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Abstract. We study Verdier quotients of diverse homotopy categories of a full additive sub-
category E of an abelian category. In particular, we consider the categories Kx,y(E) for x ∈
{∞,+,−, b}, and y ∈ {∅, b,+,−,∞} the homotopy categories of left, right, unbounded complexes
with homology being 0, bounded, left or right bounded, or unbounded. Inclusion of these categories

give a partially ordered set, and we study localisation sequences or recollement diagrams between

the Verdier quotients, and prove that many pairs of quotient categories identify.

Introduction

Let A be a left Noetherian ring. Denote by A−mod the category of finitely generated A-modules,
and let Db(A − mod) be the bounded derived category of finitely generated left A-modules. The
full subcategory of perfect objects of Db(A−mod) is the homotopy category of bounded complexes
of finitely generated projective modules Kb(A− proj). Buchweitz [6], and independently Orlov [17]
defined and studied the Verdier quotient

Db
sg(A) := Db(A−mod)/Kb(A− proj).

Orlov named this category the (bounded) singularity category of A. The singularity category has
attracted a lot of interest in recent years (cf e.g.[9, 13, 25, 26, 21, 22, 23]).

If A is self-injective, then Rickard [18] and Keller-Vossieck [12] showed that Db
sg(A) ' A−mod is

the stable category of finitely generated A-modules modulo projective objects. If A has finite global
dimension, then the singularity category vanishes. In general, however, if A is not self-injective, then
the singularity category can be very complicated.

We note that the definition of the singularity category is very much linked to the case of finite
dimensional algebras. Unbounded derived categories are more natural in many cases (cf e.g. [11, 19]).
We note that there are many more possible alternative Verdier quotients of homotopy categories, and
then the question is legitimate, which of them may lead to new quotients, and which can be identified.
In this note we consider a full additive subcategory E of an abelian category A and consider the
homotopy categories Kx,y(E) of complexes of objects in E , and of type x, and homology being in A
of type y. Here x can be unbounded, right bounded, left bounded or bounded (written as ∞,−,+, b
respectively), and also the homology can take these types, or if we consider exact complexes, y is
put to ∅. This gives a rather complicated Hasse diagram of subcategories (†) displayed in Section 1.3
below.

We consider Verdier quotients of inclusions in this Hasse diagram, and consider equivalences be-
tween them first abstractly, and then we consider as a special case when E = A is abelian. We
do not show the equivalences of the categories directly, but rather prove the existence of stable
t-structures of the quotients as introduced by [9] which imply then isomorphisms of quotients. Sim-
plifying the work, a result of Jørgensen and Kato [10] reduces the verification of stable t-structures
(X/(X ∩ Y),Y/(X ∩ Y)) in T /(X ∩ Y) to a verification of the ambient category T being the full
subcategory of T of middle terms of distinguished triangles X ∗ Y with precisely the end terms in
X respectively Y. Quotients involving exact complexes are more subtle than those given by other
boundedness conditions. The appropriate additional hypothesis to be able to deal with this situation
is that of an abelian category, instead of just an additive subcategory of an abelian category. In the
case of additive subcategories of abelian categories we use the distinguished triangle given by brutal
truncation, and in case of an abelian category we use a distinguished triangle given by intelligent
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truncation. In case we can use both triangles we show that the parallelograms in the Hasse diagrams
all split in the following sense: If X contains two triangulated subcategories Y and Z occurring in
the Hasse diagram, and X is generated by Y and Z, let D = X ∩ Y. Then X/D ' Y/D ×Z/D.

We consider more in detail the case of projective objects E = P, and of injective objects E = I in
A, where we get more detailed statements from a result due to Krause [13]. We are able to obtain
as a corollary previous cases which appeared in a paper of Iyama-Kato-Miyachi [9]. The case of
Gorenstein algebras is particularly simple, as we will show in a special treatment.

We further prove that the most curious case of the homotopy category of right (resp. left) bounded
complexes of an abelian category modulo those with bounded homology allows a computation of the
morphisms between objects as limits of morphisms of intelligently truncated complexes in the derived
category.

We finally give a set of examples showing that the various quotients actually differ in specific
cases.

The paper is organised as follows. In Section 1 we recall some known facts concerning homotopy
and derived categories of complexes, as well as some methods available for triangulated categories
which can be used to prove the presence of (co)localisation sequences, recollement or ladder diagrams,
namely Miyachi’s concept of stable t-structures [15]. In Section 2 we prove equivalences between
Verdier quotients of homotopy categories of additive subcategories of abelian categories, and the
more precise statements for homotopy categories of abelian categories. In Section 3 we study more
specifically the category of projective (resp. injective) objects of a module category, and in particular
in the case of Iwanaga-Gorenstein rings. We can give more precise statements there, using work of
Krause [13] and of Iyama, Kato and Miyachi [9]. In Section 4 we study our most curious case of
the homotopy categories of right bounded complexes modulo those with bounded homology. Here
we show that homomorphism spaces can be computed as limits of truncated complexes analogous to
the case of classical singularity categories, shown by Beligiannis [2]. Section 5 then gives examples
showing that the Verdier quotients for the cases which were not shown to be equivalent actually
differ in general.

Acknowledgement. This research is supported by a grant PHC Xu Guangqi 38699ZE of
the French government. The first author is supported by NSFC (No. 11671139), STCSM (No.
13dz2260400) and the Fundamental Research Funds for the Central Universities.

1. Review on homotopy and derived categories

1.1. Truncations. We begin by recalling two possible truncation operators for complexes. Let

X = (· · · d
n−2

→ Xn−1 dn−1

→ Xn dn→ Xn+1 d
n+1

→ · · · )
be a complex over an abelian category. For each n ∈ Z, denote

τ≥nX = (· · · → 0→ 0→ Xn dn→ Xn+1 d
n+1

→ · · · ),

τ≤nX = (· · · d
n−2

→ Xn−1 dn−1

→ Xn → 0→ 0→ · · · ),
the brutal or stupid truncation and let

σ≥nX = (· · · → 0→ Im(dn−1)→ Xn dn→ Xn+1 d
n+1

→ · · · ),

σ≤nX = (· · · d
n−1

→ Xn dn→ Im(dn)→ 0→ 0→ · · · )
be the intelligent or subtle truncation. Obviously we have a short exact sequence of complexes for
each n ∈ Z:

0→ τ≥nX → X → τ≤n−1X → 0

which is degree-wise split, and hence gives a distinguished triangle

(1) τ≥nX → X → τ≤n−1X → (τ≥nX)[1]

in the homotopy category; we shall call it the stupid triangle in the sequel. Note that because of our
definition of intelligent truncations, we have no short exact sequence of complexes of the form

0→ σ≤nX → X → σ≥n+1X → 0.
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However, we will show that this becomes a distinguished triangle in the homotopy category, which
will be used repeatedly in the sequel.

Lemma 1.1. There is a distinguished triangle

(2) σ≤nX → X → σ≥n+1X → (σ≤nX)[1]

whenever all complexes are in the same homotopy category. We shall call it the intelligent triangle
in the sequel.

Proof. We have the natural inclusion of complexes σ≤nX → X and let C be its cone. We claim
that C ' σ≥n+1X in the homotopy category. Indeed, C is the complex

· · · // Xn−1

⊕
−dn−1

//

1

##

Xn

⊕
−dn //

1

$$

im(dn)

⊕
0 //

� r

$$

0 //

⊕
. . .

· · · // Xn−2 dn−2
// Xn−1 dn−1

// Xn dn // Xn+1 d
n+1
// . . .

But, this is homotopy equivalent to the complex σ≥n+1X given above. Indeed, Xi 1→ Xi is a direct
factor for all i ≤ n. We illustrate the most difficult case i = n and this follows from the commutative
diagram below.

