
COMMENTS ON GENTLENESS OF ENDOMORPHISM ALGEBRAS

ALEXANDER ZIMMERMANN

Abstract. In a joint paper with Jan Schröer we have shown that a module M over a special biserial
algebra A with Ext1

A
(M,M) = 0 has gentle stable endomorphism algebra. In the present note we

interpret this result and study the gentle algebras which occur as stable endomorphism algebras of
modules over the alternating group of degree 4 in characteristic 2.

Introduction

The class of special biserial algebras is a very well studied class of algebras of tame representation
type (see Skowroński and Waschbüsch [11]). These algebras occur naturally in many situations. By
a result of Erdmann [5] blocks of group rings of finite groups over an algebraically closed field K of
characteristic 2 and dihedral defect group are examples. Assem and Skowroński [1] introduced the
class of gentle algebras as a subclass of special biserial algebras to axiomatize the properties of an
iterated tilted algebra of a hereditary algebra of type Ãn. They have remarkable properties, as they
provide a sufficiently rich class of nevertheless quite well controlled behaviour. In recent work [10] with
Jan Schröer we showed that the endomorphism ring, taken in the stable category, of a module M over
a special biserial algebra A with Ext1A(M, M) = 0 is a gentle algebra.

In the present note we present this result and we get a nice consequence. Slightly generalizing in
Section 2 the original argument in [10], we show in the present note that an algebra whose derived
category of bounded complexes of modules can be fully faithfully embedded as a triangulated category
into the derived category of a gentle algebra is gentle again. Since the gentle algebras are combinatori-
ally defined, it seems to be a nice project to furnish them with additional structure, and maybe single
out particularly nice gentle algebras as those provided by the group theoretical situation. Moreover,
the group theoretical properties of the module M should have an implication on the gentle algebras
obtained this way. We study here in Section 3 the smallest non trivial case to show that this class
of nice gentle algebras is non empty even for such a small group as the alternating group of degree
4. It appears that there are a finite number of algebras occuring this way, exactly 23 indecomposable
algebras which appear to be of very symmetric structure.

The present note originated from my lecture in Luminy in June 2002 at the meeting ”Théories
homologiques, représentations et algèbres de Hopf” and I want to express my gratitude to the organisers
for having invited me to this very interesting conference. Moreover, I want to thank the referee for his
careful reading of the manuscript and various suggestions which lead to many improvements.

1. Quivers, special biserial and gentle algebras

Let Q be a quiver and let I be an admissible ideal of the quiver algebra KQ for an algebraically
closed field K. Then A = KQ/I is a finite dimensional K-algebra and, up to Morita equivalence, any
finite dimensional K-algebra A arises this way. The pair (Q, I) is called special biserial if the following
hold:
1) For any vertex v the set of lengths of the paths starting in v and not being in I is finite.
2) Each vertex in Q is the end point of at most 2 arrows and the starting point of at most 2 arrows.
3) For any arrow α there is at most one arrow β composable with α from the right and αβ is not in
I , and there is at most one arrow γ composable with α from the left and γα is not in I .
A special biserial pair is called gentle if in addition:
4) There is a generating set of I as ideal consisting of paths of length 2;
5) For any arrow α there is at most one arrow β composable with α from the right and αβ is in I , and
there is at most one arrow γ composable with α from the left and γα is in I .
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A K-algebra A is called gentle, if it is Morita equivalent to an algebra KQ/I for (Q, I) gentle, and
A is called special biserial if A is Morita equivalent to KQ/I for (Q, I) special biserial. In these cases,
KQ/I is finite-dimensional if and only if the set of vertices Q0 of Q is finite.

We shall concentrate in the sequel on the rôle of special biserial algebras in the representation theory
of groups. It is known that blocks B of group rings KG of finite groups G over algebraically closed
fields K are of tame representation type if and only if K is of characteristic 2 and the defect group of
B is either dihedral, semidihedral or generalised quaternion. Karin Erdmann proved [5] that a block
B of KG with defect group D is special biserial if and only if D is a dihedral 2-group. Moreover,
Erdmann defined a small class of algebras by conditions on the quiver and on the relations as possible
representatives of the Morita equivalence classes of blocks with dihedral defect group.

2. Linking gentle and special biserial algebras

By definition any gentle algebra is special biserial. There is a more intrinsic relation between special
biserial algebras and gentle algebras. For an algebra A let RA be its repetitive algebra (cf e.g. [6]).
Then, a result by Schröer [9] and Ringel [8] show that an algebra A is gentle if and only if RA is special
biserial. Is it possible to derive from special biserial algebras other algebras which are always gentle?

