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Abstract. The centres of two derived equivalent algebras A and B are isomorphic, as was
shown by Rickard. If A and B are blocks of group rings over a perfect field of characteristic
p > 0, it is natural to ask if the subspaces of the centre generated by p-singular class sums
also map to each other. A tool is given by Külshammer’s work on p-power maps on the
cocentre. We prove that the spaces generated by p-singular class sums are mapped to each
other up to multiplication by a central unit.

Introduction

Let G be a group and k be a field of characteristic p > 0. The ring structure of the
centre Z(kG) of kG is of high interest, in particular for questions concerning stable and
derived equivalences between blocks of group rings. Indeed, by a result due to Rickard the
centres of two derived equivalent k-algebras A and B are isomorphic as algebras. Stable
equivalences of Morita type between A and B still preserve a certain quotient, the so-called
stable centre. Hence, the detailed structure of the centre of algebras proved to be highly
useful to distinguish derived equivalence classes of algebras as well as algebras up to stable
equivalence of Morita type (cf [2] or [26, Chapter 5] for more details).

Also, the centre of a group algebra or its blocks encode many interesting invariants of
the group, as was developed by Külshammer in his sequence of papers [8, 9]. Külshammer
studied in particular the p-power map on the cocentre A/[A,A] = H0(A), i.e. the degree
0 Hochschild homology of a finite dimensional k-algebra A. If the algebra A is symmetric,
then the Hochschild homology is closely linked by a non degenerate bilinear pairing with
the Hochschild cohomology of the same degree. In particular, the centre and the cocentre
are isomorphic as vector spaces, but the p-power map on the cocentre has an adjoint on the
centre, and its image is called the Külshammer ideals Tn(A)⊥. Versions of these construc-
tions were shown to be derived invariants [23, 7, 24] (cf e.g. [25], [26, Chapter 2.9] for an
overview) and proved to be a very useful and efficient in distinguishing stable and derived
equivalence classes of pairs of algebras which differ only by a few parameters in the relations
[6, 5, 22, 3, 4, 27, 1, 20].

Another subspace of the centre of a group algebra was studied more recently. It is well-
known that the conjugacy class sums form a Z-basis of the centre of ZG, and hence also
a k-basis of the centre Z(kG) of kG. The conjugacy classes Cg of elements g ∈ G such
that the order of g is prime to p are called the p-regular classes, the remaining classes are
called p-singular. If k is sufficiently big its number coincides with the number isomorphism
classes of simple modules by a result due to Brauer. The conjugacy class sums of p-regular
elements span a k-vector space called Zp′(kG), or by multiplying with the corresponding
block idempotent b, Zp′(B) for a block B = kGb. In [13, 14] Meyer found that Zp′(kG)
with G having a Sylow p-subgroup being either commutative, dihedral, or semidihedral is
a subring of the centre of kG. Meyer proved in [14] that this holds as well for p = 2 and
G being the Suzuki group Sz(2r) and p any prime number. Murray found in [15] that for
p = 2, the square of the centre of a group algebra equals to the 2-regular subspace in case
of G being a symmetric or an alternating group, and hence Zp′(kG) is a ring. Suppose
that B1 is a block of kG1 and B2 is a block of kG2. Fan and Külshammer [10] proved
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by purely character theoretic methods that if B1 and B2 have abelian defect group, and
suppose that B1 and B2 are perfectly isometric, then B1 ∩ Zp′(kG1) =: Zp′(B1) is a ring
if and only if B2 ∩ Zp′(kG2) =: Zp′(B2) is a ring. We should note that Meyer gave in [13]
numerous examples for groups G such that Zp′(kG) is not a ring. This holds for example
when G = SL2(q) for q a power of an odd prime, and k of characteristic 2.

In this paper we study yet another kind of substructures of the centre, again linked to
p-power maps. More precisely, we study p-singular conjugacy classes Cg, that is conjugacy
classes of elements g ∈ G such that the order of g is divisible by p. We further form
the conjugacy class sums and the corresponding subspace Zp(kG) is the k-vector space
generated by the p-singular classes, respectively Zp(B) for a block B of KG. We shall also

give intermediate spaces Z
(m)
p (kG) respectively its block versions Z

(m)
p (B) for all integers

m ≥ 1 corresponding to the question if g has pm-th roots in G or not. We shall show that
this gives an increasing sequence of subspaces of the centre Z(kG), respectively Z(B) for a
block B of kG. We shall prove in this paper that for two finite groups G1 and G2 and a
block B1 of kG1 and a block B2 of kG2 such that B1 is derived equivalent to B2, then the
algebra isomorphism Z(B1) ' Z(B2) induced by the derived equivalence maps Zp(B1) to

u · Zp(B2) for some unit u ∈ Z(B2). More generally, we show that in this case Z
(m)
p (B1) to

u ·Z(m)
p (B2) for all integers m, with the same unit u. The main tool is the p-power map on

the cocentre B1/[B1, B1] (respectively B2/[B2, B2]) and the non degenerate pairing between
the centre and the cocentre of B1, respectively B2. The non degenerate pairing for B1 is
shown to be mapped to a pairing for B2, and the difference with the standard pairing is
given by a central unit of B2. We then use work of König, Liu, Zhou and the third author
[7, 24] to prove that this characterisation is a derived invariant up to a multiplicative with
this central unit.

