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Abstract. In previous work, based on work of Zwara and Yoshino, we defined and studied degen-

erations of objects in triangulated categories analogous to degeneration of modules. In triangulated

categories T it is surprising that the zero object may degenerate. We show that the triangulated
subcategory of T generated by the objects which are degenerations of zero coincides with the tri-

angulated subcategory of T consisting of the objects with vanishing image in the Grothendieck

group K0(T ) of T .

Introduction

Degeneration of modules were intensively studied by e.g. Gabriel [5], Huisgen-Zimmermann,
Riedtmann [14], Zwara [22, 23] since at least 1974, and was highly successful in various constructions.
Degeneration of modules is defined by the following setting. Let k be an algebraically closed field,
and let A be a finite dimensional k-algebra. Then the A-module structures on the vector space
kd form an affine algebraic variety mod(A, d) on which GLd(k) acts by conjugation. Isomorphism
classes correspond to orbits under this action and an A-module M degenerates to N if the point
corresponding to N belongs to the Zariski closure of the GLd(k)-orbit of the point corresponding to
M . We write M ≤deg N in this case. Riedtmann and Zwara showed that M ≤deg N if and only

if there is an A-module Z and a short exact sequence 0 // Z // Z ⊕M // N // 0.
In collaboration with Jensen and Su [8] the second named author started to study an analogous
concept for derived categories with a geometrically inspired concept based on orbit closures, and
then in [9] more generally for triangulated categories based on Zwara’s characterisation replacing
short exact sequences by distinguished triangles. This last relation is denoted by the symbol ≤∆.
Both concepts were highly successfully used in many places, cf e.g. [10, 11, 12, 3, 4, 6, 7, 21].
Independently Yoshino [20] gave a scheme theoretic definition for degenerations in the (triangulated)
stable category of maximal Cohen-Macaulay modules, and he highlighted that in M ≤∆ N one
should assume that the induced endomorphism on Z should be nilpotent. We denote the relation by
≤∆+nil in this case. Yoshino’s scheme theoretic approach was a model for us to give a more general
geometric definition for degeneration, which was achieved in [16] by introducing a scheme theoretic
degeneration ≤cdeg.

We then showed that, in case T has split idempotents, M ≤cdeg N always implies M ≤∆+nil N ,
for objects M,N ∈ T , the converse being also true when T is the subcategory of compact objects of
a compactly generated algebraic triangulated category. Obviously, M ≤∆+nil N implies M ≤∆ N .
We further see right from the definition that M ≤∆ N implies that M and N have the same image
in the Grothendieck group of T .

A striking phenomenon is that, unlike in the module case, in triangulated categories T one may
have non zero objects M with 0 ≤∆+nil M , namely cones of nilpotent endomorphisms of objects of
T .

By the above, 0 ≤∆ N implies that N has vanishing image in the Grothendieck group of the
triangulated category. We then show as our main result that the full triangulated subcategory of
T consisting of the objects with image 0 in the Grothendieck group of T coincides with the full
triangulated subcategory of T generated by objects being degenerations of the zero object of T .

We prove this by showing that both categories actually coincide with the full triangulated sub-
category generated by objects of the form

⊕r
i=1(Xi ⊕Xi[ti]) for pairwise different odd integers ti,

and objects Xi in some fixed set of generators of T .
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Furthermore, we use our result to give examples showing that M ≤∆ N does not imply M ≤∆+nil

N and that an object M with image 0 in the Grothendieck group is not necessarily a degeneration
of 0, not even in the transitive hull of the relation ≤∆+nil .

The paper is organised as follows. In Section 1 we recall the necessary concepts on the various
types of degeneration and recall the implications which we proved essentially in our earlier work
[16, 17]. In Section 2 we study the image of triangle degenerations of 0 in the Grothendieck group,
prove our main result Theorem 7 and give the examples mentioned above.

1. Review on Degenerations in Triangulated Categories

We have different degeneration concepts. The first one, the triangle degeneration, is a triangular
category analogue of Zwara’s definition of degeneration in the case of module categories. Zwara says
[22, 23] that for a k-algebra A an A-module M degenerates to an A-module N if and only if there is

an A-module Z and a short exact sequence 0 // Z // Z ⊕M // N // 0. Yoshino [20]
highlighted the importance of assuming that the induced endomorphism of Z should be nilpotent.
In case of a category where Fitting’s lemma holds we can always assume this fact.