Denote by A − proj the category of projective A-modules. The stable module category A −mod
has objects the same as the category of A-modules, and the morphisms from an A-module M to a
module N is the quotient of A-linear homomorphisms from M to N modulo those factoring through
a projective module. The stable module category is cosuspended with the syzygy functor being the
suspension functor. The same concept exists replacing projective modules by injective modules, and
the stable category is then suspended and denoted by A − mod. In case A is selfinjective, the two
concepts coincide and the stable category is triangulated. We mention that the repetitive algebra RA
is always selfinjective.

Theorem 1. [10] Let A be a special biserial algebra over an algebraically closed field K and let M be
an A-module. If Ext1A(M, M) = 0, then EndA(M) and EndA(M) are gentle K-algebras.

The proof for this result uses heavily a basis given by Crawley-Boevey [4] for the vector space of
homomorphisms HomA(M, N) for two A modules M and N which behaves nicely under composition
of mappings. Then, one carefully examinates when homomorphisms factor through projective modules,
and in some critical cases, where they do not factor, they give rise to a non trivial extension class.

Let Db(A) be the derived categories of bounded complexes of A-modules. For details about this
concept and notations see [7]. We get the following consequence.

Corollary 2.1. Let K be an algebraically closed field and let A and B be K-algebras. If the bounded
derived category Db(B) can be fully faithfully embedded into Db(A) as triangulated categories, then B
is a gentle algebra if A is a gentle algebra,.

Proof. Let E : Db(B) −→ Db(A) be a fully faithful embedding. Since B is projective, Ext1B(B, B) =
HomDb(B)(B, B[1]) = 0. Applying E and putting T := E(B), one gets HomDb(A)(T, T [1]) = 0. In

[6] Happel proves that there is a fully faithful embedding FA : Db(A) ↪→ RA − mod as triangu-
lated categories. Since FA is fully faithful, 0 = HomDb(A)(T, T [1]) ' HomRA(FAT, FA(T [1])) '

HomRA(FAT, Ω−1(FAT )) ' Ext1RA(FAT, FAT ).
Since RA is special biserial by the result of Schröer [9] and Ringel [8], FAT = FA(E(B)) satisfies

the condition needed to apply the Theorem 1 to the RA-module FAT . Moreover, B = EndB(B) =
EndDb(B)(B) ' EndDb(A)(EB) ' EndDb(A)(T ) since E is fully faithful. Hence, by Theorem 1,
B ' EndDb(A)(T ) ' EndRA(FAT ) is gentle.

3. Defining gentle algebras group theoretically

Theorem 1 and the result of Karin Erdmann imply that the stable endomorphism ring of any module
M over a block of a group ring KG with dihedral defect group is gentle, provided Ext1KG(M, M) = 0.
Such a block has up to 3 simple modules. Let us consider in particular the alternating group A4 of
order 12 over an algebraically closed field K of characteristic 2. KA4 is isomorphic to the following
quiver algebra:
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subject to the relations

αiαi+1 = βiβi−1 = αiβi − βi−1αi−1 = 0 for all i ∈ Z/3Z
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We denote by P1, P2 and P3 the projective indecomposable KA4-modules for K being a field containing
F4. We call Si := Pi/rad(Pi). We have rad(Pi)/soc(Pi) ' Si−1 ⊕ Si+1 where we take i ∈ Z/3Z. The
indecomposable representations over KA4 are classified (see e.g. [5, II.7.4], [2, pp 192 ff]).
a) three indecomposable projective modules P1, P2, P3,
b) n-th syzygies Ωn(Si) of the simple modules S1, S2, S3 for n ∈ Z,
c) certain modules Wn,λ(Si).,
d) modules Ωn(Si)/Sj , for certain i and j and n < 0. The projective resolutions of these modules are
periodic of period 3, and for any dimension 2d, d ∈ N, there are, up to isomorphism, six indecomposable
modules Md(i) and Nd(i) for i ∈ Z/3Z of composition length 2d and with periodic resolution.

Lemma 3.1. Ext1KA4
(Wn,λ(Si), Wn,λ(Si)) 6= 0.

Proof. Wn,λ(Si) := Vn,λ ↑
KA4

K(C2×C2)
⊗KSi for a certain K(C2×C2)-module Vn,λ with Ω(Vn,λ) = Vn,λ.