The paper is organised as follows. In Section 1 we review general properties on symmetric
algebras and the p-power maps on the centre and the cocentre, as far as it is needed in the
sequel. In Section 2 we consider the special case of a group algebra and define p-regular
and p-singular subspaces of the centre. We also give the crucial characterisations of these
spaces in terms of p-power maps. A blockwise definition of the spaces defined in Section 2
is then given in Section 3. In Section 4 we study the behaviour of these data under derived
equivalences, and recall the results needed from previous work. Section 5 then contains our
main result, namely the derived invariance of p-singular subspaces. Finally we compute an
example to illustrate this concept and to show that the unit u is indeed necessary in the
theorem.

1. Review of some facts on symmetric algebras

1.1. Symmetric algebras, symmetrising forms and isomorphisms to the dual. A
k-algebra A is symmetric if Homk(A, k) ' A as A−A-bimodules. Then each isomorphism
ϕ : A→ Homk(A, k) defines a non degenerate associative and symmetric k-bilinear form

〈 , 〉 : A×A −→ k

by 〈x, y〉 := ϕ(x)(y) for all x, y ∈ A, and conversely any non degenerate associative and
symmetric bilinear form 〈 , 〉 defines an isomorphism ϕ : A → Homk(A, k) by the above
formula 〈x, y〉 =: ϕ(x)(y). We call such a bilinear form symmetrising. A symmetrising form
is not unique and two different forms correspond to two different choices of isomorphisms ϕ.
Külshammer [8, Part IV] (see also [26, Lemma 2.9.10]) showed that Z(A)⊥ = [A,A] where
the orthogonal is taken with respect to the symmetrising form 〈 , 〉. Hence the restriction
of 〈 , 〉 to Z(A) in the left entry induces a non degenerate k-bilinear form

〈 , 〉 : Z(A)×A/[A,A] −→ k

by putting
〈z, a+ [A,A]〉 := 〈z, a〉
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for all a ∈ A and z ∈ Z(A).

1.2. Modifying the symmetrising form. The following lemma is well-known (cf e.g. [26,
Lemma 1.10.25]), but we include the short proof for completeness.

Lemma 1.1. Let k be a field and let A be a symmetric k-algebra with symmetrising form
〈 , 〉. Let u ∈ Z(A) be an invertible element. We define 〈x, y〉u := 〈u · x, y〉 for all x, y ∈ A.

Then 〈 , 〉u is a symmetrising form as well, and for every symmetrising form 〈̃ , 〉 on A

there is a u ∈ (Z(A))× so that 〈̃ , 〉 = 〈 , 〉u .
Proof. Since 〈 , 〉 is non degenerate,⋂

x∈A
ker(〈u · x, 〉) =

⋂
u·x∈A

ker(〈u · x, 〉) =
⋂
x′∈A

ker(x′, 〉) = 0

and so 〈 , 〉u is non degenerate.
We compute for all x, y ∈ A

〈x, y〉u = 〈u · x, y〉 = 〈y, u · x〉 = 〈y · u, x〉 = 〈u · y, x〉 = 〈y, x〉u
and hence 〈 , 〉u is symmetric.

Moreover, for all x, y, z ∈ A we get

〈x, y · z〉u = 〈u · x, y · z〉 = 〈u · x · y, z〉 = 〈x · y, z〉u
and hence 〈 , 〉u is associative.

Conversely, we will show that any symmetrising form is of the form 〈 , 〉u for some u ∈
Z(A). Indeed, 〈 , 〉 induces an isomorphism of A ⊗k Aop-modules A

'−→ Homk(A, k) by
a 7→ 〈a, 〉 (cf e.g. [26, Proposition 1.10.23]). Hence any symmetrising form will give such
an isomorphism, whence two different forms will produce an automorphism A −→ A of
A ⊗k Aop-modules. Since EndA⊗kAop(A) = Z(A) we see that any symmetrising form of A
is of the form 〈 , 〉u for some u ∈ A.

1.3. Recall Külshammer’s p-power constructions. Let k be a perfect field of char-
acteristic p > 0 and let A be a k-algebra. Then denote by [A,A] the k-submodule of A
generated by commutators ab − ba for a, b ∈ A. Recall (cf [8, Part IV Section 1] or [26,
Lemma 2.9.3]) that for every k-algebra A we may form the degree 0 Hochschild homology
HH0(A) = A/[A,A] and we get a well-defined mapping

A/[A,A]
µp−→ A/[A,A]

a+ [A,A] 7→ ap + [A,A]

We recall from [8, Part IV] a map κ (resp. ζ) on the cocentre (resp. the centre) which are
associated to the p-power maps on the centre (resp. the cocentre) of an associative algebra.

Let A be a symmetric algebra over a perfect field k, and let 〈 , 〉 be a symmetrising form on
A. Then (cf [8, Part IV] or [26, Lemma 2.9.10]) [A,A]⊥ = Z(A), where orthogonal spaces
are taken with respect to the symmetrising form. Hence 〈 , 〉 induces a non degenerate
pairing

〈 , 〉 : Z(A)×A/[A,A]→ k.

