (Λe) ⊆ Λ0 ∩ (Λe)

This is done by the following computation:

Λ ∩ (Λe) =

(
EndΛ(Λ/P ) HomΛ((Λ/P ), P )

HomΛ(P,Λ/P ) EndΛ(P )

)

∩e

(
EndΛ(Λ/P ) HomΛ((Λ/P ), P )

HomΛ(P,Λ/P ) EndΛ(P )

)
e

=

(
EndΛ(Λ/P ) HomΛ((Λ/P ), P )

HomΛ(P,Λ/P ) EndΛ(P )

)

∩

(
eEndΛ(Λ/P )e 0

0 0

)

=

(
EndΛ(Λ/P ) 0

0 0

)
∩

(
eEndΛ(Λ/P )e 0

0 0

)

= Λ0 ∩ (Λ0e)

Claim 4.11. Let Λ be a basic Green order with tree Γ. For the idempotent η
corresponding to a vertex v the ring Λ/(Λ∩Λη) is a direct product of local algebras.

Proof. We use induction on the number of vertices.
If the Green order has only 2 vertices, then the statement is clear since there is

just one projective indecomposable module and the Green order is local.
Let then v be a leaf of the tree Γ. Let e be the edge of the tree that links v with

the rest of the tree. Let P0 be the projective indecomposable which corresponds to
e. Set P = Λ/P0 and Λ0 = EndΛ(P ). Then, by Lemma 4.10 the tree Γ′ defined by

Γvertex \ {v} =: Γ′
vertex; Γedge \ {e} =: Γ′

edge

defines a Green order structure on Λ0.

Let v
e
− w and let v′ with w 6= v′ 6= v be a vertex of Γ. Then, for v′ the statement

is true by induction.
We need a proof for w and its central idempotent ηw only. Let ηv be the central

idempotent corresponding to v.
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ε := 1− ηv − ηw. We get the following pullback diagram.

Λ −→ Λ(ε+ ηv)
↓ ↓

Ληw −→ Λ(ε+ ηv)/(Λ ∩ Λ(ε+ ηv))

We see that

Λ(ε+ ηv) = Λε⊕ Ληv

and

Λ(ε+ ηv)/(Λ ∩ Λ(ε+ ηv)) = [Λε/Λ ∩ Λε]⊕ [Ληv/Λ ∩ Ληv ].

But, by Lemma 4.10

Λε/(Λ ∩ Λ(ε)) = Λ0ε/(Λ0 ∩ Λ0(ε))

and since ε is also a central idempotent of KΛ0, which gives rise to a pullback
diagram itself with quotient A := Λ0ε/(Λ0 ∩ Λ0(ε)), the ring A is a direct product
of local R–algebras by induction.

Now we use the fact that v is a leaf. If Ληv was not local, it had two non
isomorphic simple modules. Since Ληv is an image of Λ, Λ itself has these two non
isomorphic modules. However, there is only one simple Λ–module, namely the top
of P0, on which HomΛ(P0,−) is non zero. The two simple Λ–modules constructed
above however have this property, and hence they cannot exist. We conclude, Ληv

is local.
Since Ληv is local, Ληv/(Ληv ∩ Λ) is local.

Lemma 4.12. Let Λ be a basic Green order with tree Γ. Let v be a vertex of Γ
with corresponding central idempotent ηv. Then, Ληv ∩ Λ is a free Ληv–module.

Proof. Again we use induction on the number of vertices of Γ.
Assume that there are only two vertices. Hence, there are short exact sequences

0 −→ A1 −→ Λ
ηv
−→ A0 −→ 0

0 −→ A0 −→ Λ
1−ηv
−→ A1 −→ 0.

Thus, Λ(1− ηv) ∩ Λ ' A0 ' Ληv.
Assume we have more than two vertices.

If v is a leaf with idempotent ηv , let v
e
− w be the edge of the tree linking v with

the rest of Γ. The idempotent associated with w is denoted by ηw. Hence, there is
an indecomposable projective Λ–module P0, and there are short exact sequences

0 −→ A0 −→ P0
ηw
−→ A−1 −→ 0

0 −→ A1 −→ P0
ηv
−→ A0 −→ 0.