We get Ext1K(C2×C2)
(Vn,λ, Vn,λ) 6= 0 and by Frobenius reciprocity Ext1KA4

(Wn,λ(Si), Wn,λ(Si)) 6= 0.

Lemma 3.2. Let M be a KA4-module with Ext1KA4
(M, M) = 0. If Ωn(Si)⊕Ωm(Sj) is a direct factor

of M , then n = m and i = j.

Proof. Since KA4 is a symmetric algebra, Ext1KA4
(ΩnSi, Ω

mSj) ' HomKA4
(Ωn+1−mSi, Sj) '

HomKA4
(Ωn+1−mS1, Sj−i+1). The question now is to determine when HomKA4

(Ωn+1S1, Sj) = 0 =

HomKA4
(Sj , Ω

n−1S1) for n ∈ Z and j ∈ Z/3Z. But, since Sj is simple and Ωm(S1) is indecomposable
non projective for any m ∈ Z, one gets HomKA4

(ΩmS1, Sj) = HomKA4
(ΩmS1, Sj). But now, the

first condition implies that n is non positive and the second implies that n is non negative. Hence,
HomKA4

(Ωn+1S1, Sj) = 0 = HomKA4
(Sj , Ω

n−1S1) if and only if n = 0 and j = 1. This implies the
statement.

Lemma 3.3. Let Mn(i, j) = Ω−n(Si)/Sj be an indecomposable module for n ≤ −1. Then, d ≥ 3 ⇒
Ext1KA4

(Mn(i, j), Mn(i, j)) 6= 0.

Proof. The modules Mn(i, j) are special string modules coming from walking in the quiver. So, up to

a cyclic permutation of the indices, Mn(i, j) is given by the following string: 1 ��	
2
@@R3 ��	

1
@@R2 ��	

3
· · · ��	

-n

2-n
The module Nn(i, j) is given by turning the opposite direction of the quiver. Since Ω(Mn(i, j)) is given
by starting the string one sink later and ending it at one source later, so that Ω(Mn(i, j)) is given by

the following string: 2 ��	
3
@@R1 ��	

2
@@R3 ��	

1
· · · ��	

-n+1

-n so that as soon as n ≥ 3 the submodule given by the
substring of the left n−2 arrows is identical to the substring of the n−2 right arrows of Mn(i, j). Since
at least one of the modules contains composition factors of the top of Mn(i, j) and of Ω(Mn(i, j)), the
morphism induced by this identification cannot factor through a projective module. This proves the
statement.

Summarizing we get

Corollary 3.4. Let M be a KA4-module with Ext1KA4
(M, M) = 0, then there is an m ∈ Z so that

any indecomposable direct factor of Ωm(M) is one of the following modules:
1) indecomposable modules Mi,j ∈ Ext1KA4

(Si, Sj) where i 6= j and i, j ∈ Z/3Z,

2) indecomposable modules M4(i) and N4(i), where we define M(2) := Ω−2(S1)/S3, M(3) := Ω(M(2))
and M(1) := Ω(M(3)) as well as N(3) := Ω−2(S1)/S2, N(2) := Ω(N(3)) and N(1) := Ω(N(2)),
3) simple modules Si for i ∈ Z/3Z. Moreover, if Si ⊕ Sj is a direct factor of M , then i = j.
4) Ωε(Si) for i ∈ Z/3Z and ε ∈ {+1,−1}. Moreover, if Ωε1(Si)⊕Ωε2(Sj) is a direct factor of M , then
ε1 = ε2 and i = j. Similarly, Ωε1(Si)⊕ Sj is not a direct factor of M for any ε ∈ {+1,−1}, i and j.

The stable endomorphism rings of any of these indecomposable modules is one-dimensional for
modules of type 1,3,4, and the algebra of dual numbers K[X ]/X2 for type 2 modules.

3.1. Determining the possible M without a direct factor of type 2.

3.1.1. Suppose M has two direct factors. We see that EndKA4
(M1,2⊕S1) ' A1 where A1 is the quiver

algebra of • −→ •, and Ext1KA4
(M1,2⊕S1, M1,2⊕S1) = 0. By direct inspection which we leave to the

reader, none of the other indecomposable gentle algebras with two vertices is the stable endomorphism
ring of a module M with Ext1KA4

(M, M) = 0, and without a direct factor of type 2.
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3.1.2. Suppose M has three direct factors. A module of type 3 and a module of type 4 cannot be
simultaneously a direct factor of M . So, applying the syzygy functor if necessary, we may assume that
no module of type 4 is a direct factor of M .