Definition 1. [9, 16] Let K be a commutative ring and let T be a K-linear triangulated category.
Then for two objects M and N in T we get M ≤∆ N if and only if there is an object Z in T and a
distinguished triangle

Z
(v
u)
// Z ⊕M // N // Z[1].

We say that M ≤∆+nil N if and only if there is such a distinguished triangle with v is nilpotent.

Note that by [17, Proposition 10] M ≤∆+nil N implies that there is an object Z ′ and a distin-
guished triangle

N // Z ′ ⊕M
(v′,u′) // Z ′ // N [1].

We may write M ≤∆,right N (resp. M ≤∆+nil, right N) if there is such a distinguished triangle (with
v′ nilpotent) and, for this paragraph only, write M ≤∆,left N (resp. M ≤∆+nil, left N) in the situation
of Definition 1. Note that M ≤∆,left N (resp. M ≤∆+nil,left N) in T if and only if N ≤∆,right M
(resp. N ≤∆+nil,right M) in the opposite category T op. So categorical duality applies and results
about ≤∆,left (resp. ≤∆+nil, left) admit categorical dual ones, that we omit to state. Furthermore,
if T has split idempotents and artinian endomorphism rings of objects, or if T is the category of
compact objects in a compactly generated algebraic triangulated category, then M ≤∆+nil, right N if
and only if M ≤∆+nil, left N (see [17, Theorem 1]).

A second concept of degeneration, motivated by Yoshino’s work, is given by the following defini-
tion.

Definition 2. [16] Let K be a commutative ring and let C◦K be a K-linear triangulated category
with split idempotents.

A degeneration data for C◦K is given by

• a triangulated category CK with split idempotents and a fully faithful embedding C◦K −→ CK ,
• a triangulated category CV with split idempotents and a full triangulated subcategory C◦V ,
• triangulated functors ↑VK : CK −→ CV , which we write after the arguments, and Φ : C◦V → CK ,

so that (C◦K) ↑VK⊆ C◦V , when we view C◦K as a full subcategory of CK ,

• a natural transformation idCV
t−→ idCV of triangulated functors such that

• for each object M of C◦K the morphism Φ(M ↑VK)
Φ(t

M↑V
K

)
// Φ(M ↑VK) is a split monomor-

phism in CK with cone M .

Remark 3. Our definition of categorical degeneration, given below, is a generalisation to general
triangulated categories of a definition given by Yoshino [20] for the case of stable categories of
maximal Cohen-Macaulay modules over a local Gorenstein algebra. In Yoshino’s work (see, e.g., [19])
he considers modules over an algebra R over a field K and defines degeneration along a suitable
discrete valuation K-algebra V . Just to emphasize the similarity and facilitate the intuition of the
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reader, we used in [16] subindices K and V to denote our categories, but there and in Definition 2
the letters K and V play no role.

Definition 4. [16] Given two objects M and N of C◦K we say that M degenerates to N in the
categorical sense, written M ≤cdeg N , if there is a degeneration data for C◦K and an object Q of C◦V
such that

p(Q) ' p(M ↑VK) in C◦V [t−1] and Φ(cone(tQ)) ' N,
where C◦V [t−1] is the Gabriel-Zisman localisation at the endomorphisms tX for all objects X of C◦V ,
and where p : C◦V −→ C◦V [t−1] is the canonical functor. In this case we write M ≤cdeg N .

We end the section by recalling the connection between these various types of degeneration and
with the property of having the same image in the Grothendieck group K0(T ).

Theorem 5. Let T be a skeletally small triangulated category with split idempotents and let M and
N be objects of T . Consider the following assertions:

(1) M ≤cdeg N
(2) M ≤∆+nil N
(3) M ≤∆ N
(4) [M ] = [N ] in the Grothendieck group K0(T ).

The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) hold true. When T is the subcategory of compact objects
of a compactly generated triangulated category, the implication (2) ⇒ (1) also holds. When the
endomorphism rings of objects in T are all artinian, the implication (3) ⇒ (2) also holds and
≤∆=≤∆+nil is a reflexive and transitive relation in the set of isoclasses of objects of T .