· · · // 0 // Xn 1 // Xn // 0 // · · ·

· · · −d
n−2

//

1

""

Xn−1

⊕
−dn−1

//

OO

1

##

Xn

⊕
−dn //

1

$$

(1 dn−1)

OO

im(dn)

⊕
0 //

� r

$$

(0 1)

OO

0

⊕
//

OO

· · ·

· · · dn−3
// Xn−2 dn−2

// Xn−1 dn−1
// Xn dn // Xn+1 d

n+1
// · · ·

· · · // 0

OO

// Xn 1 //

(1
0)

OO

Xn //

(−dn

1 )

OO

0 //

OO

· · ·
The left bottom and the right upper squares are trivially commutative. Since

(0 1) ·
(
−dn 0

1 dn−1

)
= (1 dn−1) = (1 dn−1) · 1

and (
−dn 0

1 dn−1

)
·
(

1

0

)
=

(
−dn

1

)
=

(
−dn

1

)
· 1,

the middle squares are commutative. The lower right square and the upper left square are both
commutative as well, as it might be checked by the diligent reader. This shows the statement.

1.2. Stable t-structures, (co)localisation sequences, recollements and ladders of triangu-
lated categories. Let T be a triangulated category. A triangulated subcategory T ′ of T is called
a thick subcategory if it is closed under taking direct summands. Then we can define the Verdier
quotient T /T ′; see [20]. It is still a triangulated category, and the quotient functor j∗ : T → T /T ′

is a triangle functor. In this case, we will say that T ′ i∗→ T j∗→ T ′′ is a short exact sequence of
triangulated categories, where i∗ is the inclusion functor and T ′′ = T /T ′.
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Given a short exact sequence of triangulated categories T ′ i∗→ T j∗→ T /T ′, if i∗ and/or j∗ have a
left adjoint, denoted by i∗ and j! respectively, then the diagram

T ′ i∗ // T
i∗xx

j∗ // T ′′
j!xx

is called a colocalisation sequence or a left recollement. Dually, given a short exact sequence of

triangulated categories T ′ i∗→ T j∗→ T /T ′, if i∗ and/or j∗ have a right adjoint, denoted by i∗ and j!
respectively, then the diagram

T ′ i∗ // T
i!

ff j∗ // T ′′

j∗

ff

is called a localisation sequence or a right recollement. Interchanging T ′ and T ′′, we see that the
notions of colocalisation sequences and of localisation sequences are equivalent. When i∗ and/or j∗

have a left adjoint and a right adjoint, the diagram

T ′ i∗ // T
i∗xx

i!
ff j∗ // T ′′

j!xx

j∗

ff

is called a recollement.
If in a recollement diagram, the functors i∗ and/or j! have still left adjoints, we then have a ladder

of height two

T ′

i?

��
i∗ // T
i∗xx

j[

��

i!
ff j∗ // T ′′

j!xx

j∗

ff

Dually we can also have a ladder of height two

T ′

i[

CCi∗ // T
i∗xx

j?

CC
i!

ff j∗ // T ′′
j!xx

j∗

ff

if the functors i! and/or j∗ have still right adjoints. Here the height refers to the number of recolle-
ments contained in the ladder. Of course one can extend upwards or downwards to obtain ladders of
larger height. More generally a ladder ([4, 1.2]) is a finite or an infinite diagram of triangle functors:

T ′

...

-
�

-
�

-

...

T

...

-
�

-
�

-

...

T ′′

i−2 j−2

i−1j−1

i0 j0

j1 i1

i2 j2

such that any two consecutive rows form a left or right recollement (or equivalently, any three
consecutive rows form a recollement or an opposed recollement) of C relative to C′ and C′′. Its height
is the number of rows minus 2. Ladders of height 0 (resp. 1) are exactly left or right recollements
(resp. recollements).

When considering localisation sequences or recollement diagrams, the notion of stable t-structures
is rather useful.

Definition 1.2. [15, Page 467] Let T be a triangulated category with suspension functor [1]. A pair
(U ,V) of full subcategories of T is called a stable t-structure in T if

(1) U = U [1] and V = V[1]
(2) HomT (U ,V) = 0
(3) for every object X of T there is a distinguished triangle U → X → V → U [1] for an object

U of U , and an object V of V.
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Stable t-structures, localisations and recollements are closely related. Miyachi showed in the
remarks preceding [15, Proposition 2.6] that if (U ,V) is a stable t-structure of T , then the natural
inclusion R : V → T is right adjoint to a functor Q : T → V and the natural inclusion R : U → T is
left adjoint to a functor Q′ : T → U such that Q induces an equivalence V ' T /U and Q′ induces
an equivalence U ' T /V. [15, Proposition 2.6] shows that stable t-structures is precisely the same
as localisation sequences.

One of our main tools is the following result due to Jørgensen and Kato [10]. For a triangulated
category T and two subcategories X and Y of T let X ∗ Y be the full subcategory of T having as
objects those objects E of T such that there is a distinguished triangle X −→ E −→ Y −→ X[1] with
X ∈ X and Y ∈ Y. We want to stress however that it is not hard to avoid the use of Theorem 1.3
and to give independent elementary and short proofs of all statements where Theorem 1.3 is used in
our paper.

Theorem 1.3. [10] Let T be a triangulated category. Let X ,Y be two thick subcategories of T , and
denote U := X ∩ Y. Then (X/U ,Y/U) is a stable t-structure in T /U provided that X ∗ Y = T .

If we have both X ∗ Y = T = Y ∗ X , then there exists a splitting equivalence

T /U ' X/U × Y/U .

Proof. The first statement is the first row of [10, Theorem B]. The second statement can be shown
using [24, Lemma 3.4(2)] and [10, Theorem B] for Z = X. For the convenience of the reader, we give
a simple independent proof using the first statement. Denote by Q : T → T /U the natural functor.
Since (QX , QY) is a stable t-structure, any object QT in T /U is middle term of a distinguished
triangle QX → QT → QY → QX[1] with X ∈ X and Y ∈ Y. Since by the first statement
(QY, QX ) is a stable t-structure, there is no non zero morphism from objects in QY to objects in
QX , this triangle splits.

The following statement will simplify our work in the sequel.

Lemma 1.4. Let T1 be a triangulated category, and let T2, T3, T4, T5, T6 be triangulated subcategories
such that T4 = T3 ∩ T2 and T6 = T4 ∩ T5.

If (T2/T4, T3/T4) is a stable t-structure in T1/T4, and if (T4/T6, T5/T6) is a stable t-structure in
T3/T6, then

(T2/T6, T5/T6)

is a stable t-structure in T1/T6.

Proof. Without loss of generality, we can assume that T6 = 0.
By Beilinson, Bernstein, Deligne [3, 1.3.10] the operation ∗ on subcategories is associative. Hence,

by Theorem 1.3 we get T1 = T2 ∗ T3 and T3 = T4 ∗ T5. Then

T2 ∗ T5 = (T2 ∗ T4) ∗ T5 = T2 ∗ (T4 ∗ T5) = T2 ∗ T3 = T1.
Theorem 1.3 then shows the statement.

Recall from [9, Definition 0.3] that a triple (U1,U2,U3) of full subcategories of a triangulated
category T forms a triangle of recollements if (U1,U2), (U2,U3) and (U3,U1) are stable t-structures
in T . If (U1,U2,U3) is a triangle of recollements, by [9, Proposition 1.10] we get then that there is a
recollement diagram

Uk // Tjj
tt // T /Ukii

uu

for all k ∈ {1, 2, 3}.

1.3. Various homotopy and derived categories. From now on, let E be a full additive subcat-
egory of an abelian category A. Define the following full triangulated categories of the homotopy
category K(E):

• K∞,+(E) consists of all unbounded complexes with left bounded cohomology groups;
• K∞,−(E) consists of all unbounded complexes with right bounded cohomology groups;
• K∞,b(E) consists of all unbounded complexes with bounded cohomology groups;
• K+(E) consists of all complexes homotopy equivalent to left bounded complexes;
• K−(E) consists of all complexes homotopy equivalent to right bounded complexes;
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• K+,b(E) consists of all complexes homotopy equivalent to left bounded complexes with
bounded cohomology groups;
• K−,b(E) consists of all complexes homotopy equivalent to right bounded complexes with

bounded cohomology groups;
• K∞,∅(E) consists of all unbounded exact complexes;
• K+,∅(E) consists of all complexes homotopy equivalent to left bounded exact complexes;
• K−,∅(E) consists of all complexes homotopy equivalent to right bounded exact complexes;
• Kb(E) consists of all complexes homotopy equivalent to bounded complexes;
• Kb,∅(E) consists of all complexes homotopy equivalent to bounded exact complexes.