Lemma 3.5. There is an integer m and j ∈ Z/3Z so that Sj ⊗K Ωm(M) ' S1 ⊕ Mi,j ⊕ Mk,l

for (i, j, k, l) ∈ {(1, 2, 1, 3), (1, 2, 2, 1), (1, 3, 3, 1), (2, 1, 3, 1)}. Any of these modules M has non self-

extensions and the stable endomorphism algebra of any of these modules are • • •- -········ or

• • •� - or • • •- � . Any of these algebras occur as stable endomorphism algebras.

Proof. If no module of type 3 is a direct summand of M , we have to deal with M being the
sum of three modules of type 1. Since the syzygy functor has two orbits of length 3 on the modules
of type 1, if M is a direct sum of three modules of type 1, at least two of them belong to the
same orbit under the syzygy functor. But then, the sum of these two has a non trivial Ext1 since
there cannot be four non-isomorphic modules in a single orbit under the syzygy functor. Hence,
this case is excluded. Since Ext1KA4

(Si, Sj) 6= 0 for i 6= j, we only need to consider the case M =

S1 ⊕Mi,j ⊕Mk,l. Since Ext1KA4
(S1, M2,3) 6= 0 6= Ext1KA4

(S1, M3,2), we only have to consider four
cases: (i, j, k, l) ∈ {(1, 2, 1, 3), (1, 2, 2, 1), (1, 3, 3, 1), (2, 1, 3, 1)}, since (1, 2, 3, 1) and (1, 3, 2, 1) leads to a
non trivial Ext1(M, M). Now, the stable endomorphism algebra of S1 ⊕M1,2⊕M1,3 is • −→ • ←− •,
the stable endomorphism algebra of S1 ⊕M2,1 ⊕M3,1 is • ←− • −→ •, and the stable endomorphism

algebra of M1,3⊕M3,1⊕S1 (or M1,2⊕M2,1⊕S1) is • • •- -········ We leave the (tedious) verification
to the reader that indeed these modules M have Ext1(M, M) = 0.

3.1.3. Suppose M has four direct factors. Since if M has four direct summands, it also has three
direct summands, and we need to add another module Mx,y to S1 ⊕ Mi,j ⊕ Mk,l for (i, j, k, l) ∈
{(1, 2, 1, 3), (1, 2, 2, 1), (1, 3, 3, 1), (2, 1, 3, 1)}. It follows that (x, y) ∈ {(1, 2), (2, 1), (3, 1), (1, 3)} and any
of these choices leads to a non trivial self-extension. We proved

Lemma 3.6. If M is a KA4-module with Ext1(M, M) = 0 and with four pairwise non isomorphic
direct factors, then a module of type 2 is a direct factor of M .

3.2. Determining the possible M with a direct factor of type 2. Since HomKA4
(N(1), N(3)) 6=

0 at most one of the modules N(i) can be a direct factor of M , in order to get Ext1KA4
(M, M) = 0.

Similarly at most one of the modules M(i) can be a direct factor of M . Nevertheless, there may be
N(i)⊕M(j) being a direct factor of M . We basically have to distinguish the cases i = j and i 6= j.

3.2.1. Suppose M has two direct factors. If a module of type 4 and no module of type 3 is a direct
factor of M , by applying the syzygy functor if necessary, we may reduce to the case that no module
of type 4 but a module of type 3 is a direct factor of M .

Lemma 3.7. Let M be a module with direct factor M(i) or N(i) for an i ∈ Z/3Z and so that
Ext1(M, M) = 0, then EndKA4

(M) is one of the following algebras:

K[X ]/X2 ×K[X ]/X2, K ×K[X ]/X2, • •
-� ··· ,

m
6• •-··

·
,

m
6• •�··

·
.

Proof. Now, EndKA4
(M(i) ⊕N(j)) ' K[X ]/X2 ×K[X ]/X2. Moreover, Ext1KA4

(Sj ⊕M(i), Sj ⊕
M(i)) 6= 0 unless i = j, and likewise for N(i) instead of M(i). Now, EndKA4

(M(1)⊕S1) is the quiver

algebra of the quiver • •
-� ··· . By duality we get the same result for EndKA4

(N(1)⊕S1). We have to
look at the stable endomorphism ring of a module of type M(i) ⊕Ml,j . By duality we get the same
results for N(i)⊕Ml,j . Now, we may assume that i = 1 and then only M = M(1)⊕M3,2 has non trivial
Ext1(M, M). Moreover, EndKA4

(M(1)⊕Ml,j) ' K×K[X ]/X2 for (l, j) ∈ {(1, 2), (3, 1), (2, 3)}. Now,

EndKA4
(M(1)⊕M2,1) is isomorphic to the quiver algebra

m
6• •-··

·
and EndKA4

(M(1)⊕M1,3)

is isomorphic to the quiver algebra
m

6• •�··
·

.

