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1. Introduction

Derived categories of algebras become more and more the appropriate working place of representation
theorists. In the representation theory of groups this interest arose from various places notably from
Broué’s conjecture which states in its simplest form that for a big enough field k of characteristic
p the derived categories of the principal block of the group ring kG of the finite group G and that
of the principal block of the group ring kNG(P ) of the normalizer NG(P ) of an abelian p-Sylow
subgroup P of G are equivalent as triangulated categories. Though this is our main motivation at
the moment, there are more situations which we would like to recall. There is the development of
character sheaves which was pushed very far by Lusztig, Shoji and others to describe generically
the representation theory of algebraic groups. Moreover, many relationships between commutative
or non commutative geometries to the representation theory of algebras has been discovered. This
relationship is made precise and can be formulated by an equivalence between various corresponding
derived categories.
In these notes we shall be concerned with consequences of the established or conjectured equiv-
alences. In particular we work on symmetries of the representation theory which are implied by
the existence of the derived category in the background. To be more precise for R a commutative
ring we shall study the group of self-equivalences of the derived category of an R-algebra which is
projective as an R-module. This group often is quite rich as we established in joint work with Raphaël
Rouquier in (RZ-96). In fact, braid groups seems to play an important rôle in the structure of these
groups. Parallel developments by Khovanov, Lenzing, Meltzer, Miyachi, Polishchuk, Seidel, Thomas,
Yekutieli and others also indicate in parts that for nice situations braid group symmetries arise.
In the present note we shall review some of these developments. Furthermore we shall compute the
case of the principal block of the group ring of a group with Klein Four Sylow subgroup. There, a
generalized braid group of type Ã2 occurs. Moreover, we explain how these self-equivalences of the
derived category of a principal block of a group ring RG act on the cohomology ring H ∗(G,R) in a
functorial way. Furthermore, we study this action for the case of the Klein Four Sylow subgroup, and
in particular for the alternating group A4.

2. Generalities on equivalences between derived categories

We recall some facts about equivalences between derived categories as is developed in Rickard (Ric-
89; Ric-91; Ric-96) and Keller (Ke-93). For the notations we refer to (KZ-98).

2.1. THE ALGEBRAIC SETUP

Jeremy Rickard proved in his fundamental work a necessary and sufficient criterion for two derived
categories of rings to be equivalent. In the situation we study here this criterion is as follows.

THEOREM 1 (Jeremy Rickard (Ric-91), Bernhard Keller (Ke-93)). Let S be a commutative ring and
let A be a finite dimensional S-algebra which is projective as S-module. Then, in case B is another
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S-algebra and Db(A) ' Db(B) as triangulated categories, there is a complex X ∈ Db(B ⊗S Aop)
so that FX := X ⊗L

A − is a functor inducing an equivalence.

We call functors standard if they are of the form FX and if they induce an equivalence Db(A) '
Db(B). In case FX is a standard equivalence, we call X a twosided tilting complex.

(2.1) Recall that an S-algebra A for an integral domain S with field of fractions K is an S-order if
first A is finitely generated projective as S-module and second K ⊗S A is a semisimple K-algebra.
An S-algebra A is symmetric provided HomS(A,S) ' A as A ⊗S Aop-modules.
Suppose now S is a field and A an arbitrary S-algebra or S is a Dedekind domain and A is a symmetric
S-order. Then if Db(A) ' Db(B), also B is projective as S-module (Z-99a) and a quasi-inverse of
FX is standard as well.

(2.2) We keep the assumption that A is an S-projective S-algebra. We define (RZ-96)

TrP icS(A) := { isomorphism classes [X] | X ∈ Db(A ⊗S Aop) is a twosided tilting complex}.

Then, TrP icS(A) is a group under the group law [X] · [Y ] := [X ⊗L
A Y ]. This group contains the

classical Picard group of A (cf (Ba-68)), with it also the group of automorphisms of A modulo inner
automorphisms of A, and an infinite cyclic central subgroup generated by shift in degrees.