When E = A, we also have the following derived categories which are triangulated subcategories
of the unbounded derived category D(A) (when they exists).

• D+(A) consists of all unbounded complexes with left bounded cohomology groups;
• D−(A) consists of all unbounded complexes with right bounded cohomology groups;
• Db(A) consists of all unbounded complexes with bounded cohomology groups.

We have the following diagram of inclusion functors of triangulated categories. Note that we use
the convention that lower categories are subcategories of upper ones.

These homotopy categories form a rather complicated Hasse diagram (†):

K(E)

K∞,+(E) K∞,−(E)

K∞,b(E)K+(E) K−(E)

K−,b(E)K+,b(E)

K∞,∅(E)

Kb(E)K+,∅(E) K−,∅(E)

Kb,∅(E)

�
�

�
�
�

@
@
@
@
@

�
�

�
�
�

@
@
@
@
@

�
�

�
�
�

@
@
@
@
@

@
@
@
@
@

�
�

�
�
�

�
�
�

�
�

@
@
@
@
@

@
@
@
@
@

�
�
�

�
�

�
�
�

��

@
@
@
@@

@
@
@@

�
�

��

These homotopy categories and their various Verdier quotients play an important role in repre-
sentation theory. By [16] the inclusions form thick subcategories in case E is Karoubian, i.e. every
idempotent splits. Hence, the Verdier quotients of these homotopy categories are defined.

2. Quotients for general homotopy categories

We first consider the general case when E is an arbitrary full additive subcategory of an abelian
category. In this case, we need to consider the second diagram (‡) which is a subdiagram of (†):
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K(E)

K∞,+(E) K∞,−(E)

K∞,b(E)K+(E) K−(E)

K−,b(E)K+,b(E)

Kb(E)

�
�
�

�
�

@
@
@
@
@

�
�
�

�
�

@
@
@
@
@

�
�
�

�
�

@
@
@
@
@

@
@
@
@
@

�
�
�

�
�

�
�
�

�
�

@
@
@
@
@

@
@
@
@
@

�
�
�

�
�

Theorem 2.1. Let E be a full additive Karoubian subcategory of an abelian category A. Then each
parallelogram in the diagram (‡) gives a stable t-structure, that is, there exist nine stable t-structures:

(1) (K+(E)/K+,b(E),K∞,b(E)/K+,b(E)) in K∞,+(E)/K+,b(E),
(2) (K∞,b(E)/K−,b(E),K−(E)/K−,b(E)) in K∞,−(E)/K−,b(E),
(3) [9, Proposition 2.1] (K+,b(E)/Kb(E),K−,b(E)/Kb(E)) in K∞,b(E)/Kb(E),
(4) (K∞,+(E)/K∞,b(E),K∞,−(E)/K∞,b(E)) in K(E)/K∞,b(E),
(5) (K+(E)/Kb(E),K−,b(E)/Kb(E)) in K∞,+(E)/Kb(E),
(6) (K∞,+(E)/K−,b(E),K−(E)/K−,b(E)) in K(E)/K−,b(E),
(7) (K+,b(E)/Kb(E),K−(E)/Kb(E)) in K∞,−(E)/Kb(E),
(8) (K+(E)/K+,b(E),K∞,−(E)/K+,b(E)) in K(E)/K+,b(E),
(9) (K+(E)/Kb(E),K−(E)/Kb(E)) in K(E)/Kb(E).

So we have nine localisation sequences (or right recollements)

(1) K+(E)/K+,b(E) // K∞,+(E)/K+,b(E) //oo K∞,b(E)/K+,b(E)oo ,

(2) K∞,b(E)/K−,b(E) // K∞,−(E)/K−,b(E) //oo K−(E)/K−,b(E)oo ,

(3) K+,b(E)/Kb(E) // K∞,b(E)/Kb(E) //oo K−,b(E)/Kb(E)oo ,

(4) K∞,+(E)/K∞,b(E) // K (E)/K∞,b(E) //oo K∞,−(E)/K∞,b(E)oo ,

(5) K+(E)/Kb(E) // K∞,+(E)/Kb(E) //oo K−,b(E)/Kb(E)oo ,

(6) K∞,+(E)/K−,b(E) // K(E)/K−,b(E) //oo K−(E)/K−,b(E)oo ,

(7) K+,b(E)/Kb(E) // K∞,−(E)/Kb(E) //oo K−(E)/Kb(E)oo ,

(8) K+(E)/K+,b(E) // K (E)/K+,b(E) //oo K∞,−(E)/K+,b(E)oo ,

(9) K+(E)/Kb(E) // K (E)/Kb(E) //oo K−(E)/Kb(E)oo .

Proof. The localisation sequences follow from the stable t-structures, so we only need to show the
existence of the nine stable t-structures. For last five ones, they can be deduced from the first four
using Lemma 1.4 and its dual, so we only need to consider the first four stable t-structures. The
third stable t-structure was proved in [9, Proposition 2.1]. We will see that this statement can be
reproved by our method as well.

For a complex X, consider the stupid triangle

τ≥1X → X → τ≤0X → τ≥1X[1]
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in K(E).

• When X ∈ K∞,+(E), τ≥1X ∈ K+(E) and τ≤0X ∈ K∞,b(E), whence the first stable t-
structure, using Theorem 1.3;
• when X ∈ K∞,−(E), τ≥1X ∈ K∞,b(E) and τ≤0X ∈ K−(E), whence the second stable
t-structure, using Theorem 1.3;
• when X ∈ K∞,b(E), τ≥1X ∈ K+,b(E) and τ≤0X ∈ K−,b(E), whence the third stable t-

structure, using Theorem 1.3;
• when X ∈ K(E), τ≥1X ∈ K+(E) ⊆ K∞,+(E) and τ≤0X ∈ K−(E) ⊆ K∞,−(E), whence the

fourth stable t-structure, using Theorem 1.3.

We finished the proof.

When E = A, we can actually show much stronger results and even for the larger diagram (†).

Theorem 2.2. If E = A is an abelian category, then each parallelogram in the diagram (‡) gives a
splitting equivalence and each parallelogram in the rest of the diagram (†) gives a stable t-structure.
More precisely, we have the following nine triangle equivalences:

(1) K∞,+(A)/K+,b(A) ' K+(A)/K+,b(A)×K∞,b(A)/K+,b(A),
(2) K∞,−(A)/K−,b(A) ' K∞,b(A)/K−,b(A)×K−(A)/K−,b(A),
(3) K∞,b(A)/Kb(A) ' K+,b(A)/Kb(A)×K−,b(A)/Kb(A),
(4) K(A)/K∞,b(A) ' K∞,+(A)/K∞,b(A)×K∞,−(A)/K∞,b(A),
(5) K∞,+(A)/Kb(A) ' K+(A)/Kb(A)×K−,b(A)/Kb(A),
(6) K∞,−(A)/Kb(A) ' K+,b(A)/Kb(A)×K−(A)/Kb(A),
(7) K(A)/K−,b(A) ' K∞,+(A)/K−,b(A)×K−(A)/K−,b(A),
(8) K(A)/K+,b(A) ' K+(A)/K+,b(A)×K∞,−(A)/K+,b(A),
(9) K(A)/Kb(A) ' K+(A)/Kb(A)×K−(A)/Kb(A).

and there are five stable t-structures:

(a) (K−,∅(A)/Kb,∅(A),K+,∅(A)/Kb,∅(A)) in K∞,∅(A)/Kb,∅(A),
(b) (K∞,∅(A)/K+,∅(A),K+,b(A)/K+,∅(A)) in K∞,b(A)/K+,∅(A),
(c) (K−,b(A)/K−,∅(A),K∞,∅(A)/K−,∅(A)) in K∞,b(A)/K−,∅(A),
(d) (Kb(A)/Kb,∅(A),K+,∅(A)/Kb,∅(A)) in K+,b(A)/Kb,∅(A),
(e) (K−,∅(A)/Kb,∅(A),Kb(A)/Kb,∅(A)) in K−,b(A)/Kb,∅(A),

Proof. In order to show the nine triangle equivalences (1)-(9), by Theorem 1.3 and Lemma 1.4
we only need to prove the first four equivalences.