Proof. The implication (2) ⇒ (3) is clear. On the other hand, if assertion 3 holds and we consider
the triangle of Definition 1 we then get an equality [Z] + [M ] = [Z] + [N ] in K0(T ), which implies
assertion 4.

On the other hand, the implication (1) ⇒ (2) and, under the extra hypothesis, the implication
(2) ⇒ (1) are [16, Propositions 8 and 9]. Finally, under artinianity of all endomorphism rings
of objects, implication (3) ⇒ (2) and the reflexive and transitive condition of ≤∆=≤∆+nil are [8,
Proposition 2]. �

We postpone until the next section giving counterexamples to implications (3)⇒ (2) and (4)⇒ (3)
of Theorem 5.

2. Degeneration of zero and the zero objects in the Grothendieck group

Let T be a skeletally small triangulated category with split idempotents all through this section.
By Theorem 5, we know that any object N that is a degeneration of zero in T has the property that
[N ] = 0 in K0(T ). The goal of this section is to compare the subcategories T 0

∆ (resp. T 0
∆+nil) and

T 0 of T consisting, respectively, of the objects N such that 0 ≤∆ N (resp. 0 ≤∆+nil N) and the
objects N such that [N ] = 0 in K0(T ).

But, before tackling the problem, let us emphasize the ubiquity of degenerations of 0.

Remark 6. Since M ≤∆ N (resp. M ≤∆+nil N) if and only if there is a distinguished triangle

Z
(u
v) // M ⊕ Z

(s,t) // N // Z[1]

(resp. with v nilpotent) we see that this can be written as a homotopy cartesian square. Neeman [13,
Lemma 1.4.3, Lemma 1.4.4] then shows that cone(s) ' cone(v), and so 0 ≤∆ cone(s) (resp. 0 ≤∆+nil

cone(s)). Hence, degenerations of 0 are intrinsic in degeneration in triangulated categories.

Recall that, given full subcategories U and V of a triangulated category T , then the subcategory
U ? V is the full subcategory of T consisting of the objects M that fit in a distinguished triangle
U −→ M −→ V −→ U [1], with U ∈ U and V ∈ V. It is well-known that the operation ? is
associative, in the sense that (U ? V) ?W = U ? (V ?W), for all subcategories U ,V,W of T (see [1,
Lemme 1.3.10]). If one puts U?n = U ? · · · ? U︸ ︷︷ ︸

n factors

, for each n ≥ 0 (with the convention that U?0 = 0),

then Uext =
⋃
n∈N U?n is the extension closure of U , that is, the smallest subcategory of T closed
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under extensions that contains U . The smallest triangulated subcategory of T that contains U ,
denoted triaT (U), is

triaT (U) =
⋃
n∈N

⋃
(r1,...,rn)∈Zn

U [r1] ? · · · ? U [rn].

In other words, the objects of triaT (U) are precisely those M admitting a sequence

0 = M0
f1−→M1

f2−→ · · · fn−1−→ Mn−1
fn−→Mn = M,

where cone(fk) is isomorphic to Uk[rk], for some Uk ∈ U and some rk ∈ Z, for all k = 1, ..., n.
In our next main result we will denote by �∆+nil the smallest transitive relation containing ≤∆+nil.

Recall that �∆+nil=≤∆+nil=≤∆ whenever all endomorphism rings of objects of T are artinian (see
Theorem 5).

Theorem 7. Let S be a set of objects in the triangulated category T such that T = triaT (S), let

[S] := {[S]: S ∈ S} denote the corresponding set of generators of the group K0(T ) and let Ŝ be the
subcategory of T consisting of the objects X which are finite direct sums of shifts of objects in S and
are such that [X] = 0 in K0(T ). Denote by

• T 0
∆ (resp. T 0

∆+nil) the full subcategory of T consisting of the objects X such that 0 ≤∆ X
(resp. 0 ≤∆+nil X)
• and by T 0 the (triangulated) subcategory of T consisting of the objects M such that [M ] = 0

in the group K0(T ).

Then the following assertions hold:

(1) An object M is in T 0 if, and only if, M ≤∆ X (resp. M �∆+nil X), for some X ∈ Ŝ. When

[S] is a basis of K0(T ) the objects of Ŝ are precisely the finite direct sums of shifts of objects
in S̄ := {S ⊕ S[2k + 1]: k ∈ Z;S ∈ S}.