2.2. THE GEOMETRIC SETUP

There is a geometric analogue to this construction. Let X and Y be algebraic varieties of the same
dimension and let Db(X) be the derived category of bounded complexes of coherent sheaves on X
and likewise Db(Y ) be the derived category of bounded complexes of coherent sheaves on Y .

(2.3) Let P be a bounded complex of coherent sheaves on X × Y . Denote by pX the projection of
X × Y on X and by pY the projection of X × Y on Y . Then, in case

FP (−) := (pX)∗(P ⊗L
OX×Y

(pY )∗−) : Db(Y ) −→ Db(X)

is an equivalence of categories, this equivalence is called ((M-81; Brid-99; P-95)) Fourier-Mukai
transformation. If X is a point, then a Fourier-Mukai transformation is a standard equivalence.

(2.4) Tom Bridgeland gave in (Brid-99) some partial analogue to Rickard’s theorem. For this suppose
that X and Y are smooth projective varieties of the same dimension and that P is a vector bundle
on X × Y . The bundle P is called strongly simple over Y if for each y ∈ Y the bundle Py on X is
simple and if ExtiX(Py1

, Py2
) = 0 for any (y1, y2) ∈ Y × Y and any i.

THEOREM 2 (Tom Bridgeland (Brid-99)). The functor FP is fully faithful if and only if P is strongly
simple over Y . The functor FP is an equivalence precisely when one also has Py ' Py ⊗ ωX for all
y ∈ Y .

Theorem 2 is some sort of analogue to the theorem of Rickard and Keller in case the twosided tilting
complex is just a module. As far as I know there is no general theory like Rickard’s for the geometric
situation.

3. Some results on braid groups

We recall briefly some facts about braid groups.

(3.1) Let W be a real reflection group generated by orthogonal reflections {s1, . . . , sn} =: S on some
hyperplanes {H1, . . . Hn} in some real euclidean space E. We associate to (W,S) a graph Γ(W,S).
The vertices of Γ(W,S) are the elements of S. There is an edge with weight mi,j between si and sj if
and only if si and sj do not commute and the order of sisj is mi,j + 2.
It is well known that W is finite if and only if Γ(W,S) is a Dynkin diagram.
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(3.2) Now, W acts on the arrangement of hyperplanes and also on the complement. It is a result
of Brieskorn (Brie-71) that π1((C ⊗R E \

⋃n
i=1 C ⊗R Hi)/W ) =: Braid(Γ(W,S)) is a group with

presentation Braid(Γ(W,S)) =< t1, . . . , tn| titjti . . .
︸ ︷︷ ︸

mi,j+2 factors

= tjtitj . . .
︸ ︷︷ ︸

mi,j+2 factors

> . The case of Dynkin

diagram Γ(W,S) = Ae is due to Arnold while the other cases are due to Brieskorn.

(3.3) This item was communicated to me by Claudio Procesi. We shall be concerned in particular
with the braid group associated to the Dynkin diagram A2 (which is just a graph with one edge and
2 vertices) and the affine Dynkin diagram Ã2 (which is the unique graph with three edges and three
vertices, each vertex being adjacent to two edges).
Then Br(A2) =< s, t| sts = tst > and Br(Ã2) =< s1, s2, s3| sisjsi = sjsisj∀ i, j ∈ {1, 2, 3} > .

The mappings Br(A2)
α
→ Br(Ã2) defined by α(s) = s1 and α(t) = s2 as well as the mapping

Br(Ã2)
β

−→ Br(A2) given by β(s1) = s, β(s2) = t and β(s3) = t are group homomorphisms. We
see immediately β ◦ α = idBr(A2). Hence, Br(Ã2) = kerβ ×Br(A2) .

(3.4) Independently of the existence of a Weyl group we define for any weighted graph Γ a generalized
braid group Braid(Γ). The case of complex reflection groups (W,S) is studied by Broué, Malle,
Rouquier (BMR-98) and even more involved types of diagrams and associated braid groups have
been introduced.

4. Some results on self-equivalences of derived categories

4.1. THE ABELIAN SITUATION

The group TrP icS(A) was first studied in (RZ-96) (see also (Z-96)). As one of the main results we
got the following description.