We shall need to consider orthogonal spaces with respect to two different symmetrising
forms.

Lemma 1.2. Let A be a symmetric k-algebra, let u ∈ Z(A)×, and let 〈 , 〉 and 〈 , 〉u
(according to the notation in Lemma 1.1). For each M ⊂ A/[A,A] let M⊥〈 , 〉 := {c ∈
Z(A) | 〈c, y〉 = 0 ∀y ∈M}, and let M⊥〈 , 〉u := {c ∈ Z(A) | 〈c, y〉u = 0 ∀y ∈M}. Then

u ·M⊥〈 , 〉u = M⊥〈 , 〉 .

Proof.
v ∈M⊥〈 , 〉u ⇔ 〈v, y〉u = 〈uv, y〉 = 0 ∀y ∈M ⇔ uv ∈M⊥〈 , 〉 .

Whence the statement.



4 INTAN MUCHTADI-ALAMSYAH, ADITYA PURWA SANTIKA, AND ALEXANDER ZIMMERMANN

2. Centre and the cocentre of a group ring with respect to p-power maps

2.1. p-power filtration of the centre of a group ring. Let G be a finite group and let
k be a field of characteristic p > 0. Let

Ch := {g ∈ G| ∃x ∈ G : g = xhx−1}
be the conjugacy class of h ∈ G. It is well-known that the centre Z(kG) of the group
ring kG of G over k has a k-basis given by the conjugacy class sums, i.e. set of elements
Ch :=

∑
g∈Ch

g for h ∈ G.

Definition 2.1. Let p > 0 be a prime, G be a finite group with p| |G|, and k be a perfect
field of characteristic p.

• The p-regular subspace of the centre is Zp′(kG) := 〈Ch | p 6 | |h|〉k
• The pm-regular subspace of the centre is Zp′(kG) := 〈Ch | pm 6 | |h|〉k
• The p-singular subspace of the centre is Zp(kG) := 〈Ch | p| |h|〉k
• The pm-singular subspace of the centre is Z

(m)
p (kG) :=

〈
Ch | ¬

(
∃g ∈ G : gp

m
= h

)〉
k
.

For any integer n we denote by np the unique integer pm such that pm|n but pm+1 6 |n.
For any g ∈ G there are uniquely determined elements gp, gp′ ∈ G be commuting elements
such that g = gp · gp′ and gp has p-power order, and the order of gp′ is prime to p.

Lemma 2.2. Let G be a finite group. Then the set of elements of order prime to p coincides
with the set of elements of G which admit a ps-th root for some s > logp(exp(G)p).

Proof. If p does not divide the order of h, then by Bézout’s lemma there are integers us
and vs such that 1 = usp

s + vs|h|. Therefore,

h = husp
s+vs|h| = (hus)p

s
(
h|h|
)vs

= hp
s

s

for hs := hus .
Conversely, suppose that h has arbitrary ps-th roots. Hence, for all s ∈ N there is hs ∈ G

such that hp
s

s = h. Now, let h = hphp′ for commuting elements hp and hp′ such that hp is
of p-power order pt, and hp′ has order q prime to p. Then

(hqs)
ps =

(
hp

s

s

)q
= hq = hqp.

By Bézout’s lemma there are u, v ∈ Z such that 1 = upt + vq and hence

hp =
(
hqp
)v

= (hvqs )p
s

.

This implies that hp has arbitrary ps-th roots gs in G for all s ∈ N. But then the order of
hs is pt+s, and hence pt+s divides the order of G for all s ∈ N. This provides a contradiction
to the finiteness of G.

Corollary 2.3. The ps-singular space for s > exp(G)p is just the p-singular space.

Proof. Indeed, if g does not has a ps-th root, then the order of g has to be divisible by

p, by Lemma 2.2. This shows Zp(kG) ⊇ Z
(s)
p (kG) for any s. Conversely, suppose that the

order of g is divisible by p and write g = gpgp′ for commuting elements gp and gp′ such that
the order of gp is a non trivial prime power pt and the order of gp′ is not divisible by p.

Suppose there is h ∈ G such that hexp(G)p = gp. Then h is of order pt · exp(G)p, which is a
contradiction to the definition of the exponent of a group. This shows the Corollary.

Remark 2.4. Let e := logp(exp(G)p). If g has a pn-th root h, then g has a pn−1-th root
hp. Therefore we have an ascending sequence of vector spaces

Z(1)
p (kG) ( Z(2)

p (kG) ( · · · ( Z(e)
p (kG) ( Z(e+1)

p (kG) = Zp(kG).

The sequence is stationary from Z
(e+1)
p (kG) onwards (i.e. Z

(e+1)
p (kG) = Z

(e+s)
p (kG) ∀s ≥

1), since we can write any element h = hphp′ for commuting elements hp and hp′ such that
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hp is a p-power order, and such that the order of hp′ is not divisible by p. By definition of
an exponent the p-part hp of h cannot have order bigger than pe. For the p′-part hp′ we can
use Lemma 2.2.