• Consider (1). Given X in K∞,+(A), we have that σ≤0X ∈ K−,∅(A) and σ≥1X ∈ K+(A).
Hence, the intelligent triangle from Lemma 1.1 and (1) from Theorem 2.1 show that the
hypothesis of shows that the hypothesis of Theorem 1.3 are verified.

• The point (2) follows from (1) considering the opposite category.
• Consider (3) (resp. (4)). Given X in K∞,b(A) (resp. K (A)), we have that σ≤0X ∈ K−,b(A)

(resp. K−(A)) and σ≥1X ∈ K+,b(A) (resp. K+(A)). Again, the intelligent triangle from
Lemma 1.1 and point (3) (resp. (4)) from Theorem 2.1 shows that the hypothesis of Theo-
rem 1.3 are verified.

Consider the five stable t-structures (a)-(e). We will again apply Theorem 1.3 and the intelligent
triangle from Lemma 1.1.

• If X is in K∞,∅(A), then σ≤0X ∈ K−,∅(A) and σ≥1X ∈ K+,∅(A). This shows (a).
• If X is in K∞,b(A), then its homology is bounded and for small enough n we get σ≤nX ∈
K−,∅(A) and σ≥n+1X ∈ K+,b(A). This shows (b).

• If X is in K+,b(A), then its homology is bounded and for large enough n we get σ≤nX ∈
Kb(A) and σ≥n+1X ∈ K+,∅(A). This shows (d).

• Finally, point (c) follows from (b) and (e) follows from (d) considering the opposite category.

Corollary 2.3. Let E be a full additive Karoubian subcategory of an abelian category A. There are
triangle equivalences
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(i) K∞,+(E)/K+(E) ' K∞,b(E)/K+,b(E) ' K−,b(E)/Kb(E),
(ii) K∞,−(E)/K−(E) ' K∞,b(E)/K−,b(E) ' K+,b(E)/Kb(E),
(iii) K (E)/K∞,−(E) ' K∞,+(E)/K∞,b(E) ' K+(E)/K+,b(E),
(iv) K (E)/K∞,+(E) ' K∞,−(E)/K∞,b(E) ' K−(E)/K−,b(E),
(v) K(E)/K−(E) ' K∞,+(E)/K−,b(E) ' K+(E)/Kb(E),
(vi) K(E)/K+(E) ' K∞,−(E)/K+,b(E) ' K−(E)/Kb(E).

If E = A, then

(1) K+,b(E)/K+,∅(E) ' Kb(E)/Kb,∅(E) ' K−,b(E)/K−,∅(E) ' K∞,b(E)/K∞,∅(E),
(2) K∞,b(E)/K+,b(E) ' K∞,∅(E)/K+,∅(E) ' K−,∅(E)/Kb,∅(E),
(3) K∞,b(E)/K−,b(E) ' K∞,∅(E)/K−,∅(E) ' K+,∅(E)/Kb,∅(E).

Indeed, this follows from the fact that stable t-structures yield equivalences of the corresponding
quotient categories.

The third diagram (\) consists of derived categories:

D(A)

D+(A) D−(A)

Db(A)

For this diagram (\), we can also show a splitting equivalence.

Proposition 2.4. For an abelian category A, there is a triangle equivalence

D(A)/Db(A) ' D+(A)/Db(A)×D−(A)/Db(A),

whenever these categories exist.

Proof. By Theorem 1.3, the result follows from the two distinguished triangles (1) and (2) from
Lemma 1.1 and the remark preceding it.

The results of this section suggest that we need to consider the quotient categories in the following
definition.

Definition 2.5. Let E be an additive subcategory of an abelian category A. Then

• – K−(E)/Kb(E) =: D−sg(E) is the right bounded singularity category.

– K+(E)/Kb(E) =: D+
sg(E) is the left bounded singularity category.

• – K−,b(E)/Kb(E) =: D−,bsg (E) is the right bounded and homologically bounded singularity
category.

– K+,b(E)/Kb(E) =: D+,b
sg (E) is the left bounded and homologically bounded singularity

category.
• – K∞,b(E)/Kb(E) =: D∞,bsg (E) is the homologically bounded singularity category.

– K∞,−(E)/Kb(E) =: D∞,−sg (E) is the homologically right bounded singularity category.

– K∞,+(E)/Kb(E) =: D∞,+sg (E) is the homologically left bounded singularity category.

• K(E)/Kb(E) =: D∞sg(E) is the unbounded singularity category.

• – K−(E)/K−,b(E) =: D−∞(E) is the right bounded and homologically infinite category.
– K+(E)/K+,b(E) =: D+

∞(E) is the left bounded and homologically infinite category.

Remark 2.6. When E is the category of finitely generated projective A-modules for a Noetherian
algebra A, then the right bounded and cohomologically bounded singularity category of E

D−,bsg (E) = K−,b(E)/Kb(E) = Db
sg(A)

is the usual singularity category of A as defined by Buchweitz and Orlov.

The most curious categories seem to be D−∞(E) and D+
∞(E).
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3. The special case of the category of injectives, projectives, and the Gorenstein
situation

3.1. Quotients for homotopy categories of injectives. Let A be an abelian category with
enough injectives and E = I be the full subcategory of injective objects. Since we are dealing with
the subcategory of injectives, left bounded exact complexes are homotopy equivalent to 0. Hence
Kb,∅(I) = K+,∅(I) = 0. In this case, we may reduce the diagram (†) to a smaller one:

K(I)

K∞,+(I) K∞,−(I)

K∞,b(I)K+(I) = D+(A) K−(I)

K−,b(I)K+,b(I) = Db(A)
K∞,∅(I)

Kb(I)
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An interesting fact is that now K∞,∅(I) is equivalent to K−,b(I)/Kb(I) hence also to the quotients
K∞,b(I)/K+,b(I) and K∞,+(I)/K+(I), as indicated in the diagram. More precisely, Iyama, Kato
and Miyachi [9, Proposition 2.2] give a localisation sequence

K∞,∅(I) // K∞,b(I)oo // K+,b(I)oo ,

and they also show in Theorem 2.4(i) of loc. cit. that there exists a recollement

K+,b(I)/Kb(I) // K∞,b(I)/Kb(I)oo
oo // K∞,b(I)/K+,b(I)oo

oo

Here K∞,b(I)/K+,b(I) ' K∞,∅(I) ' K−,b(I)/Kb(I).
Krause’s result [13, Corollary 4.3] says that for A a locally Noetherian Grothendieck category,

there exists a recollement

K∞,∅(I) // K(I)oo
oo // D(A)oo

oo
,

provided D(A) is compactly generated, in particular when A = R−Mod for a left Noetherian ring.
We shall use [13, Corollary 4.3] to strengthen and generalise Iyama, Kato and Miyachi’s results

[9, Proposition 2.2 and Theorem 2.4(1)].
We need a small observation similar to [9, Proposition 2.2(1)].

Lemma 3.1. Let A be an abelian category with enough injectives and I be the full subcategory of
injective objects. Then

• (K∞,∅(I),K+(I)) is a stable t-structure in K∞,+(I). So
• (K∞,∅(I),K+(I)/Kb(I)) is a stable t-structure in K∞,+(I)/Kb(I) and
• (K∞,∅(I),K+(I)/K+,b(I)) is a stable t-structure in K∞,+(I)/K+,b(I).

Proof. For the first statement, given an X ∈ K∞,+(I), for n << 0 the intelligent triangle (2)

σ≤nX → X → σ≥n+1X → σ≤nX[1]
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shows that K∞,∅(I) ∗K+(I) = K∞,+(I). Since K∞,∅(I)∩K+(I) = K+,∅(I) = 0, by Theorem 1.3,
(K∞,∅(I),K+(I)) is a stable t-structure in K∞,+(I).

The second and the third statements follow from the first and [9, Proposition 1.5].