THEOREM 3 (Raphaël Rouquier and Alexander Zimmermann (RZ-96)). Let k be a prime field and
let Be be an indecomposable Brauer tree algebra with no exceptional vertex for a Brauer tree with
e edges. Then, there is a group homomorphism ϕe : Braid(Ae) −→ TrP ick(Be) . Moreover, ϕ2 is
injective and the image of ϕ2 is normal of index 8. For any e > 1 the image of a standard generator
is infinite cyclic.

(4.1) Injectivity is proven by identifying Braid(A2)/Z(Braid(A2)) ' PSL2(Z) and one then
identifies the images of projective indecomposable modules with the matrix coefficients of ele-
ments in PSL2(Z). Actually, let P+ and P− be the two indecomposable projective B2-modules.
For [X] ∈ TrP ick(B2) let T+ := X ⊗B2

P+ and T− := X ⊗B2
P−. Replace T+ by the repre-

sentative in the isomorphism class of T+ with the smallest k-dimension and likewise for T−. Then,
T+ = P

n+

+ ⊕ P
n−

− and T− = P
m+

+ ⊕ P
m−

− as modules, forgetting the differentials. Then one proves

that the image of X in PSL2(Z) is the matrix
(
±n+ ±m+

n− m−

)

. This description immediately gives

the statement.
Surjectivity is proven by using that there are only two simple modules up to isomorphism and any
complex has two ends. For more ample details the reader should consult (RZ-96).

(4.2) There is some analogue for orders over a complete discrete valuation domain. There, so-called
Green orders take the rôle of Brauer tree algebras and one gets the same situation but replacing Be

by the corresponding order Λe. The interest is that tensoring with the field of fractions gives a very
different situation to tensoring obtained by tensoring with the residue field. Some nice arithmetic
structure comes into the play. For more ample details the reader might consult (Z-00a).

(4.3) Later, independently, Mike Khovanov and Paul Seidel discovered this homomorphism ϕe.

THEOREM 4 (M. Khovanov and P. Seidel (KS-00; ST-00; HK-00)). ϕe is injective for all e > 2.

afourkluwer.tex; 8/11/2000; 9:41; p.3



4

A more general class of algebras, so-called zig-zag algebras, is covered. The proof is very involved
and uses sophisticated methods related to Mirror symmetry. In particular one of the key steps is to
establish an equivalence of categories between the derived category of the algebra under consideration
and some object coming from symplectic geometry. Using Floer cohomology the authors are able to
prove injectivity.

(4.4) In the geometrical setting we get some braid group picture as well.

THEOREM 5 (Alexander Polishchuk (P-95)). Let A be a connected abelian variety of dimension g
over a field k endowed with a principal symmetric polarisation. Then, Braid(A2) acts on Db(A) by
Fourier-Mukai transformations.

The symmetric polarisation is used to identify the variety with its dual. The construction goes along
the following lines. One finds some sort of involution and a complex inducing a Fourier-Mukai
transformation. Conjugating the complex by the involution one gets a second complex and these
two complexes are the braid group generators.

There is one more example in this direction using Fourier-Mukai transformation actions on derived
categories.

THEOREM 6 (Raphaël Rouquier (Rou-98)). Let G be a semisimple complex algebraic group with
Weyl group W and let B be the variety of Borel subgroups of G. Then, the braid group BW associated
to W acts on Db(B) by Fourier-Mukai transformations.

4.2. NON ABELIAN STATEMENTS

(4.5) Amnon Yekutieli is interested in non communicative geometry and was interested for this reason
in algebras with finite global dimension.

THEOREM 7 (Jun-Ichi Miyachi and Amnon Yekutieli (MY-99)). Let A be a hereditary basic finite
dimensional k-algebra of finite representation type with quiver ∆. Then, there is a group isomorphism
TrP ick(A) ' Autk(

−→
Z∆)τ .