(2) T 0 = triaT (S ⊕ S[tS ]: S ∈ S), for every choice of odd integers tS.
(3) T 0 is the extension closure of T 0

∆ (resp. T 0
∆+nil).

Proof. (1) By Theorem 5, the ‘if’ part of this implication is clear. For the ‘only if’ part, we first
claim that, for each M ∈ T , one has that M �∆+nil ⊕S∈S ⊕k∈Z S[k]mS,k , where the S are in S and
the mk,S are nonnegative integers, all zero but a finite number. Recall that T = triaT (S), and so
we have a finite sequence

0 = M0
f1−→M1

f2−→ · · · fn−→Mn = M (∗)
such that Ck := cone(fk) is a shift of some object of S, for each k = 1, ..., n. We will settle our claim
by induction on n > 0, the case n = 1 being clear. Suppose now that n > 0 and consider the induced
triangle

Mn−1
fn // M

g // Cn // Mn−1[1],

where Cn ∼= S[k], for some S ∈ S and k ∈ Z. Taking the homotopy pushout of fn and the zero

endomorphism Mn−1
0−→Mn−1, we readily see that we have a distinguished triangle

Mn−1

(
0
fn

)
// Mn−1 ⊕M // Mn−1 ⊕ Cn // Mn−1[1].

That is, we have M �∆+nil Mn−1 ⊕ Cn ∼= Mn−1 ⊕ S[k]. The result then follows by induction since
Ai �∆+nil Bi, for i = 1, 2, implies that A1 ⊕A2 �∆+nil B1 ⊕B2.

We also claim that M ≤∆ ⊕S∈S ⊕k∈Z S[k]mS,k , for Sk and mS,k as in the previous paragraph.
Using again the sequence (∗) and bearing in mind that each cone Ck := cone(fk) is a shift of some
object in S, we consider the distinguished triangles

Mk−1
fk // Mk

// Ck // Mk−1[1]
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for all k ∈ {1, . . . , n−1}. Taking the direct sum of these distinguished triangles we get a distinguished
triangle (⊕n−1

k=1 Mk

)⊕n
k=1fk//

(
M ⊕

⊕n−1
k=1 Mk

)
// (
⊕n

k=1 Ck) //
(⊕n−1

k=1 Mk

)
[1]

and hence M ≤∆

⊕n
k=1 Ck, as desired.

The last two paragraphs show that we have M �∆+nil X and M ≤∆ Y , for objects X,Y which
are direct sums of shift of objects of S. When in addition M ∈ T 0, by Theorem 5, we also have
[X] = [Y ] = 0 in K0(T ). Therefore we have that X,Y ∈ Ŝ. This proves assertion (1), except for the
final statement.

To prove that final statement, suppose that [S] is a basis of K0(T ). We claim that in this case each

object of Ŝ is a direct sum of objects of the form S[k]⊕S[l] = (S⊕S[l− k])[k], with S ∈ S and l− k
odd. This will end the proof. Let then take X ∈ Ŝ and decompose it as X = ⊕S∈S ⊕k∈Z S[k]mS,k .
Note that, due to the fact that [S] is a basis of K0(T ), the summand XS = ⊕k∈ZS[k]mk,S also
satisfies that [XS ] = 0 in K0(T ), for each S ∈ S. So it is not restrictive to assume that X =
S[k1]m1⊕S[k2]m2⊕· · ·⊕S[kr]

mr , for some pairwise different integers k1, . . . , kr, where, for simplicity,
we have put mki,S = mi > 0 for i = 1, . . . , r. We can reorder the summands in this last direct sum,
so that ki is even, for 1 ≤ i ≤ t, and ki is odd, for t < i ≤ n. Bearing in mind that [S[k]] = (−1)k[S]
in K0(T ), that [S] is a basis of K0(T ) and that [X] = 0 in this latter abelian group, we conclude

that
∑t
i=1mi =

∑n
i=t+1mi. We call m(X) this last integer which is strictly positive when X 6= 0.