Proposition 3.2. Let A be an abelian category satisfying Ab4* with enough injectives and I be the
full subcategory of injective objects. Then we have localisation sequences

(1) [9, Proposition 2.2] K∞,∅(I) // K∞,b(I)oo // Db(A)oo ,

(2) K∞,∅(I) // K∞,+(I)oo // D+(A)oo ,

(3) K∞,∅(I) // K∞,−(I)oo // D−(A)oo ,

(4) K∞,∅(I) // K(I)oo // D(A)oo ,

where the localisation sequences (1), (2) and (3) are restrictions of the localisation sequence (4).
If moreover A is R−Mod for some left Noetherian ring R, then the above localisation sequences

become recollements

(1’) K∞,∅(I) // K∞,b(I)oo
oo // Db(A)oo

oo
,

(2’) K∞,∅(I) // K∞,+(I)oo
oo // D+(A)oo

oo
,

(3’) K∞,∅(I) // K∞,−(I)oo
oo // D−(A)oo

oo
,

(4’) [13, Corollary 4.3] K∞,∅(I) // K(I)
oo
oo // D(A)

oo
oo ,

where the recollements (1’), (2’) and (3’) are restrictions of the recollements (4’).

Proof. The localisation sequence (1) is [9, Proposition 2.2] and (2) follows from the first statement
of Lemma 3.1. However, we will give an alternative proof.

The localisation sequence (4)

K∞,∅(I) i∗ // K(I)
i!oo

j∗ // D(A)
j∗oo

is well known, where the functor i∗ : K∞,∅(I) → K(I) is the inclusion functor, the functor j∗ :
K(I) → D(A) is the composition K(I) → K(A) → D(A) and the functor j∗ : D(A) → K(I)
is taking DG-injective resolution. Obviously (j∗)−1(D±(A)) = K∞,±(I) and (j∗)−1(Db(A)) =
K∞,b(I). Moreover, the functor j∗ sends D±(A) (resp. Db(A)) to K∞,±(I) (resp. K∞,b(I)).
Hence, we have the localisation sequences (1)(2)(3).

The category A = R −Mod is a locally Noetherian Grothendieck category, and hence we can
apply Krause’s recollement (4’)

K∞,∅(I) i∗ // K(I)
i∗oo

i!oo
j∗ // D(A)
j!oo

j∗oo
,

which extends the localisation sequence (4), and the fully faithful functor j! : D(A)→ K(I) identifies
D(A) with the localising subcategory of K(I) generated by iA,A ∈ D(A)c = Kb(R − proj), where
iA is an injective resolution of A and D(A)c is the full subcategory of compact objects of D(A)
which is exactly Kb(R − proj). We claim that j! sends D±(A) (resp. Db(A)) to K∞,±(I) (resp.
K∞,b(I)). Indeed,

Hn(X) ' HomD(R−Mod)(R,X[n])
' HomK(I)(j!R, j!X[n])
' HomK(I)(iR, j!X[n])
' HomK(R−Mod)(R, j!X[n])
' Hn(j!X),

where the second isomorphism holds because j! is fully faithful and the fourth follows from [13,
Lemma 2.1]. This shows that the homology behaviour is preserved under j!. So we have the three
recollements (1’)(2’)(3’).

Proposition 3.3. Let A be an abelian category with enough injectives and I the full subcategory of
injective objects. Then there are recollements
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(i) [9, Theorem 2.4(1)] K+,b(I)/Kb(I) // K∞,b(I)/Kb(I)oo
oo // K∞,b(I)/K+,b(I)oo

oo
,

(ii) K+(I)/Kb(I) // K∞,+(I)/Kb(I)oo
oo // K∞,+(I)/K+(I)oo

oo
,

(iii) K+(I)/K+,b(I) // K∞,+(I)/K+,b(I)oo
oo // K∞,+(I)/K+(I)oo

oo
.

If moreover, A = R −Mod for R a left Noetherian algebra, then the above recollements can be
extended one step upwards so that we have ladders of height two

(i’)

K+,b(I)/Kb(I) //
//
K∞,b(I)/Kb(I)oo

//oo // K∞,b(I)/K+,b(I)oo
oo

,

(ii’)

K+(I)/Kb(I) //
//
K∞,+(I)/Kb(I)oo

oo //
//
K∞,+(I)/K+(I)oo

oo
,

(iii’)

K+(I)/K+,b(I) //
//
K∞,+(I)/K+,b(I)oo

oo //
//
K∞,+(I)/K+(I)oo

oo
.

Proof. The recollement (i) is proved in [9, Theorem 2.4(1)]. By the proof of [9, Theorem
2.4(1)], the left recollement contained in this recollement (i) is induced by the stable t-structure
(K∞,(I),K+,b(I)/Kb(I)) in K∞,b(I)/Kb(I).

The recollement (1’) of Proposition 3.2

K∞,∅(I) i∗ // K∞,b(I)
i∗oo

i!oo
j∗ // K+,b(I)
j!oo

j∗oo

shows that (j!(K
+,b(I)),K∞,∅(I)) is a stable t-structure in K∞,b(I). We claim that j!(K

+,b(I))
contains Kb(I). In fact, by [9, Proposition 1.5(2)], (j!(K

+,b(I))∩Kb(I),K∞,∅(I)∩Kb(I)) is a stable
t-structure in Kb(I). However, K∞,∅(I)∩Kb(I) = Kb,∅(I) = 0, so j!(K

+,b(I))∩Kb(I) = Kb(I) and
Kb(I) is contained in j!(K

+,b(I)). Now by [9, Proposition 1.5(1)], (j!(K
+,b(I))/Kb(I),K∞,∅(I)) is

a stable t-structure in K∞,b(I)/Kb(I).
Given this new stable t-structure and combined with the recollement, we see that the recollement

(i) can be extended one step upwards so that we have the ladder (i’) of height two.
The proofs of the recollements (ii), (iii) and of the ladders (ii’) (iii’) are similar. We only give the

proof of (ii) and (ii’).
By Theorem 2.1(9), (K+(I)/Kb(I),K−(I)/Kb(I)) is a stable t-structure in K(I)/Kb(I). By

Lemma 3.1 (K∞,∅(I),K+(I)/Kb(I)) is a stable t-structure in K∞,+(I)/Kb(I). Combining these
two stable t-structures, we get the recollement (ii). Then use the recollement (2’) of Proposition 3.2
to show the existence of the ladder (ii’).

3.2. Quotients for homotopy categories of projectives. We suppose that E = P is the full
subcategory of projective objects in an abelian category A with enough projectives. Then K−,∅(P)
and Kb,∅(P) vanish since then these complexes are actually zero homotopic.

Taking opposite categories we do have the analogous results for projective objects dualising the
injective situation.

Lemma 3.4. Let A be an abelian category with enough projectives and P be the full subcategory of
injective objects. Then we have several stable t-structures

(i) [9, Proposition 2.3(1)] (K−,b(P),K∞,∅(P)) in K∞,b(P),
(ii) (K−(P),K∞,∅(P)) in K∞,−(P),
(iii) (K−,b(P)/Kb(P),K∞,∅(P)) in K∞,b(P)/Kb(P),
(iv) (K−(P)/Kb(P),K∞,∅(P)) in K∞,−(P)/Kb(P),
(v) (K−(P)/K−,b(P),K∞,∅(P)) in K∞,−(P)/K−,b(P).

Proposition 3.5. Let A be an abelian category satisfying Ab4 with enough projectives and P be the
full subcategory of projective objects. Then we have colocalisation sequences

(1) [9, Proposition 2.3(2)] K∞,∅(P) // K∞,b(P)
oo // Db(A)

oo
,

(2) K∞,∅(P) // K∞,−(P)
oo // D−(A)

oo
,
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(3) K∞,∅(P) // K∞,+(P)
oo // D+(A)

oo
,

(4) K∞,∅(P) // K(P)
oo // D(A)

oo
,

where the colocalisation sequences (1), (2) and (3) are restrictions of the colocalisation sequence (4).

Proposition 3.6. Let A be an abelian category with enough projectives and P the full subcategory
of projective objects. Then there are recollements

(i) [9, Theorem 2.4(2)] K−,b(P)/Kb(P) // K∞,b(P)/Kb(P)oo
oo // K∞,b(P)/K−,b(P)oo

oo
,

(ii) K−(P)/Kb(P) // K∞,−(P)/Kb(P)oo
oo // K∞,−(P)/K−(P)oo

oo
,

(iii) K−(P)/K−,b(P) // K∞,−(P)/K−,b(P)oo
oo // K∞,−(P)/K−(P)oo

oo
.