Let P0 = Λe0 for an idempotent e0 of Λ. Since v is a leaf, ηvP0 = ηvΛ; the proof is
the same as that of proving that Ληv is local. Now, since ηwP0 = (1− ηv)P0,

Ληv ∩ Λ = ηvP0 ∩ Λ = ηvP0 ∩ P0 ' A0 = ηvP0

If v2 is a vertex different from v and w, then let ηv2 be the central idempotent
associated to v2. Then, since

Ληv2 ∩ Λ = Λ0ηv2 ∩ Λ0 and Ληv2 = Λ0ηv2 ,

as usual for Λ0 = EndΛ(Λ/P0), by Lemma 4.10, the statement is true by the
induction hypothesis.
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We have to prove the statement for w. Let {e1, e2, . . . , en} be the set of edges
adjacent to w. Let {P1, P2, . . . , Pn} be the corresponding projective indecomposable
modules. Set ∆ := EndΛ(

⊕n
i=1 Pi). Then, again by Lemma 4.10

∆ηw = Ληw and ∆ηw ∩∆ = Ληw ∩ Λ

Hence we may prove the statement for Γ being a star and w in the centre and
number the edges in their cyclic ordering. Let {η1, η2, . . . , ηn} be the idempotents
corresponding to the vertices being the end of {e1, e2, . . . , en} unequal to w. The
idempotent corresponding to w is η. By the definition of a Green order we get short
exact sequences

0 −→ A1 −→ P1
η1·
−→ A0 −→ 0

0 −→ A2 −→ P2
η·
−→ A1 −→ 0

0 −→ A3 −→ P2
η2·
−→ A2 −→ 0

0 −→ A4 −→ P3
η·
−→ A3 −→ 0

0 −→ A5 −→ P3
η3·
−→ A4 −→ 0

. . . . . .

0 −→ A2n−1 −→ Pn
ηn·
−→ A2n−2 −→ 0

0 −→ A0 −→ P1
η·
−→ A2n−1 −→ 0

For computing Λη ∩ Λ we have to sum up every second kernel and get

Λη ∩ Λ '
n⊕

i=1

A2i =

n⊕

i=1

ηPi = η

n⊕

i=1

Pi

is a progenerator. If we furthermore assume that the Green order is basic, Λη ∩ Λ
is a free Λη–module.

This proves the lemma.

To prove the theorem we just have to paste the different pieces together.
We see that for each vertex v the order Λv := Ληv is an isotypic order with

defining ideal Jv := Ληv ∩ Λ.
In fact,

• K ⊗R (Ληv ∩ Λ) = K ⊗R Ληv,
• Jv is a free Ληv–ideal by Lemma 4.12,
• and Ληv/(Ληv ∩ Λ) is a direct product of local R–algebras by Lemma 4.9.
• The ideal Jv for all vertices v is contained in the radical of Λv: Let S be a

simple Λv–module. One has to show that Jv acts as 0 on S. Since Λ −→−→ Λv,
each simple Λv–module is also a simple Λ–module. But, we get n simple
Λ–modules just by the local algebras which we get in the quotients Λv/Jv,
where n is the number of edges of Γ. All these are annihilated by all the Jv.
S is one of them.

We get the structure of Λv by Theorem 4.5. The Ωv in the main diagonals of the
matrices correspond to the projective indecomposable modules, as one sees from
the proof of Theorem 4.5, and these are for Green orders just the ηvP for ηv being
the idempotent corresponding to v and for P being a projective indecomposable
module corresponding to an edge incident to v. The pullbacks linking the different
Λv are as constructed in the example since this is the way the exact sequences
corresponding to the tree are built.
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Remark 4.13. In [19, 9] it is proven that two Green orders having the same data
(Ωv, fv) but not necessarily the same underlying tree have equivalent bounded de-
rived module categories. An explicit twosided tilting complex which provides this
derived equivalence is given in [20].
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Cedex 05; France