2.2. Group rings as symmetric algebras. Recall that for any field k and any finite
group G the group ring kG is a symmetric algebra by putting

〈
∑
g∈G

xgg,
∑
h∈G

yhh〉 :=
∑
g∈G

xgyg−1 .

Lemma 2.5. Let k be a field and let

G = Ch1
•
∪ Ch2

•
∪ · · ·

•
∪ Chs

be a decomposition of G into a disjoint union of conjugacy classes. Then kG/[kG, kG] has
a basis given by

{hi + [kG, kG] | i ∈ {1, 2, . . . , s}}.
In particular for g, h ∈ kG, then g + [kG, kG] = h + [kG, kG] if and only if g is conjugate
to h in G.

Proof. Since by [8, Part IV] or [26, Lemma 2.9.10] we have Z(kG)⊥ = [kG, kG], we
obtain that Z(kG) ' kG/[kG, kG] as vector spaces. Hence the two spaces have the same
dimension. Since the dimension of Z(kG) is the same as the number of conjugacy classes of
G, this is also the dimension of kG/[kG, kG]. Since

h− xhx−1 = (hx−1)x− x(hx−1) ∈ [kG, kG]

for all h ∈ G and x ∈ G, and since G is a k-basis of kG, G generates kG/[kG, kG] as
k-vector space, and moreover, two conjugate elements in G belong to the same class modulo
[kG, kG]. The dimension argument shows that {hi + [kG, kG] | i ∈ {1, . . . , s} is actually a
basis of kG/[kG, kG]. This shows as well that g + [kG, kG] = h+ [kG, kG] in kG/[kG, kG]
if and only if g is conjugate to h in G.

We can now determine the restriction of the above symmetrising form 〈 , 〉 to the centre
Z(kG) of kG. We get

〈Cg, h〉 =

{
1 if g is conjugate in G to h−1

0 else
.

Indeed, recall that Cg is a conjugacy class, and observe that for x ∈ kG and h ∈ G we get

h− xhx−1 = x−1 · xh− xh · x−1 = [x−1, xh] ∈ [kG, kG]

so that the value of the restriction of the bilinear form above indeed depends only on the
conjugacy class of h in G. Therefore the restriction to Z(kG) of the given symmetrising
form above on kG is the non degenerate form

〈 , 〉 : Z(kG)× kG/[kG, kG] −→ k

given by

〈Cg, h+ [kG, kG]〉 =

{
1 if g is conjugate in G to h−1

0 else
.

2.3. p-power maps on the commutator quotient of kG. We shall study the p-power
map µp on kG/[kG, kG]. Throughout, let k be a perfect field of characteristic p > 0.
Consider the set

M t = im(µtp).

It is clear that
M1 ⊇M2 ⊇ · · · ⊇

⋂
t∈N

M t.
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Lemma 2.6. Let k be a perfect field of characteristic p > 0, let G be a finite group and let
h ∈ G. Then h+ [kG, kG] ∈

⋂
t≤m

M t = Mm

⇔ (
∃g ∈ G : gp

m
= h

)
.

In particular, (
h+ [kG, kG] ∈

⋂
t∈N

M t

)
⇔ (p 6 | |h|) .

Proof. We first prove the first equivalence. We know that

dimk(Z(kG)) = dimk(kG/[kG, kG])

and a k-basis of Z(kG) is given by the conjugacy class sums of G. Hence a k-basis of
kG/[kG, kG] is given by representatives of conjugacy classes of G.

We claim that
h+ [kG, kG] ∈Mm ⇔ ∃g ∈ G : gp

m
= h .

Suppose ∃g ∈ G : gp
m

= h, then h = µmp (g) trivially. This shows the implication ”⇐”.

Now suppose that x+[kG, kG] ∈Mm. By Lemma 2.5 a basis for the commutator quotient
is given by representatives of the conjugacy classes of G. Let

x =
∑

g∈G/conj

kgg + [kG, kG] ∈ kG/[kG, kG]

and compute

µmp (x+ [kG, kG]) =
∑

g∈G/conj

kp
m

g gp
m

+ [kG, kG].

This shows that Mm is k-linearly generated by those elements g+[kG, kG] for which there is
hm(g) ∈ G with hm(g)m − g ∈ [kG, kG]. By Lemma 2.5 this is precisely the set of elements
g + [kG, kG] for which there is hm(g) ∈ G with hm(g)m is conjugate in G to g. Hence, this
is precisely the set of elements g+ [kG, kG] for which there is hm(g) ∈ G with hm(g)p

m
= g.

This shows ”⇒”.
The second statement follows from the first equivalence and Lemma 2.2.

2.4. Obtaining the p-regular subspace. We digress with a construction which was used
in [19], but which proves not to be an invariant under change of bilinear forms.

Given a symmetric k-algebra A with symmetrising form 〈 , 〉, then for any k-basis B of
Z(A) we get a k-basis B′, the dual basis of B, of A/[A,A] by the condition

〈b, c′〉 = δb,c

for δb,c being the Kronecker symbol; i.e. the linear form 〈b,−〉 vanishes on all elements of
B′ except on b′, on which it is 1. Indeed, there is a linear independent system of |B| linear
equations 〈c,−〉 = δb,c for b, c ∈ B, and hence there is a unique solution B′ to this set of
linear equations. Hence we get an identification

Z(A)
δ−→ A/[A,A]∑

b∈B
λbb 7→

∑
b′∈B′

λbb
′

This map depends on the choice of B and the choice of the symmetrising form 〈 , 〉.