Here, τ = A∗[−1]⊗L
A − and

−→
Z ∆ is a quiver obtained by repetition of ∆ (Ried-80). By this, Miyachi

and Yekutieli get explicitly the case of ∆ being a Dynkin diagram. No braid group arises, though the
groups coming up are all of a nice algebraic nature.

(4.6) Helmut Lenzing and Hagen Meltzer study all kinds of properties for a rather special class of
algebras, so-called canonical algebras. These are algebras of finite global dimension and are defined
by quivers and relations. Moreover, these algebras can serve as a model for a ’weighted projective
line’. For details the reader may consult Geigle and Lenzing (GL-87). Recently these algebras came
into play by the attempt of Happel and Reiten to classify all abelian categories which are derived
equivalent to a hereditary one. Canonical algebras play an important rôle in the list of categories they
expect to get. Here is one of the main results on the group of self-equivalences of the derived category
of these algebras.

THEOREM 8 (Meltzer and Lenzing (LM-00)). Let X be a weighted projective line of tubular type.
Then the group of isomorphism classes of self-equivalences of Db(X) is isomorphic to the group
Braid(A2) ×(Pic0(X) ×AutX).

For details on the definitions we refer to (GL-87). It is interesting to see that also in this case the
generators for the braid group part are analogous to the case studied in (RZ-96) for Brauer tree
algebras with two simple modules.
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(4.7) It is surprising to get the braid group also in this non abelian situation. It seems that this happens
since the assumption of the weighted projective line to be tubular has some regularizing effect, and
so the situation becomes “almost abelian”. In fact for general types the braid groups do not arise and
actually the derived category in this case has only relatively few symmetries.

5. Action on the cohomology ring

Let G be a finite group and let R and be a complete discrete valuation ring of characteristic 0 with
residue field of characteristic p. In fact in order to establish the theory that follows the assumptions
are much too strict on R but the hypotheses on R as above simplify a lot the presentation. Let S be
any commutative noetherian ring.

(5.1) In order to study the group TrP icR(B0(RG)) we shall look for natural modules. Since for any
two SG-modules M and N we have

ExtnSG(N,M) ' HomDb(SG)(N,M [n])

it is natural to consider M = N and to look at the subgroup of TrP icS(SG) that fixes the module
M . Then, morally at least, this group should act on Ext∗SG(M,M) in a multiplicative way. Since
H∗(G,S) = Ext∗(S, S) is the cohomology ring of the group G with values in S, we are particularly
interested in the case M = S. Denote

HDS(G) := {[X] ∈ TrP icS(SG) | X ⊗SG S ' S}

It is reasonable to restrict in case of S = R to the derived category of the principal block. We shall
do this without mentioning and hope that this will not produce any confusion.
To get an action of HDS(G) on H∗(G,S) there are many obstacles on the way. E.g. there are
many isomorphisms we choose on the way, the functors are equivalences and not isomorphisms of
categories to cite only a few. But, we get the following first result.

THEOREM 9 ((Z-99b)). Keep the assumptions of this section. Then, the cohomology ring H ∗(G,S)
is an S HDS(G)-module. This action is compatible with the ring structure of H ∗(G,S).
If S1 −→ S2 is a ring homomorphism, then this ring homomorphism induces a group homomorphism
HDS1

(G) −→ HDS2
(G) and this way the ring homomorphism H∗(G,S1) −→ H∗(G,S2) is

S1 HDS1
(G)-linear.

The proof is not only a checking of being well defined, but an actual construction of a bigger group
acting properly, and then seeing that the extension that had to be considered actually enlarges the
group by something in the kernel of the action.

(5.2) What do we know with respect to functoriality of this structure in the first variable? Here we have
to face the problem that derived equivalences behave very badly with respect to subrings, quotient
rings, extension rings or similar constructions. There is one exception, the so-called splendid tilting
complexes introduced by Jeremy Rickard (Ric-96).