3.3. Gorenstein situation. LetA be an abelian category with enough projective objects and E = P
be the full subcategory of projective objects. Then an object X in K(P) is acyclic if for every P
in P the complex HomA(P,X) is an acyclic complex of abelian groups. An acyclic complex X is
totally acyclic if for every P in P the complex HomP(X,P ) is an acyclic complex of abelian groups.
Let Ktac(P) be the full subcategory of K(P) formed by totally acyclic complexes. By [5, Theorem
3.1] stupid truncation at degree 0 gives a fully faithful triangle functor

βP : Ktac(P)→ K−,b(P)/Kb(P) = Db
sg(A).

Obviously, every totally acyclic complex is acyclic. For an Iwanaga-Gorenstein ring, that is, a
two-sided Noetherian ring which has finite injective dimension on itself for both sides, the converse
is also true; see [6, Theorem 4.4.1]. In this case, we have equivalences

K∞,∅(P) ' Ktac(P)
βP' K−,b(P)/Kb(P) = Db

sg(A).

Proposition 3.7. Let A be an Iwanaga-Gorenstein ring, denote P := A−proj. Then K+,∅(P) = 0.

Proof. Let

X := . . .→ 0→ Pn
∂n

→ Pn+1 → Pn+2 → . . .

be a left bounded acyclic complex of projectives, which is therefore totally acyclic. We shall show that
X is zero homotopic. We show that ∂n is a split monomorphism. In fact, we apply HomA(−, Pn) to
this complex and obtain by total acyclicity that HomA(X,Pn) is exact. But then the identity idPn

is in the image of HomA(∂n, Pn), and therefore ∂n is a split monomorphism. We can then suppose
that X begins with Pn+1 and the same argument applies. This shows that K+,∅(P) = 0.

Another proof is given by the observation that the A-dual HomA(−, A) induces an equivalence
between K+,∅(A− proj) and K−,∅(Aop − proj), while the latter is zero.

We should mention that in the case of projective modules over an Iwanaga-Gorenstein algebra,
by [9, Theorem 2.4], [6, Theorem 4.4.1] and Theorem 2.1, we have a very nice particular way of
visualising things, that is, in the Gorenstein case, we may reduce the diagram (†) to a smaller one:
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K(P)

K∞,−(P) K∞,+(P)

K∞,b(P)K−(P) K+(P)

K+,b(P)K−,b(P)
K∞,∅(P)

Kb(P)
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Note that there is a left-right symmetry in this diagram.
Moreover, Iyama, Kato, Miyachi [9, Theorem 2.7] shows that

(K+,b(P)/Kb(P),K−,b(P)/Kb(P),K∞,∅(P))

is a triangle of recollements. They [9, Proposition 3.6, Theorem 4.8] also show thatK∞,b(P)/Kb(P) '
Db
sg(T2(A)), where T2(A) is the upper triangular algebra (A A

0 A ).

For Iwanaga-Gorenstein rings, besides the bounded singularity categoryDb
sg(A) = K−,b(P)/Kb(P),

it seems that the triangulated categories D−∞(P) = K−(P)/K−,b(P) and D+
∞(P) = K+(P)/K+,b(P)

are rather interesting.

Question 3.8. Are D−∞(P) = K−(P)/K−,b(P) and D+
∞(P) = K+(P)/K+,b(P) equivalent as tri-

angulated categories for Iwanaga-Gorenstein rings?

4. On the Hom-spaces of the categories D−∞ and D+
∞

For the category Db
sg(A− Proj) we know (cf [2] or e.g. [26, Proposition 6.9.18]) that if X and Y

are two A-modules, considered as complexes in degree 0, then

HomDb
sg(A−Proj)(X,Y ) ' lim−→

n

HomA(Ωn(X),Ωn(Y ))

where HomA denotes the morphism space in the stable category modulo projectives. We note that
this property is the main tool in Wang’s construction of the Gerstenhaber bracket on Tate-Hochschild
cohomology [23].

We should ask if a variant of this holds more generally for the infinite singular category, and in
particular in the left (or right) bounded infinite homology category.

Remark 4.1. We first recall that intelligent truncation is a well-defined additive functor on the
homotopy categories. This follows from [8, Lemma 7.5.e), page 77]. For the convenience of the
reader we shall give the easy argument in this special case within a few lines. If α : X → Y is a
morphism of complexes. Then, αn+1d

X
n = dYn αn−1, and hence αn+1|im(dXn ) : im(dXn )→ im(dYn ). We

may hence define α on the truncations in the natural way by restriction to the subcomplexes, giving
then a morphism of complexes σ≤nα : σ≤nX → σ≤nY . If

α = hdX + dY h : X → Y

is a zero homotopic morphism of complexes over an abelian category A, then defining h′n :=
hn|im(dXn ) : im(dXn ) → Yn, and h′m = hm for all m < n, and h′m = 0 for m > n gives a zero
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homotopic map σ≤nα : σ≤nX −→ σ≤nY. This shows that α 7→ σ≤nα is a well-defined map on the
morphisms of homotopy categories.

Notice, however, that the intelligent truncation σ≤n is not a triangle functor on homotopy cate-
gories. In fact, let

X
f→ Y → cone(f)→ X[1]

be a distinguished triangle in a homotopy category. Then we have the commutative diagram with
exact rows

σ≤nX

��

σ≤nf // σ≤nY

��

// cone(σ≤nf) //

ϕ

��

σ≤nX[1]

��
X

f // Y // cone(f) // X[1]

The long exact sequences of cohomology groups show that ϕ induces a quasi-isomorphism cone(σ≤nf)→
σ≤ncone(f), still denoted by ϕ. However, as complexes, cone(σ≤nf) has the form

· · ·
fn−1

!!

−dn−1
X // Xn

fn

##

−dnX //

⊕
ImdnX⊕ fn+1

##
· · · // Y n−1

dn−1
Y // Y n

dnY // ImdnY // 0

and σ≤ncone(f) has a different form

· · ·

fn−1

��

−dn−1
X // Xn

fn

��

−dnX // Xn+1

⊕ ⊕ // Imdncone(f)
// 0

· · · // Y n−1
dn−1
Y // Y n

So cone(σ≤nf) is a subcomplex of σ≤ncone(f), but they are not homotopy equivalent in general.

We shall show that intelligent truncation does not only pass to homotopy categories but also to
the derived category. This fact should be well-known, and actually is sort of implicit in [3], but we
could not find an explicit reference. In any case, since our definition of σ≤n differs slightly from the
usual one, it is appropriate to verify that the necessary constructions work also in our case.

Lemma 4.2. Let A be an abelian category and let α : Z −→ σ≤nX be a morphism in K−(A). If the

cone of α is an object in K−,∅(A), then α induces an isomorphism Hi(α) : Hi(Z) −→ Hi(σ≤nX) for
all i ∈ Z. Moreover, in this case σ≤nα ∈ HomK−(A)(σ≤nZ, σ≤nX) is a quasi-isomorphism. More

precisely, if the cone of α is in K−,∅(A), then the cone of σ≤nα is in K−,∅(A).

Proof. We have a distinguished triangle

Z
α−→ σ≤nX −→ C −→ Z[1]

with a C in K−,∅(A). The distinguished triangle induces a long exact sequence in homology

Hi−1(C) −→ Hi(Z) −→ Hi(σ≤nX) −→ Hi(C) −→ Hi+1(Z).

Since C is in K−,∅(A), we get Hj(C) = 0 for all j ∈ Z. Therefore Hi(α) : Hi(Z) −→ Hi(σ≤nX) is
an isomorphism.

For the second statement, suppose that α is a quasi-isomorphism. Then σ≤nα is the composition
of α : Z −→ σ≤nX with the canonical morphism σ≤nZ −→ Z. Since by the first step α induces an
isomorphism between the homology of Z and the homology of σ≤nX, and since σ≤nX is exact in
degrees higher than n, also σ≤nZ −→ Z is a quasi-isomorphism. Therefore, since the composition of
quasi-isomorphisms is a quasi-isomorphism, also σ≤nα is a quasi-isomorphism.
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Lemma 4.3. Let A be an abelian category and let α : Z −→ X be a morphism in K−(A) with cone
in K−,∅(A). Then α induces a morphism σ≤nα : σ≤nZ −→ σ≤nX with cone in K−,∅(A).