Corollary 2.7. Let G be a finite group and let k be a perfect field of characteristic p > 0.
Let 〈 , 〉 be the standard symmetrising form of kG from Section 2.2, and take the conjugacy

class sums as basis of Z(kG). Then the dual basis map δ for these data maps Z
(m)
p′ (kG) to

Mm.
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Proof. We know that the dual basis element to Cg is g−1 + [kG, kG]. Hence the dual

basis element of Cg ∈ Zp′(kG) is exactly g−1 + [kG, kG] for p 6 | |g|, and the dual basis

element of g−1 + [kG, kG] for p 6 | |g| is precisely Cg ∈ Zp′(kG). Hence δ(Z
(m)
p′ (kG)) = Mm

by Lemma 2.6.

Example 2.8. We consider p = 2 and let k be an algebraically closed field of characteristic
2. Let C2 be the cyclic group of order 2 generated by c. Then kC2 ' k[X]/X2 as algebras.
The isomorphism ϕ is given by

kC2 −→ k[X]/X2

c 7→ X − 1

1 7→ 1

The standard symmetrising form on kC2 is given by

〈1, 1〉grp = 〈c, c〉grp = 1 , 〈1, c〉grp = 〈c, 1〉grp = 0

which is mapped by ϕ to

〈1, 1〉grp = 〈X, 1〉grp = 〈1, X〉grp = 1 , 〈X,X〉grp = 0.

The form on k[X]/X2 from [5, Proposition 3.1] is however given by

〈1, X〉alg = 〈X, 1〉alg = 1 , 〈1, 1〉alg = 〈X,X〉alg = 0

since rad(k[X]/X2) = soc(k[X]/X2) = Xk[X]/X2 with basis {X}. The Gram matrices are
therefore

Galg :=

(
0 1
1 0

)
for 〈 , 〉alg and basis {1, X}

and

Ggrp :=

(
1 1
1 0

)
for 〈 , 〉grp and basis {1, X}.

However, there is no invertible matrix T with TGgrpT
tr = Galg. Hence these two symmetric

forms are not equivalent. Nevertheless, accordingly with Lemma 1.1,

〈a, b〉grp = 〈a · (1 +X), b〉alg
for all a, b ∈ k[X]/X2 where 1 + X is a unit, as is easily checked on the value of the basis
elements. Note that Z2′(kC2) = k ·1, Z2(kC2) = k ·c, and

⋂
t∈NM

t = k ·1. Now, δ−1grp(1) = 1,

whereas δ−1alg(1) = X = c+ 1. We see that the two elements 1 and c+ 1 belong to different

orbits of the multiplication action of Z(kC2)
× on Z(kC2).

3. Going blockwise

Throughout this section let k be a perfect field of characteristic p > 0. Let B be a block of
kG and let kG =

⊕n
i=0Bi be the block decomposition of kG. Then HH0(kG) decomposes

into

HH0(kG) =
n⊕
i=0

HH0(Bi)

and of course also

Z(kG) = HH0(kG) =
n⊕
i=0

HH0(Bi) =
n⊕
i=0

Z(Bi).

Moreover, the p-power map on HH0(kG) restricts to p-power maps µp(Bi) on HH0(Bi) for
each i ∈ {0, . . . , n}. As is well-known, each Bi is symmetric using the restriction of the
symmetrising form 〈 , 〉 to Bi. For the reader’s convenience we recall the easy argument.
Indeed, it is clear that the restriction of the form to the block is again symmetric and
associative. We need to show that the restriction of the form is non degenerate. Let
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x = xb ∈ Bi for b2 = b being the block idempotent of Bi. Then since the form on kG is non
degenerate, there is y ∈ kG such that 〈x, y〉 6= 0. But now,

0 6= 〈x, y〉 = 〈xb, y〉 = 〈xb2, y〉 = 〈xb, by〉 = 〈xb, yb〉
and yb ∈ Bi. This proves that the restriction of the symmetrising form to a block is a
symmetrising form on this block. By the general argument we get again that [B,B]⊥ = Z(B)
for the restriction of the symmetrising form to B. Hence, the symmetrising form induces
again a non degenerate pairing

Z(B)×B/[B,B]→ k.

Since µp : kG/[kG, kG]→ kG/[kG, kG] restricts to µp(Bi) : Bi/[Bi, Bi]→ Bi/[Bi, Bi], we
get that Mm =

⊕n
i=0M

m(Bi), where Mm(Bi) = Mm ·bi, where bi is the block idempotent of
Bi. In the same way we may decompose the centre and the pm-regular and the pm-singular
subspace of the centre. If we define

Z
(m)
p′ (kG)bi =: Z

(m)
p′ (Bi) and Z(m)

p (kG)bi =: Z(m)
p (Bi)

for the block idempotent bi of Bi, then we get

Z
(m)
p′ (Bi) = Z

(m)
p′ (kG) ∩Bi and Z(m)

p (Bi) = Z(m)
p (kG) ∩Bi

and observe that

Z
(m)
p′ (kG) =

n⊕
i=0

Z
(m)
p′ (Bi) and Z(m)

p (kG) =
n⊕
i=0

Z(m)
p (Bi).