DEFINITION 5.1. (Jeremy Rickard (Ric-96)) Let G and H be finite groups with a common p-
Sylow subgroup P and let R be a complete discrete valuation domain of characteristic 0 with residue
field of characteristic p or a field of characteristic p. Denote by ∆P a fixed diagonal embedding of P
in G × H . Let X be a bounded complex of B0(RG) ⊗R B0(RH)op modules so that

− Each homogeneous component of X is projective as RG-module and projective as RH-
module,

− Each homogeneous component of X is a ∆P -projective p-permutation module (that is a direct
factor of a permutation module),

afourkluwer.tex; 8/11/2000; 9:41; p.5



6

− HomRG(X,X) is homotopic to B0(RH) as complex of bimodules and HomRH(X,X) is
homotopic to B0(RG) as complex of bimodules.

(5.3) I do not know any twosided tilting complex between two principal blocks of group rings which
cannot be modified by a Morita equivalence so that the modified complex is splendid.

(5.4) For splendid tilting complexes Rickard proves that the Brauer construction induces equivalences
on the local levels. We shall explain this statement below.
Let G be a finite group and let k be a field of characteristic p. Then, for any kG-module M and a
p-subgroup U of G define the kNG(U)-module M(U) := MU/

∑

V <U TrU
V (MV ). This construc-

tion, the Brauer construction, is functorial and carries over to the homotopy category. It is the right
environment to restrict splendid derived equivalences to centralizers of subgroups.

THEOREM 10 (Jeremy Rickard (Ric-96)). Let X be a splendid tilting complex in Db(B0(kG) ⊗k

B0(kH)). Then, for any p-subgroup Q of G the complex X(∆Q) is a splendid tilting complex in
Db(B0(kCG(Q)) ⊗k B0(kCH(Q))).

Moreover, Rickard proves that for any splendid tilting complex X in Db(B0(kG) ⊗k B0(kH)) there
is an, up to isomorphism, unique splendid tilting complex X in Db(B0(RG) ⊗R B0(RH)) with
X ⊗R k ' X .

(5.5) Denote by [X] the isomorphism class of a complex X in the derived category and denote by
(X) the isomorphism class of a complex X in the homotopy category. Note that being homotopy
equivalent is stronger than being quasi-isomorphic.

(5.6) It is natural to define (Z-01)

SplenP icR(G) := {(X) | X is a splendid tilting complex in Db(B0(RG) ⊗R B0(RG))}

and similarly for k as coefficient domain. It is readily verified that this in fact is a group under tensor
product. It is clear that we get a group homomorphism SplenP icR(G) −→ TrP icR(B0(RG)) by
setting ν( (X) ) := [X]. The same notation is used for k as coefficient domain.
In view of the action on the cohomology ring we define

HSplenR(RG) := ν−1(HDR(G)) ∩ SplenP icR(RG)

and similarly for k instead of R.

(5.7) The action of HSplenR(G) on H∗(G,R) is via ϕ though. So, working up to homotopy equiv-
alence only or working up to quasi-isomorphism does not make any difference for the action on the
cohomology ring of the group.

(5.8) Why do we like to work up to homotopy equivalence only instead of up to quasi-isomorphism?
The reason is the following result.

PROPOSITION 5.1 ((Z-01)). Let k be a field of characteristic p, let G be a finite group and let Q be a
p-subgroup of G. Then, the Brauer construction provides a group homomorphism SplenP ick(G) −→
SplenP ick(CG(Q))

If one would work over isomorphism classes in the derived category the Brauer construction is
not necessarily well defined. Actually there is no obvious reason why [B0(kG)] = [X] implies
[B0(kCG(Q)))] = [X(∆Q)].

(5.9) Let us study the obstruction. The equation [B0(kG)] = [X] implies that there is a quasi-
isomorphism B0(kG)

s
−→ X (and not necessarily in the other direction) since the homology of

X is concentrated in degree 0 and is isomorphic to B0(kG). The mapping cone of s is therefore
acyclic (i.e. with homology 0). Form the mapping cone by the standard construction

C(s) := (B0(kG)[1] ⊕ X,

(
dB0(kG) s

0 dX

)

) .
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Then, it is easily verified that C(s(∆Q)) = (C(s))(∆Q) . In order to define the mapping in Proposi-
tion 5.1 in the derived category we have to prove that the Brauer functor applied to an acyclic complex
is acyclic. Actually this is slightly stronger than what is needed since not every acyclic complex is the
mapping cone of a quasi-isomorphism as above. Nevertheless, we shall give an example showing that
it is not correct that the Brauer construction applied to an acyclic complex of p-permutation modules
is acyclic.