Proof. Suppose α is a quasi-isomorphism. Then Hi(α) is an isomorphism for all i ∈ Z and σ≤nα
coincides with α in degrees smaller or equal to n. Since Hi(Z) = Hi(σ≤nZ) for all i ≤ n, and
likewise Hi(X) = Hi(σ≤nX) for all i ≤ n, and since Hi(σ≤nZ) = Hi(σ≤nX) = 0 for i ≥ n+ 1, we
get that σ≤nα is a quasi-isomorphism as well.

Lemma 4.4. Let A be an abelian category. Then σ≤n induces a functor K−(A)/K−,∅(A) −→
K−(A)/K−,∅(A).

Proof. Suppose given a diagram

X Z
αoo β // Y

which represents a morphism in K−(A)/K−,∅(A) and hence α is a quasi-isomorphism. By Re-
mark 4.1 this induces a diagram

σ≤nX σ≤nZ
σ≤nαoo σ≤nβ // σ≤nY.

By Lemma 4.3 we get that σ≤nα is a quasi-isomorphism again. Hence, this diagram presents a

morphism in K−(A)/K−,∅(A). Now, if

Z

α

~~

β

  
X Z ′′

α′′oo β′′ //

γ

OO

γ′

��

Y

Z ′
α′

``

β′

>>

is a commutative diagram such that α, α′, α′′, γ and γ′ are quasi-isomorphisms. Then

σ≤nZ
σ≤nα

zz

σ≤nβ

$$
σ≤nX σ≤nZ

′′σ≤nα
′′

oo σ≤nβ
′′
//

σ≤nγ

OO

σ≤nγ
′

��

σ≤nY

σ≤nZ
′

σ≤nα
′

dd

σ≤nβ
′

::

is a diagram such that σ≤nα, σ≤nα
′, σ≤nα

′′, σ≤nγ and σ≤nγ
′ are quasi-isomorphisms, using again

Lemma 4.3. Hence, truncations of two diagrams representing the same morphism in the derived
category yield two morphisms representing the same morphism in the derived category.

Clearly, σ≤nidX = idσ≤nX . Moreover, composition is compatible as well, in the sense that

σ≤n(α1, β1) ◦ σ≤n(α2, β2) = σ≤n((α1, β1) ◦ (α2, β2))

in the obvious sense and notation. This follows from just applying truncation to the diagram repre-
senting the composition, and applying Lemma 4.2 and Lemma 4.3.

Remark 4.5. Using Lemma 4.4 we can form an inductive system over these morphism spaces

HomK−(A)/K−,∅(A)(σ≤nX,σ≤nY ) → HomK−(A)/K−,∅(A)(σ≤n−1X,σ≤n−1Y )

→ HomK−(A)/K−,∅(A)(σ≤n−2X,σ≤n−2Y )

→ . . .

and get the inductive limit lim−→(n∈Z;≥)(HomK−(A)/K−,∅(A)(σ≤nX,σ≤nY )). Note that here Z is or-

dered by decreasing order! Further, we have the canonical distinguished triangle

σ≤nX
iXn−→ X −→ σ≥n+1X −→ σ≤nX[1]
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and if X is an object of K−(A), then σ≥n+1X is an object of K−,b(A). Therefore, the natural
functor

G : K−(A)/K−,∅(A) −→ K−(A)/K−,b(A)

identifies X with σ≤nX for all n, along the natural morphisms

. . . −→ σ≤n−1X −→ σ≤nX −→ . . . −→ X.

Therefore, the functor G induces a series of compatible maps

HomK−(A)/K−,∅(A)(σ≤nX,σ≤nY ) −→ HomK−(A)/K−,b(A)(GX,GY )

sending a morphism f : σ≤nX → σ≤nY in K−(A)/K−,∅(A) to the composition

X
(iXn )−1

→ σ≤nX
f→ σ≤nY

iYn→ Y

in K−(A)/K−,b(A), which hence in turn induce a map

Υ : lim−→
(n∈Z;≥)

(HomK−(A)/K−,∅(A)(σ≤nX,σ≤nY ))→ HomD−∞(A)(GX,GY ).

Proposition 4.6. Let A be an abelian category, let D−(A) = K−(A)/K−,∅(A) be the right bounded
derived category of A, and let D−∞(A) = K−(A)/K−,b(A). Denote by G : D−(A) → D−∞(A)
the canonical quotient functor. Then, considering the inductive system (n ∈ Z;≥), with decreasing
integers n,

lim−→
(n∈Z;≥)

(HomD−(A)(σ≤nX,σ≤nY ))→ HomD−∞(A)(GX,GY )

is an isomorphism.

Proof. Consider the map Υ from Remark 4.5. We claim that this is an isomorphism. Let

X Z
αoo β // Y

be a diagram in K−(A), representing a morphism γ ∈ HomD−∞(A)(X,Y ), i.e. such that C := cone(α)

is in K−,b(A). Then there is an n0 such that σ≤nC is in K−,∅(A) for n ≤ n0. Hence

σ≤nX σ≤nZ
σ≤nαoo

is an isomorphism in D−(A), whenever n ≤ n0. This shows that γ is the image of (σ≤nβ)◦(σ≤nα)−1

under Υ. This implies that Υ is surjective.
We now prove that Υ is injective. Recall that the colimit is constructed explicitly in e.g.

[26, Proposition 3.1.18]. Let γn : σ≤nX → σ≤nY be a morphism in D−(A) representing γ ∈
lim−→(n∈Z;≥)(HomD−(A)(σ≤nX,σ≤nY )), with Υ(γ) = 0. Denote by iYn the natural morphism σ≤nY →
Y . Now, γn is represented by the equivalence class of diagrams of morphisms of complexes

σ≤nX Zn
αnoo βn // σ≤nY

such that the cone of αn is acyclic for all n. If Υ(γ) = 0, then there is a morphism sn : Tn → Zn in
K−(A) with cone in K−,b(A) such that iYn ◦βn ◦ sn = 0. Since cone(sn) is in K−,b(A), its homology
is bounded and σ≤m

cone(sn) = cone(σ≤m
sn) = 0, for small enough m. This implies that γn = 0 in

lim−→n
HomD−(A)(σ≤nX,σ≤nY ), identifying γn with σ≤mγn.

Dually we get

Proposition 4.7. Let A be an abelian category. let D+(A) = K+(A)/K+,∅(A) be the left bounded
derived category of A, and let D+

∞(A) := K+(A)/K+,b(A). Then, considering the inductive system
(n ∈ Z;≤), with increasing integers n,

lim−→
(n∈Z;≤)

(HomD+(A)(σ≥nX,σ≥nY ))→ HomD+
∞(A)(GX,GY )

is an isomorphism for G : D+(A)→ D+
∞(A) being the canonical quotient functor.

Proof. The arguments are precisely dual to the case of D−∞(A).
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Remark 4.8. Generally speaking, Proposition 4.6 and Proposition 4.7 give an interpretation of
D+
∞(K − mod) and D−∞(K − mod) as the categories that detect large degree behaviour of (co-

)homology complexes.
Indeed, let A be a K-algebra for a commutative ring K, and denote Ae := A⊗K Aop. Then, for

any A − A-bimodule M the Hochschild cohomology complex RHomAe−Mod(A,M) is non zero in
D−∞(K −mod) if and only if M has bounded Hochschild cohomology.

Similarly, following [23, Definition 3.2], Wang’s Tate-Hochschild homology complex C∗sg(A,M)

is a complex in D(K − Mod) and the image of C∗sg(A,M) in D(K − Mod)/Db(K − Mod) is in

D+
∞(K −Mod) if and only if the Tate-Hochschild homology HomDsg(A)(A,A[n]) has only finitely

many negative degrees, and is in D−∞(K − Mod) if and only if the Tate-Hochschild homology
HomDsg(A)(A,A[n]) has only finitely many positive degrees.