3.2.2. Suppose M has three direct factors. Replacing M by Ωm(M) if necessary we may assume that
the only direct factors of M are of type 1, 2 and 3.

Lemma 3.8. Let M be a direct sum of three modules of type 1,2 and 3. Then, EndKA4
(M) is one of

the following algebras: • • •
-� �··· , • • •

-� -
···
······

, • • •
-� �··· ······ ,• • •

-� -··· . If M is a direct
sum of one module of type 2 and two modules of type 1, then EndKA4

(M) decomposes as K×A where

A is Morita equivalent to either
m

6• •-··
·

or
m

6• •�··
·

. If M has at least two direct summands
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of type 2, then EndKA4
(M) is Morita equivalent to one of the following algebras: • •

-�··· •-� ···
·······
······· or

K[X ]/X2 ×A where A is Morita equivalent to either
m

6• •-··
·

or
m

6• •�··
·

.

Again, for M being a sum of a module of type 2, type 3 and type 1, we get M = N(1)⊕S1⊕Mi,j up
to syzygy, tensor product with a simple module and duality. Examining the cases one gets that (i, j) ∈
{(1, 2), (2, 1), (1, 3), (3, 1)}. Choosing (i, j) = (1, 2) we get EndKA4

(M) is isomorphic to • • •
-� �··· .

If (i, j) = (2, 1), then EndKA4
(M) is isomorphic to • • •

-� -
···
······

, and finally (i, j) = (1, 3) yields

EndKA4
(M) is isomorphic to • • •

-� �··· ······ , as well as (i, j) = (3, 1) gives EndKA4
(M) is isomorphic to

• • •
-� -··· . We still have to study the case of one module of type 2 and two modules of type 1. But

there, again one may assume that N(1) is a direct factor of M . We get 6 combinations of two modules
of type 1, namely (M1,2, M2,1), (M1,2, M1,3), (M1,2, M3,2), (M3,1, M2,1), (M1,3, M3,1) and (M3,2, M3,1),
the other possibilities inducing self-extensions. Any of the endomorphism rings decomposes into K×A

where A is one of the two endomorphism rings
m

6• •-··
·

or
m

6• •�··
·

. Finally, we have
to study the case of two modules of type 2 and another module of type 1, 3 or 4. Here the two
modules of type 2 are necessarily M(i) ⊕ N(j), otherwise one would get a non vanishing Ext1. We
first study the case i = j, where we may assume i = 1. Then, the only possible module of type 3 is

S1. Then, EndKA4
(M(1)⊕N(1)⊕S1) is the quiver algebra for the quiver • •

-�··· •-� ···
·······
······· . Applying

the syzygy functor if necessary and changing i to another index, the analogous argument yields the
same endomorphism algebra for any of the modules of type 4. We have to consider the case of one
module of type 1 as direct summand of M . Then, as it is easily seen, the stable endomorphism algebra
decomposes as a direct product of K[X ]/X2 and one of the algebras A with one loop and one arrow,
as above. In case i 6= j, no simple direct module can be a direct summand of M , otherwise there would
be a non trivial Ext1(M, M). Applying the syzygy functor, the same is true for a direct factor of type
4. We are left with direct factors of type 3. There, by direct inspection the same algebras occur as for
M = M(1) ⊕N(1) ⊕Mi,j . We leave to the reader the tedious, but straight forward verification that
for any of the given M one has Ext1KA4

(M, M) = 0. This gives the statement.

3.2.3. Suppose M has four direct factors. Suppose first that there is only one direct factor of M of
type 2. Then, the other three factors have to occur in the above list of modules M without a factor of
type 2. All of them have a direct factor S1. So, the only possibility for the module of type 2 is M(1)
or N(1). We get the following result.