(5.10) Let k be the field with 2 elements. The sequence 0 −→ k −→ kC2 −→ k −→ 0 coming from
the augmentation of the cyclic group of order 2 is exact. Moreover, this exact sequence can be seen as
acyclic complex of kC2-permutation modules with three non zero terms. Applying the Brauer functor
−(C2) to this complex gives (. . . −→ 0 −→ k −→ 0 −→ k −→ 0 −→ . . .) since kC2(C2) = 0 and
k(C2) = k. Obviously, this complex is not acyclic.

THEOREM 11 ((Z-01; Z-00b)). Let k be a field of characteristic p, let G be a finite group, P a p-
Sylow subgroup and let Q be a p-subgroup of G. Then, for any [X] ∈ HSplenk(G) so that X(∆Q) ∈
HSplenk(CG(Q)), we get HSplenR(G) ' HSplenk(G) and the diagrams

H∗(G, k)
X⊗−
−→ H∗(G, k)

resG
CG(Q) ↓ resG

CG(Q) ↓

H∗(CG(Q), k)
X(∆Q)⊗−

−→ H∗(CG(Q), k)

and
H∗(G, k)

X⊗−
−→ H∗(G, k)

↑ transG
CG(Q) ↑ transG

CG(Q)

H∗(CG(Q), k)
X(∆Q)⊗−

−→ H∗(CG(Q), k)

are commutative. In case P is abelian, an X ∈ HSplenk(G) ∩ (−(∆P ))−1(HSplenk(CG(P )))
acts on H∗(G, k) via automorphisms of P .

(5.11) It should be noted that the first point is not a trivial consequence of Rickard’s result that
SplenP ick(G) ' SplenP icR(G). It has to be shown that the unique lift fixes the trivial module
as well.
The second relation is essentially proved by first showing that X(∆Q) ⊗CG(Q) k ' XG(Q).
The third item uses the second and then as essential ingredient the theorem of Roggenkamp and Scott
on the isomorphism problem for integral group rings of p-groups (RS-87; Rog-92).

6. The alternating group of degree 4

We shall give the group ring RA4 for R being a complete discrete valuation ring of characteristic 0
and residue field of characteristic 2, so that R has a third root of unity. For this one may as well use
the description in (N-98) of R SL2(4) by Gabriele Nebe using that SL2(4) ' A5 and the explicit
tilting complex inducing a splendid equivalence between the principal block of R SL2(4) and RA4

given by Jeremy Rickard in (Ric-96). Nevertheless, a more direct approach is possible as is shown
below.
Let k be a field of characteristic 2 containing a third root of unity and let R be a complete discrete val-
uation ring of characteristic 0 containing a third root of unity and with residue field k of characteristic
2.
Since Ẑ2[ζ3] is a splitting field for A4 and all of its subgroups, it is enough to compute RA4 for R

being the (unique) unramified extension of Ẑ2 of degree 2. Let K be the field of fractions of R.
Since A4 ' (C2 × C2) ×C3 K is a splitting field for A4. We use a representation A4 '< a, b, c :
a2, b2, c3, (a, b), ac = ab, bc = a >. Now, QA4 is a direct product of a copy of Q, a copy of Q[ζ3]
and a 3 × 3 matrix ring over Q. Moreover, K ⊗Q Q[ζ3] ' K × K .
We are interested, how RA4 is embedded into KA4. Over R, however, we get 3 indecomposable
projective modules, over Ẑ2 we get 2 projective indecomposable modules. Corresponding to the
irreducible characters χi, i = 1, 2, 3 of C3, we get the idempotents ei := 1

3

∑3
j=1 χi(c

j)cj Over

Ẑ2 we get the two indecomposable idempotents χ1 and χ2 + χ3. We know, that for i 6= j eiRA4ej is
a non zero fractional R–ideal in K and for i = j we know that eiRA4ei is an R–order in K × K .
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The central idempotent δ := 1
4 (1 + a + ab + b) in KA4 corresponds to the natural projection onto

KC3. This induces a pullback diagram

RA4 −→ RC3

↓ ↓
RA4 · (1 − δ) −→ (R/4R)C3

.