A symmetrising form 〈 , 〉 on B induces by restriction to the centre in the first component
a non degenerate pairing

〈 , 〉 : Z(B)×B/[B,B]→ k.

4. p-power structure on the cocentre under derived equivalences of
standard type

Fix a commutative ring k, and let A and B be symmetric k-algebras. In particular A and
B are projective as k-modules. Suppose Db(A) ' Db(B) and let AXB be a twosided tilting
complex, which we may assume with homogeneous components projective on either side (cf
[26, Corollary 6.5.7]). Therefore we may replace the left derived tensor product by ordinary
tensor products. Then, by a result of Rickard ([17] in connection with [18])Homk(X, k) =: Y
is a twosided tilting complex inverse to X. Observe that for any k-algebra A we get a natural
isomorphism

A/[A,A] ' A⊗A⊗Aop A

given by multiplication of the factors. Then, A ' X ⊗B Y in the derived category of A−A
bimodules, and similarly B ' Y ⊗A X in the derived category of B −B bimodules. Hence

A/[A,A] ' X ⊗B Y ⊗A⊗Aop X ⊗B Y
and

B/[B,B] ' Y ⊗A X ⊗B⊗Bop Y ⊗A X.
Therefore we may define a homomorphism of complexes (cf [24])

(Y ⊗A X)⊗B⊗Bop (Y ⊗A X) −→ (X ⊗B Y )⊗A⊗Aop (X ⊗B Y )

(y1 ⊗A x1)⊗B⊗Bop (y2 ⊗A x2) 7→ (x2 ⊗B y1)⊗A⊗Aop (x1 ⊗B y2)

which becomes an isomorphism A/[A,A]
ϕX−→ B/[B,B] when regarded in the derived cate-

gory of bimodules.

Remark 4.1. We did not verify ifHomk(ϕX , k) : Homk(B/[B,B], k)→ Homk(A/[A,A], k)
maps to an algebra isomorphism Z(B) → Z(A) when we apply the isomorphism Z(A) →
Homk(A/[A,A], k) and respectively Z(B)→ Homk(B/[B,B], k) given by the symmetrising
form on A and its image under the derived equivalence.
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Suppose now that k is a perfect field of characteristic p > 0. Let BG be a block of kG
and let BH be a block of kH for two finite groups G and H. Suppose that there is an
equivalence Db(BG) ' Db(BH) of triangulated categories and suppose that this equivalence
is given by X ⊗L

BG
− for some twosided tilting complex X ∈ Db(BH ⊗ Bop

G ) with inverse

Y ∈ Db(BG⊗Bop
H ). By the above we may suppose that X and Y are projective as modules

over BG and over BH and we can replace the left derived tensor product by the ordinary
tensor product. We have

BG ' Y ⊗BH
X

as BG −BG-bimodules, and
BH ' X ⊗BG

Y

as BH − BH -bimodules, which holds in the respective derived categories. We showed in
[23, 24] that the p-power map commutes with the above isomorphism on the degree 0
Hochschild homology given by the equivalence X ⊗BG

− of standard type.
Another isomorphism of Hochschild homology is given by a trace (or transfer) map gen-

eralising Hattori-Stallings traces, and described by Bouc. The approach is described in [26,
Definition 5.9.16 and Definition 5.8.6]. We denote the corresponding map by

HH0(A)
trX−→ HH0(B)

for a derived equivalence X ⊗L
A − : Db(A)→ Db(B) of standard type. Linckelmann defined

a transfer (trace) map on the Hochschild cohomology of symmetric algebras, and showed
in [11, Remark 2.13] that this actually gives an isomorphism of the Hochschild cohomology
algebras, including in degree 0. König, Liu and Zhou gave in [7] another definition of the
transfer map on Hochschild cohomology, and showed that their transfer on the cohomology is
basically the same as Linckelmann’s. They further show in [7, Theorem 2.10] compatibility of
the transfer map on Hochschild cohomology and Bouc’s trace map on Hochschild homology,
including in degree 0.

The p-power map on the degree 0 Hochschild homology is an invariant under derived
equivalences of standard type as well, and this has the following consequence.

Proposition 4.2. Let k be a perfect field of characteristic p > 0, and let G and H be
two finite groups. Let BG be a block of kG and let BH be a block of kH. Suppose that
Db(BG) ' Db(BH) and let X be a two-sided tilting complex in Db(BH ⊗ Bop

G ), where we
may suppose that X and its inverse Y are projective as BG-modules, and as BH-modules.
Then the isomorphism

BG/[BG, BG]
ϕX−→ BH/[BH , BH ]

and also Bouc’s trace trX as map

BG/[BG, BG]
trX−→ BH/[BH , BH ]

map Mm(BG) bijectively to Mm(BH) for all m ∈ N.