An easy induction on m(X) then settles our claim.
(2) Let (tS)S∈S be a collection of odd integers and put D := triaT (S ⊕ S[tS ]: S ∈ S). It follows

that each object of S is a direct summand of an object of D and since each object T of T = triaT (S)
is a finite iterated extension of objects of the form S[k], with S ∈ S and k ∈ Z, it easily follows
that each such T is a direct summand of an object of D. This means that D is a dense triangulated
subcategory of T in the terminology of [18]. Moreover, we clearly have D ⊆ T 0. But [18, Theorem
2.1] gives an order-preserving bijection between the dense triangulated subcategories of T and the
subgroups of K0(T ). Since T 0 corresponds to 0 by this bijection we get that D = T 0, as desired.

(3) Note that assertion (2) implies assertion (3). Indeed, by the comments preceding Theorem 7,
assertion (2) says that T 0 is the extension closure of {(S ⊕ S[tS ])[n]: S ∈ S and n ∈ Z}, for any
choice of odd integers tS (S ∈ S). We may choose tS = 1 for each S, and then we have the split
triangle

S
0 // S

(
1
0

)
// S ⊕ S[1]

(0 1)
// S[1],

which shows that 0 ≤∆+nil S ⊕ S[1]. Since we have inclusions

{(S ⊕ S[1]): S ∈ S} ⊂ T 0
∆+nil ⊂ T 0

∆ ⊆ T 0

assertion (3) immediately follows. �

Example 8. The following are examples of a triangulated category T and a set S of its objects
that satisfy the hypotheses of Theorem 7 and, in addition, [S] is a basis of K0(T ). Here K is a
commutative ring

(1) Call a dg K-algebra A homologically non positive when HkA = 0, for all k > 0, and call it
homologically finite dimensional when H∗(A) = ⊕k∈ZHk(A) is a K-module of finite length.
For instance, any Artin algebra is homologically non positive and homologically finite di-
mensional over its center, when viewed as dg algebra. Let A be a homologically non positive
homologically finite dimensional dg algebra and let T = Dbfl(A) be the subcategory of the

derived category D(A) consisting of the dg A-modules M such that H∗(M) = ⊕k∈ZHk(M)
has finite length as a K-module. When choosing as S a set of representatives, up to iso-
morphism in D(A), of the dg A-modules S such that H∗(S) = H0(S) (i.e. its homology is
concentrated in degree zero) and H0(S) is a simple H0(A)-module, one has that T and S
satisfy the hypotheses of Theorem 7 and [S] is a basis of K0(T ). In particular, taking A
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to be an Artin algebra, T = Db(mod − A) and S be a set of representatives, up to isomor-
phism, of the simple A-modules (viewed as stalk complexes in degree zero), the hypotheses
of Theorem 7 hold and [S] is a basis of K0(T ).

(2) Suppose that A is an additive category with a set S ′ of objects such that A = add(S ′) and the
Grothendieck group K0(A) is free with {[S]: S ∈ S ′} as a basis. Then the bounded homotopy
category T = Kb(A) and the set S = S ′[0] of stalk complexes S′[0], with S′ ∈ S ′, satisfy
the hypotheses of Theorem 7 (see [15, Theorems 1.1 and 1.2]). This includes the case when
T = Kb(A−proj), where A is a principal ideal domain or a semiperfect ring, in particular an
Artin algebra, by taking as S ′ the set of (isomorphism classes of) indecomposable projective
A-modules

Our next example shows that the implication (4)⇒ (3) of Theorem 5 is in general not true.

Example 9. Let A be an Artin algebra and S be a simple A-module. For each k ∈ Z the complex
M = S⊕S[2k+1] has the property that [M ] = 0 inK0(Db(A−mod)). However, it is a ∆-degeneration
of zero (i.e. 0 ≤∆ M) if and only if k = 0 or k = −1.

Indeed, In the final paragraph of the proof of Theorem 7 it is shown that 0 ≤∆+nil S⊕S[1], which
implies by shift that also 0 ≤∆+nil S ⊕ S[−1]. We then get that 0 ≤∆ M whenever k = 0,−1.

Suppose now that k 6= −1, 0. Note that the homology module Hi(M) is zero, except for i = 0
and i = −2k − 1 in which case it is equal to S. If there is a distinguished triangle

Z
f // Z // M // Z[1]

in Db(A−mod), the associated sequence of homologies gives an exact sequence

0 // H0(Z)
H0(f) // H0(Z) // S // H1(Z)

H1(f) // H1(Z) // 0,

which forces H0(f) and H1(f) to be isomorphisms since they are a monomorphic and an epimorphic
endomorphism, respectively, of finite length modules. Therefore S = 0, and we get a contradiction.