Λ := RA4 · (1 − δ) is an R-order in





K K K
K K K
K K K



 . We use the induced representation from a one

dimensional character of the Klein Four group

a −→





−1 0 0
0 1 0
0 0 −1



 , b −→





−1 0 0
0 −1 0
0 0 1



 and c −→





0 1 0
0 0 1
1 0 0



 .

Then, we conjugate by





1 1 1
1 ζ2

3 −ζ3

1 −ζ3 ζ2
3



 to get Λ =





R 2R 2R
2R R 2R
2R 2R R



 . After some computation we

get RA4 ' {(a1, a2, a3, (bi,j)1≤i,j≤3) ∈ R × R × R × Λ | bi,i − ai ∈ 4R ∀1 ≤ i ≤ 3}

7. The braid group generators

We keep the hypotheses of the beginning of section 6. The group ring RA4 has three projective
indecomposable modules P1, P2, P3 up to isomorphism. Denote by P1 the projective cover of the
trivial module. Note that if R does not have a third root of unity, then there are only two projective
indecomposable modules. The discussion in that case differs considerably of what we shall develop
here.
Denote in order not to overload the notation by A the group ring RA4. We denote by Si the complex

. . . −→ 0 −→ Pi ⊗ P ∗
i −→ A −→ 0 −→ . . .

and the functors Fi := Si ⊗A − for any i ∈ {1, 2, 3}. The following result was known to Joe Chuang
1 for k as coefficient domain as action on the simple modules. We shall include a proof for R and this
implies at once the result for k.

PROPOSITION 7.1. Si ⊗A Sj ⊗A Si ' Sj ⊗A Si ⊗A Sj for any pair (i, j) ∈ {1, 2, 3} × {1, 2, 3}.

Proof. It is obvious by the symmetry of RA4 that it is enough to prove the statement for i = 1 and
j = 2. We compute S1⊗P1 ' P1 −→ 0, S1⊗P2 ' P1 −→ P2 and S1⊗P3 ' P1 −→ P3 where
the right most position for the complexes on the right of the isomorphism is in degree 0. Analogous
results hold for S2 instead of S1. Then, S2 ⊗A S1 ⊗A P1 ' S2 ⊗A P1[1] ' P2 −→ P1 −→ 0 again
with the convention that the right hand side of the complex on the right is meant to be in degree 0.

S2 ⊗A S1 ⊗A P2 ' F2(cone(P1 −→ P2)) ' cone(F2(P1) −→ F2(P2)) ' P1[1] .

Likewise S2 ⊗A S1 ⊗A P3 ' F2(cone(P1 −→ P3)) ' P2 −→ P1 ⊕ P2 −→ P3 . Furthermore,
F1(P2 −→ P1 −→ 0) ' P2[2] and F1(P1[1]) ' P1[2]. Compute the image of P3:

F1(F2(F1(P3))) ' F1(cone((P2 → P1) → (P2 → P3)))

' cone(F1(P2 → P1) → F1(P2 → P3))

' cone(P2[1] → (P2 −→ P1 ⊕ P2 → P3))

'

P1 −→ P2

P2 −→ P1

↘
↗

P3 −→ 0 −→ . . .. . . → 0
↗
↘

1 In September 1999 in a private communication
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where in the final complex the differential in degree 2 maps the projective P1 in degree 2 to the
projective P2 in degree 1 and the projective P2 in degree 2 to the projective P1 in degree 1.
In any case the result is invariant under changing indices 1 and 2. By (RZ-96) this proves that F1F2F1

differ from F2F1F2 only by an automorphism of RA4. As is easily seen from the structure of RA4

in section 6, apart from the identity there is no R-linear automorphism which fixes each projective
indecomposable up to isomorphism. We proved the statement.