Proof. Denote by µp the p-power map. By the proof of [23, Theorem] and [7, Proposition
6.4] for the isomorphism trX related to the Hattori-Stallings trace map between the cocentres
we see that

HH0(BG)
ϕX //

µp(BG)

��

HH0(BH)

µp(BH)

��

HH0(BG)
trX //

µp(BG)

��

HH0(BH)

µp(BH)

��
HH0(BG) ϕX

// HH0(BH) HH0(BG)
trX
// HH0(BH)

are commutative diagrams. This shows the statement.
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5. p-singular subspaces and derived equivalences

Let k be a perfect field of characteristic p > 0. We consider the pm-singular subspace.

Recall from Definition 2.1 that this space, denoted Z
(m)
p (kG), is the subspace of kG generated

by the conjugacy class sums Cg such that g does not have a pm-th root. According to

Section 3 we define the block version of it as Zp(Bi) = Zp(kG) ∩ Bi = Zp(kG)bi, where Bi
is a block of kG with block idempotent bi.

Lemma 5.1. Let k be a field of characteristic p > 0 and let G be a finite group. Let 〈 , 〉G be
the standard symmetrising form of kG, and let 〈 , 〉i be its restriction to the block Bi. Then,
taking orthogonal spaces with respect to the non degenerate pairing Z(kG)×kG/[kG, kG]→
k, respectively Z(Bi)×Bi/[Bi, Bi]→ k with respect to these forms 〈 , 〉G, respectively 〈 , 〉i,
we get (Mm)⊥ = Z

(m)
p (kG), respectively (Mmbi)

⊥ = Z
(m)
p (Bi).

Proof. By Definition 2.1 and Lemma 2.6 we have

Mm =< g + [kG, kG] | ∃h ∈ G : hp
m

= g >k .

In particular, using Lemma 2.6, we get
⋂
t∈NM

t =< g + [kG, kG] | p 6 | |g| >k. Now,

〈h, g〉G = 0 for all g with p 6 | |g| if and only if p| |h−1|. Since |h| = |h−1| this proves that,

taking orthogonal spaces with respect to 〈 , 〉G, respectively 〈 , 〉i, we obtain
(⋂

t∈NM
t
)⊥

=

Zp(kG), and multiplying the equation by a block idempotent bi shows that
(⋂

t∈NM
tbi
)⊥

=

Zp(Bi). In the same way (Mm)⊥ = Z
(m)
p (kG) and multiplying with the block idempotent,

(Mmbi)
⊥ = Z

(m)
p (Bi)

We shall now prove the main result of the paper.

Theorem 1. Let k be a field of characteristic p > 0 and let G and H be finite groups. Let
BG be a block of kG and let BH be a block of kH and suppose that Db(BG) ' Db(BH). Then

there is a unit v ∈ Z(kH) such that the isomorphism trX induced by FX maps Z
(m)
p (BG) to

v · Z(m)
p (BH) for all m ∈ N. In particular, trX(Zp(BG)) = v · Zp(BH).

Proof. We may suppose that there is a derived equivalence of standard type X ⊗BG
−

with a two-sided tilting complex X, which is projective on either side. Let Y be its inverse,
and we may assume again that also Y is projective on either side. By Proposition 4.2 we
get that isomorphism trX : BG/[BG, BG]→ BH/[BH , BH ] satisfies

trX(Mm(BG)) = Mm(BH).

It was shown by Rickard [17] and generalised in [21] that FbiX := X ⊗BG
−⊗BG

Y maps the
BG −BG-bimodule Homk(BG, k) to the BH −BH -bimodule Homk(BH , k). Moreover, this

functor maps an isomorphism BG
α→ Homk(BG, k) of BG−BG-bimodules to an isomorphism

BH
Fbi
X(α)
−→ Homk(BH , k) of BH − BH -bimodules. If α is the isomorphism coming from the

standard symmetrising form, then its image FbiX(α) induces another symmetrising form 〈̃ , 〉H
on BH . By Lemma 1.1 we obtain for all x, y ∈ BH that there is a unit u ∈ Z(BH) such that

〈̃x, y〉H = 〈ux, y〉H
for the standard symmetrising form 〈 , 〉H on BH . Again these forms induce non degenerate
pairings between the centres and the cocentres of the blocks. If y ranges over Mm(BG), we

consider the orthogonal spaces, by Lemma 5.1 we obtain Z
(m)
p (BG), and applying trX the

standard form 〈 , 〉G on BG maps to 〈̃ , 〉H on BH . The image of Mm(BG) under trX is

Mm(BH), and hence Z
(m)
p (BG) is mapped to the orthogonal of Mm(BH) with respect to

〈̃ , 〉H = 〈u· , 〉H .
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By Lemma 5.1 the orthogonal of Mm(BH) with respect to 〈 , 〉H is Z
(m)
p (BH), whence,

using Lemma 1.2, the orthogonal of Mm(BH) with respect to 〈u· , 〉H is u−1 · Z(m)
p (BH).

König, Liu and Zhou (cf [7, Theorem 2.10, Corollary 2.11]) show that the dual of trX with
respect to the symmetrising forms is trX . The last statement follows by Remark 2.4. We
proved the statement.