Recall that we denote by �∆+ nil the smallest transitive relation on the set of isomorphism classes
of objects in T containing ≤∆+ nil. Our final result shows that the implication (3)⇒ (2) of Theorem 5
is false, in a strong sense.

Proposition 10. Let A be any skeletally small abelian category for which Db(A) is well-defined, i.e.
it has Hom sets as opposed to proper classes, and let us identify A with the subcategory of Db(A)
consisting of objects X such that Hi(X) = 0, for i 6= 0. The following assertions hold:

(1) If Y ≤∆+nil X in Db(A) and X ∈ A, then Y ∈ A.
(2) If Z is an object of A and f : Z −→ Z is a monomorphic endomorphism A which is not an

isomorphism, then X := Coker(f) satisfies that 0 ≤∆ X in T := Db(A) (and hence [X] = 0
in K0(T )), but 0 6�∆+nil X.

Proof. (1) Let us consider a distinguished triangle

W

(
v
α

)
// W ⊕ Y // X // W [1]

in Db(A), where v is a nilpotent endomorphism of W and X ∈ A. The long exact sequence of
homologies gives that

Hj(W )

(
Hj(v)

Hj(α)

)
// Hj(W )⊕Hj(Y )

is an isomorphism, for j 6= 0, 1, and there is an exact sequence

0 // H0(W )

(
H0(v)
H0(α)

)
// H0(W )⊕H0(Y ) // X // H1(W )

(
H1(v)
H1(α)

)
// H1(W )⊕H1(Y ) // 0
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in A. Proving that Y has homology concentrated in zero degree reduces to prove that if

(
w
g

)
: A −→

A⊕B is an epimorphism in A, for some objects A,B ∈ A, where w is a nilpotent endomorphism of
A, then A = B = 0. This is clear when w = 0. But if w 6= 0 and m is the nilpotent index of w (i.e.
wm = 0 6= wm−1), then the composition

A

(
w
g

)
// A⊕B

(wm−1 0)
// A

is the zero map, which implies that wm−1 = 0, thus yielding a contradiction.

(2) We have an induced distinguished triangle

Z
f // Z // X // Z[1]

in Db(A), thus showing that 0 ≤∆ X = X[0] in the latter triangulated category. Suppose now that
0 �∆+nil X. Then we have a sequence 0 = X0, X1, . . . , Xn = X in Db(A) such that Xi−1 ≤∆+nil Xi

and Xi 6= 0 for i = 1, . . . , n. By assertion 1, we know that all Xi are in A. Replacing X by X1 if
necessary, we get an object X 6= 0 of A such that 0 ≤∆+nil X in Db(A). We can fix a distinguished
triangle

Q
u // Q // X // Q[1]

in Db(A), where u is a nilpotent endomorphism of Q. The long exact sequence of homologies gives
then an exact sequence

0 // H0(Q)
H0(u) // H0(Q) // X // H1(Q)

H1(u) // H1(Q) // 0

in A. But it is obvious that a nilpotent endomorphism of an object A′ ∈ A can be a monomorphism
or an epimorphism only in case A′ = 0. We then get Hj(Q) = 0 for j = 0, 1, which in turn implies
X = 0 and hence a contradiction. �

Example 11. Proposition 10 applies to the case when A = R − mod is the category of finitely
generated modules over a Noetherian integral domain R. Indeed if U(R) denotes the group of units
of R, then any element x ∈ R \ U(R) defines by multiplication a monomorphic endomorphism
µ = µx : R −→ R in R −mod which is not an isomorphism. Putting X := R/Rx, we then get that
0 ≤∆ X but 0 6�∆+nil X in Db(R−mod).

Remark 12. Consider the situation of a triangulated category C◦K and an object M of C◦K with
0 ≤cdeg M . It is not hard to see that, with the notations used in Definition 2 and Definition 4,
we get M ' Φ(cone(tQ)) with nilpotent endomorphism tQ for some object Q in the category C◦V
corresponding to the degeneration data, and Φ the functor C◦V → CK . This, together with Remark 6,
pinpoints the difference between degeneration and flat deformations.
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