5. Examples

We will give examples of categories showing that certain of the categories which we introduced in
Definition 2.5 differ from each other.

5.1. The case of semisimple E. We compute in the case of a semisimple abelian category E each
of the categories of Definition 2.5.

5.1.1. Right bounded singularity category. Recall the definition of the right bounded singularity cat-
egory D−sg(E) = K−(E)/Kb(E). It can be identified with end pieces of sequences with values in

E . Indeed since E is semisimple, K−(E) can be identified with the left infinitely sequences of ob-
jects in K−(E) with zero differential. Likewise Kb(E) consists of bounded sequences of objects of
Kb(E). Hence, D−sg(E) consists of equivalence classes of the left unbounded sequences of objects of
E where we identify two such sequences if they become equal after a finite number of steps. In case
E = K −mod, we see that we can interpret this situation as quotient

∏
n∈N E/

∐
n∈N E . We hence

abbreviate the result as
∏
E/
∐
E .

5.1.2. Left bounded singularity category. Likewise D+
sg(E) consists of equivalence classes of the right

unbounded sequences of objects of E where we identify two such sequences if they become equal after
a finite number of steps.

5.1.3. Bounded singularity category. Since for semisimple categories E we get K−,b(E) = Kb(E), we
get Db

sg(E) = 0.

5.1.4. Cohomologically bounded singularity category. By the discussion above we get for the homology
bounded singular category D∞,bsg (E) = K∞,b(E)/Kb(E) = 0.

5.1.5. Left and right bounded infinite homology category. Since for semisimple E we get K−,b(E) =
Kb(E), we obtain that in this case D−sg(E) = D−∞(E) and D+

sg(E) = D+
∞(E). Moreover, as abstract

categories we get that D+
∞(E) ' D−∞(E). It suffices to identify the degree n component of D+

∞(E)
with the degree −n components of D−∞(E).

5.1.6. Cohomologically left/right bounded singularity category. The cohomologically right bounded
singularity category D∞,−sg (E) = K∞,−(E)/Kb(E) consists of equivalence classes of all right un-
bounded sequences of objects of E where we identify two such sequences if they become equal after
a finite number of steps.

The cohomologically left bounded singularity category D∞,+sg (E) = K∞,+(E)/Kb(E) consists of
equivalence classes of all left unbounded sequences of objects of E where we identify two such se-
quences if they become equal after a finite number of steps.

5.1.7. Unbounded singularity category. The unbounded singularity category D∞sg(E) = K(E)/Kb(E)
consists of equivalence classes of all two-sided unbounded sequences of objects of E where we identify
two such sequences if they become equal after a finite number of steps in two directions.
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5.2. The case of E being the dual numbers. Let K be a field and A = K[X]/(X2). Let
E = P = A − proj be the category of finitely generated projective modules over the dual numbers.
We shall study the different singular categories in this case. The indecomposable complexes over P
are classified in [1, Theorem B] (see also [14, Lemma 3.1], which can be used as well). Let P is the
minimal projective resolution of the only non projective A-module K and I be its injective resolution
and PI its complete resolution, that is,

P = (· · · x→ A
x→ A

x→ A
x→ A→ 0→ · · · ),

I = (· · · → 0→ A
x→ A

x→ A
x→ A

x→ · · · ),
P I = (· · · x→ A

x→ A
x→ A

x→ A
x→ · · · ).

It reveals that indecomposable objects of K(A − Proj), K(P), K∞,+(P), K∞,−(P), K∞,b(P) co-
incide which are exactly shifts of P , I and PI and their stupid truncations; indecomposable objects
of K+(P) and of K+,b(P) coincide which are exactly shifts of I and their stupid truncations; inde-
composable objects of K−(P) and of K−,b(P) coincide which are exactly shifts of I and their stupid
truncations; indecomposable objects of Kb(P) are exactly shifts of τ≤nI with n ≥ 0.

5.2.1. Bounded singularity category. First we see that A := K[X]/(X2) is a symmetric algebra.
Hence Db

sg(A) = K−,b(P)/Kb(P) ' A−mod, the stable module category, as triangulated categories.
Under this equivalence, P is sent to the unique indecomposable non-projective A-module, namely
K[X]/(X) = K, where X acts as 0. Since the endomorphisms of this module are scalar multiples of
the identity, we see that A−mod ' K −mod, the semisimple category of finite dimensional vector
spaces with suspension functor being the identity on vector spaces and linear maps.

5.2.2. Right bounded singularity category. The bounded singularity category A − mod = Db
sg(A)

is a full triangulated subcategory of D−sg(P). In particular, K = K[0] is a non zero objects with

endomorphism ring K. All indecomposable complexes are in Db
sg(A). Hence, in order to find objects

in D−sg(P) which are not in Db
sg(P) we need to consider infinite sums of indecomposable objects.

5.2.3. Left bounded singularity category. The case of the left bounded singularity category is dealt
with analogously. Taking K-duals gives an equivalence as abstract K-linear categories D−sg(P) '
D+
sg(P)op.

5.2.4. Cohomologically bounded singularity category. Iyama, Kato, Miyachi [9, Theorem 2.7] shows
that (K+,b(P)/Kb(P),K−,b(P)/Kb(P),K∞,∅(P)) is a triangle of recollements. So in our case, there
is a triangle of recollements (K −mod,K −mod,K −mod) in D∞,bsg (P), but it is not equivalent to
K −mod×K −mod.

5.2.5. Left/right bounded and cohomologically infinite category. We need to study the categories
D−∞(P) = K−(P)/K−,b(P), respectively D+

∞(P) = K+(P)/K+,b(P). Since A is symmetric, taking
K-duals gives an equivalence as K-linear categories between D−∞(P) and D+

∞(P)op.
As seen before, all indecomposable objects of D−∞(P) come from indecomposable complexes in

K−(P), so they are in K−,b(P). If an object M in D−∞(P) would have endomorphism ring K, it
is indecomposable, and hence is in K−,b(P), which implies that M = 0. Hence D−∞(P) does not
contain any object with endomorphism ring K.

5.3. A non Gorenstein algebra of infinite global dimension. We consider the algebra

A = K[x, y]/(x2, y2, xy).

This algebra is a string algebra. Let P = A− proj.
All A-modules M of Loewy length 2 without a projective direct factor are not submodules of

projective modules, since each projective indecomposable is free, and has have Loewy length 2. A
monomorphism M ↪→ An, with minimal n splits on each of the components in which the top is in the
image. Minimality of n shows that M has a projective direct factor, a contradiction. Therefore only
semisimple modules may be submodules of projectives, which shows that only semisimple modules
can be syzygies of a complex in K∞,∅(P). Hence, let M be a semisimple module and consider an
exact complex X which is M in degree 0, and which has projective homogeneous components in
degrees bigger than 0. Suppose that X has no zero homotopic direct factors. Then M is semisimple
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of dimension n, say. Now, the cokernel M1 of M → X1 is again a submodule of X2, and hence
M identifies with the socle of X1. Therefore dim(M1) = dim(M)/2, and dim(M1) is even. Since
dim(M) is finite, there is n such that Mn = 0, and we reach a contradiction.

Hence an exact complex of A-modules is actually right bounded, and therefore K∞,∅(P) =
K−,∅(P). However, K−,∅(P) = 0, since such complexes are 0-homotopic.

Therefore

K+,b(P) = Kb(P)

K∞,b(P) = K−,b(P)

K∞,∅(P) = 0

K+,∅(P) = 0

which shows that

Kb(P) = (K+,b/K+,∅)(P) ↪→ (K∞,b/K∞,∅)(P) = K−,b(P)

which shows that D+,b
sg (P) = K+,b(P)/Kb(P) is zero, whereas D−,bsg (P) = K−,b(P)/Kb(P) 6= 0, as

is studied in much broader generality by Xiao-Wu Chen [7] are really different in this case.

5.4. Summary. We see that we obtained examples for coefficient categories E having different
singularity category quotients. We summarise the above results in the following scheme.

Db
sg D∞,bsg D−sg D−∞

semisimple 0 0
∏
E/
∐
E

∏
E/
∐
E

K[X]/(X2) K −mod non semisimple
there is an object with
endomorphism ring K

no object has endomorphism
ring K
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