Remark 5.2. The central unit v which appears in Theorem 1 comes from the construction
of the image of a symmetrising form. If F is a derived equivalence of standard type, given
by a twosided tilting complex X, between two blocks B and B′, then an isomorphism
λ : B → Homk(B, k) is mapped to Fλ : B′ → Homk(B

′, k) and if we consider the standard
isomorphism λ and λ′ for group rings, then Fλ differs from λ′ by this central unit v. It
would be most interesting to find out a method to determine v in terms of the twosided
tilting complex X.

Remark 5.3. Let k be a field of characteristic p > 0 and let A be a symmetric k-algebra.

Then we can define the p(m)-singular subspace Z
(m)
p (A) of the centre of A as the orthogonal

of the image of the pm-th power map on the cocentre of A. We then obtain analogous results
as in Theorem 1.

Example 5.4. Let k be a field of characteristic p > 0 and let A = Nnm+1
n be a symmetric

Nakayama k-algebra given by a cyclic quiver Q with n vertices vi, labelled by i ∈ Z/nZ,
arrows αi : vi −→ vi+1 and relations Rm. Let Ci := αi . . . αi−1 for all i ∈ Z/nZ be the full
cycle of length m. Then Rm is generated by {Cmi αi | i ∈ Z/nZ}. This is equivalent to saying
that paths of length mn + 1 are 0. By e.g. [26, Proposition 5.10.36] blocks of group rings
over algebraically closed base fields k with normal cyclic defect groups are algebras of this
type. Let ei be the lazy paths corresponding to the vertices, and let put C :=

∑
i∈Z/nZCi.

Then, following [19], Z(A) has a k-basis given by Cs for s ∈ {0, . . . ,m − 1} and Cmi for
i ∈ Z/nZ. A k-basis of A/[A,A] is given by the classes of ei for i ∈ Z/nZ and Cs1 for
s ∈ {1, . . . ,m}. Following [5, 27], a non degenerate pairing 〈 , 〉 : Z(A)×A/[A,A]→ k given

by a symmetrising form is then given by putting 〈Cs, Cj1 〉 = δs+j,m and 〈Cmi , ej 〉 = δs,j ,
using the Kronecker symbol δ. Hence,

M t =

〈
ei;C

spt

1 | i ∈ Z/nZ, 1 ≤ s ≤
⌊
m

pt

⌋〉
k

and therefore (
M t
)⊥

=
⋂

i∈Z/nZ

e⊥i ∩

⌊
m
pt

⌋⋂
s=1

(
Csp

t

1

)⊥
.

Clearly,
⋂
i∈Z/nZ e

⊥
i has a k-basis given by Cs for 0 ≤ s < m. Moreover, inside this subspace,⋂⌊

m
pt

⌋
s=1

(
Csp

t

1

)⊥
has k-basis given by those C` such that pt 6 |(m− `). Therefore

Z(t)
p (Nmn+1

n ) = 〈C` | pt 6 |(m− `)〉k
and

Zp(N
mn+1
n ) = 〈C` | 0 ≤ ` ≤ m− 1〉k.

In particular, Z
(m)
p is not an ideal of Z(Nnm+1

m ) and hence we cannot get rid of the central
unit which occurs in Theorem 1.

Example 5.5. We recall Example 2.8. We have
⋂
M t = k · 1 and 1

⊥〈 , 〉alg = k · 1 whereas

1⊥〈 , 〉grp = k · (1 +X). Note that the forms

〈 , 〉grp = 〈u· , 〉alg
differ by the central unit u = (1 +X), and conformably to the statement of Theorem 1 the
orthogonal spaces do as well.
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Remark 5.6. We note that if A is given by a quiver with (admissible) relations, and if the
symmetrising form is given by [5, 27], then rad(A) is nilpotent and hence

⋂
t∈NM

t has a
basis given by the primitive idempotents. Zp(A) can then be computed using the basis given
in [5, Proposition 3.1]. This does not automatically imply that a basis of Zp(A) is given by
all elements in B\Bs, where B is the basis of A containing a basis Bs of the socle mentioned
in [5, Proposition 3.1], since B is not an orthogonal basis in general. We remind the reader
that [5, Proposition 3.1] only gives a Frobenius form, and only a necessary criterion for a
symmetric form is given in [27]. The basis used for a symmetric form using the construction
[5, Proposition 3.1] may involve linear combinations of paths rather than paths only.

6. Concluding remarks

A dual proof will lead to dual statements for a connection of p-singular elements in the
cocentre. We do not elaborate on this in detail since we do not know any direct application.
However, there is a Külshammer structure on the higher cocentres, i.e. the Hochschild ho-
mology (cf [24]). The natural generalisation of the present situation to Hochschild homology
does not seem to make sense there, since the p-power map on the higher degree Hochschild
homology does not preserve the degree. Hence we cannot expect immediately stabilisation
results.

A different subject is nevertheless the Gerstenhaber bracket on Hochschild cohomology.
Again in degrees strictly higher than 1 the p-power map of the restricted Lie algebra structure
will not preserve degrees (cf [24]). However, the degree 1 Hochschild homology is a restricted
Lie algebra, and it will be interesting to see the group theoretical applications and the
outcome of an analogous study of the above arguments. There are quite a few technical
difficulties, which we believe to be solvable. We intend to pursue this topic in subsequent
work.
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Sciences de Paris 307 (1988) 13-18.
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