M EndKA4
(M)

(N(1)⊕ S1 ⊕M1,2 ⊕M2,1) or (N(1)⊕ S1 ⊕M1,3 ⊕M3,1)
• • • •

- -�- ···········

(M(1)⊕ S1 ⊕M1,2 ⊕M2,1) or (M(1)⊕ S1 ⊕M1,3 ⊕M3,1)
• • • •

- -�-···
·····

···

(N(1)⊕ S1 ⊕M1,2 ⊕M1,3) or (M(1)⊕ S1 ⊕M1,2 ⊕M1,3)
• • • •

- ��-···
·····

···

(N(1)⊕ S1 ⊕M2,1 ⊕M3,1) or (M(1)⊕ S1 ⊕M2,1 ⊕M3,1)
• • • •

- -�� ···········

We need to deal with the case of two direct factors M(i) ⊕ N(j) being a direct summand of M .
We have to distinguish the cases i = j and i 6= j. If i = j, we may suppose i = 1. Then, if we
have two additional summands of M of type 1, we get in all cases that the stable endomorphism
algebra decomposes into a direct product of two two-vertex algebras with one loop and one arrow, as
displayed in the case occuring above. All four possibilities occur. The other possibility is that M =
M(1)⊕N(1)⊕S1⊕Mi,j . Then, (i, j) ∈ {(1, 2), (1, 3), (2, 1), (3, 1)} to get Ext1(M, M) = 0. Moreover,
we see that M(1) ⊕N(1)⊕ S1 ⊕Mi,j = HomK(M(1) ⊕N(1)⊕ S1 ⊕Mj,i, K). So, only two algebras

actually occur. The stable endomorphism ring of M(1)⊕N(1)⊕S1⊕M1,2 is • • • •
- -

� �- ········
········

··· ··· and

the stable endomorphism ring of M(1)⊕N(1)⊕S1⊕M2,1 is • • • •
- -

� �� ········
········

··· ··· . Now, if M(1)⊕N(i)
for i 6= 1 is a direct factor of M , then the other two direct factors can only be of type 1. We observe
that the stable endomorphism rings are as in the case of i = j and two supplementary factors of type 1.
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3.2.4. Suppose M has five direct factors. The case of five direct summands of M is the last we have
to consider. In fact, there has to be a direct factor M(j)⊕N(i). Indeed the case of four direct factors
of M occurs only with either two direct factors of type 2, or two direct factors of type 1, one of type
2 a simple module, and three direct factors of type 1 in M cannot occur. Moreover, i = j in this
case since otherwise we have to have three summands of type 1, which implies that Ext1(M, M) 6= 0.
Therefore, we may assume that i = 1, and that M = S1⊕N(1)⊕M(1)⊕Mi,j⊕Mk,l. Again (i, j, k, l) ∈
{(1, 2, 1, 3), (1, 2, 2, 1), (1, 3, 3, 1), (2, 1, 3, 1)}. There the cases (1, 2, 2, 1) and (1, 3, 3, 1) are analogous,
whereas the cases (1, 2, 1, 3) and (2, 1, 3, 1) are dual. So, at most three endomorphism algebras occur.

We get

(i, j, k, l) = (1, 2, 1, 3)

• • • • •
- -

� �- �········
········

··· ··· ,

(i, j, k, l) = (2, 1, 3, 1)

• • • • •
- -

� �� -········
········

··· ··· ,

(i, j, k, l) = (1, 2, 2, 1)

• • • • •
- -

� �- -········
········

··· ··· .

Theorem 2. Let k be a field of characteristic 2 with at least 4 elements, and let A4 be the alternating
group of order 12. Let M be a KA4-module with Ext1KA4

(M, M) = 0. Then, M has at most 5 non
isomorphic direct factors, EndKA4

(M) has at most two indecomposable direct factors, and any inde-
composable factor is a quiver algebra of one of the following 23 quivers:

1 or 2 vertices: •,
m

6•··
·

, • •-
, • •

-� ··· ,
m

6• •-··
·

,
m

6• •�··
·

,

3 vertices: • • •- �
, • • •� -

, • • •- -········
, • • •

-� �··· , • • •
-� -
···
······

,

• • •
-� �··· ······ , • • •

-� -··· , • •
-�··· •-� ···
·······
······· ,

4 vertices: • • • •
- -�- ··········· , • • • •

- -�-···
·····

··· , • • • •
- ��-···

·····
··· , • • • •

- -�� ··········· ,

• • • •
- -

� �- ········
········

··· ··· , • • • •
- -

� �� ········
········

··· ··· ,

5 vertices: • • • • •
- -

� �- �········
········

··· ··· , • • • • •
- -

� �� -········
········

··· ··· , • • • • •
- -

� �- -········
········

··· ··· .
Moreover, each of these quivers occurs.

Remark. The next step should be to deal with dihedral defect blocks in general, give a group
theoretical interpretation of the gentle algebras which occur this way, and maybe more interestingly
those which do not occur this way.
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