COROLLARY 7.1. Let Br(Ã2) be the braid group associated to the affine Dynkin diagram Ã2.
Then, there is a group homomorphism Br(Ã2) −→ SplenP icR(A4).

It is clear that the group generated by F2 and F3 is the image under the above homomorphism of an
Artin braid group on three strings. Moreover, these two self-equivalences stabilize the trivial module.

8. Studying the action on the group cohomology

(8.1) The outer automorphism group of A4 is isomorphic to the cyclic group of order 2 since any
automorphism of A4 induces an automorphism of S4 where each automorphism is inner. Moreover
(A-M 94, Chapter III Theorem 1.3), H∗(A4, F2) = F2[A,B](C)/(C3 + A2 + B2 + AB) where
A = f3

1 + f3
2 , B = ζf3

1 + ζ2f3
2 and C = f1f2. Here, ζ is a primitive third root of unity over F2. The

elements f1 and f2 are the two canonical generators of H∗(C2
2 , F2) in degree 1.

The group of automorphisms of C2
2 is GL2(2) ' S3. The automorphisms of order 3 are inner in A4

and induce hence the identity on the subring H∗(A4, F2) of H∗(C2
2 , F2). It is an easy and straightfor-

ward calculation that the elements of GL2(2) of order 2 act trivially on degree 2 cohomology and act
on degree 3 cohomology as regular representation (A −→ A and B −→ −A − B).

(8.2) Carlson and Rouquier proved (CR-00) that for a group G = P ×Q where P is an abelian p-
group and Q is a cyclic p′-group, the group StP icFp(FpG) of self-equivalences of Morita type of the
stable category is generated by the syzygy operator and the usual Picard group of FpG. Hence, the
action of HDFp(G) on H∗(G, Fp) is via automorphisms of FpG. In case G = A4 and p = 2, the
action described above is the only possible non trivial action of HSplenF2

(A4) on H∗(A4, F2).

(8.3) Recall that < F2, F3 >, which is the homomorphic image of an Artin braid group,
is in HSplenR(RA4). By (Z-00b) we conclude in our case of abelian Sylow subgroups that
HSplenR(A4) acts by automorphisms of the Sylow subgroup on the cohomology. Since for a splen-
did tilting complex X one has X(∆Q) ⊗CG(Q) R ' XG(Q) (where G acts on the right and Q on
the left), one sees easily that any element of < F2(∆C2

2 ), F3(∆C2
2 ) > fixes the trivial module as

well. Moreover, it is easy to see that < F2, F3 > acts trivially an H∗(A4, F2) since this action factors
via the action of the group of stable self-equivalences (see (Z-99b)) and there S2 and S3 become just
isomorphic to RA4. So, we proved that < F2, F3 > does not contain Out(A4).
Denoting by γ the element (of order 2) in Out(RA4) given by conjugation by an element in S4 \A4,
we get < F2, F3, γ >=< F2, F3 > ×C2 ≤ HDR(A4) .

(8.4) We observe that F2(P2) ' P2[1] and F2(P3) ' (P2 −→ P3) with homology in degree 0 and
1, and likewise for F3 with the rôles of P2 and P3 interchanged. The very same proof as in (RZ-96,
Theorem 4.6) shows that the morphism Br(A2) −→< F2, F3 >⊆ HSplenF2

(A4) is injective.

(8.5) Since the symmetric group of degree 3 acts naturally on the three generators of Br(Ã2) and by
the fact that the relations obey the same symmetry also on Br(Ã2), we get

Br(Ã2) × S3 ' (kerβ ×Br(A2)) × (C3 ×C2) −→−→ Br(A2) × C2

↓
∩
↓

< F1, F2, F3 > ×S3 < F2, F3 > × < γ >
∩ ∩

TrP icR(RA4) HDR(A4)

afourkluwer.tex; 8/11/2000; 9:41; p.9



10

(8.6) May it be that derived categories “in an abelian situation” have generalized braid group
symmetries? I believe that the above observations are not just an accident.
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